1
|
Zuo C, Liu Y, Wang Y, Wang Z, Ma H, Wang F, Qiao Y. Underlying effect of SMAD4 gene polymorphism on risk prediction of papillary thyroid carcinoma in Chinese population. Heliyon 2024; 10:e28824. [PMID: 38596142 PMCID: PMC11002234 DOI: 10.1016/j.heliyon.2024.e28824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 04/11/2024] Open
Abstract
Objective This research intends to explore how variations in the SMAD4 gene impact papillary thyroid carcinoma (PTC) among patients in China. Methods The rs10502913 and rs12968012 polymorphisms were genotyped in 405 subjects using SNP-scan high-throughput technology. Differential mRNA expression of SMAD4 was analyzed using data from TCGA and GSE33630, and protein level expression differences were analyzed using immunohistochemistry. Results The results showed that SMAD4 mRNA expression was lower in thyroid cancer (THCA) tissues than in normal tissues. Immunohistochemical results showed that the expression level of SMAD4 in normal tissue, thyroid papillary carcinoma tissue and poorly differentiated tissue was significantly different. We found that SMAD4 mismatch variants (rs10502913 and rs12968012) were associated with PTC susceptibility. Specifically, the SMAD4-rs10502913 genotypes (GA and AA) showed a notable correlation with a lower likelihood of PTC in comprehensive and segmented studies (genotype GA: OR (95% CI) = 0.270 (0.077-0.950), p = 0.041; genotype AA: OR (95% CI) = 0.103 (0.025-0.416), p = 0.001). We categorized the immunohistochemical results according to genotype and found that rs10502913-GG protein level was expressed at the lowest level, and both GA and AA were higher than GG (GG vs. AA, P < 0.05), and rs12968012-CG protein level was expressed at the lowest level, and both GG and CC were higher than CG (GG vs. CG, P < 0.01). Conclusion Two missense variants of SMAD4 (rs10502913 and rs12968012) are associated with reduced risk of papillary thyroid carcinoma, possibly by reducing protein expression leading to susceptibility to papillary thyroid carcinoma.
Collapse
Affiliation(s)
- Chao Zuo
- Department of Clinical Laboratory, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Yi Liu
- Department of Clinical Laboratory, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Yu Wang
- Department of Geriatrics, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Ziqiang Wang
- Research Center of Clinical Laboratory Science, Bengbu Medical College, Bengbu Anhui, China
| | - Hongyu Ma
- Department of Clinical Medicine, Bengbu Medical College, Bengbu, Anhui China
| | - Feng Wang
- Department of Clinical Laboratory, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Yongchao Qiao
- Department of Clinical Laboratory, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| |
Collapse
|
2
|
Bhushan V, Kumar G, Yadav A, Tripathi S. Psychiatric manifestations of Myhre syndrome: A case report. Indian J Psychiatry 2023; 65:1083-1084. [PMID: 38108059 PMCID: PMC10725206 DOI: 10.4103/indianjpsychiatry.indianjpsychiatry_158_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 08/24/2023] [Accepted: 08/30/2023] [Indexed: 12/19/2023] Open
Affiliation(s)
| | - Gyanendra Kumar
- Department of Psychiatry, IMHH, Agra, Uttar Pradesh, India E-mail:
| | - Arti Yadav
- Department of Psychiatry, IMHH, Agra, Uttar Pradesh, India E-mail:
| | - Sheetal Tripathi
- Department of Psychiatry, IMHH, Agra, Uttar Pradesh, India E-mail:
| |
Collapse
|
3
|
Hong Y, Kim I, Moon H, Lee J, Lertpatipanpong P, Ryu CH, Jung YS, Seok J, Kim Y, Ryu J, Baek SJ. Novel thrombospondin-1 transcript exhibits distinctive expression and activity in thyroid tumorigenesis. Oncogene 2023:10.1038/s41388-023-02692-9. [PMID: 37055552 DOI: 10.1038/s41388-023-02692-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/15/2023]
Abstract
Thrombospondin 1 (TSP1) is known for its cell-specific functions in cancer progression, such as proliferation and migration. It contains 22 exons that may potentially produce several different transcripts. Here, we identified TSP1V as a novel TSP1-splicing variant produced by intron retention (IR) in human thyroid cancer cells and tissues. We observed that TSP1V functionally inhibited tumorigenesis contrary to TSP1 wild-type, as identified in vivo and in vitro. These activities of TSP1V are caused by inhibiting phospho-Smad and phospho-focal adhesion kinase. Reverse transcription polymerase chain reaction and minigene experiments revealed that some phytochemicals/non-steroidal anti-inflammatory drugs enhanced IR. We further found that RNA-binding motif protein 5 (RBM5) suppressed IR induced by sulindac sulfide treatment. Additionally, sulindac sulfide reduced phospho-RBM5 levels in a time-dependent manner. Furthermore, trans-chalcone demethylated TSP1V, thereby preventing methyl-CpG-binding protein 2 binding to TSP1V gene. In addition, TSP1V levels were significantly lower in patients with differentiated thyroid carcinoma than in those with benign thyroid nodule, indicating its potential application as a diagnostic biomarker in tumor progression.
Collapse
Affiliation(s)
- Yukyung Hong
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Korea
| | - Ilju Kim
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Korea
| | - Hyunjin Moon
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Korea
| | - Jaehak Lee
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Korea
| | - Pattawika Lertpatipanpong
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Korea
| | - Chang Hwan Ryu
- Department of Otolaryngology-Head and Neck Surgery, Center for Thyroid Cancer, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - Yuh-Seog Jung
- Department of Otolaryngology-Head and Neck Surgery, Center for Thyroid Cancer, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - Jungirl Seok
- Department of Otolaryngology-Head and Neck Surgery, Center for Thyroid Cancer, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - Yonghwan Kim
- Department of Biological Sciences, Research Institute of Women's Health and Digital Humanity Center, Sookmyung Women's University, Seoul, 04310, Korea
| | - Junsun Ryu
- Department of Otolaryngology-Head and Neck Surgery, Center for Thyroid Cancer, Research Institute and Hospital, National Cancer Center, Goyang, Korea.
| | - Seung Joon Baek
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
4
|
Cătană A, Simonescu‑Colan R, Cuzmici‑Barabaș Z, Militaru D, Iordănescu I, Militaru M. First documented case of Myhre syndrome in Romania: A case report. Exp Ther Med 2022; 23:323. [PMID: 35386616 PMCID: PMC8972842 DOI: 10.3892/etm.2022.11252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/03/2021] [Indexed: 11/21/2022] Open
Abstract
Myhre syndrome is a rare genetic autosomal dominant connective tissue disorder, characterized by developmental delay, characteristic facial features, various bone and joint abnormalities, distinctive cardiovascular, ophthalmological and ear, nose and throat (ENT) manifestations, in association with mild to moderate intellectual disability and autism or autism spectrum disorder-like behaviour. The diagnosis of Myhre syndrome is established corroborating the clinical findings with SMAD4 heterozygous mutation identified in the majority of the patients. SMAD4 gene mutations result in abnormal TGF-β signalling in several cell types, which affects the development of several body systems and leads to the specific phenotype of Myhre syndrome. We herein report the case of an 18-year-old female patient who was diagnosed at the age of 17 years with Myhre syndrome, the first documented case of this syndrome in Romania. Sequence analysis of protein-coding genes using whole-exome analysis identified a ‘de novo’, heterozygous missense variant of SMAD4, c.1498A>G, p. (Ile500Val), which is pathogenic for Myhre syndrome. Although this condition is rare, a series of particularities were identified in the present case, consisting of severe allergic reactions, recurrent ENT tumour development and delayed dental eruption, which have not been described in Myhre syndrome to date, to the best of the authors' knowledge.
Collapse
Affiliation(s)
- Andreea Cătană
- Department of Oncogenetics, Institute of Oncology I. Chiricuță, 4000015 Cluj‑Napoca, Romania
| | | | - Zina Cuzmici‑Barabaș
- Department of Molecular Sciences, University of Medicine and Pharmacy, 4000012 Cluj‑Napoca, Romania
| | - Diana Militaru
- Department of Molecular Sciences, University of Medicine and Pharmacy, 4000012 Cluj‑Napoca, Romania
| | - Irina Iordănescu
- Department of Medical Genetics, Genetic Center Laboratory, Regina Maria, 011376 Bucharest, Romania
| | - Mariela Militaru
- Department of Molecular Sciences, University of Medicine and Pharmacy, 4000012 Cluj‑Napoca, Romania
| |
Collapse
|
5
|
Wu J, Sun Y, Li J, Ai M, You L, Shi J, Yu F. Analysis of Prognostic Alternative Splicing Reveals the Landscape of Immune Microenvironment in Thyroid Cancer. Front Oncol 2021; 11:763886. [PMID: 34733794 PMCID: PMC8558422 DOI: 10.3389/fonc.2021.763886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 09/28/2021] [Indexed: 11/28/2022] Open
Abstract
Background The incidence of thyroid cancer (THCA) continues to increase in recent decades. Accumulating evidence showed that the unbalanced alternative splicing (AS) promotes the occurrence of cancers and leads to poor prognosis of patients. However, the research on alternative splicing events in THCA is lacking, and its underlying mechanism is not fully understood. This study identifies a novel prognostic signature based on AS events to reveal the relationship of AS with tumor immune microenvironment. Methods Based on the AS data, transcriptional data, and clinical information, the differentially expressed alternative splicings (DEASs) were screened out. Least absolute shrinkage and selection operator (LASSO) regression and multi-Cox regression analyses were employed to identify prognostic results related to AS events and establish a prognostic signature. The predictive ability of the signature was assessed by Kaplan-Meier (K-M) survival curve, risk plots, and receiver operating characteristic (ROC) curves. Furthermore, correlations between tumor-infiltrating immune cells, immune checkpoints, immune score and prognostic signature were analyzed. Results According to the LASSO regression analysis, a total of five AS events were selected to construct the signature. K-M survival curve showed that the higher the risk score, the worse the OS of the patients. Risk plots further confirmed this result. ROC curves indicated the high predictive efficiency of the prognostic signature. As for tumor immune microenvironment, patients in the high-risk group had a higher proportion of immune cells, including plasma cell, CD8+ T cell, macrophages (M0 and M2), and activated dendritic cell. Immune checkpoint proteins, such as PDCD1LG2, HAVCR2, CD274, etc., were significantly higher in the high-risk group. We also found that the ESTIMATE score, stromal score, and immune score were lower in the high-risk group, while the result of tumor purity was the opposite. Conclusions Collectively, a prognostic signature consisting of five AS events in THCA was established. Furthermore, there was an inextricable correlation between immune cell infiltration, immune checkpoint proteins, and AS events. This study will provide a basis for THCA immunotherapy in the future.
Collapse
Affiliation(s)
- Jian Wu
- Department of Otorhinolaryngology-Head and Neck Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Yifang Sun
- Department of Ophthalmology, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Junzheng Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Maomao Ai
- Department of Otorhinolaryngology-Head and Neck Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Lihua You
- Department of Otorhinolaryngology-Head and Neck Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Jianbo Shi
- Department of Otorhinolaryngology-Head and Neck Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China.,Department of Otorhinolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, China
| | - Feng Yu
- Department of Otorhinolaryngology-Head and Neck Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| |
Collapse
|
6
|
Wan R, Feng J, Tang L. Consequences of Mutations and Abnormal Expression of SMAD4 in Tumors and T Cells. Onco Targets Ther 2021; 14:2531-2540. [PMID: 33888990 PMCID: PMC8054659 DOI: 10.2147/ott.s297855] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/18/2021] [Indexed: 12/12/2022] Open
Abstract
SMAD4 is a typical tumor suppressor in the TGF-β signaling pathway. In human cancers, SMAD4 is frequently mutated and inactivated. In recent years, the consequences of mutations and inactivation of SMAD4 are gradually becoming clearer. Most of the mutations have negative consequences and reduce the chances of survival of their carriers. Loss of SMAD4 functions due to mutations or abnormal expression can suppress the inhibition of tumor growth and support the tumor progression. Functions of SMAD4 and its variants in T cells are being studied extensively, to better understand the SMAD4 functions in T cells. In this review, we mainly discuss the recently reported consequences of mutations and abnormal expression of SMAD4 in tumors, and the effects of loss, deficiency or mutation of SMAD4 and its T cells, to show the use of SMAD4 mutations in cancer diagnosis and therapeutic strategies.
Collapse
Affiliation(s)
- Rongxue Wan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, People’s Republic of China
- National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China
- Department of Human Anatomy, School of Basic Medical Sciences, Guangdong Medical University, Zhanjiang, Guangdong Province, People’s Republic of China
| | - Jianguo Feng
- National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, People’s Republic of China
| | - Liling Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, People’s Republic of China
| |
Collapse
|
7
|
Shimamura M, Kurashige T, Kuatov R, Nakashima M, Nagayama Y. Acceleration of BRAF V600E-induced thyroid carcinogenesis by TGFβ signal deficiency in mice. Endocrine 2020; 69:571-577. [PMID: 32281047 DOI: 10.1007/s12020-020-02298-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/28/2020] [Indexed: 10/24/2022]
Abstract
PURPOSE Transforming growth factor-β (TGFβ) has pleiotropic actions, including both anti- and pro-tumorigenic abilities. We have previously shown no tumor development in the thyroid-specific TGFβ receptor type II knockout (Tgfβr2 KO) mice, indicating the insufficiency of defective TGFβ signal itself for thyroid cancer initiation. In the current study, we evaluated whether defective TGFβ signal accelerates BRAFV600E-mediated thyroid carcinogenesis in our mouse model, in which intrathyroidal injection of adenovirus expressing Cre under thyroglobulin (TG) promoter (Ad-TgP-Cre) into thyroid lobes of conditional BrafV600E knock-in mice (BrafCA) induces thyroid cancers 12 months later. METHODS BrafCA/wt;Tgfbr2floxE2/floxE2 mice were generated by crossing Tgfbr2floxE2/floxE2 and BrafCA mice, and Ad-TgP-Cre was injected into the left lobes of 4-6-week-old mice. Mice were sacrificed at 6 and 12 months, and the thyroid tissues were subjected to H&E and immune-histochemistry and -fluorecence. RESULTS Thyroid tumors were observed in 8 of 10 mice at 6 months and 4 of 7 mice at 12 months. These tumors were judged to be malignant by H&E staining, because of the presence of papillary growth of atypical follicular cells, intranuclear cytoplasmic inclusions and so on. Immunohistochemical analyses using thyroid cancer tissues obtained at 6 months demonstrated variable levels of TG but steady levels of Paired Box-8 expression and higher Ki67 positivity. The degree of epithelial-to-mesenchymal transition could not be evaluated because normal thyroid tissues and thyroid cancers developed in BrafCA and BrafCA/wt;Tgfbr2floxE2/floxE2 mice were all E-cadherin+/vimentin-, that is, epithelial type. CONCLUSION In a mouse model, defective TGFβ signaling pathway accelerates BRAFV600E-induced thyroid cancer development, which is occasionally accompanied by reduced TG expression implying dedifferentiation. The former finding is consistent with anti-tumorigenic ability of TGFβ in early tumorigenic process, but the latter is contradictory to generally accepted concept for TGFβ-induction of dedifferentiation.
Collapse
Affiliation(s)
- Mika Shimamura
- Department of Molecular Medicine, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tomomi Kurashige
- Department of Molecular Medicine, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Rassul Kuatov
- Department of Molecular Medicine, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Masahiro Nakashima
- Department of Tumor and Diagnostic Pathology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yuji Nagayama
- Department of Molecular Medicine, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.
| |
Collapse
|
8
|
Xu D, Gokcumen O, Khurana E. Loss-of-function tolerance of enhancers in the human genome. PLoS Genet 2020; 16:e1008663. [PMID: 32243438 PMCID: PMC7159235 DOI: 10.1371/journal.pgen.1008663] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 04/15/2020] [Accepted: 02/12/2020] [Indexed: 12/21/2022] Open
Abstract
Previous studies have surveyed the potential impact of loss-of-function (LoF) variants and identified LoF-tolerant protein-coding genes. However, the tolerance of human genomes to losing enhancers has not yet been evaluated. Here we present the catalog of LoF-tolerant enhancers using structural variants from whole-genome sequences. Using a conservative approach, we estimate that individual human genomes possess at least 28 LoF-tolerant enhancers on average. We assessed the properties of LoF-tolerant enhancers in a unified regulatory network constructed by integrating tissue-specific enhancers and gene-gene interactions. We find that LoF-tolerant enhancers tend to be more tissue-specific and regulate fewer and more dispensable genes relative to other enhancers. They are enriched in immune-related cells while enhancers with low LoF-tolerance are enriched in kidney and brain/neuronal stem cells. We developed a supervised learning approach to predict the LoF-tolerance of all enhancers, which achieved an area under the receiver operating characteristics curve (AUROC) of 98%. We predict 3,519 more enhancers would be likely tolerant to LoF and 129 enhancers that would have low LoF-tolerance. Our predictions are supported by a known set of disease enhancers and novel deletions from PacBio sequencing. The LoF-tolerance scores provided here will serve as an important reference for disease studies. Enhancers are elements where transcription factors bind and regulate the expression of protein-coding genes. Although multiple previous studies have focused on which genes can tolerate loss-of-function (LoF), none has systematically evaluated the tolerance of all enhancers in the human genome to LoF. Individual studies have shown a broad range of phenotypic effects of enhancer LoF. The phenotypic effects of enhancer LoF likely fall into a spectrum where deletion of LoF-tolerant enhancers would not elicit substantial phenotypic impact, while some enhancers are likely to cause fitness defects when deleted. Here we report a systematic computational approach that uses machine learning and properties of enhancers in a unified human regulatory network with tissue-specific annotations to predict the LoF-tolerance of all enhancers identified in the human genome. The LoF-tolerance scores of enhancers provided in this study can significantly facilitate the interpretation and prioritization of non-coding sequence variants for disease and functional studies.
Collapse
Affiliation(s)
- Duo Xu
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York, United States of America
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, United States of America
- Englander Institute for Precision Medicine, New York Presbyterian Hospital-Weill Cornell Medicine, New York, New York, United States of America
- Meyer Cancer Center, Weill Cornell Medicine, New York, New York, United States of America
| | - Omer Gokcumen
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, New York, United States of America
| | - Ekta Khurana
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York, United States of America
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, United States of America
- Englander Institute for Precision Medicine, New York Presbyterian Hospital-Weill Cornell Medicine, New York, New York, United States of America
- Meyer Cancer Center, Weill Cornell Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
9
|
Belluti S, Rigillo G, Imbriano C. Transcription Factors in Cancer: When Alternative Splicing Determines Opposite Cell Fates. Cells 2020; 9:E760. [PMID: 32244895 PMCID: PMC7140685 DOI: 10.3390/cells9030760] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/05/2020] [Accepted: 03/17/2020] [Indexed: 02/08/2023] Open
Abstract
Alternative splicing (AS) is a finely regulated mechanism for transcriptome and proteome diversification in eukaryotic cells. Correct balance between AS isoforms takes part in molecular mechanisms that properly define spatiotemporal and tissue specific transcriptional programs in physiological conditions. However, several diseases are associated to or even caused by AS alterations. In particular, multiple AS changes occur in cancer cells and sustain the oncogenic transcriptional program. Transcription factors (TFs) represent a key class of proteins that control gene expression by direct binding to DNA regulatory elements. AS events can generate cancer-associated TF isoforms with altered activity, leading to sustained proliferative signaling, differentiation block and apoptosis resistance, all well-known hallmarks of cancer. In this review, we focus on how AS can produce TFs isoforms with opposite transcriptional activities or antagonistic functions that severely impact on cancer biology. This summary points the attention to the relevance of the analysis of TFs splice variants in cancer, which can allow patients stratification despite the presence of interindividual genetic heterogeneity. Recurrent TFs variants that give advantage to specific cancer types not only open the opportunity to use AS transcripts as clinical biomarkers but also guide the development of new anti-cancer strategies in personalized medicine.
Collapse
Affiliation(s)
| | | | - Carol Imbriano
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 213/D, 41125 Modena, Italy; (S.B.); (G.R.)
| |
Collapse
|
10
|
Wan R, Xu X, Ma L, Chen Y, Tang L, Feng J. Novel Alternatively Spliced Variants of Smad4 Expressed in TGF-β-Induced EMT Regulating Proliferation and Migration of A549 Cells. Onco Targets Ther 2020; 13:2203-2213. [PMID: 32210586 PMCID: PMC7073448 DOI: 10.2147/ott.s247015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 03/02/2020] [Indexed: 12/26/2022] Open
Abstract
INTRODUCTION Non-small cell lung cancer (NSCLC) is a worldwide malignance threatening human life. TGF-β/Smad signaling is known to regulate cell proliferation, differentiation, migration and growth. As the only co-Smad playing crucial roles in TGF-β signaling, Smad4 is reported to be frequently mutated or to occur as alternatively spliced in tumor cells. Smad4 was reported to be involved in the TGF-β-induced EMT process. However, whether the alternative splicing occurs in the TGF-β-induced EMT process in NSCLC was not clear. METHODS In our current study, we explored the alternative splicing of Smad4 during the process of TGF-β-induced EMT in A549 cells. 10 ng/mL TGF-β was used to induce EMT. Then, nest-PCR and agarose electrophoresis were performed to detect the expression of Smad4 variants and sequencing to get the variant DNA sequences. For recombinant expression of variants of Smad4 in A549 cells, we used lentiviral variants to infect cells. In order to explore the effects of variants on the proliferation and migration of A549 cells, the MTT assay, colony formation assay and wound-healing assay were done. The effects of variants on E-cad and VIM protein expression were explored through Western blot. RESULTS There were several novel gene fragments expressed in TGF-β-induced A549 cells, and the sequencing results showed that they were indeed the Smad4 variants that were not reported. For recombinant expression of Smad4 variants in A549 cells, we found that they have significant effects on the proliferation and migration of cells, and also regulated the E-cad and VIM protein expression. CONCLUSION Our results indicated that novel Smad4 variants were expressed in TGF-β-induced EMT process. The functional study showed that these novel variants regulate cell proliferation and migration and affect E-cad and VIM protein expression, showing the potential as targets for cancer therapy.
Collapse
Affiliation(s)
- Rongxue Wan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing400044, People’s Republic of China
- National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China
- Department of Human Anatomy, School of Basic Medical Sciences, Guangdong Medical University, Zhanjiang, Guangdong Province, People’s Republic of China
| | - Xichao Xu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing400044, People’s Republic of China
| | - Lunkun Ma
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing400044, People’s Republic of China
| | - Ying Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing400044, People’s Republic of China
| | - Liling Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing400044, People’s Republic of China
| | - Jianguo Feng
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, People’s Republic of China
| |
Collapse
|
11
|
Ullah I, Sun W, Tang L, Feng J. Roles of Smads Family and Alternative Splicing Variants of Smad4 in Different Cancers. J Cancer 2018; 9:4018-4028. [PMID: 30410607 PMCID: PMC6218760 DOI: 10.7150/jca.20906] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 08/20/2018] [Indexed: 12/15/2022] Open
Abstract
Transforming Growth Factor β (TGF-β) is one of the most common secretory proteins which are recognized by membrane receptors joined to transcription regulatory factor. TGF-β signals are transduced by the Smads family that regulate differentiation, proliferation, early growth, apoptosis, homeostasis, and tumor development. Functional study of TGF-β signaling pathway and Smads role is vital for certain diseases such as cancer. Alternative splicing produces a diverse range of protein isoforms with unique function and the ability to react differently with various pharmaceutical products. This review organizes to describe the general study of Smads family, the process of alternative splicing, the general aspect of alternative splicing of Smad4 in cancer and the possible use of spliceoforms for the diagnosis and therapeutic purpose. The main aim and objective of this article are to highlight some particular mechanisms involving in alternatives splicing of cancer and also to demonstrate new evidence about alternative splicing in different steps given cancer initiation and progression.
Collapse
Affiliation(s)
- Irfan Ullah
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Weichao Sun
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Liling Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Jianguo Feng
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| |
Collapse
|
12
|
Ullah I, Liao Y, Wan R, Tang L, Feng J. Alternative Splicing of SMAD4 and Its Function in HaCaT Cells in Response to UVB Irradiation. J Cancer 2018; 9:3177-3186. [PMID: 30210641 PMCID: PMC6134820 DOI: 10.7150/jca.24756] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 05/09/2018] [Indexed: 12/27/2022] Open
Abstract
Alternative splicing is one of the most common mechanisms of human gene regulation and plays a crucial role in increasing the diversity of functional proteins. Many diseases are linked to alternative splicing, especially cancer. SMAD4 is a member of the SMAD family and plays a critical role in mediating of TGF-β signal transduction and gene regulatory events. Smad4 is a tumour suppressor and acts as a shuttling protein between nucleus and cytoplasm. The splicing variants of Smad4 have been found in many cancers. The present study performed nested PCR to detect alternative splicing of Smad4 in HaCaT cells lines in response to UVB irradiation. The UVB induced a novel Smad4B isoform that led to decrease the Smad4 expression. The hnRNPA1 splicing factor is responsible for Smad4 alternative splicing in response to UVB. The UVB increased the expression of SF2 and hnRNPA1 Splicing factors. The hnRNPA1 overexpression induced Smad4B by regulating Smad4 alternative splicing. The Smad4B isoform supported the function of Smad4 full length in UVB resistance with certain limitation. The western blot analyses showed that the overexpressed Smad4 full length significantly increased N-cadherin expression while Smad4B overexpression decreased the expression the N-cadherin (P<0.05). Furthermore, overexpression of the isoform in HaCaT cells decreased cell invasion as compared to Smad4 full-length overexpression. These results will be helpful to understand the importance of Smad4 alternative splicing in skin tumorigenesis.
Collapse
Affiliation(s)
- Irfan Ullah
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Yi Liao
- Department of Cardiothoracic Surgery, Southwest Hospital, Third Military Medical University Chongqing, China
| | - Rongxue Wan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Liling Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Jianguo Feng
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| |
Collapse
|
13
|
Oglio R, Thomasz L, Salvarredi L, Juvenal G, Pisarev M. Comparative effects of transforming growth factor beta isoforms on redox metabolism in thyroid cells. Mol Cell Endocrinol 2018; 470:168-178. [PMID: 29061379 DOI: 10.1016/j.mce.2017.10.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/19/2017] [Accepted: 10/19/2017] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Transforming growth factor beta (TGF-β) regulates thyroid function and growth. However, tumoral thyroid cells became resistant to this factor as they undifferentiated. Little is known about the effects of TGF-β isoforms. We compared the role of redox metabolism in the response to TGF-β isoforms between non tumoral and tumoral thyroid cells. METHODOLOGY AND RESULTS Differentiated rat thyroid cells (FRTL-5) and human thyroid follicular carcinoma cells (WRO) were treated with the three isoforms of TGF-β. TGF-β isoforms stopped cell cycle at different steps; G1 for FRTL-5 and G2/M for WRO. The three isoforms decreased cell viability and increased ROS accumulation in both cell lines. These effects were more pronounced in FRTL-5 than in WRO, and the isoform β1 was more potent in ROS production than the other two. TGF-β isoforms decreased total glutathione, catalase expression and it activity in both cell lines. Only in FRTL-5 the lipid peroxidation was demonstrated. Moreover, TGF-β1 decreased glutathione peroxidase and mitochondrial superoxide dismutase mRNA expression and increased mitochondrial ROS in FRTL-5, but no in WRO. Pretreatment with selenium increased glutathione peroxidase activity and decreased ROS production in WRO treated with TGF-β isoforms. Furthermore, selenium partially reversed the effect of TGF-β isoforms on cell viability only in WRO cells. The knockdown of endogenous NOX4 significantly reduced the TGF-β1 effect on cell viability in WRO but no in FRTL-5. CONCLUSION TGF-β disrupted the redox balance and increased ROS accumulation in both cell lines. FRTL-5 cells showed reduced antioxidant capacity and had a greater sensitivity to TGF-β isoforms, while WRO cells were more resistant. This observation provides new insights into the potential role of TGF-β in the redox regulation of thyroid cells.
Collapse
Affiliation(s)
- Romina Oglio
- Nuclear Biochemistry Division, Argentine National Atomic Energy Commission, Buenos Aires 1429, Argentina.
| | - Lisa Thomasz
- Nuclear Biochemistry Division, Argentine National Atomic Energy Commission, Buenos Aires 1429, Argentina; CONICET, Argentina
| | - Leonardo Salvarredi
- Nuclear Biochemistry Division, Argentine National Atomic Energy Commission, Buenos Aires 1429, Argentina
| | - Guillermo Juvenal
- Nuclear Biochemistry Division, Argentine National Atomic Energy Commission, Buenos Aires 1429, Argentina; CONICET, Argentina
| | - Mario Pisarev
- CONICET, Argentina; Faculty of Medicine, University of Buenos Aires (UBA), Argentina.
| |
Collapse
|
14
|
Ivanova K, Manolova I, Ignatova MM, Gulubova M. Immunohistochemical Expression of TGF-Β1, SMAD4, SMAD7, TGFβRII and CD68-Positive TAM Densities in Papillary Thyroid Cancer. Open Access Maced J Med Sci 2018; 6:435-441. [PMID: 29610597 PMCID: PMC5874362 DOI: 10.3889/oamjms.2018.105] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 01/21/2018] [Accepted: 01/22/2018] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND: Papillary thyroid carcinoma (PTC) accounts for 80% of the thyroid malignancies that are characterised by slow growth and an excellent prognosis. Over-expression of SMAD4 protein restores TGF-β signalling, determines a strong increase in anti-proliferative effect and reduces invasive potential of tumour cells expressing it. AIM: The study aimed to analyse the immunohistochemical expression of TGF-β1 and its downstream phosphorylated SMAD4, element and of the inhibitory SMAD7 PTC variants and their association with the localisation of TAMs within the tumour microenvironment. METHODS: For this retrospective study we investigated 69 patients immunohistochemistry with antibodies against TGF-β, TGF – β-RII, SMAD4, SMAD7, CD68+ macrophages. RESULTS: Patients with low infiltration with CD68+ cells in tumour stroma has significantly shorter survival (median of 129.267 months) compared to those with high CD68+ cells infiltration (p = 0.034). From the analysis of CD68+ cells in tumour border and tumour stroma correlated with expression of TGF-β1 / SMAD proteins, we observed that the positive expression of TGF-β1 in tumour cytoplasm, significantly correlated with increased number of CD68+ cells in tumour border (X2 = 5,945; p = 0.015). CONCLUSION: TGF-β enhances motility and stimulates recruitment of monocytes, macrophages and other immune cells while directly inhibiting their anti-tumour effector functions.
Collapse
Affiliation(s)
- Koni Ivanova
- Trakia University, Medical Faculty, Department of General and Clinical Pathology, Stara Zagora, Bulgaria
| | - Irena Manolova
- Trakia University, Medical Faculty, Department Molecular Biology, Immunology and Medical Genetics, Stara Zagora, Bulgaria
| | - Maria-Magdalena Ignatova
- Trakia University, Medical Faculty, Department of General and Clinical Pathology, Stara Zagora, Bulgaria
| | - Maya Gulubova
- Trakia University, Medical Faculty, Department of General and Clinical Pathology, Stara Zagora, Bulgaria
| |
Collapse
|
15
|
Nolan BE, Levenson E, Chen BY. Influential Mutations in the SMAD4 Trimer Complex Can Be Detected from Disruptions of Electrostatic Complementarity. J Comput Biol 2018; 24:68-78. [PMID: 28051901 DOI: 10.1089/cmb.2016.0162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
This article examines three techniques for rapidly assessing the electrostatic contribution of individual amino acids to the stability of protein-protein complexes. Whereas the energetic minimization of modeled oligomers may yield more accurate complexes, we examined the possibility that simple modeling may be sufficient to identify amino acids that add to or detract from electrostatic complementarity. The three methods evaluated were (a) the elimination of entire side chains (e.g., glycine scanning), (b) the elimination of the electrostatic contribution from the atoms of a side chain, called nullification, and (c) side chain structure prediction using SCWRL4. These techniques generate models in seconds, enabling large-scale mutational scanning. We evaluated these techniques on the SMAD2/SMAD4 heterotrimer, whose formation plays a crucial role in antitumor pathways. Many studies have documented the clinical and structural effect of specific mutations on trimer formation. Our results describe how glycine scanning yields more specific predictions, although nullification may be more sensitive, and how side chain structure prediction enables the identification of uncharged-to-charge mutations.
Collapse
Affiliation(s)
- Bridget E Nolan
- Department of Computer Science and Engineering, Lehigh University , Bethlehem, Pennsylvania
| | - Emily Levenson
- Department of Computer Science and Engineering, Lehigh University , Bethlehem, Pennsylvania
| | - Brian Y Chen
- Department of Computer Science and Engineering, Lehigh University , Bethlehem, Pennsylvania
| |
Collapse
|
16
|
Gerber TS, Schad A, Hartmann N, Springer E, Zechner U, Musholt TJ. Targeted next-generation sequencing of cancer genes in poorly differentiated thyroid cancer. Endocr Connect 2018; 7:47-55. [PMID: 29133385 PMCID: PMC5744626 DOI: 10.1530/ec-17-0290] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 11/13/2017] [Indexed: 12/12/2022]
Abstract
Poorly differentiated thyroid carcinoma (PDTC) is a rare malignancy with higher mortality than well-differentiated thyroid carcinoma. The histological diagnosis can be difficult as well as the therapy. Improved diagnosis and new targeted therapies require knowledge of DNA sequence changes in cancer-relevant genes. The TruSeq Amplicon Cancer Panel was used to screen cancer genomes from 25 PDTC patients for somatic single-nucleotide variants in 48 genes known to represent mutational hotspots. A total of 4490 variants were found in 23 tissue samples of PDTC. Ninety-eight percent (4392) of these variants did not meet the inclusion criteria, while 98 potentially pathogenic or pathogenic variants remained after filtering. These variants were distributed over 33 genes and were all present in a heterozygous state. Five tissue samples harboured not a single variant. Predominantly, variants in P53 (43% of tissue samples) were identified, while less frequently, variants in APC, ERBB4, FLT3, KIT, SMAD4 and BRAF (each in 17% of tissue samples) as well as ATM, EGFR and FBXW7 (each in 13% of tissue samples) were observed. This study identified new potential genetic targets for further research in PDTC. Of particular interest are four observed ERBB4 (alias HER4) variants, which have not been connected to this type of thyroid carcinoma so far. In addition, APC and SMAD4 mutations have not been reported in this subtype of cancer either. In contrast to other reports, we did not find CTNNB1 variants.
Collapse
Affiliation(s)
- Tiemo S Gerber
- Endocrine Surgery SectionDepartment of General, Visceral and Transplantation Surgery, University Medicine, Mainz, Germany
| | - Arno Schad
- Department of PathologyUniversity Medicine, Mainz, Germany
| | - Nils Hartmann
- Department of PathologyUniversity Medicine, Mainz, Germany
| | - Erik Springer
- Department of PathologyUniversity Medicine, Mainz, Germany
| | - Ulrich Zechner
- Institute of Human GeneticsUniversity Medicine, Mainz, Germany
| | - Thomas J Musholt
- Endocrine Surgery SectionDepartment of General, Visceral and Transplantation Surgery, University Medicine, Mainz, Germany
| |
Collapse
|
17
|
Bonhomme B, Godbert Y, Perot G, Al Ghuzlan A, Bardet S, Belleannée G, Crinière L, Do Cao C, Fouilloux G, Guyetant S, Kelly A, Leboulleux S, Buffet C, Leteurtre E, Michels JJ, Tissier F, Toubert ME, Wassef M, Pinard C, Hostein I, Soubeyran I. Molecular Pathology of Anaplastic Thyroid Carcinomas: A Retrospective Study of 144 Cases. Thyroid 2017; 27:682-692. [PMID: 28351340 DOI: 10.1089/thy.2016.0254] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Anaplastic thyroid carcinoma (ATC) is a rare tumor, with poorly defined oncogenic molecular mechanisms and limited therapeutic options contributing to its poor prognosis. The aims of this retrospective study were to determine the frequency of anaplastic lymphoma kinase (ALK) translocations and to identify the mutational profile of ATC including TERT promoter mutations. METHODS AND MATERIALS One hundred and forty-four ATC cases were collected from 10 centers that are a part of the national French network for management of refractory thyroid tumors. Fluorescence in situ hybridization analysis for ALK rearrangement was performed on tissue microarrays. A panel of 50 genes using next-generation sequencing and TERT promoter mutations using Sanger sequencing were also screened. RESULTS Fluorescence in situ hybridization was interpretable for 90 (62.5%) cases. One (1.1%) case was positive for an ALK rearrangement with a borderline threshold (15% positive cells). Next-generation sequencing results were interpretable for 94 (65.3%) cases, and Sanger sequencing (TERT) for 98 (68.1%) cases. A total of 210 mutations (intronic and exonic) were identified. TP53 alterations were the most frequent (54.4%). Forty-three percent harbored a mutation in the (H-K-N)RAS genes, 13.8% a mutation in the BRAF gene (essentially p.V600E), 17% a PI3K-AKT pathway mutation, 6.4% both RAS and PI3K pathway mutations, and 4.3% both TP53 and PTEN mutations. Nearly 10% of the cases showed no mutations of the RAS, PI3K-AKT pathways, or TP53, with mutations of ALK, ATM, APC, CDKN2A, ERBB2, RET, or SMAD4, including mutations not yet described in thyroid tumors. Genes encoding potentially druggable targets included: mutations in the ATM gene in four (4.3%) cases, in ERBB2 in one (1.1%) case, in MET in one (1.1%) case, and in ALK in one (1.1%) case. A TERT promoter alteration was found in 53 (54.0%) cases, including 43 C228T and 10 C250T mutations. Three out of our cases did not harbor mutations in the panel of genes with therapeutic interest. CONCLUSION This study confirms that ALK rearrangements in ATC are rare and that the mutational landscape of ATC is heterogeneous, with many genes implicated in the follicular epithelial cell dedifferentiation process. This may explain the limited effectiveness of targeted therapeutic options tested so far.
Collapse
Affiliation(s)
- Benjamin Bonhomme
- 1 Department of Biopathology, Molecular Pathology Unit, Institut Bergonié , Bordeaux, France
| | - Yann Godbert
- 2 Nuclear Medicine and Thyroid Oncology Unit, Molecular Pathology Unit, Institut Bergonié , Bordeaux, France
| | - Gaelle Perot
- 1 Department of Biopathology, Molecular Pathology Unit, Institut Bergonié , Bordeaux, France
| | - Abir Al Ghuzlan
- 3 Department of Pathology, Institut Gustave Roussy , Villejuif, France
| | - Stéphane Bardet
- 4 Department of Nuclear Medicine, Centre François Baclesse , Caen, France
| | - Geneviève Belleannée
- 5 Department of Pathology, Bordeaux University Hospital Center Haut-Lévêque , Pessac, France
| | - Lise Crinière
- 6 Department of Endocrinology, Diabetes and Metabolism, University Hospital Center of Tours , Tours, France
| | - Christine Do Cao
- 7 Department of Endocrinology, Diabetes, and Metabolism, Lille University Hospital Center Claude Huriez , Lille, France
| | | | - Serge Guyetant
- 9 Department of Pathology, University Hospital Center of Tours , Tours, France
| | - Antony Kelly
- 10 Department of Nuclear Medicine, Institut Jean Perrin , Clermont-Ferrand, France
| | - Sophie Leboulleux
- 11 Department of Nuclear Medicine, Institut Gustave Roussy , Villejuif, France
| | - Camille Buffet
- 12 Thyroid and Endocrine Tumors Unit, Endocrinology Institute, Paris University Hospital Center Pitié-Salpêtrière , Paris, France
| | - Emmanuelle Leteurtre
- 13 University of Lille , Inserm, CHU Lille, UMR-S 1172-Jean-Pierre Aubert Research Center, Lille, France
| | | | - Frédérique Tissier
- 15 Department of Pathology, Paris University Hospital Center Pitié-Salpêtrière , Paris, France
| | - Marie-Elisabeth Toubert
- 16 Department of Nuclear Medicine, Paris University Hospital Center Saint-Louis-Lariboisière , Paris, France
| | - Michel Wassef
- 17 Department of Pathology, Paris University Hospital Center Saint-Louis-Lariboisière , Paris, France
| | - Clémence Pinard
- 1 Department of Biopathology, Molecular Pathology Unit, Institut Bergonié , Bordeaux, France
| | - Isabelle Hostein
- 1 Department of Biopathology, Molecular Pathology Unit, Institut Bergonié , Bordeaux, France
| | - Isabelle Soubeyran
- 1 Department of Biopathology, Molecular Pathology Unit, Institut Bergonié , Bordeaux, France
| |
Collapse
|
18
|
Zhao M, Shi Y, He M, Huang X, Wang Q. PfSMAD4 plays a role in biomineralization and can transduce bone morphogenetic protein-2 signals in the pearl oyster Pinctada fucata. BMC DEVELOPMENTAL BIOLOGY 2016; 16:9. [PMID: 27113217 PMCID: PMC4845351 DOI: 10.1186/s12861-016-0110-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 04/20/2016] [Indexed: 01/24/2023]
Abstract
Background Mollusca is the second largest phylum in nature. The shell of molluscs is a remarkable example of a natural composite biomaterial. Biomineralization and how it affects mollusks is a popular research topic. The BMP-2 signaling pathway plays a canonical role in biomineralization. SMAD4 is an intracellular transmitter in the BMP signaling pathway in mammals, and some genomic data show SMAD4’s involvment in BMP signaling in invertbrates, but whether SMAD4 plays a conservative role in pearl oyster, Pinctada fucata, still need to be tested. Results In this study, we identified a SMAD4 gene (hereafter designated PfSMAD4) in pearl oyster Pinctada fucata. Bioinformatics analysis of PfSMAD4 showed high identity with its orthologs. PfSMAD4 was located in the cytoplasm in immunofluorescence assays and analyses of PfSMAD4 mRNA in tissues and developmental stages showed high expression in ovaries and D-shaped larvae. An RNA interference experiment, performed by PfSMAD4 double-stranded RNA (dsRNA) injection, demonstrated inhibition not only of nacre growth but also organic sheet formation with a decrease in PfSMAD4 expression. A knockdown experiment using PfBMP2 dsRNA showed decreased PfBMP2 and PfSMAD4 mRNA and irregular crystallization of the nacreous layer using scanning electron microscopy. In co-transfection experiments, PfBMP2-transactivated reporter constructs contained PfSMAD4 promoter sequences. Conclusions Our results suggest that PfSMAD4 plays a role in biomineralization and can transduce BMP signals in P. fucata. Our data provides important clues about the molecular mechanisms that regulate biomineralization in pearl oyster.
Collapse
Affiliation(s)
- Mi Zhao
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Shi
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Maoxian He
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
| | - Xiande Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Qi Wang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
19
|
Tian R, Chen X, Chang J, Zhang N, Tan Y, Xu Z, Ren F, Zhao J, Pan J, Guo H, Wang X, Wang H. [Identification of a novel aberrant spliceosome of MPL gene (MPLL391-V392ins12)in patients with myeloproliferative neoplasms]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2015; 36:559-62. [PMID: 26304077 PMCID: PMC7342650 DOI: 10.3760/cma.j.issn.0253-2727.2015.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
目的 鉴定MPL L391-V392ins12异常剪接体,了解其在骨髓增殖性肿瘤(MPN)患者中突变发生情况。 方法 采用逆转录聚合酶链反应(RT-PCR)联合克隆测序方法对MPL基因异常剪接体进行鉴定,采用等位基因特异性聚合酶链反应(AS-PCR)在248例MPN患者及200名健康正常人中筛查其突变情况。 结果 发现并确认了MPL基因的一个异常剪接体MPL L391-V392ins12,即MPL基因的外显子7和外显子8之间保留了36 bp的内含子序列,导致蛋白编码序列的氨基酸位点391与392之间插入12个氨基酸(谷氨酸、甘氨酸、亮氨酸、赖氨酸、亮氨酸、亮氨酸、脯氨酸、丙氨酸、天冬氨酸、异亮氨酸、脯氨酸、缬氨酸)。248例MPN患者中19例(7.66%)检出MPL L391-V392ins12突变,真性红细胞增多症(PV)、原发性血小板增多症(ET)、原发性骨髓纤维化(PMF)患者的检出率分别为1.92%(1/52)、9.66%(14/145)、7.84%(4/51);200名正常人中未检测到MPL L391-V392ins12突变。 结论 MPL L391-V392ins12是存在于MPN中的一种病理性剪接体,在PV、ET、PMF中均可发生,但多见于ET、PMF,可能是MPN发病的潜在原因之一。
Collapse
Affiliation(s)
- Ruiyuan Tian
- Department of Hematology, the Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Xiuhua Chen
- Department of Hematology, the Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Jianmei Chang
- Department of Hematology, the Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Na Zhang
- Department of Hematology, the Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Yanhong Tan
- Department of Hematology, the Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Zhifang Xu
- Department of Hematology, the Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Fanggang Ren
- Department of Hematology, the Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Junxia Zhao
- Department of Hematology, the Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Jie Pan
- Department of Hematology, the Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Haixiu Guo
- Department of Hematology, the Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Xiaojuan Wang
- Department of Hematology, the Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Hongwei Wang
- Department of Hematology, the Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| |
Collapse
|
20
|
SMAD4 gene promoter mutations in patients with thyroid tumors. Exp Mol Pathol 2015; 99:100-3. [PMID: 26079547 DOI: 10.1016/j.yexmp.2015.06.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 06/12/2015] [Indexed: 01/11/2023]
Abstract
As a key component of the transforming growth factor beta (TGFB) pathway, which regulates the expression of thyroid-specific genes, tumor suppressor SMAD4 is crucial for thyroid development and function. Aberrant expression of SMAD4 in thyroid tumor tissue was reported and mutations affecting the coding region have been detected, but a potential role of mutations in SMAD4 gene regulatory regions remains unexplored. The aim of this study was to analyze SMAD4 gene promoters in thyroid tumors. A total of 76 thyroidectomy specimens were studied, including 42 malignant and 34 benign tumors. The presence of mutations in four SMAD4 gene promoters was analyzed in thyroid tumor tissue and peripheral blood by PCR and DNA sequencing. The expression and intracellular localization of endogenous SMAD4 protein in selected tumor samples was studied by immunostaining and confocal microscopy. Of three novel variants detected, two were within promoter A (-204T/C and -5C/T) and one in promoter D (-180delA). Unlike somatic mutations previously detected in the nearby region, germline mutation -180delA in promoter D doesn't appear to affect SMAD4 expression in the thyroid tumor tissue. However, all newly detected SMAD4 promoter variants affect predicted binding sites of transcription factors involved in cell cycle regulation and should be further characterized functionally. Although not directly involved in carcinogenesis, detected variants may alter SMAD4 transcriptional regulation to some extent. Considering that dosage dependence is of great importance for the role of SMAD4 protein as a tumor suppressor, potential clinical significance of SMAD4 gene promoter mutations is worth further investigation.
Collapse
|
21
|
Caputo V, Bocchinfuso G, Castori M, Traversa A, Pizzuti A, Stella L, Grammatico P, Tartaglia M. Novel SMAD4 mutation causing Myhre syndrome. Am J Med Genet A 2014; 164A:1835-40. [PMID: 24715504 DOI: 10.1002/ajmg.a.36544] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 02/23/2014] [Indexed: 11/12/2022]
Abstract
Myhre syndrome (MYHRS, OMIM 139210) is an autosomal dominant disorder characterized by developmental and growth delay, athletic muscular built, variable cognitive deficits, skeletal anomalies, stiffness of joints, distinctive facial gestalt and deafness. Recently, SMAD4 (OMIM 600993) was identified by exome sequencing as the disease gene mutated in MYHRS. Previously only three missense mutations affecting Ile500 (p.Ile500Thr, p.Ile500Val, and p.Ile500Met) have been described in 22 unrelated subjects with MYHRS or a clinically related phenotype. Here we report on a 15-year-old boy with typical MYHRS and a novel heterozygous SMAD4 missense mutation affecting residue Arg496. This finding provides further information about the distinctive SMAD4 mutation spectrum in MYHRS. In silico structural analyses exploring the impact of the Arg-to-Cys change at codon 496 suggested that conformational changes promoted by replacement of Arg496 impact the stability of the SMAD heterotrimer and/or proper SMAD4 ubiquitination.
Collapse
Affiliation(s)
- Viviana Caputo
- Dipartimento di Medicina Sperimentale, Sapienza Università di Roma, Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Shimamura M, Nakahara M, Kurashige T, Yasui K, Nakashima M, Nagayama Y. Disruption of transforming growth factor-β signaling in thyroid follicular epithelial cells or intrathyroidal fibroblasts does not promote thyroid carcinogenesis. Endocr J 2014; 61:297-302. [PMID: 24335009 DOI: 10.1507/endocrj.ej13-0475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Transforming growth factor β (TGF-β) members, pleiotropic cytokines, play a critical role for carcinogenesis generally as a tumor suppressor in the early cancer development, but as a tumor promoter in the late stage of cancer progression. The present study was designed to clarify the role for TGF-β signaling in early thyroid carcinogenesis using the conditional Tgfbr2(floxE2/floxE2) knock-in mice, having 2 loxP sites at introns 1 and 2 of Tgfb2r gene. When these mice were crossed with thyroid peroxidase (TPO)-Cre or fibroblast-specific protein-1 (FSP1)-Cre, the resultant mice, Tgfbr2(tpoKO) and Tgfbr2(fspKO), lost TGF-β II receptor expression (thereby TGF-β signaling) specifically in the thyroid follicular epithelial cells or fibroblasts, respectively. The thyroid morphology was monitored up to 52 weeks in these mice, showing no tumor development, except one Tgfbr2(tpoKO) mouse developing follicular adenoma like-lesion. Our data suggest that TGF-β signaling in mesenchymal or follicular epithelial cells of the thyroid does not appear to function as a tumor suppressive barrier at the early stage of thyroid carcinogenesis.
Collapse
Affiliation(s)
- Mika Shimamura
- Department of Molecular Medicine, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki 852-8523 Japan
| | | | | | | | | | | |
Collapse
|
23
|
Tang MR, Wang YX, Guo S, Han SY, Wang D. CSMD1 exhibits antitumor activity in A375 melanoma cells through activation of the Smad pathway. Apoptosis 2013; 17:927-37. [PMID: 22538441 DOI: 10.1007/s10495-012-0727-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
In this work, we studied the effects of CUB and Sushi multiple domains 1 gene (CSMD1) expression in A375 melanoma cells in vivo and in vitro. CSDM1 expression decreased proliferation and migration, and increased apoptosis and G(1) arrest in A375 cells in vitro. Expression of CSDM1 in established xenografted tumors decreased tumor size and weight, and decreased the density of intratumor microvessels. The survival rate of mice with tumors expressing CSMD1 was significantly higher than mice with tumors that did not express CSDM1. These results confirm the role of CSDM1 as a tumor suppressor gene in melanoma cells. Furthermore, we found that CSMD1 can interact with Smad3, activate Smad1, Smad2, and Smad3, and increase the expression of Smad4. These results might prove helpful for the development of novel therapies for melanoma treatment.
Collapse
Affiliation(s)
- Ming-Rui Tang
- Department of Plastic Surgery, The First Hospital of China Medical University, Nanjing North Street 155 Heping District, Shenyang City, 110001, China.
| | | | | | | | | |
Collapse
|
24
|
D'Inzeo S, Nicolussi A, Nardi F, Coppa A. Effects of the Smad4 C324Y mutation on thyroid cell proliferation. Int J Oncol 2013; 42:1890-6. [PMID: 23591524 PMCID: PMC3699576 DOI: 10.3892/ijo.2013.1908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 03/11/2013] [Indexed: 01/01/2023] Open
Abstract
Smad4 is a key mediator of the transforming growth factor-β (TGF-β) superfamily that is involved in the control of cell proliferation and differentiation. We recently demonstrated that a Smad4 mutation, Smad4 C324Y, isolated from nodal metastases of papillary thyroid carcinoma, causes an increase of TGF-β signaling, responsible for the acquisition of transformed phenotype and invasive behaviour in thyroid cells stably expressing this mutation. In this paper, we demonstrate that the stable expression of Smad4 C324Y mutation in FRTL-5 cells is responsible for TSH-independent growth ability. Our data show that the Smad4 C324Y mutation interacts with P-Smad3 more strongly than Smad4 wt, already in basal condition; this interaction is responsible for TGF-β signaling and PKA activation that, in turn, determines an increased phosphorylation of CREB, necessary for the mitogenic actions of TSH. The expression of cyclin D1 also increases in all cells overexpressing the Smad4 C324Y mutation. All together, these data demonstrate that Smad4 C324Y mutation, interacting with the PKA pathway, gives cells the ability to proliferate independently from TSH.
Collapse
Affiliation(s)
- Sonia D'Inzeo
- Department of Experimental Medicine, Sapienza University of Rome, I-324-00161 Rome, Italy
| | | | | | | |
Collapse
|
25
|
TGF-beta/Smad pathway and BRAF mutation play different roles in circumscribed and infiltrative papillary thyroid carcinoma. Virchows Arch 2012; 460:587-600. [DOI: 10.1007/s00428-012-1234-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Revised: 03/13/2012] [Accepted: 03/26/2012] [Indexed: 10/28/2022]
|
26
|
D'Inzeo S, Nicolussi A, Donini CF, Zani M, Mancini P, Nardi F, Coppa A. A novel human Smad4 mutation is involved in papillary thyroid carcinoma progression. Endocr Relat Cancer 2012; 19:39-55. [PMID: 22109972 DOI: 10.1530/erc-11-0233] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Smad proteins are the key effectors of the transforming growth factor β (TGFβ) signaling pathway in mammalian cells. Smad4 plays an important role in human physiology, and its mutations were found with high frequency in wide range of human cancer. In this study, we have functionally characterized Smad4 C324Y mutation, isolated from a nodal metastasis of papillary thyroid carcinoma. We demonstrated that the stable expression of Smad4 C324Y in FRTL-5 cells caused a significant activation of TGFβ signaling, responsible for the acquisition of transformed phenotype and invasive behavior. The coexpression of Smad4 C324Y with Smad4 wild-type determined an increase of homo-oligomerization of Smad4 with receptor-regulated Smads and a lengthening of nuclear localization. FRTL-5 clones overexpressing Smad4 C324Y showed a strong reduction of response to antiproliferative action of TGFβ1, acquired the ability to grow in anchorage-independent conditions, showed a fibroblast-like appearance and a strong reduction of the level of E-cadherin, one crucial event of the epithelial-mesenchymal transition process. The acquisition of a mesenchymal phenotype gave the characteristics of increased cellular motility and a significant reduction in adhesion to substrates such as fibronectin and laminin. Overall, our results demonstrate that the Smad4 C324Y mutation plays an important role in thyroid carcinogenesis and can be considered as a new prognostic and therapeutic target for thyroid cancer.
Collapse
Affiliation(s)
- Sonia D'Inzeo
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
27
|
MicroRNA miR-146b-5p regulates signal transduction of TGF-β by repressing SMAD4 in thyroid cancer. Oncogene 2011; 31:1910-22. [PMID: 21874046 DOI: 10.1038/onc.2011.381] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
MicroRNAs (miRNA) are small non-coding RNAs involved in post-transcriptional gene regulation that have crucial roles in several types of tumors, including papillary thyroid carcinoma (PTC). miR-146b-5p is overexpressed in PTCs and is regarded as a relevant diagnostic marker for this type of cancer. A computational search revealed that miR-146b-5p putatively binds to the 3' untranslated region (UTR) of SMAD4, an important member of the transforming growth factor β (TGF-β) signaling pathway. The TGF-β pathway is a negative regulator of thyroid follicular cell growth, and the mechanism by which thyroid cancer cells evade its inhibitory signal remains unclear. We questioned whether the modulation of the TGF-β pathway by miR-146b-5p can contribute to thyroid tumorigenesis. Luciferase reporter assay confirmed the direct binding of miR-146b-5p on the SMAD4 3'UTR. Specific inhibition of miR-146b-5p with a locked nucleic acid-modified anti-miR-146b oligonucleotide significantly increased SMAD4 levels in the human papillary carcinoma cell lines, TPC-1 and BCPAP. Moreover, suppression of miR-146b-5p increased the cellular response to the TGF-β anti-proliferative signal, significantly decreasing the proliferation rate. The overexpression of miR-146b-5p in normal rat follicular PCCL3 cells decreased SMAD4 levels and disrupted TGF-β signal transduction. MiR-146b-5p overexpression in PCCL3 cells also significantly increased cell proliferation in the absence of thyroid-stimulating hormone and conferred resistance to TGF-β-mediated cell-cycle arrest. Additionally, the activation of thyroid most common oncogenes RET/PTC3 and BRAF in PCCL3 cells upregulated miR-146b-5p expression. Our results confirm the oncogenic role of miR-146b-5p in thyroid follicular cells and contribute to knowledge regarding the modulation of TGF-β signal transduction by miRNAs in PTCs.
Collapse
|
28
|
Tram E, Ibrahim-zada I, Briollais L, Knight JA, Andrulis IL, Ozcelik H. Identification of germline alterations of the mad homology 2 domain of SMAD3 and SMAD4 from the Ontario site of the breast cancer family registry (CFR). Breast Cancer Res 2011; 13:R77. [PMID: 21835029 PMCID: PMC3236341 DOI: 10.1186/bcr2926] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 07/09/2011] [Accepted: 08/11/2011] [Indexed: 12/02/2022] Open
Abstract
INTRODUCTION A common feature of neoplastic cells is that mutations in SMADs can contribute to the loss of sensitivity to the anti-tumor effects of transforming growth factor-β (TGF-β). However, germline mutation analysis of SMAD3 and SMAD4, the principle substrates of the TGF-β signaling pathway, has not yet been conducted in breast cancer. Thus, it is currently unknown whether germline SMAD3 and SMAD4 mutations are involved in breast cancer predisposition. METHODS We performed mutation analysis of the highly conserved mad-homology 2 (MH2) domains for both genes in genomic DNA from 408 non-BRCA1/BRCA2 breast cancer cases and 710 population controls recruited by the Ontario site of the breast cancer family registry (CFR) using denaturing high-performance liquid chromatography (DHPLC) and direct DNA sequencing. The results were interpreted in several ways. First, we adapted nucleotide diversity analysis to quantitatively assess whether the frequency of alterations differ between the two genes. Next, in silico tools were used to predict variants' effect on domain function and mRNA splicing. Finally, 37 cases or controls harboring alterations were tested for aberrant splicing using reverse-transcription polymerase chain reaction (PCR) and real-time PCR statistical comparison of germline expressions by non-parametric Mann-Whitney test of independent samples. RESULTS We identified 27 variants including 2 novel SMAD4 coding variants c.1350G > A (p.Gln450Gln), and c.1701A > G (p.Ile525Val). There were no inactivating mutations even though c.1350G > A was predicted to affect exonic splicing enhancers. However, several additional findings were of note: 1) nucleotide diversity estimate for SMAD3 but not SMAD4 indicated that coding variants of the MH2 domain were more infrequent than expected; 2) in breast cancer cases SMAD3 was significantly over-expressed relative to controls (P < 0.05) while the case harboring SMAD4 c.1350G > A was associated with elevated germline expression (> 5-fold); 3) separate analysis using tissue expression data showed statistically significant over-expression of SMAD3 and SMAD4 in breast carcinomas. CONCLUSIONS This study shows that inactivating germline alterations in SMAD3 and SMAD4 are rare, suggesting a limited role in driving tumorigenesis. Nevertheless, aberrant germline expressions of SMAD3 and SMAD4 may be more common in breast cancer than previously suspected and offer novel insight into their roles in predisposition and/or progression of breast cancer.
Collapse
Affiliation(s)
- Eric Tram
- Fred A. Litwin Centre for Cancer Genetics, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Department of Laboratory Medicine and Pathobiology, University of Toronto, 60 Murray St., Toronto, ON M5T 3L9, Canada
| | - Irada Ibrahim-zada
- Fred A. Litwin Centre for Cancer Genetics, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Department of Laboratory Medicine and Pathobiology, University of Toronto, 60 Murray St., Toronto, ON M5T 3L9, Canada
| | - Laurent Briollais
- Prosserman Centre for Health Research, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Dalla Lana School of Public Health, University of Toronto, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Julia A Knight
- Prosserman Centre for Health Research, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Dalla Lana School of Public Health, University of Toronto, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Irene L Andrulis
- Cancer Care Ontario, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Department of Molecular Genetics, University of Toronto, 60 Murray Street, Toronto, ON M5T 3L9, Canada
| | - Hilmi Ozcelik
- Fred A. Litwin Centre for Cancer Genetics, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Department of Laboratory Medicine and Pathobiology, University of Toronto, 60 Murray St., Toronto, ON M5T 3L9, Canada
| |
Collapse
|
29
|
Mincione G, Di Marcantonio MC, Tarantelli C, D'Inzeo S, Nicolussi A, Nardi F, Donini CF, Coppa A. EGF and TGF-β1 Effects on Thyroid Function. J Thyroid Res 2011; 2011:431718. [PMID: 21760980 PMCID: PMC3134325 DOI: 10.4061/2011/431718] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 03/22/2011] [Indexed: 01/02/2023] Open
Abstract
Normal epithelial thyroid cells in culture are inhibited by TGF-β1. Instead, transformed thyroid cell lines are frequently resistant to its growth inhibitory effect. Loss of TGF-β responsiveness could be due to a reduced expression of TGF-β receptors, as shown in transformed rat thyroid cell lines and in human thyroid tumors, or to alterations of other genes controlling TGF-β signal transduction pathway. However, in thyroid neoplasia, a complex pattern of alterations occurring during transformation and progression has been identified. Functionally, TGF-β1 acts as a tumor suppressor in the early stage of transformation or as a tumor promoter in advanced cancer. This peculiar pleiotropic behaviour of TGF-β may result from cross-talk with signalling pathways mediated by other growth factors, among which EGF-like ligands play an important role. This paper reports evidences on TGF-β1 and EGF systems in thyroid tumors and on the cross-talk between these growth factors in thyroid cancer.
Collapse
Affiliation(s)
- Gabriella Mincione
- Department of Oncology and Experimental Medicine, University "G. d'Annunzio" Chieti-Pescara, 66013 Chieti, Italy
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Calva D, Dahdaleh FS, Woodfield G, Weigel RJ, Carr JC, Chinnathambi S, Howe JR. Discovery of SMAD4 promoters, transcription factor binding sites and deletions in juvenile polyposis patients. Nucleic Acids Res 2011; 39:5369-78. [PMID: 21421563 PMCID: PMC3141234 DOI: 10.1093/nar/gkr091] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Inactivation of SMAD4 has been linked to several cancers and germline mutations cause juvenile polyposis (JP). We set out to identify the promoter(s) of SMAD4, evaluate their activity in cell lines and define possible transcription factor binding sites (TFBS). 5′-rapid amplification of cDNA ends (5′-RACE) and computational analyses were used to identify candidate promoters and corresponding TFBS and the activity of each was assessed by luciferase vectors in different cell lines. TFBS were disrupted by site-directed mutagenesis (SDM) to evaluate the effect on promoter activity. Four promoters were identified, two of which had significant activity in several cell lines, while two others had minimal activity. In silico analysis revealed multiple potentially important TFBS for each promoter. One promoter was deleted in the germline of two JP patients and SDM of several sites led to significant reduction in promoter activity. No mutations were found by sequencing this promoter in 65 JP probands. The predicted TFBS profiles for each of the four promoters shared few transcription factors in common, but were conserved across several species. The elucidation of these promoters and identification of TFBS has important implications for future studies in sporadic tumors from multiple sites, and in JP patients.
Collapse
Affiliation(s)
- Daniel Calva
- Department of Surgery, Carver College of Medicine, University of Iowa Hospitals and Clinics, Iowa City, 52242-1086 IA, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Miranda ERD, De Marco L, Soares MMS. Splicing variants impact in thyroid normal physiology and pathological conditions. ACTA ACUST UNITED AC 2010; 53:709-15. [PMID: 19893912 DOI: 10.1590/s0004-27302009000600003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2009] [Accepted: 07/20/2009] [Indexed: 11/22/2022]
Abstract
RNA splicing is an essential, precisely regulated process that occurs after gene transcription and before mRNA translation, in which introns may be removed and exons, retained. Variability in splicing patterns is a major source of protein diversity from the genome and function to generate a tremendously diverse proteome from a relatively small number of genes. Changes in splice site choice can determine different effects on the encoded protein. Small changes in peptide sequence can alter ligand binding, enzymatic activity, allosteric regulation, or protein localization. Errors in splicing regulation have been implicated in a number of different disease states. This study reviewed the mechanisms of splicing and their repercussion in endocrinology, emphasizing its importance in some thyroid physiological and pathological conditions.
Collapse
|
32
|
Matsuo SE, Fiore APZP, Siguematu SM, Ebina KN, Friguglietti CUM, Ferro MC, Kulcsar MAV, Kimura ET. Expression of SMAD proteins, TGF-beta/activin signaling mediators, in human thyroid tissues. ACTA ACUST UNITED AC 2010; 54:406-12. [DOI: 10.1590/s0004-27302010000400010] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2009] [Accepted: 02/24/2010] [Indexed: 12/31/2022]
Abstract
OBJECTIVE: To investigate the expression of SMAD proteins in human thyroid tissues since the inactivation of TGF-β/activin signaling components is reported in several types of cancer. Phosphorylated SMAD 2 and SMAD3 (pSMAD2/3) associated with the SMAD4 induce the signal transduction generated by TGF-β and activin, while SMAD7 inhibits this intracellular signaling. Although TGF-β and activin exert antiproliferative roles in thyroid follicular cells, thyroid tumors express high levels of these proteins. MATERIALS AND METHODS: The protein expression of SMADs was evaluated in multinodular goiter, follicular adenoma, papillary and follicular carcinomas by immunohistochemistry. RESULTS: The expression of pSMAD2/3, SMAD4 and SMAD7 was observed in both benign and malignant thyroid tumors. Although pSMAD2/3, SMAD4 and SMAD7 exhibited high cytoplasmic staining in carcinomas, the nuclear staining of pSMAD2/3 was not different between benign and malignant lesions. CONCLUSIONS: The finding of SMADs expression in thyroid cells and the presence of pSMAD2/3 and SMAD4 proteins in the nucleus of tumor cells indicates propagation of TGF-β/activin signaling. However, the high expression of the inhibitory SMAD7, mostly in malignant tumors, could contribute to the attenuation of the SMADs antiproliferative signaling in thyroid carcinomas.
Collapse
|
33
|
Tao S, Sampath K. Alternative splicing of SMADs in differentiation and tissue homeostasis. Dev Growth Differ 2010; 52:335-42. [PMID: 20148926 DOI: 10.1111/j.1440-169x.2009.01163.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Tissue-specific alternate splicing is an important means of regulating gene expression during development. The effector proteins for the transforming growth factor-beta signaling pathway, the SMADs, encode distinct isoforms generated via alternate splicing, which appear to have distinct tissue-specific expression profiles and functions. Here, we discuss the roles of various SMAD isoforms, and the consequences of mis-regulation of SMAD splicing in development and tissue homeostasis.
Collapse
Affiliation(s)
- Shijie Tao
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore
| | | |
Collapse
|
34
|
The predictive value of genes of the TGF-beta1 pathway in multimodally treated squamous cell carcinoma of the esophagus. Int J Colorectal Dis 2010; 25:515-21. [PMID: 20012971 DOI: 10.1007/s00384-009-0867-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/24/2009] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND AIM Pretherapeutic identification of esophageal squamous cell carcinomas (ESCCs) that are likely to respond to neoadjuvant chemoradiotherapy is important in the attempt to improve the prognosis for patients. In the present study, expression of members of the transforming growth factor-beta1 (TGF-beta1) signaling pathway was investigated in pretherapeutic biopsies from 97 ESCCs (cT3, cN0/+, cM0) in patients who underwent neoadjuvant chemoradiotherapy (45 Gy plus cisplatin and 5-fluorouracil) and subsequent esophagectomy in the setting of a single-center prospective treatment trial. MATERIALS AND METHODS Expression of TGF-beta1 and its downstream effectors Smad4 and Smad7 was assessed using quantitative reverse transcription polymerase chain reaction from RNA prepared from pretherapeutic tumor biopsies. The presence of phosphorylated Smad2 was assessed immunohistochemically. RESULTS Expression of TGF-beta1 (mean 7.8; range 0.0-25.7 arb. units), Smad4 (mean 0.1; range 0.0-0.4 arb. units), and Smad7 (mean 1.6; range 0.4-16.1 arb. units) varied substantially between the patients. Tumors with total or subtotal regression, as determined by histopathological examination after neoadjuvant chemoradiotherapy, showed significantly higher levels of Smad4 mRNA expression than tumors with minor or no regression (P = 0.032). TGF-beta1 and Smad7 mRNA expression as well as Smad2 protein expression were of no prognostic value. Expression of the four genes under analysis also showed no impact on the overall survival. In contrast, the overall survival correlated significantly with histopathological regression (P < 0.0001) and to a minor degree also with clinical regression grading (P = 0.0254). INTERPRETATION Among the parameters analyzed, only Smad4 was found to have possible predictive value for esophageal squamous cell carcinoma in patients receiving neoadjuvant chemoradiotherapy.
Collapse
|
35
|
Pisarev MA, Thomasz L, Juvenal GJ. Role of transforming growth factor beta in the regulation of thyroid function and growth. Thyroid 2009; 19:881-92. [PMID: 19645615 DOI: 10.1089/thy.2007.0303] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transforming growth factor beta (TGF-beta) exists in nature as three isoforms. They exert their effects by binding to a type II receptor located at the cell membrane. The TGF-beta-type II receptor complex then recruits type I receptor, and this new complex stimulates the phosphorylation of Smads 2 and 3, which are subsequently transferred to the nucleus, where they regulate gene transcription. The thyroid gland expresses the TGF-beta1 gene mRNA and synthesizes the protein, which under physiologic conditions regulates thyroid growth and function. Different studies have demonstrated that TGF-beta1 inhibits cell proliferation and a number of functional parameters. These include cyclic adenosine monophosphate (AMP) formation, iodine uptake and organification, hormone secretion, and the expression of thyroglobulin, thyroid peroxidase, and Na(+)/I(-) symporter. The expression of the TGF-beta1 gene and protein may be stimulated by iodine under normal conditions. Since TGF-beta1 mimics some of the inhibitory actions of iodine, its participation in thyroid autoregulation has been proposed; however, this concept is still debated. In thyroid tumors, the inhibitory action of TGF-beta1 on cell proliferation is progressively lost as the tumor becomes more undifferentiated. The alterations in the signaling pathway of TGF-beta1 are not the same in tumors from different species. Even within the same species, such as the pig thyroid, the results may be different depending on whether monolayers or follicular suspensions are employed. The data suggest that it is not entirely possible to apply the results obtained in animal studies to normal or pathological human thyroid tissue. More studies are required to provide the information needed to develop treatments, based on targeting the signaling pathway of TGF-beta1, for undifferentiated thyroid cancer and other thyroid diseases.
Collapse
Affiliation(s)
- Mario A Pisarev
- Department of Radiobiology, University of Buenos Aires School of Medicine, Argentina.
| | | | | |
Collapse
|
36
|
Inherited and acquired variations in the hyaluronan synthase 1 (HAS1) gene may contribute to disease progression in multiple myeloma and Waldenstrom macroglobulinemia. Blood 2008; 112:5111-21. [PMID: 18815290 DOI: 10.1182/blood-2008-02-141770] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
To characterize genetic contributions toward aberrant splicing of the hyaluronan synthase 1 (HAS1) gene in multiple myeloma (MM) and Waldenstrom macroglobulinemia (WM), we sequenced 3616 bp in HAS1 exons and introns involved in aberrant splicing, from 17 patients. We identified a total of 197 HAS1 genetic variations (GVs), a range of 3 to 24 GVs/patient, including 87 somatic GVs acquired in splicing regions of HAS1. Nearly all newly identified inherited and somatic GVs in MM and/or WM were absent from B chronic lymphocytic leukemia, nonmalignant disease, and healthy donors. Somatic HAS1 GVs recurred in all hematopoietic cells tested, including normal CD34(+) hematopoietic progenitor cells and T cells, or as tumor-specific GVs restricted to malignant B and plasma cells. An in vitro splicing assay confirmed that HAS1 GVs direct aberrant HAS1 intronic splicing. Recurrent somatic GVs may be enriched by strong mutational selection leading to MM and/or WM.
Collapse
|
37
|
Kimura ET, Matsuo SE, Ricarte-Filho JC. TGFbeta, activina e sinalização SMAD em câncer de tiróide. ACTA ACUST UNITED AC 2007; 51:683-9. [PMID: 17891231 DOI: 10.1590/s0004-27302007000500005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Accepted: 05/29/2007] [Indexed: 11/22/2022]
Abstract
TGFbeta e activina são membros da superfamília TGFbeta e desempenham um amplo papel no desenvolvimento, proliferação e apoptose. Estes fatores de crescimento exercem seus efeitos biológicos ligando-se a receptores de membrana do tipo I e do tipo II que transduzem a sinalização até o núcleo através da fosforilação das proteínas R-SMADs (SMAD 2/3) e co-SMADs (SMAD4). O controle apropriado da via de TGFbeta/activina ainda depende da regulação negativa exercida pelo SMAD inibitório (SMAD7) e pelas enzimas E3 de ubiquitinação (Smurfs). Fisiologicamente, TGFbeta e activina atuam como potentes inibidores da proliferação na célula folicular tiroidiana. Desta forma, alterações de receptores e componentes da via de sinalização SMAD estão associadas a diferentes tipos de tumores. Desde que TGFbeta e activina geram sua sinalização intracelular utilizando os mesmos componentes da via SMAD, o desequilíbrio desta via prejudica dois processos anti-mitogênicos da célula. Nesta revisão, enfocamos aspectos que indicam o mecanismo de resistência ao efeito inibitório de TGFbeta e activina ocasionado pelo desequilíbrio da via de sinalização SMAD nas neoplasias da tiróide.
Collapse
Affiliation(s)
- Edna T Kimura
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, SP, Brazil.
| | | | | |
Collapse
|
38
|
Current World Literature. Curr Opin Oncol 2007; 19:65-9. [PMID: 17133115 DOI: 10.1097/cco.0b013e328012d5fa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Nicolussi A, D'Inzeo S, Gismondi A, Coppa A. Reduction of invasive potential in K-ras-transformed thyroid cells by restoring of TGF-β pathway. Clin Exp Metastasis 2006; 23:237-48. [PMID: 17086361 DOI: 10.1007/s10585-006-9023-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2005] [Accepted: 05/25/2006] [Indexed: 10/24/2022]
Abstract
Transforming Growth Factor-beta1 (TGF -beta1) is a multifunctional cytokine that regulates a number of cellular processes such as cell growth, differentiation, plasticity, cell motility, adhesiveness, embryogenesis, development and apoptosis through binding to TGF-beta receptors. We have previously demonstrated that K-ras-transformed rat thyroid cells, K10, are resistant to the growth inhibitory action of TGF-beta1, because they show a decreased expression of type II receptor (TbetaRII). Clones obtained transfecting TbetaRII, partially revert their malignant phenotype, showing a reduction in the anchorage-dependent and -independent cell growth and a statistically significant decrease in tumourigenicity with respect to the highly malignant parental cells, both in spontaneous and artificial metastases, when transplanted in athymic nude mice. The purpose of the present work is to elucidate the molecular events involved in the modulation of the tumourigenic potential of K-ras-transformed rat thyroid cells overexpressing TbetaRII. Our data demonstrate that the TbetaRII overexpressed in K-ras-transformed thyroid cell clones is a functional receptor and is essential to restore in these cells behaviour similar to that of control cells. The TbetaRII overexpression is responsible for a strong reduction of adhesive and migratory behaviour of highly malignant K-ras-transformed thyroid cells. These results suggest that the restore of a functional TGF-beta receptor in these cells may be useful for the limitation of tumour spread and dissemination.
Collapse
Affiliation(s)
- Arianna Nicolussi
- Department of Experimental Medicine and Pathology, University La Sapienza, V.le Regina Elena, 324, 00161 Rome, Italy
| | | | | | | |
Collapse
|
40
|
Guimarães GS, Latini FRM, Camacho CP, Maciel RMB, Dias-Neto E, Cerutti JM. Identification of candidates for tumor-specific alternative splicing in the thyroid. Genes Chromosomes Cancer 2006; 45:540-53. [PMID: 16493598 DOI: 10.1002/gcc.20316] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Alternative splicing is the differential processing of exon junctions to produce a new transcript variant from one gene. Some aberrant splicing, however, has been shown to be cancer specific. Identification of these specific splice variations will provide important insight into the molecular mechanism of normal cellular physiology as well as the disease processes. To gain knowledge about whether alternative splicing is linked to thyroid tumorigenesis, we used our prediction database to select targets for analysis. Fifteen putatively new alternative splicing isoforms were selected on the basis of their expression in thyroid libraries and/or their origin in genes previously associated with carcinogenesis. Using a set of 66 normal, benign, and malignant thyroid tissue samples, new splicing events were confirmed by RT-PCR for 13 of 15 genes (a validation rate of 87%). In addition, new alternative splicing isoforms not predicted by the system and not previously described in public databases were identified. Five genes (PTPN18, ABI3BP, PFDN5, SULF2, and ST5) presented new and/or additional unpredicted isoforms differentially expressed between malignant and benign or normal thyroid tissues, confirmed by sequencing. PTPN18, ABI3BP, and PFDN5 revealed a statistically significant differential splicing profile. In addition, real-time PCR analysis revealed that expression of an alternative PFDN5 variant was higher in malignant lesions than in benign lesions or normal tissues.
Collapse
Affiliation(s)
- Gustavo S Guimarães
- Laboratory of Molecular Endocrinology, Department of Medicine, Federal University of São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|