1
|
Xie Y, Xiao D, Li D, Peng M, Peng W, Duan H, Yang X. Combined strategies with PARP inhibitors for the treatment of BRCA wide type cancer. Front Oncol 2024; 14:1441222. [PMID: 39156700 PMCID: PMC11327142 DOI: 10.3389/fonc.2024.1441222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/19/2024] [Indexed: 08/20/2024] Open
Abstract
Genomic instability stands out as a pivotal hallmark of cancer, and PARP inhibitors (PARPi) emerging as a groundbreaking class of targeted therapy drugs meticulously crafted to inhibit the repair of DNA single-strand breaks(SSB) in tumor cells. Currently, PARPi have been approved for the treatment of ovarian cancer, pancreatic cancer, breast cancer, and prostate cancer characterized by homologous recombination(HR) repair deficiencies due to mutations in BRCA1/2 or other DNA repair associated genes and acquiring the designation of breakthrough therapy. Nonetheless, PARPi exhibit limited efficacy in the majority of HR-proficient BRCA1/2 wild-type cancers. At present, the synergistic approach of combining PARPi with agents that induce HR defects, or with chemotherapy and radiotherapy to induce substantial DNA damage, significantly enhances the efficacy of PARPi in BRCA wild-type or HR-proficient patients, supporting extension the use of PARPi in HR proficient patients. Therefore, we have summarized the effects and mechanisms of the combined use of drugs with PARPi, including the combination of PARPi with HR defect-inducing drugs such as ATRi, CHKi, HR indirectly inducing drugs like VEGFRi, CDKi, immune checkpoint inhibitors and drugs instigating DNA damage such as chemotherapy or radiotherapy. In addition, this review discusses several ongoing clinical trials aimed at analyzing the clinical application potential of these combined treatment strategies.
Collapse
Affiliation(s)
- Yijun Xie
- Department of Oncology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan, China
- Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Normal University, Changsha, Hunan, China
- Department of Pharmacy, Hunan Normal University, Changsha, Hunan, China
- School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Di Xiao
- Department of Oncology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan, China
- Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Normal University, Changsha, Hunan, China
- Department of Pharmacy, Hunan Normal University, Changsha, Hunan, China
- School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Duo Li
- Department of Oncology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan, China
- Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Normal University, Changsha, Hunan, China
- Department of Pharmacy, Hunan Normal University, Changsha, Hunan, China
- School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Mei Peng
- Department of Oncology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan, China
- Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Normal University, Changsha, Hunan, China
- Department of Pharmacy, Hunan Normal University, Changsha, Hunan, China
- School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Wei Peng
- Department of Oncology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan, China
- Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Normal University, Changsha, Hunan, China
- Department of Pharmacy, Hunan Normal University, Changsha, Hunan, China
- School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Huaxin Duan
- Department of Oncology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan, China
- Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Normal University, Changsha, Hunan, China
- Department of Pharmacy, Hunan Normal University, Changsha, Hunan, China
- School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Xiaoping Yang
- Department of Oncology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan, China
- Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Normal University, Changsha, Hunan, China
- Department of Pharmacy, Hunan Normal University, Changsha, Hunan, China
- School of Medicine, Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
2
|
Zattarin E, Taglialatela I, Lobefaro R, Leporati R, Fucà G, Ligorio F, Sposetti C, Provenzano L, Azzollini J, Vingiani A, Ferraris C, Martelli G, Manoukian S, Pruneri G, de Braud F, Vernieri C. Breast cancers arising in subjects with germline BRCA1 or BRCA2 mutations: Different biological and clinical entities with potentially diverse therapeutic opportunities. Crit Rev Oncol Hematol 2023; 190:104109. [PMID: 37643668 DOI: 10.1016/j.critrevonc.2023.104109] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 08/11/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023] Open
Abstract
Breast cancers (BCs) arising in carriers of germline BRCA1 and BRCA2 pathogenic variants (PVs) have long been considered as indistinguishable biological and clinical entities. However, the loss of function of BRCA1 or BRCA2 proteins has different consequences in terms of tumor cell reliance on estrogen receptor signaling and tumor microenvironment composition. Here, we review accumulating preclinical and clinical data indicating that BRCA1 or BRCA2 inactivation may differentially affect BC sensitivity to standard systemic therapies. Based on a different crosstalk between BRCA1 or BRCA2 and the ER pathway, BRCA2-mutated Hormone Receptor-positive, HER2-negative advanced BC may be less sensitive to endocrine therapy (ET) plus CDK 4/6 inhibitors (CDK 4/6i), whereas BRCA2-mutated triple-negative breast cancer (TNBC) may be especially sensitive to immune checkpoint inhibitors. If validated in future prospective studies, these data may have relevant clinical implications, thus establishing different treatment paths in patients with BRCA1 or BRCA2 PVs.
Collapse
Affiliation(s)
- Emma Zattarin
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Ida Taglialatela
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Riccardo Lobefaro
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Rita Leporati
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giovanni Fucà
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Francesca Ligorio
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Caterina Sposetti
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Leonardo Provenzano
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Jacopo Azzollini
- Unit of Medical Genetics, Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Andrea Vingiani
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy; Pathology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Cristina Ferraris
- Breast Unit, Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Gabriele Martelli
- Breast Unit, Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Siranoush Manoukian
- Unit of Medical Genetics, Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giancarlo Pruneri
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy; Pathology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Filippo de Braud
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Claudio Vernieri
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy.
| |
Collapse
|
3
|
Abstract
PURPOSE Current concepts regarding estrogen and its mechanistic effects on breast cancer in women are evolving. This article reviews studies that address estrogen-mediated breast cancer development, the prevalence of occult tumors at autopsy, and the natural history of breast cancer as predicted by a newly developed tumor kinetic model. METHODS This article reviews previously published studies from the authors and articles pertinent to the data presented. RESULTS We discuss the concepts of adaptive hypersensitivity that develops in response to long-term deprivation of estrogen and results in both increased cell proliferation and apoptosis. The effects of menopausal hormonal therapy on breast cancer in postmenopausal women are interpreted based on the tumor kinetic model. Studies of the administration of a tissue selective estrogen complex in vitro, in vivo, and in patients are described. We review the various clinical studies of breast cancer prevention with selective estrogen receptor modulators and aromatase inhibitors. Finally, the effects of the underlying risk of breast cancer on the effects of menopausal hormone therapy are outlined. DISCUSSION The overall intent of this review is to present data supporting recent concepts, discuss pertinent literature, and critically examine areas of controversy.
Collapse
|
4
|
Militello AM, Zielli T, Boggiani D, Michiara M, Naldi N, Bortesi B, Zanelli P, Uliana V, Giuliotti S, Musolino A. Mechanism of Action and Clinical Efficacy of CDK4/6 Inhibitors in BRCA-Mutated, Estrogen Receptor-Positive Breast Cancers: Case Report and Literature Review. Front Oncol 2019; 9:759. [PMID: 31456944 PMCID: PMC6700293 DOI: 10.3389/fonc.2019.00759] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 07/29/2019] [Indexed: 11/28/2022] Open
Abstract
Sensitivity to endocrine therapy of patients with estrogen receptor (ER)-positive metastatic breast cancer and germline BRCA1/2 mutations is not yet fully elucidated. Furthermore, the registration trials of CDK 4/6 inhibitors in combination with endocrine therapy lacked of a pre-specified subgroup analysis in BRCA1/2 mutation carriers. We report clinical history of two patients with BRCA-mutated, ER-positive metastatic breast cancer treated with letrozole plus the CDK 4/6 inhibitor palbociclib. Biological and clinical implications of the treatment outcome observed in the two cases are discussed with the knowledge of scientific evidence to date available. Overall, biological rationale, preclinical, and clinical data support the prominent role of CDK 4/6 inhibitors plus endocrine therapy, even in combination with PARP inhibitors, in the treatment of BRCA-mutated, ER-positive breast cancers. However, the interaction between Cyclin/CDK pathway, ER and BRCA is complex and evidences reported so far, albeit reliable, await confirmation in the context of future randomized clinical trials.
Collapse
Affiliation(s)
- Anna Maria Militello
- Breast Unit and Cancer Genetics Service, University Hospital of Parma, Parma, Italy
| | - Teresa Zielli
- Breast Unit and Cancer Genetics Service, University Hospital of Parma, Parma, Italy
| | - Daniela Boggiani
- Breast Unit and Cancer Genetics Service, University Hospital of Parma, Parma, Italy
| | - Maria Michiara
- Breast Unit and Cancer Genetics Service, University Hospital of Parma, Parma, Italy
| | - Nadia Naldi
- Breast Unit and Cancer Genetics Service, University Hospital of Parma, Parma, Italy
| | - Beatrice Bortesi
- Breast Unit and Cancer Genetics Service, University Hospital of Parma, Parma, Italy
| | - Paola Zanelli
- Medical Genetics Unit, University Hospital of Parma, Parma, Italy
| | - Vera Uliana
- Medical Genetics Unit, University Hospital of Parma, Parma, Italy
| | - Sara Giuliotti
- Radiology Unit, University Hospital of Parma, Parma, Italy
| | - Antonino Musolino
- Breast Unit and Cancer Genetics Service, University Hospital of Parma, Parma, Italy.,Gruppo Oncologico Italiano di Ricerca Clinica (GOIRC), Parma, Italy
| |
Collapse
|
5
|
CRISPR/Cas9-Mediated BRCA1 Knockdown Adipose Stem Cells Promote Breast Cancer Progression. Plast Reconstr Surg 2019; 143:747-756. [PMID: 30817646 DOI: 10.1097/prs.0000000000005316] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND The tumor microenvironment within the breast is rich in adipose elements. The interaction between adipose cells and breast cancer is poorly understood, particularly as it pertains to patients with genetic susceptibility to breast cancer. This study focuses on the phenotype of human adipose-derived stem cells with the BRCA1 mutation and the effect they may have on breast cancer cell behavior. METHODS CRISPR/Cas9 was used to generate de novo BRCA1-knockdown human adipose-derived stem cells. The effect of the BRCA1 knockdown on the adipose-derived stem cell phenotype was compared to wild-type adipose-derived stem cells and patient-derived breast adipose-derived stem cells with known BRCA1 mutations. Interactions between adipose-derived stem cells and the MDA-MB-231 breast cancer cell line were evaluated. RESULTS BRCA1-knockdown adipose-derived stem cells stimulated MDA-MB-231 proliferation (1.4-fold increase on day 4; p = 0.0074) and invasion (2.3-fold increase on day 2; p = 0.0171) compared to wild-type cells. Immunofluorescence staining revealed higher levels of phosphorylated ataxia telangiectasia-mutated activation in BRCA1-knockdown cells (72.9 ± 5.32 percent versus 42.9 ± 4.97 percent; p = 0.0147), indicating higher levels of DNA damage. Beta-galactosidase staining demonstrated a significantly higher level of senescence in BRCA1-knockdown cells compared with wild-type cells (7.9 ± 0.25 percent versus 0.17 ± 0.17 percent; p < 0.0001). Using quantitative enzyme-linked immunosorbent assay to evaluate conditioned media, the authors found significantly higher levels of interleukin-8 in BRCA1-knockdown cells (2.57 ± 0.32-fold; p = 0.0049). CONCLUSIONS The authors show for the first time that the BRCA1 mutation affects the adipose-derived stem cell phenotype. Moreover, CRISPR/Cas9-generated BRCA1-knockdown adipose-derived stem cells stimulate a more aggressive behavior in breast cancer cells than wild-type adipose-derived stem cells. This appears to be related to increased inflammatory cytokine production by means of a DNA damage-mediated cell senescence pathway.
Collapse
|
6
|
Semmler L, Reiter-Brennan C, Klein A. BRCA1 and Breast Cancer: a Review of the Underlying Mechanisms Resulting in the Tissue-Specific Tumorigenesis in Mutation Carriers. J Breast Cancer 2019; 22:1-14. [PMID: 30941229 PMCID: PMC6438831 DOI: 10.4048/jbc.2019.22.e6] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/30/2018] [Indexed: 12/24/2022] Open
Abstract
Since the first cloning of BRCA1 in 1994, many of its cellular interactions have been elucidated. However, its highly specific role in tumorigenesis in the breast tissue—carriers of BRCA1 mutations are predisposed to life-time risks of up to 80%—relative to many other tissues that remain unaffected, has not yet been fully enlightened. In this article, we have applied a universal model of tissue-specificity of cancer genes to BRCA1 and present a systematic review of proposed concepts classified into 4 categories. Firstly, tissue-specific differences in levels of BRCA1 expression and secondly differences in expression of proteins with redundant functions are outlined. Thirdly, cell-type specific interactions of BRCA1 are presented: its regulation of aromatase, its interaction with Progesterone- and receptor activator of nuclear factor-κB ligand-signaling that controls proliferation of luminal progenitor cells, and its influence on cell differentiation via modulation of the key regulators jagged 1-NOTCH and snail family transcriptional repressor 2. Fourthly, factors specific to the cell-type as well as the environment of the breast tissue are elucidated: distinct frequency of losses of heterozygosity, interaction with X inactivation specific transcript RNA, estrogen-dependent induction of genotoxic metabolites and nuclear factor (erythroid-derived 2)-like 2, and regulation of sirtuin 1. In conclusion, the impact of these concepts on the formation of hormone-sensitive and -insensitive breast tumors is outlined.
Collapse
Affiliation(s)
- Lukas Semmler
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Biochemistry, Berlin, Germany
| | - Cara Reiter-Brennan
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Biochemistry, Berlin, Germany
| | - Andreas Klein
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Biochemistry, Berlin, Germany
| |
Collapse
|
7
|
Sau A, Cabrita MA, Pratt MAC. NF-κB at the Crossroads of Normal Mammary Gland Biology and the Pathogenesis and Prevention of BRCA1-Mutated Breast Cancer. Cancer Prev Res (Phila) 2017; 11:69-80. [PMID: 29101208 DOI: 10.1158/1940-6207.capr-17-0225] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/03/2017] [Accepted: 10/27/2017] [Indexed: 11/16/2022]
Abstract
Recent studies have shown that progesterone receptor (PR)-expressing cells respond to progesterone in part through the induction of the receptor activator of NF-κB ligand (RANKL), which acts in a paracrine manner to induce expansion of a RANK-expressing luminal progenitor cell population. The RANK+ population in human breast tissue from carriers of BRCA1 mutations (BRCA1mut/+) as well as the luminal progenitor population in Brca1-deficient mouse mammary glands is abnormally amplified. Remarkably, mouse Brca1+/- and human BRCA1mut/+ progenitor cells are able to form colonies in vitro in the absence of progesterone, demonstrating a hormone-independent proliferative capacity. Our research has demonstrated that proliferation in BRCA1-deficient cells results in a DNA damage response (DDR) that activates a persistent NF-κB signal, which supplants progesterone/RANKL signaling for an extended time period. Thus, the transcriptional targets normally activated by RANKL that promote a proliferative response in luminal progenitors can contribute to the susceptibility of mammary epithelial cells to BRCA1-mutated breast cancers as a consequence of DDR-induced NF-κB. Together, these latest findings mark substantial progress in uncovering the mechanisms driving high rates of breast tumorigenesis in BRCA1 mutation carriers and ultimately reveal possibilities for nonsurgical prevention strategies. Cancer Prev Res; 11(2); 69-80. ©2017 AACR.
Collapse
Affiliation(s)
- Andrea Sau
- University of Ottawa, Ottawa, Ontario, Canada
| | | | | |
Collapse
|
8
|
Manna PR, Molehin D, Ahmed AU. Dysregulation of Aromatase in Breast, Endometrial, and Ovarian Cancers: An Overview of Therapeutic Strategies. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 144:487-537. [PMID: 27865465 DOI: 10.1016/bs.pmbts.2016.10.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Aromatase is the rate-limiting enzyme in the biosynthesis of estrogens, which play crucial roles on a spectrum of developmental and physiological processes. The biological actions of estrogens are classically mediated by binding to two estrogen receptors (ERs), ERα and ERβ. Encoded by the cytochrome P450, family 19, subfamily A, polypeptide 1 (CYP19A1) gene, aromatase is expressed in a wide variety of tissues, as well as benign and malignant tumors, and is regulated in a pathway- and tissue-specific manner. Overexpression of aromatase, leading to elevated systemic levels of estrogen, is unequivocally linked to the pathogenesis and growth of a number malignancies, including breast, endometrium, and ovarian cancers. Aromatase inhibitors (AIs) are routinely used to treat estrogen-dependent breast cancers in postmenopausal women; however, their roles in endometrial and ovarian cancers remain obscure. While AI therapy is effective in hormone sensitive cancers, they diminish estrogen production throughout the body and, thus, generate undesirable side effects. Despite the effectiveness of AI therapy, resistance to endocrine therapy remains a major concern and is the leading cause of cancer death. Considerable advances, toward mitigating these issues, have evolved in conjunction with a number of histone deacetylase (HDAC) inhibitors for countering an assortment of diseases and cancers, including the aforesaid malignancies. HDACs are a family of enzymes that are frequently dysregulated in human tumors. This chapter will discuss the current understanding of aberrant regulation and expression of aromatase in breast, endometrial, and ovarian cancers, and potential therapeutic strategies for prevention and treatment of these life-threatening diseases.
Collapse
Affiliation(s)
- P R Manna
- Texas Tech University Health Sciences Center School of Medicine, Lubbock, TX, United States.
| | - D Molehin
- Texas Tech University Health Sciences Center School of Medicine, Lubbock, TX, United States
| | - A U Ahmed
- Texas Tech University Health Sciences Center School of Medicine, Lubbock, TX, United States
| |
Collapse
|
9
|
Svoronos N, Perales-Puchalt A, Allegrezza MJ, Rutkowski MR, Payne KK, Tesone AJ, Nguyen JM, Curiel TJ, Cadungog MG, Singhal S, Eruslanov EB, Zhang P, Tchou J, Zhang R, Conejo-Garcia JR. Tumor Cell-Independent Estrogen Signaling Drives Disease Progression through Mobilization of Myeloid-Derived Suppressor Cells. Cancer Discov 2016; 7:72-85. [PMID: 27694385 DOI: 10.1158/2159-8290.cd-16-0502] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 09/28/2016] [Accepted: 09/28/2016] [Indexed: 01/08/2023]
Abstract
The role of estrogens in antitumor immunity remains poorly understood. Here, we show that estrogen signaling accelerates the progression of different estrogen-insensitive tumor models by contributing to deregulated myelopoiesis by both driving the mobilization of myeloid-derived suppressor cells (MDSC) and enhancing their intrinsic immunosuppressive activity in vivo Differences in tumor growth are dependent on blunted antitumor immunity and, correspondingly, disappear in immunodeficient hosts and upon MDSC depletion. Mechanistically, estrogen receptor alpha activates the STAT3 pathway in human and mouse bone marrow myeloid precursors by enhancing JAK2 and SRC activity. Therefore, estrogen signaling is a crucial mechanism underlying pathologic myelopoiesis in cancer. Our work suggests that new antiestrogen drugs that have no agonistic effects may have benefits in a wide range of cancers, independently of the expression of estrogen receptors in tumor cells, and may synergize with immunotherapies to significantly extend survival. SIGNIFICANCE Ablating estrogenic activity delays malignant progression independently of the tumor cell responsiveness, owing to a decrease in the mobilization and immunosuppressive activity of MDSCs, which boosts T-cell-dependent antitumor immunity. Our results provide a mechanistic rationale to block estrogen signaling with newer antagonists to boost the effectiveness of anticancer immunotherapies. Cancer Discov; 7(1); 72-85. ©2016 AACR.See related commentary by Welte et al., p. 17This article is highlighted in the In This Issue feature, p. 1.
Collapse
Affiliation(s)
- Nikolaos Svoronos
- Tumor Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Alfredo Perales-Puchalt
- Tumor Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Michael J Allegrezza
- Tumor Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Melanie R Rutkowski
- Tumor Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Kyle K Payne
- Tumor Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Amelia J Tesone
- Tumor Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Jenny M Nguyen
- Tumor Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Tyler J Curiel
- The Graduate School of Biomedical Sciences, The University of Texas Health Science Center, San Antonio, Texas.,Department of Medicine, The University of Texas Health Science Center, San Antonio, Texas.,Cancer Therapy and Research Center, The University of Texas Health Science Center, San Antonio, Texas
| | - Mark G Cadungog
- Helen F. Graham Cancer Center, Christiana Care Health System, Newark, Delaware
| | - Sunil Singhal
- Division of Thoracic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Evgeniy B Eruslanov
- Division of Thoracic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Paul Zhang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Julia Tchou
- Division of Endocrine and Oncologic Surgery, Department of Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Rugang Zhang
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Jose R Conejo-Garcia
- Tumor Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania.
| |
Collapse
|
10
|
Tripathi K, Mani C, Somasagara RR, Clark DW, Ananthapur V, Vinaya K, Palle K. Detection and evaluation of estrogen DNA-adducts and their carcinogenic effects in cultured human cells using biotinylated estradiol. Mol Carcinog 2016; 56:1010-1020. [DOI: 10.1002/mc.22566] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 08/31/2016] [Accepted: 09/04/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Kaushlendra Tripathi
- Department of Oncologic Sciences, Mitchell Cancer Institute; University of South Alabama; Mobile Alabama
| | - Chinnadurai Mani
- Department of Oncologic Sciences, Mitchell Cancer Institute; University of South Alabama; Mobile Alabama
| | - Ranganatha R. Somasagara
- Department of Oncologic Sciences, Mitchell Cancer Institute; University of South Alabama; Mobile Alabama
| | - David W. Clark
- Department of Oncologic Sciences, Mitchell Cancer Institute; University of South Alabama; Mobile Alabama
| | - Venkateshwari Ananthapur
- Department of Oncologic Sciences, Mitchell Cancer Institute; University of South Alabama; Mobile Alabama
- Institute of Genetics and Hospital for Genetic Diseases; Osmania University; Begumpet, Hyderabad Telangana India
| | - Kambappa Vinaya
- Department of Oncologic Sciences, Mitchell Cancer Institute; University of South Alabama; Mobile Alabama
- Department of Chemistry; Government First Grade College; Kadur Karnataka India
| | - Komaraiah Palle
- Department of Oncologic Sciences, Mitchell Cancer Institute; University of South Alabama; Mobile Alabama
| |
Collapse
|
11
|
Politano G, Orso F, Raimo M, Benso A, Savino A, Taverna D, Di Carlo S. CyTRANSFINDER: a Cytoscape 3.3 plugin for three-component (TF, gene, miRNA) signal transduction pathway construction. BMC Bioinformatics 2016; 17:157. [PMID: 27059647 PMCID: PMC4826505 DOI: 10.1186/s12859-016-0964-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 02/19/2016] [Indexed: 12/02/2022] Open
Abstract
Background Biological research increasingly relies on network models to study complex phenomena. Signal Transduction Pathways are molecular circuits that model how cells receive, process, and respond to information from the environment providing snapshots of the overall cell dynamics. Most of the attempts to reconstruct signal transduction pathways are limited to single regulator networks including only genes/proteins. However, networks involving a single type of regulator and neglecting transcriptional and post-transcriptional regulations mediated by transcription factors and microRNAs, respectively, may not fully reveal the complex regulatory mechanisms of a cell. We observed a lack of computational instruments supporting explorative analysis on this type of three-component signal transduction pathways. Results We have developed CyTRANSFINDER, a new Cytoscape plugin able to infer three-component signal transduction pathways based on user defined regulatory patterns and including miRNAs, TFs and genes. Since CyTRANSFINDER has been designed to support exploratory analysis, it does not rely on expression data. To show the potential of the plugin we have applied it in a study of two miRNAs that are particularly relevant in human melanoma progression, miR-146a and miR-214. Conclusions CyTRANSFINDER supports the reconstruction of small signal transduction pathways among groups of genes. Results obtained from its use in a real case study have been analyzed and validated through both literature data and preliminary wet-lab experiments, showing the potential of this tool when performing exploratory analysis. Electronic supplementary material The online version of this article (doi:10.1186/s12859-016-0964-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gianfranco Politano
- Department of Control and Computer Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, 10129, Italy
| | - Francesca Orso
- Molecular Biotechnology Center (MBC), Via Nizza, 52, Torino, 10126, Italy.,Dept. Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza, 52, Torino, 10126, Italy.,Center for Complex Systems in Molecular Biology and Medicine, Via Accademia Albertina, 13, Torino, 10123, Italy
| | - Monica Raimo
- Molecular Biotechnology Center (MBC), Via Nizza, 52, Torino, 10126, Italy.,Dept. Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza, 52, Torino, 10126, Italy
| | - Alfredo Benso
- Department of Control and Computer Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, 10129, Italy
| | - Alessandro Savino
- Department of Control and Computer Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, 10129, Italy
| | - Daniela Taverna
- Molecular Biotechnology Center (MBC), Via Nizza, 52, Torino, 10126, Italy.,Dept. Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza, 52, Torino, 10126, Italy.,Center for Complex Systems in Molecular Biology and Medicine, Via Accademia Albertina, 13, Torino, 10123, Italy
| | - Stefano Di Carlo
- Department of Control and Computer Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, 10129, Italy.
| |
Collapse
|
12
|
Shohat-Tal A, Sen A, Barad DH, Kushnir V, Gleicher N. Genetics of androgen metabolism in women with infertility and hypoandrogenism. Nat Rev Endocrinol 2015; 11:429-41. [PMID: 25942654 DOI: 10.1038/nrendo.2015.64] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hypoandrogenism in women with low functional ovarian reserve (LFOR, defined as an abnormally low number of small growing follicles) adversely affects fertility. The androgen precursor dehydroepiandrosterone (DHEA) is increasingly used to supplement treatment protocols in women with LFOR undergoing in vitro fertilization. Due to differences in androgen metabolism, however, responses to DHEA supplementation vary between patients. In addition to overall declines in steroidogenic capacity with advancing age, genetic factors, which result in altered expression or enzymatic function of key steroidogenic proteins or their upstream regulators, might further exacerbate variations in the conversion of DHEA to testosterone. In this Review, we discuss in vitro studies and animal models of polymorphisms and gene mutations that affect the conversion of DHEA to testosterone and attempt to elucidate how these variations affect female hormone profiles. We also discuss treatment options that modulate levels of testosterone by targeting the expression of steroidogenic genes. Common variants in genes encoding DHEA sulphotransferase, aromatase, steroid 5α-reductase, androgen receptor, sex-hormone binding globulin, fragile X mental retardation protein and breast cancer type 1 susceptibility protein have been implicated in androgen metabolism and, therefore, can affect levels of androgens in women. Short of screening for all potential genetic variants, hormonal assessments of patients with low testosterone levels after DHEA supplementation facilitate identification of underlying genetic defects. The genetic predisposition of patients can then be used to design individualized fertility treatments.
Collapse
Affiliation(s)
- Aya Shohat-Tal
- Center for Human Reproduction, 21 E. 69th Street, New York, NY 10021, USA
| | - Aritro Sen
- Department of Internal Medicine, Division of Endocrinology and Metabolism, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - David H Barad
- Center for Human Reproduction, 21 E. 69th Street, New York, NY 10021, USA
| | - Vitaly Kushnir
- Center for Human Reproduction, 21 E. 69th Street, New York, NY 10021, USA
| | - Norbert Gleicher
- Center for Human Reproduction, 21 E. 69th Street, New York, NY 10021, USA
| |
Collapse
|
13
|
Kim J, Johnson L, Skrzynia C, Buchanan A, Gracia C, Mersereau JE. Prospective multicenter cohort study of estrogen and insulin-like growth factor system in BRCA mutation carriers. Cancer Causes Control 2015; 26:1087-92. [DOI: 10.1007/s10552-015-0601-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 05/15/2015] [Indexed: 12/20/2022]
|
14
|
Granulosa Cell-Specific Brca1 Loss Alone or Combined with Trp53 Haploinsufficiency and Transgenic FSH Expression Fails to Induce Ovarian Tumors. Discov Oncol 2015; 6:142-52. [PMID: 25943777 DOI: 10.1007/s12672-015-0222-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 04/25/2015] [Indexed: 01/09/2023] Open
Abstract
BRCA1 mutations are associated with ovarian cancer. Previous studies reported that murine granulosa cell (GC) Brca1 loss caused ovarian-uterine tumors resembling serous cystadenomas, but the pathogenesis of these tumors may have been confounded by ectopic Brca1 expression and altered estrous cycling. We have used Tg.AMH.Cre conferring proven ovarian and GC-specific Cre activity to selectively target Brca1 disruption, denoted Brca1(GC-/-). Furthermore, ovary-specific Brca1(GC-/-) was combined with global Trp53 haploinsufficiency (Trp53(+/-)) and transgenic follicle-stimulating hormone (Tg.FSH) overexpression as a multi-hit strategy to investigate additional genetic and hormonal ovarian tumorigenesis mechanisms. However, 12-month-old Brca1(GC-/-) mice had no detectable ovarian or uterine tumors. Brca1(GC-/-) mice had significantly increased ovary weights, follicles exhibiting more pyknotic granulosa cells, and fewer corpora lutea with regular estrous cycling compared to controls. Isolated Brca1(GC-/-) mutation lengthened the estrous cycle and proestrus stage; however, ovarian cystadenomas were not observed, even when Brca1(GC-/-) was combined with Trp53(+/-) and overexpressed Tg.FSH. Our Brca1(GC-/-) models reveal that specific intra-follicular Brca1 loss alone, or combined with cancer-promoting genetic (Trp53 loss) and endocrine (high serum FSH) changes, was not sufficient to cause ovarian tumors. Our findings show that the ovary is remarkably resistant to oncogenesis, and support the emerging view of an extragonadal, multi-hit origin for ovarian tumorigenesis.
Collapse
|
15
|
Guruvaiah P, Govatati S, Reddy TV, Lomada D, Deenadayal M, Shivaji S, Bhanoori M. The VEGF +405 G>C 5' untranslated region polymorphism and risk of PCOS: a study in the South Indian Women. J Assist Reprod Genet 2014; 31:1383-9. [PMID: 25106940 DOI: 10.1007/s10815-014-0310-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 07/22/2014] [Indexed: 12/17/2022] Open
Abstract
PURPOSE The aim of this study was to investigate the association between two common single nucleotide polymorphisms (SNPs) in the vascular endothelial growth factor (VEGF) gene (-460C/T and +405G/C) and polycystic ovary syndrome (PCOS) risk in south Indian women. METHODS This study involves clinically confirmed PCOS patients (n = 126) and non-PCOS controls (n = 130) of south Indian origin (Dravidian linguistic group). Genotyping of the VEGF gene -460C/T and +405G/C SNPs were performed by PCR and sequencing analysis. Haplotype frequencies for multiple loci and the standardized disequilibrium coefficient (D') for pairwise linkage disequilibrium (LD) were assessed by Haploview Software. RESULTS The frequencies of +405G/G genotype (P = 0.03) and +405G alleles (P = 0.006) were significantly higher in patients compared to controls. Whereas the genotype and allele frequencies of -460C/T SNP were not significantly different between patients and controls. In addition, LD analysis revealed no significant difference between patients and controls. CONCLUSION Our findings suggest that the VEGF +405G/C polymorphism may constitute an inheritable risk factor for PCOS in south Indian women.
Collapse
Affiliation(s)
- Praveen Guruvaiah
- Department of Biochemistry, Osmania University, 500 007, Hyderabad, India,
| | | | | | | | | | | | | |
Collapse
|
16
|
Wang L, Di LJ. BRCA1 and estrogen/estrogen receptor in breast cancer: where they interact? Int J Biol Sci 2014; 10:566-75. [PMID: 24910535 PMCID: PMC4046883 DOI: 10.7150/ijbs.8579] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 03/24/2014] [Indexed: 01/08/2023] Open
Abstract
BRCA1 mainly acts as a tumor suppressor and BRCA1 mutation correlates with increased cancer risk. Although it is well recognized that BRCA1 related tumorigenesis is mainly caused by the increased DNA damage and decreased genome stability, it is not clear that why BRCA1 related patients have higher risk for cancer development mainly in estrogen responsive tissues such as breast and ovary. Recent studies suggested that BRCA1 and E-ER (estrogen and estrogen receptor) signaling synergistically regulate the mammary epithelial cell proliferation and differentiation. In this current presentation, we reviewed the correlation between mammary gland epithelial cell transformation and the status of BRCA1 and ER. Then the mechanisms of BRCA1 and E-ER interaction at both gene transcription level and protein-protein interaction level are discussed. Furthermore, the tumorigenic mechanisms are discussed by focusing on the synergistic effect of BRCA1 and E-ER on cell metabolism, ROS management, and antioxidant activity in mammary gland epithelial cells. Also, the possibility of cell de-differentiation promoted by coordinated effect between BRCA1 mutation and E-ER signal is explored. Together, the currently available evidences suggest that BRCA1 mutation and E-ER signal together, contribute to breast tumorigenesis by providing the metabolic support for cancer cell growth and even may directly be involved in promoting the de-differentiation of cancer-prone epithelial cells.
Collapse
Affiliation(s)
- Li Wang
- Faculty of health sciences, University of Macau, SAR of People's Republic of China
| | - Li-Jun Di
- Faculty of health sciences, University of Macau, SAR of People's Republic of China
| |
Collapse
|
17
|
Savage KI, Matchett KB, Barros EM, Cooper KM, Irwin GW, Gorski JJ, Orr KS, Vohhodina J, Kavanagh JN, Madden AF, Powell A, Manti L, McDade SS, Park BH, Prise KM, McIntosh SA, Salto-Tellez M, Richard DJ, Elliott CT, Harkin DP. BRCA1 deficiency exacerbates estrogen-induced DNA damage and genomic instability. Cancer Res 2014; 74:2773-2784. [PMID: 24638981 DOI: 10.1158/0008-5472.can-13-2611] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Germline mutations in BRCA1 predispose carriers to a high incidence of breast and ovarian cancers. BRCA1 functions to maintain genomic stability through critical roles in DNA repair, cell-cycle arrest, and transcriptional control. A major question has been why BRCA1 loss or mutation leads to tumors mainly in estrogen-regulated tissues, given that BRCA1 has essential functions in all cell types. Here, we report that estrogen and estrogen metabolites can cause DNA double-strand breaks (DSB) in estrogen receptor-α-negative breast cells and that BRCA1 is required to repair these DSBs to prevent metabolite-induced genomic instability. We found that BRCA1 also regulates estrogen metabolism and metabolite-mediated DNA damage by repressing the transcription of estrogen-metabolizing enzymes, such as CYP1A1, in breast cells. Finally, we used a knock-in human cell model with a heterozygous BRCA1 pathogenic mutation to show how BRCA1 haploinsufficiency affects these processes. Our findings provide pivotal new insights into why BRCA1 mutation drives the formation of tumors in estrogen-regulated tissues, despite the general role of BRCA1 in DNA repair in all cell types.
Collapse
Affiliation(s)
- Kienan I Savage
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, 97 Lisburn Rd, Belfast BT9 7BL, UK
| | - Kyle B Matchett
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, 97 Lisburn Rd, Belfast BT9 7BL, UK
| | - Eliana M Barros
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, 97 Lisburn Rd, Belfast BT9 7BL, UK
| | - Kevin M Cooper
- Institute for Global Food Security, Queen's University Belfast, 30 Malone Rd, Belfast BT9 5BN, UK
| | - Gareth W Irwin
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, 97 Lisburn Rd, Belfast BT9 7BL, UK
| | - Julia J Gorski
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, 97 Lisburn Rd, Belfast BT9 7BL, UK
| | - Katy S Orr
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, 97 Lisburn Rd, Belfast BT9 7BL, UK
| | - Jekaterina Vohhodina
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, 97 Lisburn Rd, Belfast BT9 7BL, UK
| | - Joy N Kavanagh
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, 97 Lisburn Rd, Belfast BT9 7BL, UK
| | - Angelina F Madden
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, 97 Lisburn Rd, Belfast BT9 7BL, UK
| | - Alexander Powell
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, 97 Lisburn Rd, Belfast BT9 7BL, UK.,Institute for Global Food Security, Queen's University Belfast, 30 Malone Rd, Belfast BT9 5BN, UK
| | - Lorenzo Manti
- Radiation Biophysics Laboratory, Department of Physics, University of Naples Federico II, Via Cinthia-80126 Naples, Italy
| | - Simon S McDade
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, 97 Lisburn Rd, Belfast BT9 7BL, UK
| | - Ben Ho Park
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Kevin M Prise
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, 97 Lisburn Rd, Belfast BT9 7BL, UK
| | - Stuart A McIntosh
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, 97 Lisburn Rd, Belfast BT9 7BL, UK
| | - Manuel Salto-Tellez
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, 97 Lisburn Rd, Belfast BT9 7BL, UK
| | - Derek J Richard
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, 4059, Brisbane, Australia
| | - Christopher T Elliott
- Institute for Global Food Security, Queen's University Belfast, 30 Malone Rd, Belfast BT9 5BN, UK
| | - D Paul Harkin
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, 97 Lisburn Rd, Belfast BT9 7BL, UK
| |
Collapse
|
18
|
Ghosh S, Ashcraft K, Jahid MJ, April C, Ghajar CM, Ruan J, Wang H, Foster M, Hughes DC, Ramirez AG, Huang T, Fan JB, Hu Y, Li R. Regulation of adipose oestrogen output by mechanical stress. Nat Commun 2013; 4:1821. [PMID: 23652009 DOI: 10.1038/ncomms2794] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Accepted: 03/22/2013] [Indexed: 01/24/2023] Open
Abstract
Adipose stromal cells are the primary source of local oestrogens in adipose tissue, aberrant production of which promotes oestrogen receptor-positive breast cancer. Here we show that extracellular matrix compliance and cell contractility are two opposing determinants for oestrogen output of adipose stromal cells. Using synthetic extracellular matrix and elastomeric micropost arrays with tunable rigidity, we find that increasing matrix compliance induces transcription of aromatase, a rate-limiting enzyme in oestrogen biosynthesis. This mechanical cue is transduced sequentially by discoidin domain receptor 1, c-Jun N-terminal kinase 1, and phosphorylated JunB, which binds to and activates two breast cancer-associated aromatase promoters. In contrast, elevated cell contractility due to actin stress fibre formation dampens aromatase transcription. Mechanically stimulated stromal oestrogen production enhances oestrogen-dependent transcription in oestrogen receptor-positive tumour cells and promotes their growth. This novel mechanotransduction pathway underlies communications between extracellular matrix, stromal hormone output, and cancer cell growth within the same microenvironment.
Collapse
Affiliation(s)
- Sagar Ghosh
- Department of Molecular Medicine/Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Germline mutations of human breast cancer-associated gene 1 (BRCA1) predispose women to breast and ovarian cancers. In mice, over 20 distinct mutations, including null, hypomorphic, isoform, conditional, and point mutations, have been created to study functions of Brca1 in mammary development and tumorigenesis. Analyses using these mutant mice have yielded an enormous amount of information that greatly facilitates our understanding of the gender- and tissue-specific tumor suppressor functions of BRCA1, as well as enriches our insights into applying these preclinical models of disease to breast cancer research. Here, we review features of these mutant mice and their applications to cancer prevention and therapeutic treatment.
Collapse
|
20
|
Iber D, Geyter CD. Computational modelling of bovine ovarian follicle development. BMC SYSTEMS BIOLOGY 2013; 7:60. [PMID: 23856357 PMCID: PMC3726369 DOI: 10.1186/1752-0509-7-60] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 07/11/2013] [Indexed: 11/23/2022]
Abstract
Background The development of ovarian follicles hinges on the timely exposure to the appropriate combination of hormones. Follicle stimulating hormone (FSH) and luteinizing hormone (LH) are both produced in the pituitary gland and are transported via the blood circulation to the thecal layer surrounding the follicle. From there both hormones are transported into the follicle by diffusion. FSH-receptors are expressed mainly in the granulosa while LH-receptors are expressed in a gradient with highest expression in the theca. How this spatial organization is achieved is not known. Equally it is not understood whether LH and FSH trigger distinct signalling programs or whether the distinct spatial localization of their G-protein coupled receptors is sufficient to convey their distinct biological function. Results We have developed a data-based computational model of the spatio-temporal signalling processes within the follicle and (i) predict that FSH and LH form a gradient inside the follicle, (ii) show that the spatial distribution of FSH- and LH-receptors can arise from the well known regulatory interactions, and (iii) find that the differential activity of FSH and LH may well result from the distinct spatial localisation of their receptors, even when both receptors respond with the same intracellular signalling cascade to their ligand. Conclusion The model integrates the large amount of published data into a consistent framework that can now be used to better understand how observed defects translate into failed follicle maturation.
Collapse
Affiliation(s)
- Dagmar Iber
- Department for Biosystems Science and Engineering-D-BSSE, ETH Zurich, Swiss Institute of Bioinformatics, Basel, Switzerland.
| | | |
Collapse
|
21
|
Margalit O, Wang D, Dubois RN. PPARγ agonists target aromatase via both PGE2 and BRCA1. Cancer Prev Res (Phila) 2013; 5:1169-72. [PMID: 23041473 DOI: 10.1158/1940-6207.capr-12-0365] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Obesity is a well-recognized risk factor for postmenopausal breast cancer. Although the underlying mechanisms are not clearly defined, aromatase is thought to play a pivotal role in connecting obesity-associated inflammation with postmenopausal breast cancer. It has been well established that both the proinflammatory prostaglandin E(2) (PGE(2)) and the BRCA1 tumor-suppressor gene regulate aromatase expression. In this issue of the journal (beginning on p. 1183), Subbaramaiah and colleagues improve our understanding of the molecular mechanisms by which PPARγ inhibits aromatase expression. They found that pioglitazone, a PPARγ agonist, inhibited aromatase expression by inhibition of PGE(2) signaling and upregulation of BRCA1. Their findings provide potential targets for preventing or treating obesity-related breast cancer.
Collapse
Affiliation(s)
- Ofer Margalit
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | |
Collapse
|
22
|
Michael Miller KK, Al-Rayyan N, Ivanova MM, Mattingly KA, Ripp SL, Klinge CM, Prough RA. DHEA metabolites activate estrogen receptors alpha and beta. Steroids 2013; 78:15-25. [PMID: 23123738 PMCID: PMC3529809 DOI: 10.1016/j.steroids.2012.10.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 09/17/2012] [Accepted: 10/17/2012] [Indexed: 11/22/2022]
Abstract
Dehydroepiandrosterone (DHEA) levels were reported to associate with increased breast cancer risk in postmenopausal women, but some carcinogen-induced rat mammary tumor studies question this claim. The purpose of this study was to determine how DHEA and its metabolites affect estrogen receptors α or β (ERα or ERβ)-regulated gene transcription and cell proliferation. In transiently transfected HEK-293 cells, androstenediol, DHEA, and DHEA-S activated ERα. In ERβ transfected HepG2 cells, androstenedione, DHEA, androstenediol, and 7-oxo DHEA stimulated reporter activity. ER antagonists ICI 182,780 (fulvestrant) and 4-hydroxytamoxifen, general P450 inhibitor miconazole, and aromatase inhibitor exemestane inhibited activation by DHEA or metabolites in transfected cells. ERβ-selective antagonist R,R-THC (R,R-cis-diethyl tetrahydrochrysene) inhibited DHEA and DHEA metabolite transcriptional activity in ERβ-transfected cells. Expression of endogenous estrogen-regulated genes: pS2, progesterone receptor, cathepsin D1, and nuclear respiratory factor-1 was increased by DHEA and its metabolites in an ER-subtype, gene, and cell-specific manner. DHEA metabolites, but not DHEA, competed with 17β-estradiol for ERα and ERβ binding and stimulated MCF-7 cell proliferation, demonstrating that DHEA metabolites interact directly with ERα and ERβin vitro, modulating estrogen target genes in vivo.
Collapse
Affiliation(s)
| | | | | | | | | | - Carolyn M. Klinge
- CORRESPONDING AUTHORS: Russell A. Prough, Ph.D., and Carolyn M. Klinge. Ph.D. Department of Biochemistry & Molecular Biology, University of Louisville School of Medicine, Louisville, KY 40292. Phone: (502) 852-7249 (RAP); 502-852-3668 (CMK); FAX: (502) 852-6222; and
| | - Russell A. Prough
- CORRESPONDING AUTHORS: Russell A. Prough, Ph.D., and Carolyn M. Klinge. Ph.D. Department of Biochemistry & Molecular Biology, University of Louisville School of Medicine, Louisville, KY 40292. Phone: (502) 852-7249 (RAP); 502-852-3668 (CMK); FAX: (502) 852-6222; and
| |
Collapse
|
23
|
Kim J, Oktay K. Baseline E(2) levels are higher in BRCA2 mutation carriers: a potential target for prevention? Cancer Causes Control 2012; 24:421-6. [PMID: 23271408 DOI: 10.1007/s10552-012-0127-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 12/10/2012] [Indexed: 12/20/2022]
Abstract
PURPOSE BRCA gene mutations and elevated serum estradiol (E(2)) are well-known risk factors for breast cancer. The aim of this study was to investigate the association between BRCA gene mutations and serum E(2) level. METHODS We measured baseline (menstrual cycle day 2-3) E(2) levels of 96 women with breast cancer who underwent BRCA testing. RESULTS The mean age, parity, and age at menarche did not differ between women with and without BRCA1/2 mutations. Basal serum E(2) level was significantly higher in women with BRCA2 mutations compared to women with BRCA1 mutations or without BRCA mutations (71.7 ± 41.6 vs. 45.5 ± 20.7 vs. 38.5 ± 12.6 pg/ml in BRCA2 mutation carriers, BRCA1 mutation carriers, and non-carriers, respectively, p value = 0.03). Women with BRCA2 mutations had 3.1 times as great risk for high basal E(2) level (>48 pg/ml) as women without BRCA mutations after adjusting for age and BMI (95 % confidence interval: 1.3, 7.6). BRCA mutation carriers with high serum E(2) level were significantly younger than the carriers with low serum E(2) level (31.4 ± 3.1 vs. 34.7 ± 4.9 years, p = 0.04). CONCLUSIONS In this pilot study, we found an association between high basal serum E(2) levels and BRCA2 mutations. Our results suggest that increased production of E(2) may have a role in the pathogenesis of BRCA2-mutation-related breast cancer.
Collapse
Affiliation(s)
- Jayeon Kim
- Department of Obstetrics & Gynecology, New York Medical College and Institute for Fertility Preservation, Rye, NY, USA
| | | |
Collapse
|
24
|
Garson K, Gamwell LF, Pitre EM, Vanderhyden BC. Technical challenges and limitations of current mouse models of ovarian cancer. J Ovarian Res 2012. [PMID: 23190474 PMCID: PMC3537528 DOI: 10.1186/1757-2215-5-39] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The development of genetically engineered models (GEM) of epithelial ovarian cancer (EOC) has been very successful, with well validated models representing high grade and low grade serous adenocarcinomas and endometrioid carcinoma (EC). Most of these models were developed using technologies intended to target the ovarian surface epithelium (OSE), the cell type long believed to be the origin of EOC. More recent evidence has highlighted what is likely a more prevalent role of the secretory cell of the fallopian tube in the ontogeny of EOC, however none of the GEM of EOC have demonstrated successful targeting of this important cell type. The precise technologies exploited to develop the existing GEM of EOC are varied and carry with them advantages and disadvantages. The use of tissue specific promoters to model disease has been very successful, but the lack of any truly specific OSE or oviductal secretory cell promoters makes the outcomes of these models quite unpredictable. Effecting genetic change by the administration of adenoviral vectors expressing Cre recombinase may alleviate the perceived need for tissue specific promoters, however the efficiencies of infection of different cell types is subject to numerous biological parameters that may lead to preferential targeting of certain cell populations. One important future avenue of GEM of EOC is the evaluation of the role of genetic modifiers. We have found that genetic background can lead to contrasting phenotypes in one model of ovarian cancer, and data from other laboratories have also hinted that the exact genetic background of the model may influence the resulting phenotype. The different genetic backgrounds may modify the biology of the tumors in a manner that will be relevant to human disease, but they may also be modifying parameters which impact the response of the host to the technologies employed to develop the model.
Collapse
Affiliation(s)
- Kenneth Garson
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada.
| | | | | | | |
Collapse
|
25
|
Aromatase overexpression induces malignant changes in estrogen receptor α negative MCF-10A cells. Oncogene 2012. [DOI: 10.1038/onc.2012.558] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
26
|
Abstract
BRCA1 is a key mediator of DNA repair pathways and participates in the maintenance of the genomic integrity of cells. The control of DNA damage repair mechanisms by BRCA1 is of great interest since molecular defects in this pathway may reflect a predictive value in terms of a cell’s sensitivity to DNA damaging agents or anticancer drugs. BRCA1 has been found to exhibit a hormone-dependent pattern of expression in breast cells. Wild-type BRCA1 is required for the inhibition of the growth of breast tumor cells in response to the pure steroidal ERα antagonist fulvestrant. Also a loss of BRCA1-mediated transcriptional activation of ERα expression results in increased resistance to ERα antagonists. Platinum-based drugs, poly(ADP-ribose) polymerase (PARP) inhibitors, and their combination are currently included in chemotherapy regimens for breast cancer. Preclinical and clinical studies in a BRCA1-defective setting have recently indicated a rationale for the use of these compounds against hereditary breast cancers. Initial findings indicate that neoadjuvant use of cisplatin results in high rates of complete pathological response in patients with breast cancer who have BRCA1 mutations. Cisplatin produces a better response in triple-negative breast cancer (TNBC) than in non-TNBC diseases in both the neoadjuvant and adjuvant settings. This implies that TNBC cells may harbor a dysfunctional BRCA1 repair pathway.
Collapse
|
27
|
Muñoz MC, Laulier C, Gunn A, Cheng A, Robbiani DF, Nussenzweig A, Stark JM. RING finger nuclear factor RNF168 is important for defects in homologous recombination caused by loss of the breast cancer susceptibility factor BRCA1. J Biol Chem 2012; 287:40618-28. [PMID: 23055523 DOI: 10.1074/jbc.m112.410951] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND RNF168 promotes chromosomal break localization of 53BP1 and BRCA1; 53BP1 loss rescues homologous recombination (HR) in BRCA1-deficient cells. RESULTS RNF168 depletion suppresses HR defects caused by BRCA1 silencing; RNF168 influences HR similarly to 53BP1. CONCLUSION RNF168 is important for HR defects caused by BRCA1 loss. SIGNIFICANCE Although RNF168 promotes BRCA1 and 53BP1 localization to chromosomal breaks, RNF168 affects HR similarly to 53BP1. The RING finger nuclear factor RNF168 is required for recruitment of several DNA damage response factors to double strand breaks (DSBs), including 53BP1 and BRCA1. Because 53BP1 and BRCA1 function antagonistically during the DSB repair pathway homologous recombination (HR), the influence of RNF168 on HR has been unclear. We report that RNF168 depletion causes an elevated frequency of two distinct HR pathways (homology-directed repair and single strand annealing), suppresses defects in HR caused by BRCA1 silencing, but does not suppress HR defects caused by disruption of CtIP, RAD50, BRCA2, or RAD51. Furthermore, RNF168-depleted cells can form ionizing radiation-induced foci of the recombinase RAD51 without forming BRCA1 ionizing radiation-induced foci, indicating that this loss of BRCA1 recruitment to DSBs does not reflect a loss of function during HR. Additionally, we find that RNF168 and 53BP1 have a similar influence on HR. We suggest that RNF168 is important for HR defects caused by BRCA1 loss.
Collapse
Affiliation(s)
- Meilen C Muñoz
- Department of Radiation Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Subbaramaiah K, Howe LR, Zhou XK, Yang P, Hudis CA, Kopelovich L, Dannenberg AJ. Pioglitazone, a PPARγ agonist, suppresses CYP19 transcription: evidence for involvement of 15-hydroxyprostaglandin dehydrogenase and BRCA1. Cancer Prev Res (Phila) 2012; 5:1183-94. [PMID: 22787115 PMCID: PMC3694442 DOI: 10.1158/1940-6207.capr-12-0201] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Estrogen synthesis is catalyzed by cytochrome P450 aromatase, which is encoded by the CYP19 gene. In obese postmenopausal women, increased aromatase activity in white adipose tissue is believed to contribute to hormone-dependent breast cancer. Prostaglandin E(2) (PGE(2)) stimulates the cAMP→protein kinase A (PKA) pathway leading to increased CYP19 transcription and elevated aromatase activity in inflamed white adipose tissue. 15-hydroxyprostaglandin dehydrogenase (15-PGDH) plays a major role in the catabolism of PGE(2). Here, we investigated the mechanism by which pioglitazone, a ligand of the nuclear receptor PPARγ suppressed aromatase expression. Treatment of human preadipocytes with pioglitazone suppressed Snail, a repressive transcription factor, resulting in elevated levels of 15-PGDH and reduced levels of PGE(2) in the culture medium. Pioglitazone also inhibited cAMP→PKA signaling leading to reduced interaction between phosphorylated cAMP responsive element-binding protein, p300, and CYP19 I.3/II promoter. BRCA1, a repressor of CYP19 transcription, was induced by pioglitazone. Consistent with these in vitro findings, treatment of mice with pioglitazone activated PPARγ, induced 15-PGDH and BRCA1 while suppressing aromatase levels in the mammary gland. Collectively, these results indicate that the activation of PPARγ induces BRCA1 and suppresses the PGE(2)→cAMP→PKA axis leading to reduced levels of aromatase. PPARγ agonists may have a role in reducing the risk of hormone-dependent breast cancer in obese postmenopausal women.
Collapse
Affiliation(s)
- Kotha Subbaramaiah
- Department of Medicine, Weill Cornell Cancer Center, New York, NY 10065, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
Yen HY, Gabet Y, Liu Y, Martin A, Wu NL, Pike MC, Frenkel B, Maxson R, Dubeau L. Alterations in Brca1 expression in mouse ovarian granulosa cells have short-term and long-term consequences on estrogen-responsive organs. J Transl Med 2012; 92:802-11. [PMID: 22488153 PMCID: PMC4530993 DOI: 10.1038/labinvest.2012.58] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Incessant menstrual cycle activity, uninterrupted by either pregnancy or oral contraceptive use, is the most important risk factor for sporadic ovarian cancer. Menstrual cycle progression is partly controlled by steroid hormones such as estrogens and others that are secreted by the ovarian granulosa cells. We showed earlier that mice carrying a homozygous granulosa cell-specific knockout of Brca1, the homolog of BRCA1 that is associated with familial ovarian cancer predisposition in humans, develop benign epithelial tumors in their reproductive tract. These tumors are driven, at least in part, by a prolongation of the proestrus phase of the estrus cycle (equivalent to the follicular phase of the menstrual cycle) in Brca1 mutant mice, resulting in prolonged unopposed estrogen stimulation. Mutant mice synchronized in proestrus also showed increased circulating estradiol levels, but the possibility that this change also has a role in tumor predisposition was not investigated. We sought to determine whether these changes in hormonal stimulation result in measurable changes in tissues targeted by estrogen outside the ovary. Here we show that mice carrying a Brca1 mutation in their ovarian granulosa cells show increased endometrial proliferation during proestrus, implying that the effects of Brca1 inactivation on estrogen stimulation have short-term consequences, at least on this target organ. We further show that mutant mice develop increased femoral trabecular thickness and femoral length, which are well-known consequences of chronic estrogen stimulation. Estrogen biosynthesis by granulosa cells was increased not only in mice carrying a homozygous Brca1 mutation, but also in heterozygous mutants mimicking the mutational status in granulosa cells of human BRCA1 mutation carriers. The results suggest that human germline BRCA1 mutations, although associated with increased cancer risk, may also have beneficial consequences, such as increased bone strength, that may have contributed to the maintenance of mutated BRCA1 alleles in the human gene pool.
Collapse
Affiliation(s)
- Hai-Yun Yen
- Department of Biochemistry and Molecular Biology, USC/Norris Comprehensive Cancer Center, Keck School of Medicine of University of Southern California, Los Angeles, CA
| | - Yankel Gabet
- Department of Orthopedic Surgery, USC/Norris Comprehensive Cancer Center, Keck School of Medicine of University of Southern California, Los Angeles, CA
| | - Ying Liu
- Department of Pathology, USC/Norris Comprehensive Cancer Center, Keck School of Medicine of University of Southern California, Los Angeles, CA
| | - Anthony Martin
- Department of Orthopedic Surgery, USC/Norris Comprehensive Cancer Center, Keck School of Medicine of University of Southern California, Los Angeles, CA
| | - Nancy L Wu
- Department of Biochemistry and Molecular Biology, USC/Norris Comprehensive Cancer Center, Keck School of Medicine of University of Southern California, Los Angeles, CA
| | - Malcolm C Pike
- Department of Preventive Medicine, USC/Norris Comprehensive Cancer Center, Keck School of Medicine of University of Southern California, Los Angeles, CA,Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Baruch Frenkel
- Department of Orthopedic Surgery, USC/Norris Comprehensive Cancer Center, Keck School of Medicine of University of Southern California, Los Angeles, CA
| | - Robert Maxson
- Department of Biochemistry and Molecular Biology, USC/Norris Comprehensive Cancer Center, Keck School of Medicine of University of Southern California, Los Angeles, CA
| | - Louis Dubeau
- Department of Pathology, USC/Norris Comprehensive Cancer Center, Keck School of Medicine of University of Southern California, Los Angeles, CA
| |
Collapse
|
30
|
Perks CM, Holly JMP. Hormonal mechanisms underlying the relationship between obesity and breast cancer. Endocrinol Metab Clin North Am 2011; 40:485-507, vii. [PMID: 21889716 DOI: 10.1016/j.ecl.2011.05.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Given the worldwide epidemic of obesity, it is inevitably an increasingly common comorbidity for women who develop breast cancer; therefore, it is critical to understand its impact on this disease. This review focuses on the influence of obesity on breast cancer development and progression and describes the hormonal factors that may underlie the observations, with particular emphasis on the roles of estrogen, insulin/insulin-like growth factor axis, and adipokines.
Collapse
Affiliation(s)
- Claire M Perks
- School of Clinical Sciences, University of Bristol, Southmead Hospital, Bristol, UK.
| | | |
Collapse
|
31
|
|
32
|
Abstract
Evidence that aromatase expression in tumor-associated breast stroma is elevated, provides a rationale for use of aromatase inhibitors (AIs) in breast cancer treatment. However, regulation of local aromatase expression in cancer-free breast stroma is poorly understood. Recent clinical work indicates that stromal cells in dense breast tissue tend to express higher levels of aromatase than their counterpart from non-dense tissue. Consistent with the clinical observation, our cell culture-based study indicated that cell density, cell shape, and extracellular matrix (ECM) significantly induced stromal aromatase expression via a distinct signal transduction pathway. In addition, we identified a number of cell surface markers that are commonly associated with aromatase-expressing stromal cells. As mammographic density is one of the strongest and most prevalent risk factors for breast cancer, these findings provide a potential mechanistic link between alterations in tissue composition of dense breast tissue and increased stromal aromatase expression. Further exploration of the in vitro model system may advance understanding of an important problem in breast cancer biology.
Collapse
Affiliation(s)
| | | | - Howard Wang
- Division of Plastic Surgery, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245, USA
| | | | - Rong Li
- Corresponding author: Department of Molecular Medicine, Institute of Biotechnology, 15355 Lambda Drive, University of Texas, Health Science Center at San Antonio, San Antonio, TX 78245, Telephone: 210-567-7215, Fax: 210-567-7324,
| |
Collapse
|
33
|
Subbaramaiah K, Hudis CA, Dannenberg AJ. The prostaglandin transporter regulates adipogenesis and aromatase transcription. Cancer Prev Res (Phila) 2011; 4:194-206. [PMID: 21212407 DOI: 10.1158/1940-6207.capr-10-0367] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cytochrome P450 aromatase, encoded by the CYP19 gene, catalyzes estrogen synthesis. In obese postmenopausal women, increased estrogen synthesis in adipose tissue has been linked to hormone-dependent breast carcinogenesis. Hence, it is important to elucidate the mechanisms that regulate CYP19 gene expression. Prostaglandin E(2) (PGE(2)) stimulates the cyclic AMP (cAMP) → protein kinase A (PKA) → cAMP responsive element binding protein (CREB) pathway leading to increased CYP19 transcription. The prostaglandin transporter (PGT) removes PGE(2) from the extracellular milieu and delivers it to the cytosol, where it is inactivated. The main objective of this study was to determine whether PGT regulates CYP19 transcription. Silencing of PGT in preadipocytes increased PGE(2) levels in the extracellular medium, thereby stimulating the cAMP → PKA pathway resulting in enhanced interaction between pCREB, p300, and the CYP19 I.3/II promoter. A reciprocal decrease in the interaction between the CYP19 I.3/II promoter and BRCA1, a repressor of CYP19 transcription, was observed. Overexpressing PGT reduced extracellular PGE(2) levels, suppressed the cAMP → PKA pathway, enhanced the interaction between BRCA1 and p300, and inhibited aromatase expression. We also compared the PGT → aromatase axis in preadipocytes versus adipocytes. Aromatase levels were markedly increased in preadipocytes versus adipocytes. This increase in aromatase was explained, at least in part, by reduced PGT levels leading to enhanced PGE(2) → cAMP → PKA signaling. In addition to regulating aromatase expression, PGT-mediated changes in extracellular PGE(2) levels were a determinant of adipocyte differentiation. Collectively, these results suggest that PGT modulates adipogenesis and thereby PGE(2)-mediated activation of the cAMP → PKA → CREB pathway leading to altered CYP19 transcription and aromatase activity.
Collapse
Affiliation(s)
- Kotha Subbaramaiah
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA.
| | | | | |
Collapse
|
34
|
Lu Y, Kang T, Hu Y. BRCA1/BARD1 complex interacts with steroidogenic factor 1--A potential mechanism for regulation of aromatase expression by BRCA1. J Steroid Biochem Mol Biol 2011; 123:71-8. [PMID: 21087664 PMCID: PMC3032352 DOI: 10.1016/j.jsbmb.2010.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2010] [Revised: 10/18/2010] [Accepted: 11/09/2010] [Indexed: 11/16/2022]
Abstract
Germline mutations in BRCA1 predispose women to early onset of breast and ovarian cancers. Findings from previous studies support the notion that the tissue- and gender-specific tumor suppression function of BRCA1 is associated with its role in negative regulation of aromatase expression, the rate-limiting step in estrogen biosynthesis. The molecular mechanism of BRCA1 in regulating aromatase promoter activity remains to be elucidated. In this study, we demonstrate that, in an ovarian granulosa cell line KGN, steroidogenic factor 1 (SF-1) is required for aromatase PII promoter basal activity as well as the elevated aromatase expression mediated by BRCA1 knockdown. Furthermore, BRCA1 in KGN cells exists mainly as a heterodimer with BARD1. We provide evidence that the BRCA1/BARD1 complex interacts with SF-1 both in vivo and in vitro. However, the intrinsic ubiquitin E3 ligase activity of BRCA1/BARD1 does not appear to contribute to ubiquitynation of SF-1. We propose that the interaction between SF-1 and BRCA1/BARD1 may recruit BRCA1/BARD1 complex to the aromatase PII promoter for BRCA1/BARD1-mediate transcriptional repression.
Collapse
Affiliation(s)
| | | | - Yanfen Hu
- Corresponding author: Yanfen Hu, Department of Molecular Medicine/Institute of Biotechnology, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245, Tel. 210-567-7216, Fax. 210-567-7324,
| |
Collapse
|
35
|
Isolated and combined action of tamoxifen and metformin in wild-type, tamoxifen-resistant, and estrogen-deprived MCF-7 cells. Breast Cancer Res Treat 2010; 128:109-17. [PMID: 20683653 DOI: 10.1007/s10549-010-1072-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 07/17/2010] [Indexed: 12/12/2022]
Abstract
Resistance to tamoxifen (TAM) and aromatase inhibitors represents a major drawback to the treatment of hormone-dependent breast cancer, and strategies to overcome this problem are urgently needed. The anti-diabetic biguanide metformin (MF) exerts pleiotropic effects which could enhance the effectiveness of available hormonal therapies. This study modeled several aspects of hormonal therapy in women and examined the effectiveness of MF under those conditions. For cell growth evaluation, wild-type (wt), TAM-resistant (TAM-R), and long-term estradiol-deprived (LTED) MCF-7 cells, as a model of aromatase inhibitor resistance, were grown in the presence or absence of TAM or MF for 5 days. For immunoblot analysis and aromatase activity measurements, these cells were grown for 48 h. Wild-type and LTED cells were equally sensitive to the growth inhibitory effects of TAM and MF, while TAM-R cells were less sensitive to TAM than to MF. Partial additive effects on cell number of TAM combined with MF were greatest (if compared with isolated TAM action) in TAM-R and LTED cells. In contrast to the decrease in PCNA values in TAM-resistant cells treated with the TAM and MF combination, no other changes were found in the levels of this proliferation marker. These findings suggested a major component of apoptosis in the growth inhibitory effect. This was confirmed with Western blot analysis of PARP and caspase 7 as well as with apoptosis ELISA assay. MF also altered signaling pathways. AMP-kinase was stimulated by MF approximately equally in MCF-7, TAM-R, and LTED cells, while inhibition by biguanide of p-S6K as a downstream target of mTOR was strongest in TAM-R cells. Under the influence of MF, expression of ER-α was decreased in wt MCF-7 cells suggesting possible involvement of this compound in estrogen signaling. Metformin interacts additively with TAM to reduce neoplastic cells growth. The cellular context (including loss of sensitivity to TAM and estrogen deprivation) is of importance in influencing breast cancer responses to MF and to a combination of MF and TAM.
Collapse
|
36
|
Ghosh S, Dean A, Walter M, Bao Y, Hu Y, Ruan J, Li R. Cell density-dependent transcriptional activation of endocrine-related genes in human adipose tissue-derived stem cells. Exp Cell Res 2010; 316:2087-98. [PMID: 20420826 DOI: 10.1016/j.yexcr.2010.04.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 03/23/2010] [Accepted: 04/19/2010] [Indexed: 10/19/2022]
Abstract
Adipose tissue is recognized as an endocrine organ that plays an important role in human diseases such as type II diabetes and cancer. Human adipose tissue-derived stem cells (ASCs), a distinct cell population in adipose tissue, are capable of differentiating into multiple lineages including adipogenesis. When cultured in vitro under a confluent condition, ASCs reach a commitment stage for adipogenesis, which can be further induced into terminally differentiated adipocytes by a cocktail of adipogenic factors. Here we report that the confluent state of ASCs triggers transcriptional activation cascades for genes that are responsible for the endocrine function of adipose tissue. These include insulin-like growth factor 1 (IGF-1) and aromatase (Cyp19), a key enzyme in estrogen biosynthesis. Despite similar adipogenic potentials, ASCs from different individuals display huge variations in activation of these endocrine-related genes. Bioinformatics and experimental data suggest that transcription factor Foxo1 controls a large number of "early" confluency-response genes, which subsequently induce "late" response genes. Furthermore, siRNA-mediated knockdown of Foxo1 substantially compromises the ability of committed ASCs to stimulate tumor cell migration in vitro. Thus, our work suggests that cell density is an important determinant of the endocrine potential of ASCs.
Collapse
Affiliation(s)
- Sagar Ghosh
- Department of Molecular Medicine, Institute of Biotechnology, 15355 Lambda Drive, University of Texas, Health Science Center at San Antonio, San Antonio, TX 78245, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Ghosh S, Hu Y, Li R. Cell density is a critical determinant of aromatase expression in adipose stromal cells. J Steroid Biochem Mol Biol 2010; 118:231-6. [PMID: 19969081 PMCID: PMC2826521 DOI: 10.1016/j.jsbmb.2009.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Revised: 11/30/2009] [Accepted: 12/02/2009] [Indexed: 11/17/2022]
Abstract
Obesity is associated with an increased risk of breast cancer among postmenopausal women. This is at least partly due to excessive estrogen production in adipose tissue of obese women. Aromatase, the key enzyme in estrogen biosynthesis, is an important target in endocrine therapy for estrogen receptor (ER)-positive postmenopausal breast cancer. In this study we show that high confluency of human adipose stromal cells (ASCs) cultured in vitro can significantly stimulate aromatase gene expression and reduce the expression of breast tumor suppressor BRCA1 and members of the NR4A orphan nuclear family. Furthermore, small interfering RNA (siRNA)-mediated knockdown of Nurr1, a member of the NR4A family, substantially increased aromatase expression. Lastly, we found that the cell density-triggered inducibility of aromatase expression varies in ASCs isolated from different disease-free individuals. Our finding highlights the impact of increased cell number on estrogen biosynthesis as in the case of excessive adiposity.
Collapse
MESH Headings
- Adipose Tissue/cytology
- Aromatase/genetics
- Aromatase/metabolism
- BRCA1 Protein/genetics
- BRCA1 Protein/metabolism
- Cell Count
- Cell Line, Tumor
- Cells, Cultured
- Cohort Studies
- Female
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Neoplastic
- Humans
- Nuclear Receptor Subfamily 4, Group A, Member 1/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism
- Nuclear Receptor Subfamily 4, Group A, Member 2/metabolism
- Stromal Cells/enzymology
Collapse
Affiliation(s)
| | | | - Rong Li
- Corresponding author, Department of Molecular Medicine, Institute of Biotechnology, 15355 Lambda Drive, University of Texas, Health Science Center at San Antonio, San Antonio, TX 78245, Telephone: 210-567-7215, Fax: 210-567-7324,
| |
Collapse
|
38
|
Quinn BA, Brake T, Hua X, Baxter-Jones K, Litwin S, Ellenson LH, Connolly DC. Induction of ovarian leiomyosarcomas in mice by conditional inactivation of Brca1 and p53. PLoS One 2009; 4:e8404. [PMID: 20046879 PMCID: PMC2796165 DOI: 10.1371/journal.pone.0008404] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Accepted: 11/16/2009] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Approximately one out of every ten cases of epithelial ovarian cancer (EOC) is inherited. The majority of inherited cases of EOC result from mutations in the breast cancer associated gene 1 (BRCA1). In addition to mutation of BRCA1, mutation of the p53 gene is often found in patients with inherited breast and ovarian cancer syndrome. METHODOLOGY/PRINCIPAL FINDINGS We investigated the role of loss of function of BRCA1 and p53 in ovarian cancer development using mouse models with conditionally expressed alleles of Brca1 and/or p53. Our results show that ovary-specific Cre-recombinase-mediated conditional inactivation of both Brca1(LoxP/LoxP) and p53(LoxP/LoxP) resulted in ovarian or reproductive tract tumor formation in 54% of mice, whereas conditional inactivation of either allele alone infrequently resulted in tumors (< or =5% of mice). In mice with conditionally inactivated Brca1(LoxP/LoxP) and p53(LoxP/LoxP), ovarian tumors arose after long latency with the majority exhibiting histological features consistent with high grade leiomyosarcomas lacking expression of epithelial, follicular or lymphocyte markers. In addition, tumors with conditional inactivation of both Brca1(LoxP/LoxP) and p53(LoxP/LoxP) exhibited greater genomic instability compared to an ovarian tumor with inactivation of only p53(LoxP/LoxP). CONCLUSIONS/SIGNIFICANCE Although conditional inactivation of both Brca1 and p53 results in ovarian tumorigenesis, our results suggest that additional genetic alterations or alternative methods for targeting epithelial cells of the ovary or fallopian tube for conditional inactivation of Brca1 and p53 are required for the development of a mouse model of Brca1-associated inherited EOC.
Collapse
Affiliation(s)
- Bridget A. Quinn
- Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Tiffany Brake
- Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Xiang Hua
- Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | | | - Samuel Litwin
- Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Lora Hedrick Ellenson
- NewYork-Presbyterian Hospital, Weil Medical College of Cornell University, New York, New York, United States of America
| | - Denise C. Connolly
- Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
39
|
Hong H, Yen HY, Brockmeyer A, Liu Y, Chodankar R, Pike MC, Stanczyk FZ, Maxson R, Dubeau L. Changes in the mouse estrus cycle in response to BRCA1 inactivation suggest a potential link between risk factors for familial and sporadic ovarian cancer. Cancer Res 2009; 70:221-8. [PMID: 20028858 DOI: 10.1158/0008-5472.can-09-3232] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Menstrual cycle activity is the most important risk factor for sporadic serous ovarian carcinoma, whereas a germ-line mutation in BRCA1 is the most important risk factor for the familial form. Given the rarity of BRCA1 mutations in sporadic ovarian cancers, we hypothesized that BRCA1 influences the menstrual cycle in a way that mimics the factors underlying sporadic ovarian cancer predisposition, making BRCA1 mutations redundant in such cancers. We compared the length of each phase of the estrus cycle (equivalent to the human menstrual cycle) and of circulating levels of estradiol in control mice and in mice carrying a Brca1 mutation in their ovarian granulosa cells, two thirds of which develop ovarian or uterine epithelial tumors. We also compared the length of the different phases of the cycle in mutants that subsequently developed tumors with those in mutants that remained tumor-free. Mutant mice as well as oophorectomized wild-type mice harboring mutant ovarian grafts showed a relative increase in the average length of the proestrus phase of the estrus cycle, which corresponds to the estrogen-dominated follicular phase of the human menstrual cycle. Total circulating levels of estradiol were also increased in mutant mice injected with pregnant mare serum gonadotropins. The relative increase in proestrus length was highest in mutant mice that subsequently developed reproductive epithelial tumors. We conclude that loss of a functional Brca1 increases murine ovarian epithelial tumor predisposition by increasing estrogen stimulation in the absence of progesterone, recapitulating conditions associated with sporadic ovarian cancer predisposition in humans.
Collapse
Affiliation(s)
- Hao Hong
- Department of Pathology, USC/Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Chen JQ, Russo J. ERalpha-negative and triple negative breast cancer: molecular features and potential therapeutic approaches. Biochim Biophys Acta Rev Cancer 2009; 1796:162-75. [PMID: 19527773 DOI: 10.1016/j.bbcan.2009.06.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 06/02/2009] [Accepted: 06/09/2009] [Indexed: 02/07/2023]
Abstract
Triple negative breast cancer (TNBC) is a type of aggressive breast cancer lacking the expression of estrogen receptors (ER), progesterone receptors (PR) and human epidermal growth factor receptor-2 (HER-2). TNBC patients account for approximately 15% of total breast cancer patients and are more prevalent among young African, African-American and Latino women patients. The currently available ER-targeted and Her-2-based therapies are not effective for treating TNBC. Recent studies have revealed a number of novel features of TNBC. In the present work, we comprehensively addressed these features and discussed potential therapeutic approaches based on these features for TNBC, with particular focus on: 1) the pathological features of TNBC/basal-like breast cancer; 2) E(2)/ERbeta-mediated signaling pathways; 3) G-protein coupling receptor-30/epithelial growth factor receptor (GPCR-30/EGFR) signaling pathway; 4) interactions of ERbeta with breast cancer 1/2 (BRCA1/2); 5) chemokine CXCL8 and related chemokines; 6) altered microRNA signatures and suppression of ERalpha expression/ERalpha-signaling by micro-RNAs; 7) altered expression of several pro-oncongenic and tumor suppressor proteins; and 8) genotoxic effects caused by oxidative estrogen metabolites. Gaining better insights into these molecular pathways in TNBC may lead to identification of novel biomarkers and targets for development of diagnostic and therapeutic approaches for prevention and treatment of TNBC.
Collapse
Affiliation(s)
- Jin-Qiang Chen
- Breast Cancer Research Laboratory, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| | | |
Collapse
|
41
|
Santen RJ, Brodie H, Simpson ER, Siiteri PK, Brodie A. History of aromatase: saga of an important biological mediator and therapeutic target. Endocr Rev 2009; 30:343-75. [PMID: 19389994 DOI: 10.1210/er.2008-0016] [Citation(s) in RCA: 301] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Aromatase is the enzyme that catalyzes the conversion of androgens to estrogens. Initial studies of its enzymatic activity and function took place in an environment focused on estrogen as a component of the birth control pill. At an early stage, investigators recognized that inhibition of this enzyme could have major practical applications for treatment of hormone-dependent breast cancer, alterations of ovarian and endometrial function, and treatment of benign disorders such as gynecomastia. Two general approaches ultimately led to the development of potent and selective aromatase inhibitors. One targeted the enzyme using analogs of natural steroidal substrates to work out the relationships between structure and function. The other approach initially sought to block adrenal function as a treatment for breast cancer but led to the serendipitous finding that a nonsteroidal P450 steroidogenesis inhibitor, aminoglutethimide, served as a potent but nonselective aromatase inhibitor. Proof of the therapeutic concept of aromatase inhibition involved a variety of studies with aminoglutethimide and the selective steroidal inhibitor, formestane. The requirement for even more potent and selective inhibitors led to intensive molecular studies to identify the structure of aromatase, to development of high-sensitivity estrogen assays, and to "mega" clinical trials of the third-generation aromatase inhibitors, letrozole, anastrozole, and exemestane, which are now in clinical use in breast cancer. During these studies, unexpected findings led investigators to appreciate the important role of estrogens in males as well as in females and in multiple organs, particularly the bone and brain. These studies identified the important regulatory properties of aromatase acting in an autocrine, paracrine, intracrine, neurocrine, and juxtacrine fashion and the organ-specific enhancers and promoters controlling its transcription. The saga of these studies of aromatase and the ultimate utilization of inhibitors as highly effective treatments of breast cancer and for use in reproductive disorders serves as the basis for this first Endocrine Reviews history manuscript.
Collapse
Affiliation(s)
- R J Santen
- University of Virginia Health System, Division of Endocrinology, P.O. Box 801416, Charlottesville, Virginia 22908, USA.
| | | | | | | | | |
Collapse
|
42
|
Chand AL, Simpson ER, Clyne CD. Aromatase expression is increased in BRCA1 mutation carriers. BMC Cancer 2009; 9:148. [PMID: 19445691 PMCID: PMC2689243 DOI: 10.1186/1471-2407-9-148] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Accepted: 05/16/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Until recently, the molecular mechanisms explaining increased incidence of ovarian and breast cancers in carriers of BRCA1 gene mutations had not been clearly understood. Of significance is the finding that BRCA1 negatively regulates aromatase expression in vitro. Our objective was to characterise aromatase gene (CYP19A1) and its promoter expression in breast adipose and ovarian tissue in BRCA1 mutation carriers and unaffected controls. METHODS We measured aromatase transcripts, total and promoter-specific (PII, PI.3, PI.4) in prophylactic oophorectomy or mastectomy, therapeutic mastectomy, ovarian and breast tissue from unaffected women. RESULTS We demonstrate that the lack of functional BRCA1 protein correlates to higher aromatase levels in 85% of BRCA1 mutation carriers. This increase is mediated by aberrant transcriptional regulation of aromatase; in breast adipose by increases in promoter II/I.3 and I.4-specific transcripts; and in the ovary with elevation in promoter I.3 and II-specific transcripts. CONCLUSION Understanding the link between BRCA1 and aromatase is significant in terms of understanding why carcinogenesis is restricted to estrogen-producing tissues in BRCA1 mutation carriers.
Collapse
Affiliation(s)
- Ashwini L Chand
- Prince Henry's Institute of Medical Research, Clayton, Victoria 3168, Australia.
| | | | | | | |
Collapse
|
43
|
Bulun SE, Lin Z, Zhao H, Lu M, Amin S, Reierstad S, Chen D. Regulation of aromatase expression in breast cancer tissue. Ann N Y Acad Sci 2009; 1155:121-31. [PMID: 19250199 DOI: 10.1111/j.1749-6632.2009.03705.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Epithelial-stromal interactions play key roles for aromatase expression and estrogen production in breast cancer tissue. Upregulated aromatase expression in breast fibroblasts increases the tissue concentration of estradiol (E2), which then activates a large number of carcinogenic genes via estrogen receptor-alpha (ERalpha) in malignant epithelial cells. This clinically pertains, since aromatase inhibitors (AIs) are the most effective hormonal treatment of ERalpha-positive breast tumors. A single gene encodes aromatase, the key enzyme in estrogen biosynthesis, the inhibition of which by an AI effectively eliminates E2 production. Since alternative promoters regulated by distinct signaling pathways control aromatase expression, it is possible to target these pathways and inhibit estrogen production in a tissue-selective fashion. We and others previously found that the majority of estrogen production in breast cancer tissue was accounted for by the aberrant activation of the proximal promoter I.3/II region. PGE(2) that is secreted in large amounts by malignant breast epithelial cells is the most potent known natural inducer of this promoter region in breast adipose fibroblasts. Signaling effectors/transcriptional regulators that mediate PGE(2) action include the activator pathways p38/CREB-ATF and JNK/jun and the inhibitory factor BRCA1 in breast adipose fibroblasts. Selective inhibition of this promoter region may treat breast cancer while permitting aromatase expression via alternative promoters in the brain and bone and thus obviate the key side effects of the current AIs. The signaling pathways that mediate the regulation of the promoter I.3/II region in undifferentiated fibroblasts in malignant breast tumors are reviewed.
Collapse
Affiliation(s)
- S E Bulun
- Division of Reproductive Biology Research, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
Ghosh S, Choudary A, Ghosh S, Musi N, Hu Y, Li R. IKKbeta mediates cell shape-induced aromatase expression and estrogen biosynthesis in adipose stromal cells. Mol Endocrinol 2009; 23:662-70. [PMID: 19221050 DOI: 10.1210/me.2008-0468] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aromatase (Cyp19) is a key enzyme in estrogen biosynthesis and an important target in breast cancer therapy. Within tumor microenvironment, tumor cells stimulate aromatase expression in adipose stromal cells (ASCs), which in turn promotes estrogen-dependent growth of estrogen receptor (ER)-positive tumor cells. However, it is not clear how aromatase transcription and estrogen biosynthesis are regulated in ASCs under a precancerous condition. Here we demonstrate that cell shape change alone is sufficient to induce aromatase expression in primary ASCs from cancer-free individuals. The activation of aromatase transcription is mediated by IkappaB kinase-beta (IKKbeta), a kinase previously known for its cancer-promoting activity in tumor cells. Activation of IKKbeta leads to elevated expression of transcription factor CCAAT/enhancer-binding protein-beta (C/EBPbeta), which binds to and stimulates two breast cancer-associated promoters of the aromatase gene. We also show that shape-induced estrogen production in ASCs can stimulate estrogen-dependent transcription in ER-positive breast tumor cells. We suggest that IKKbeta-dependent aromatase induction due to changes in cellular architecture in adipose tissue may contribute to the breast cancer risks associated with high mammagraphic density and obesity.
Collapse
Affiliation(s)
- Sagar Ghosh
- Department of Molecular Medicine, Institute of Biotechnology, Division of Diabetes, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245, USA
| | | | | | | | | | | |
Collapse
|
45
|
|
46
|
Berstein LM, Pozharisski KM, Imyanitov EN, Maximova NA, Kovalevskij AY. Aromatase, CYP1B1 and Fatty Acid Synthase Expression in Breast Tumors of BRCA1 Mutation Carriers. Pathol Oncol Res 2008; 15:407-9. [DOI: 10.1007/s12253-008-9137-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Accepted: 11/27/2008] [Indexed: 01/16/2023]
|
47
|
Abstract
Germline mutations of BRCA1 predispose women to breast and ovarian cancers. Elucidating molecular mechanism of tissue- and gender-specific phenomena in BRCA1-related tumors is a key to our understanding of BRCA1 function in tumor suppression. This review summarizes studies in recent years on the link between BRCA1 and estrogen/progesterone signaling pathways, as well as discusses various models underscoring a triangle relationship among BRCA1, estrogen and genome instability.
Collapse
Affiliation(s)
- Yanfen Hu
- Department of Molecular Medicine/Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78245, USA.
| |
Collapse
|
48
|
Wen J, Li R, Lu Y, Shupnik MA. Decreased BRCA1 confers tamoxifen resistance in breast cancer cells by altering estrogen receptor-coregulator interactions. Oncogene 2008; 28:575-86. [PMID: 18997820 PMCID: PMC2714665 DOI: 10.1038/onc.2008.405] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The breast cancer susceptibility gene 1 (BRCA1) is mutated in approximately 50% of hereditary breast cancers, and its expression is decreased in 30-40% of sporadic breast cancers, suggesting a general role in breast cancer development. BRCA1 physically and functionally interacts with estrogen receptor-alpha (ERalpha) and several transcriptional regulators. We investigated the relationship between cellular BRCA1 levels and tamoxifen sensitivity. Decreasing BRCA1 expression in breast cancer cells by small interfering RNA alleviated tamoxifen-mediated growth inhibition and abolished tamoxifen suppression of several endogenous ER-targeted genes. ER-stimulated transcription and cytoplasmic signaling was increased without detectable changes in ER or ER coregulator expression. Co-immunoprecipitation studies showed that with BRCA1 knockdown, tamoxifen-bound ERalpha was inappropriately associated with coactivators, and not effectively with corepressors. Chromatin immunoprecipitation studies demonstrated that with tamoxifen, BRCA1 knockdown did not change ERalpha promoter occupancy, but resulted in increased coactivator and decreased corepressor recruitment onto the endogenous cyclin D1 promoter. Our results suggest that decreased BRCA1 levels modify ERalpha-mediated transcription and regulation of cell proliferation in part by altering ERalpha-coregulator association. In the presence of tamoxifen, decreased BRCA1 expression results in increased coactivator and decreased corepressor recruitment on ER-regulated gene promoters.
Collapse
Affiliation(s)
- J Wen
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | |
Collapse
|
49
|
Weberpals JI, Clark-Knowles KV, Vanderhyden BC. Sporadic epithelial ovarian cancer: clinical relevance of BRCA1 inhibition in the DNA damage and repair pathway. J Clin Oncol 2008; 26:3259-67. [PMID: 18591560 DOI: 10.1200/jco.2007.11.3902] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Among the most promising pathways for molecular targets in sporadic epithelial ovarian cancer (SEOC) are those involving the BRCA1 protein. Because somatic mutations in BRCA1 are rare in SEOC, it was originally postulated that BRCA1 plays a limited role in the pathogenesis of this disease. However, inactivation of BRCA1 through various mechanisms is a relatively frequent event in ovarian cancer. This is important because BRCA1 is involved in the cellular response to DNA damage and repair and has an essential role in the maintenance of genomic stability. The BRCA1 tumor suppressor protein is known to interact with genes and proteins known collectively as the BRCA1 pathway, and defects in this pathway are believed to be a driving force for cancer progression. As a result, there is compelling evidence to suggest that the dysfunction of BRCA1 may be a central mechanism in all ovarian carcinogenesis, and this has clinical and molecular significance beyond the management of patients with hereditary ovarian cancer. The aim of this review is to evaluate the evidence for BRCA1 dysfunction in SEOC and to link this dysfunction to a defective DNA repair pathway and ultimately the promotion of genomic instability and tumorigenesis. Furthermore, we advocate the continued need to study BRCA1 and its pathway by prospectively correlating clinicopathologic data with molecular aberrations. This will determine whether BRCA1 has relevance as a predictive and prognostic marker in SEOC and whether aberrations in the BRCA1 pathway warrant further study as potential therapeutic targets.
Collapse
Affiliation(s)
- Johanne I Weberpals
- Ottawa Hospital, Division of Gynaecologic Oncology, Centre for Cancer Therapeutics, Ottawa Health Research Institute, Ottawa, Ontario, Canada.
| | | | | |
Collapse
|
50
|
Li YF, Hu W, Fu SQ, Li JD, Liu JH, Kavanagh JJ. Aromatase inhibitors in ovarian cancer: is there a role? Int J Gynecol Cancer 2008; 18:600-14. [PMID: 17894799 DOI: 10.1111/j.1525-1438.2007.01075.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Estrogen plays a role in ovarian tumorigenesis. Aromatase is the enzyme required for the synthesis of estrogen via conversion of androgen to estrogen, which is the major source of estrogen in postmenopausal women. Aromatase is present in normal ovaries and other tissues (e.g., fat and muscle) as well as in 33-81% tumor tissues of ovarian cancer. Aromatase inhibitors (AIs) block estrogen synthesis by inhibiting aromatase activity. In patients with recurrent ovarian cancer, single-agent AI therapy has been shown to elicit clinical response rates of up to 35.7% and stable disease rates of 20-42%. Given the limited treatment options for recurrent ovarian cancer and the favorable safety profile and convenient use, AI is a rational option for prolonging platinum-free interval in recurrent ovarian cancer. Further studies are required to determine the efficacy of combination treatment with AIs and biological agents, determine the benefit of AIs for treating special types of ovarian cancer (e.g., endometrioid type), and identify biomarkers for targeted patient selection. This review summarizes the current epidemiologic, preclinical, and clinical data regarding estrogen's role in ovarian cancer, the expression and regulation of aromatase in this disease, the development and characteristics of the three generations of AIs, and the preclinical and clinical studies of AIs in the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Y F Li
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77230, USA
| | | | | | | | | | | |
Collapse
|