1
|
Nzioka A, Valencia A, Atxaerandio-Landa A, Diaz de Cerio O, Hossain MA, Korta M, Ortiz-Zarragoitia M, Cancio I. Apoptosis and autophagy-related gene transcription during ovarian follicular atresia in European hake (Merluccius merluccius). MARINE ENVIRONMENTAL RESEARCH 2023; 183:105846. [PMID: 36521304 DOI: 10.1016/j.marenvres.2022.105846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 11/30/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Follicular atresia is an energy-saving oocyte resorption process that can allow the survival of female fish when environmental conditions are unfavourable and at the expense of fecundity. This study investigated the transcription levels of apoptosis and autophagy-related genes during atresia in the European hake that can show episodes of increased follicular atresia throughout the reproductive cycle. 169 female individuals were collected from the Bay of Biscay, and the ovaries were analysed using histological and molecular methods. Different levels of atresia were histologically detected in 73.7% of the ovaries analysed and the TUNEL assay identified apoptotic nuclei in follicles from both previtellogenic and vitellogenic stages. Transcripts of beclin-1 and ptenb were up-regulated in the ovaries containing atretic follicles, whereas p53, caspase-3, cathepsin D and dapk1 were up-regulated only in ovaries presenting vitellogenic atretic follicles. Our results indicate different implications of apoptotic vs autophagic processes leading to atresia during oocyte development, vitellogenesis being the moment of maximal apoptotic and autophagic activity in atretic hakes. The analysed genes could provide early warning biomarkers to identify follicular atresia in fish and evaluate fecundity in fish stocks.
Collapse
Affiliation(s)
- Anthony Nzioka
- CBET Research Group, Dept. Zoology & Animal Cell Biology, Faculty of Science & Technology and Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country, Areatza Hiribidea s/n, 48620, Plentzia, Basque Country, Spain
| | - Ainara Valencia
- CBET Research Group, Dept. Zoology & Animal Cell Biology, Faculty of Science & Technology and Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country, Areatza Hiribidea s/n, 48620, Plentzia, Basque Country, Spain
| | - Aitor Atxaerandio-Landa
- CBET Research Group, Dept. Zoology & Animal Cell Biology, Faculty of Science & Technology and Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country, Areatza Hiribidea s/n, 48620, Plentzia, Basque Country, Spain
| | - Oihane Diaz de Cerio
- CBET Research Group, Dept. Zoology & Animal Cell Biology, Faculty of Science & Technology and Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country, Areatza Hiribidea s/n, 48620, Plentzia, Basque Country, Spain
| | - Mohammad Amzad Hossain
- CBET Research Group, Dept. Zoology & Animal Cell Biology, Faculty of Science & Technology and Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country, Areatza Hiribidea s/n, 48620, Plentzia, Basque Country, Spain
| | - Maria Korta
- AZTI-Tecnalia, Herrera Kaia, Portualdea z/g, 20110, Pasaia, Basque Country, Spain
| | - Maren Ortiz-Zarragoitia
- CBET Research Group, Dept. Zoology & Animal Cell Biology, Faculty of Science & Technology and Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country, Areatza Hiribidea s/n, 48620, Plentzia, Basque Country, Spain
| | - Ibon Cancio
- CBET Research Group, Dept. Zoology & Animal Cell Biology, Faculty of Science & Technology and Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country, Areatza Hiribidea s/n, 48620, Plentzia, Basque Country, Spain.
| |
Collapse
|
2
|
Li D, Chen H, Liu H, Schlenk D, Mu J, Lacorte S, Ying GG, Xie L. Anticancer drugs in the aquatic ecosystem: Environmental occurrence, ecotoxicological effect and risk assessment. ENVIRONMENT INTERNATIONAL 2021; 153:106543. [PMID: 33813231 DOI: 10.1016/j.envint.2021.106543] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
Anticancer drugs are a group of therapeutic agents used to enhance cell death in targeted cell types of neoplasia. Because of frequent use and eventual discharge, they have been often detected in wastewater from pharmaceutical factories and hospitals, domestic wastewater, and surface waters. The occurrence of these drugs in aquatic ecosystems and their effects on aquatic organisms have been poorly characterized. This review focuses on the global occurrence of major classes of anticancer drugs in water and sediments of freshwater ecosystems and their ecotoxicological effects at different biological levels. While the availability of data is fairly limited, concentrations of most anticancer drugs range from < 2 ng/L to 762 µg/L in receiving water, while levels in sediments and sludge vary from 0.25 to 42.5 µg/kg. Their detection frequencies were 58%, 52% (78%) and 59% in hospital wastewater, wastewater treatment plant effluents (influents) and surface water, respectively. Predicted log Kow values of vincristine, imatinib mesylate and tamoxifen are higher than 3 and have estimated half-lives>60 d in waters using quantitative structure-activity relationship models, indicating high potential for persistence and bioaccumulation. Based on a species sensitivity distribution evaluation of 9 compounds, crustaceans are most sensitive to anticancer drugs. The most hazardous compound is cisplatin which has a hazard concentration at the 5th percentile. For Daphnia magna, the acute toxicities of major classes of anticancer drugs are ranked as platinum complexes > endocrine therapy agents > antibiotics > antimetabolite agents > alkylating agents. Using hazard quotient analysis based primarily on the lowest observed effect concentrations (LOECs), cyclophosphamide, cisplatin, 5-fluorouracil, imatinib mesylate, bicalutamide, etoposide and paclitaxel have the highest hazard for aquatic organisms. Further research is needed to identify appropriate chronic endpoints for risk assessment thresholds as well as to better understand the mechanisms of action and the potential multigenerational toxicity, and trophic transfer in ecosystems.
Collapse
Affiliation(s)
- Dan Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Hongxing Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Hongsong Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California Riverside, Riverside, CA 92507, USA
| | - Jingli Mu
- Fujian Key Laboratory of Functional Marine Sensing Materials, Institute of Oceanography, Minjiang University, Fuzhou 350108, China
| | - Silvia Lacorte
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| | - Lingtian Xie
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| |
Collapse
|
3
|
Vo NTK. The sine qua non of the fish invitrome today and tomorrow in environmental radiobiology. Int J Radiat Biol 2020; 98:1025-1033. [PMID: 32816609 DOI: 10.1080/09553002.2020.1812761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Fish cell lines, collectively referred to as the fish invitrome, are useful diagnostic tools to study radiation impacts on aquatic health and elucidate radiation mechanisms in fish. This paper will highlight the advantages, discuss the challenges, and propose possible future directions for uses of the fish invitrome in the field of environmental radiobiology. The fish invitrome contains at least 714 fish cell lines. However, only a few of these cell lines have been used to study radiation biology in fish and they represent only 10 fish species. The fish invitrome is clearly not yet explored for its full potential in radiation biology. Evidence suggests that they are useful and, in some cases, irreplaceable in making underlying theories and fundamental concepts in radiation responses in fish. The debate of whether environmental radiation is harmful, presents risks, has no effect on health, or is beneficial is on-going and is one that fish cell lines can help address in a time-effective fashion. Any information obtained with fish cell lines is useful in the framework of environment radiation risk assessments. Radiation threats to aquatic health will continue due to the very likely rise of nuclear energy and medicine in the future. The fish invitrome, in theory, lives forever and can meet new challenges at any given time to provide diagnostic risk analyses pertaining to aquatic health and environmental radiation protection.
Collapse
Affiliation(s)
- Nguyen T K Vo
- Department of Biology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
4
|
AnvariFar H, Amirkolaie AK, Jalali AM, Miandare HK, Sayed AH, Üçüncü Sİ, Ouraji H, Ceci M, Romano N. Environmental pollution and toxic substances: Cellular apoptosis as a key parameter in a sensible model like fish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 204:144-159. [PMID: 30273782 DOI: 10.1016/j.aquatox.2018.09.010] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 08/06/2018] [Accepted: 09/17/2018] [Indexed: 02/07/2023]
Abstract
The industrial wastes, sewage effluents, agricultural run-off and decomposition of biological waste may cause high environmental concentration of chemicals that can interfere with the cell cycle activating the programmed process of cells death (apoptosis). In order to provide a detailed understanding of environmental pollutants-induced apoptosis, here we reviewed the current knowledge on the interactions of environmental chemicals and programmed cell death. Metals (aluminum, arsenic, cadmium, chromium, cobalt, zinc, copper, mercury and silver) as well as other chemicals including bleached kraft pulp mill effluent (BKME), persistent organic pollutants (POPs), and pesticides (organo-phosphated, organo-chlorinated, carbamates, phyretroids and biopesticides) were evaluated in relation to apoptotic pathways, heat shock proteins and metallothioneins. Although research performed over the past decades has improved our understanding of processes involved in apoptosis in fish, yet there is lack of knowledge on associations between environmental pollutants and apoptosis. Thus, this review could be useful tool to study the cytotoxic/apoptotic effects of different pollutants in fish species.
Collapse
Affiliation(s)
- Hossein AnvariFar
- Department of Fisheries, Faculty of Animal Science and Fisheries, University of Agriculture and Natural Resources, P.O. Box 578, Sari, Iran; University of Applied Science and Technology, Provincial Unit, P.O. Box: 4916694338, Golestan, Iran
| | - A K Amirkolaie
- Department of Fisheries, Faculty of Animal Science and Fisheries, University of Agriculture and Natural Resources, P.O. Box 578, Sari, Iran
| | - Ali M Jalali
- Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, 49138-15739, Iran; Sturgeon Affairs Management, Gorgan, Golestan, Iran; Center for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, VIC, 3280, Australia
| | - H K Miandare
- Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, 49138-15739, Iran
| | - Alaa H Sayed
- Department of Zoology, Faculty of Science, Assiut University, 71516 Assiut, Egypt
| | - Sema İşisağ Üçüncü
- Department of Biology, Faculty of Science, Ege University, Bornova, 35100, İzmir, Turkey
| | - Hossein Ouraji
- Department of Fisheries, Faculty of Animal Science and Fisheries, University of Agriculture and Natural Resources, P.O. Box 578, Sari, Iran
| | - Marcello Ceci
- Department Ecological and Biological Sciences, University of Tuscia, Tuscia University, Viterbo, 01100, Italy
| | - Nicla Romano
- Department Ecological and Biological Sciences, University of Tuscia, Tuscia University, Viterbo, 01100, Italy.
| |
Collapse
|
5
|
Hamilton ME, Bols NC, Duncker BP. The characterization of γH2AX and p53 as biomarkers of genotoxic stress in a rainbow trout (Oncorhynchus mykiss) brain cell line. CHEMOSPHERE 2018; 201:850-858. [PMID: 29554631 DOI: 10.1016/j.chemosphere.2018.03.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 02/15/2018] [Accepted: 03/03/2018] [Indexed: 06/08/2023]
Abstract
Rainbow trout cell cultures were exposed to three genotoxicants and examined for effects on γH2AX and p53 levels by western blotting and on cell viability using the indicator dyes Alamar Blue (AB) for energy metabolism and 5'-carboxyfluorescein diacetate acetoxymethyl ester (CFDA-AM) for plasma membrane integrity. Bleomycin induced γH2AX and p53 in a dose- and time-dependent manner and had little cytotoxic effect. However, induction was first seen at 0.3 μM for γH2AX but not until 16.5 μM for p53. Methyl methanesulfonate (MMS) increased H2AX phosphorylation but diminished p53 levels as the dose was increased from 908 μM up to 2724 μM. Over this dose range cell viability was progressively lost. 4-nitroquinoline N-oxide (NQO) induced both γH2AX and p53, beginning at 62.5 nM, which was also the concentration at which cell viability began to decline. As the NQO concentration increased further, elevated γH2AX was detected at up to 2.0 μM, while p53 was elevated up to 1.0 μM. Therefore, H2AX phosphorylation was superior to p53 levels as a marker of DNA damage caused by genotoxicants that act by introducing double-stranded DNA breaks (bleomycin), alkyl groups (MMS), and quinoline adducts (NQO).
Collapse
Affiliation(s)
- Mark E Hamilton
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Niels C Bols
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Bernard P Duncker
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| |
Collapse
|
6
|
Expression patterns and mutation analysis of p53 in fish Rita rita from polluted riverine environment. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 832-833:41-51. [PMID: 30057020 DOI: 10.1016/j.mrgentox.2018.05.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 04/12/2018] [Accepted: 05/29/2018] [Indexed: 12/14/2022]
Abstract
The present study was undertaken to investigate the alterations in gene expression patterns and for mutation analysis of p53 in the riverine catfish Rita rita collected from polluted riverine habitat. The partial p53 gene sequence of Rita rita generated showed a high degree of similarities with the DNA binding domains of fishes, mice and human. Transcriptomic analysis, carried out by quantitative real-time Polymerase Chain Reaction (RT-qPCR), showed significant down-regulation of p53 in fishes collected from most of the polluted stretches. Similar trend in protein abundance was observed by western blot analysis. Down-regulation of p53 was more pronounced in gill than liver. Expression patterns of p53 suggest that exposure to a multitude of contaminants in the natural riverine ecosystem could suppress the expression of p53. Genomic DNA showed a low stained smear pattern upon electrophoresis, with no evidence of DNA fragmentation. For mutation analysis PCR-SSCP followed by sequence analysis was carried out, which identified eight mutations; two at codon level and six missense mutations in the DNA binding domain IV and V. Secondary structure prediction showed that these mutations could lead to impairment of protein structure. Thus, the present study indicated that aquatic pollution has impacted these lower vertebrates which are reflected by the down-regulation of tumor suppressor protein (p53) in majority of the stretches studied.
Collapse
|
7
|
Rahmati-Holasoo H, Shokrpoor S, Masoudifard M, Ebrahimzadeh Mousavi H, Haddadi A, Tavakkoli A. Renal Cystic Adenocarcinoma in a Flowerhorn Cichlid with Metastatic Involvement of the Spleen. JOURNAL OF AQUATIC ANIMAL HEALTH 2017; 29:158-164. [PMID: 28679080 DOI: 10.1080/08997659.2017.1349008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A 480-g flowerhorn cichlid (an ornamental hybrid) with severe bilateral abdominal swelling, bulla-like structures on the skin, bilateral exophthalmia, and a prolapsed intestine was presented. Radiographs showed compression of the posterior part of the swim bladder and abdominal distention. Ultrasonography of visceral organs revealed a heterogeneous mass with hypoechoic to anechoic polycystic parenchyma and free fluid in the abdominal cavity. At necropsy, free fluid in the abdominal cavity and a large polycystic mass originating from the posterior kidney were observed. Histologically, the mass was composed of more cystic growth of tubules. The renal architecture was replaced by tubules, often irregular in shape, lined by simple to lightly stratified layers of neoplastic and pleomorphic cuboidal to columnar epithelial cells and the absence of glomeruli. Birefringent crystals were observed with polarized light within the lumen of some tubules. The apical border of the neoplastic cells was periodic acid-Schiff positive. Immunohistochemically, the neoplastic cells were positive for cytokeratin AE1/AE3 and proliferating cell nuclear antigen and were negative for p53 (tumor suppressor protein). Microscopic metastasis was seen in the spleen. The metastatic tumor was classified as a cystic adenocarcinoma of the kidney, originating from the proximal tubules. Received October 7, 2016; accepted June 18, 2017.
Collapse
Affiliation(s)
- Hooman Rahmati-Holasoo
- a Department of Aquatic Animal Health, Faculty of Veterinary Medicine , University of Tehran , Post Office Box 14155-6453 , Tehran , Iran
| | - Sara Shokrpoor
- b Department of Pathology, Faculty of Veterinary Medicine , University of Tehran , Post Office Box 14155-6453 , Tehran , Iran
| | - Majid Masoudifard
- c Department of Surgery and Radiology, Faculty of Veterinary Medicine , University of Tehran , Post Office Box 14155-6453 , Tehran , Iran
| | - HosseinAli Ebrahimzadeh Mousavi
- a Department of Aquatic Animal Health, Faculty of Veterinary Medicine , University of Tehran , Post Office Box 14155-6453 , Tehran , Iran
| | - Ali Haddadi
- a Department of Aquatic Animal Health, Faculty of Veterinary Medicine , University of Tehran , Post Office Box 14155-6453 , Tehran , Iran
| | - Amir Tavakkoli
- c Department of Surgery and Radiology, Faculty of Veterinary Medicine , University of Tehran , Post Office Box 14155-6453 , Tehran , Iran
| |
Collapse
|
8
|
Vo NTK, Sokeechand BSH, Seymour CB, Mothersill CE. Characterizing responses to gamma radiation by a highly clonogenic fish brain endothelial cell line. ENVIRONMENTAL RESEARCH 2017; 156:297-305. [PMID: 28376375 DOI: 10.1016/j.envres.2017.03.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/25/2017] [Accepted: 03/27/2017] [Indexed: 06/07/2023]
Abstract
PURPOSE The clonogenic property and radiobiological responses of a fish brain endothelial cell line, eelB, derived from the American eel were studied. METHODS Clonogenic assays were performed to determine the plating efficiency of the eelB cells and to evaluate the clonogenic survival fractions after direct irradiation to low-dose low-LET gamma radiation or receiving irradiated cell conditioned medium in the bystander effect experiments. RESULT eelB had the second highest plating efficiency ever reported to date for fish cell lines. Large eelB macroscopic colonies could be formed in a short period of time and were easy to identify and count. Unlike with other fish clonogenic cell lines, which had a relatively slow proliferation profile, clonogenic assays with the eelB cells could be completed as early as 12 days in culture. After direct irradiation with gamma rays at low doses ranging from 0.1Gy to 5Gy, the dose-clonogenic survival curve of the eelB cell line showed a linear trend and did not develop a shoulder region. A classical radio-adaptive response was not induced with the clonogenic survival endpoint when the priming dose (0.1 or 0.5Gy) was delivered 6h before the challenge dose (3 or 5Gy). However, a radio-adaptive response was observed in progeny cells that survived 5Gy and developed lethal mutations. eelB appeared to lack the ability to produce damaging radiation-induced bystander signals on both eelB and HaCaT recipient cells. CONCLUSION eelB cell line could be a very useful cell model in the study of radiation impacts on the aquatic health.
Collapse
Affiliation(s)
- Nguyen T K Vo
- Radiation Sciences Program, School of Graduate and Postdoctoral Studies, McMaster University, Hamilton, ON, Canada.
| | - Bibi S H Sokeechand
- Radiation Sciences Program, School of Graduate and Postdoctoral Studies, McMaster University, Hamilton, ON, Canada
| | - Colin B Seymour
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | | |
Collapse
|
9
|
Yuan L, Lv B, Zha J, Wang Z. Benzo[a]pyrene induced p53-mediated cell cycle arrest, DNA repair, and apoptosis pathways in Chinese rare minnow (Gobiocypris rarus). ENVIRONMENTAL TOXICOLOGY 2017; 32:979-988. [PMID: 27323304 DOI: 10.1002/tox.22298] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 05/16/2016] [Accepted: 05/21/2016] [Indexed: 06/06/2023]
Abstract
The p53 pathways play an important role in carcinogenesis. In mammals, p53 and p53 target genes have been extensively studied, but little is known about their functions and regulation in fish. In this study, the cDNA fragments of p53 network genes, including p53, p21, mdm2, gadd45α, gadd45β, igfbp-3, and bax, were cloned from Chinese rare minnow (Gobiocypris rarus). These genes displayed high amino acid sequence identities with their zebrafish orthologs. The mRNA levels of p53 network genes and pathological changes in the liver were determined after adult rare minnow were exposed to 0.4, 2, and 10 µg/L of benzo[a]pyrene (BaP) for 28 days. The results showed that p53, p21, mdm2, gadd45α, and bax mRNA expressions in the livers from males and females were significantly upregulated compared with those of the controls (p < 0.05), but gadd45β and igfbp-3 expression was not significantly changed. Microphotographs revealed enlargement of the cell nuclei and cellular degeneration in males, while atrophy and vacuolization of hepatocytes were observed in females (10 µg/L). These results suggested that BaP induced liver DNA repair and apoptosis pathways and caused adverse pathological changes in rare minnow. The strongly responsive p53 network genes in the livers suggest that rare minnow is suitable as an experimental fish to screen environmental carcinogens. In addition, the p53 network genes in rare minnow could feasibly be used to identify the mechanism of environmental carcinogenesis. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 979-988, 2017.
Collapse
Affiliation(s)
- Lilai Yuan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Biping Lv
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jinmiao Zha
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Zijian Wang
- Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
10
|
Zeng F, Sherry JP, Bols NC. Use of the rainbow trout cell lines, RTgill-W1 and RTL-W1 to evaluate the toxic potential of benzotriazoles. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 124:315-323. [PMID: 26584462 DOI: 10.1016/j.ecoenv.2015.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/30/2015] [Accepted: 11/02/2015] [Indexed: 06/05/2023]
Abstract
Epithelial cell lines, RTgill-W1 and RTL-W1 from respectively gill and liver of rainbow trout, Onchorhynchus mykiss (Walbaum), were used to evaluate the toxic potential of six benzotriazoles (BTRs) and tolytriazole (TT), which is a commercial mixture of 4-methyl-1H-benzotriazole (4MBTR) and 5-methyl-1H-benzotriazole (5MBTR). The other BTRs were 1H-benzotriazole (1H-BTR), 5-chlorobenzotriazole (5CBTR), 1-hydroxybenzotriazole (1OHBTR) and 5,6-dimethyl-1H-benzotriazole monohydrate (DM). Except for DM, all BTRs were cytotoxic at concentrations above 15mg/L and transitorily elevated reactive oxygen species (ROS) levels. Neither N-acetyl cysteine (NAC) nor IM-54 inhibited cytotoxicity, suggesting that ROS were not the major cause of the cell death. Cell death was not blocked by Necrostatin nor accompanied by DNA laddering, suggesting that the cell death mechanism was neither necroptosis nor apoptosis. As judged by the comet assay, DNA strand breaks were detected with three BTRs: 4MBTR, 5MBTR and 5CBTR. In RTL-W1, the BTRs weakly induced cytochrome P4501A, suggesting that they have the potential to alter xenobiotic metabolism and activate the aryl hydrocarbon receptor. In summary, the toxic potential of BTRs appears to be limited to only high concentrations, which are higher than have been measured in the environment to date.
Collapse
Affiliation(s)
- Fanxing Zeng
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - James P Sherry
- Aquatic Contaminants Research Division, Environment Canada, Burlington, Ontario, Canada L7R 4A6
| | - Niels C Bols
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1.
| |
Collapse
|
11
|
Malhão F, Urbatzka R, Navas J, Cruzeiro C, Monteiro R, Rocha E. Cytological, immunocytochemical, ultrastructural and growth characterization of the rainbow trout liver cell line RTL-W1. Tissue Cell 2013; 45:159-74. [DOI: 10.1016/j.tice.2012.10.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 10/25/2012] [Accepted: 10/27/2012] [Indexed: 12/22/2022]
|
12
|
Selvaraj V, Cohenford M, Armistead MY, Murray E. Arsenic trioxide (As(2)O(3)) induces apoptosis and necrosis mediated cell death through mitochondrial membrane potential damage and elevated production of reactive oxygen species in PLHC-1 fish cell line. CHEMOSPHERE 2013; 90:1201-9. [PMID: 23121984 PMCID: PMC4351966 DOI: 10.1016/j.chemosphere.2012.09.039] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 09/08/2012] [Indexed: 05/07/2023]
Abstract
Several environmental pollutants, including metals can induce toxicological effect on aquatic animal species. Most studies to understand the toxicity of arsenic compounds were performed in mammalian cells; however, the study of the arsenic toxicity to the aquatic animals' species, including fish, is limited. So the objective of this study was first to investigate the effects of As(2)O(3) induced toxicity particularly on apoptosis and necrosis mediated cell death in fish cell PLHC-1 as compared to the mechanism of toxicity from known mammalian cell lines, secondly to relate in vitro effects in fish to those demonstrated by in vivo systems. To conduct this study, PLHC-1 cells were exposed to various concentrations of As(2)O(3) (0-100 μM) for 10, 20 and 40 h. The results indicate that As(2)O(3) exposure promoted apoptotic and necrotic mediated cell death in a concentration and time dependent manner. Cell death (apoptotic and necrotic) induced by As(2)O(3) was further confirmed by changes in various phases of cell cycle, DNA fragmentation (necro- comet and apo-comet) in the comet assay, alteration in mitochondrial membrane potential and formation of increased reactive oxygen species (ROS). Apoptotic mediated cell death was confirmed further by observing the increased caspase-3 activity and elevated expression of p53, cytochrome c and Bax proteins levels in the same experimental conditions. PLHC-1 cells were shown to be a good model for evaluating biochemical/cytotoxic effects following exposure to various reference chemicals and environmental contaminants. In vitro data obtained from this study provides a comprehensive approach for the elucidating the actual molecular mechanism for As(2)O(3) induced toxicity particularly apoptosis and necrosis mediated cell death in PLHC-1 cell line.
Collapse
|
13
|
Brzuzan P, Woźny M, Wolińska L, Piasecka A. Expression profiling in vivo demonstrates rapid changes in liver microRNA levels of whitefish (Coregonus lavaretus) following microcystin-LR exposure. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2012; 122-123:188-196. [PMID: 22819808 DOI: 10.1016/j.aquatox.2012.07.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 06/04/2012] [Accepted: 07/02/2012] [Indexed: 06/01/2023]
Abstract
At present, little is known about the role of miRNAs in liver response of fish to the cyanobacterial hepatotoxin microcystin-LR (MC-LR) treatment, despite the fact that the exposure is thought to underlie multiple acute and chronic effects. To address this question, we used the Real-Time PCR method to examine the differential expression of 6 miRNAs putatively playing roles in signal transduction (let-7c, miR-9b), apoptosis and cell cycle (miR-16a, miR-21a, miR-34a) and fatty acid metabolism (miR-122) in whitefish (Coregonus lavaretus) liver, during the first 48h after intraperitoneal injection of MC-LR (100 μg/kg body weight). In addition, we analyzed expression levels of 8 mRNAs and p53 protein, known to be involved in the cell response on the exposure to environmental stressors. Following the challenge we observed a rapid and transient increase in the mean (n=5) levels of individual miRNA expression (from 2.7-fold for miR-122 to 6.8-fold for let-7c), compared to the respective levels in control fish, which mostly peaked at 24h of the experiment. This increase was correlated with a reduction in the expression of mRNAs of genes coding for ferritin H (frih) and HNK Ras -like protein (p-ras) and an overexpression of mRNAs of genes coding for bcl2-associated X protein (bax), cyclin dependent kinase inhibitor 1a (cdkn1a), dicer (dcr), histone 2A (h2a) and p53. Expression of the remaining caspase 6 (cas6) mRNA did not change over 48 h of the treatment. Moreover, exposure to MC-LR did not alter whitefish p53 protein levels. Bearing in mind a variety of likely silencing targets for, and the onset of, the aberrant miRNA expression it may be concluded that they are involved in molecular pathways, such as liver cell metabolism, cell cycle regulation and apoptosis, and may contribute to the early phase of MC-LR induced hepatotoxicity.
Collapse
Affiliation(s)
- P Brzuzan
- Department of Environmental Biotechnology, Faculty of Environmental Sciences, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland.
| | | | | | | |
Collapse
|
14
|
Banerjee C, Goswami R, Verma G, Datta M, Mazumder S. Aeromonas hydrophila induced head kidney macrophage apoptosis in Clarias batrachus involves the activation of calpain and is caspase-3 mediated. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 37:323-333. [PMID: 22366184 DOI: 10.1016/j.dci.2012.02.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 02/13/2012] [Accepted: 02/15/2012] [Indexed: 05/31/2023]
Abstract
The mechanism of macrophage cytotoxicity induced by Aeromonas hydrophila is yet unresolved. We observed A. hydrophila induces Head Kidney Macrophage (HKM) apoptosis in Clarias batrachus, as evident from Hoechst 33342 and AnnexinV-Propidium Iodide staining and presence of oligonucleosomal DNA ladder. Initiation of apoptosis required the bacteria to be alive, be actively phagocytosed into HKM and was dependent on host proteins. Elevated cytosolic calcium and consequent calpain activity that declined following pre-incubation with EGTA, verapamil and nifedipine implicates the role of calcium influx through voltage gated calcium channels and calpain in A. hydrophila-induced HKM apoptosis. Though, calpain-1 and -2 were involved, calpain-2 appeared to be more important in the process. EGTA, verapamil, nifedipine and calpain-2 inhibitor reduced caspase-3 activity and apoptosis. We conclude that A. hydrophila alters cytosolic calcium homeostasis initiating the activation of calpains, more specifically calpain-2, which leads to caspase-3 mediated HKM apoptosis in C. batrachus.
Collapse
Affiliation(s)
- Chaitali Banerjee
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi 110 007, India
| | | | | | | | | |
Collapse
|
15
|
Characterization of the tilapia p53 gene and its role in chemical-induced apoptosis. Biotechnol Lett 2012; 34:1797-805. [DOI: 10.1007/s10529-012-0980-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Accepted: 05/29/2012] [Indexed: 12/25/2022]
|
16
|
Liu M, Tee C, Zeng F, Sherry JP, Dixon B, Bols NC, Duncker BP. Characterization of p53 expression in rainbow trout. Comp Biochem Physiol C Toxicol Pharmacol 2011; 154:326-32. [PMID: 21767662 DOI: 10.1016/j.cbpc.2011.06.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2011] [Revised: 06/29/2011] [Accepted: 06/30/2011] [Indexed: 11/29/2022]
Abstract
The tumour suppressor protein p53 is a critical component of cell cycle checkpoint responses. It upregulates the expression of cyclin-dependent kinase inhibitors in response to DNA damage and other cellular perturbations, and promotes apoptosis when DNA repair pathways are overwhelmed. Given the high incidence of p53 mutations in human cancers, it has been extensively studied, though only a small fraction of these investigations have been in non-mammalian systems. For the present study, an anti-rainbow trout p53 polyclonal antibody was generated. A variety of rainbow trout (Oncorhynchus mykiss) tissues and cell lines were examined through western blot analysis of cellular protein extracts, which revealed relatively high p53 levels in brain and gills. To evaluate the checkpoint response of rainbow trout p53, RTbrain-W1 and RTgill-W1 cell lines were exposed to varying concentrations of the DNA damaging agent bleomycin and ribonucleotide reductase inhibitor hydroxyurea. In contrast to mammals, these checkpoint-inducing agents provoked no apparent increase in rainbow trout p53 levels. These results infer the presence of alternate DNA damage checkpoint mechanisms in rainbow trout cells.
Collapse
Affiliation(s)
- Michelle Liu
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | | | | | | | | | | | | |
Collapse
|
17
|
Vidal MC, Williams G, Hoole D. Characterisation of a carp cell line for analysis of apoptosis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2009; 33:801-805. [PMID: 19428480 DOI: 10.1016/j.dci.2009.02.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Accepted: 02/14/2009] [Indexed: 05/27/2023]
Abstract
Teleost fish in general, and common carp in particular, are excellent genetic models for bridging the gap in knowledge between invertebrate models such as C. elegans and D. melanogaster, on one hand, and higher vertebrates on the other hand, although, until now, there have been few well characterised fish cell lines shown to be suitable for studies on apoptosis. The present study describes the suitability of a permanent, nonleukemic, nonvirally infected carp cell line for apoptotic studies. A traditional approach using known apoptotic inducers such as UV-light combined with RNA interference, the latest ready-to-use technology widely used in higher vertebrates, was tested in the carp leucocyte cell line (CLC). This study was designed as a first step towards a better knowledge of fish macrophages and their fate after different types of apoptotic insults.
Collapse
|
18
|
Steinmoeller JD, Fujiki K, Arya A, Müller KM, Bols NC, Dixon B, Duncker BP. Characterization of rainbow trout CHK2 and its potential as a genotoxicity biomarker. Comp Biochem Physiol C Toxicol Pharmacol 2009; 149:491-9. [PMID: 19068238 DOI: 10.1016/j.cbpc.2008.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Revised: 11/07/2008] [Accepted: 11/09/2008] [Indexed: 12/29/2022]
Abstract
Checkpoint kinase 2 (CHK2) plays a central and conserved role in the eukaryotic DNA damage response. Few cell cycle checkpoint proteins have been examined in aquatic organisms, and this study is the first to characterize CHK2 expression in a fish species. CHK2 was cloned from Oncorhynchus mykiss, the rainbow trout. The coding region extends over 5741 nucleotides in the genome, including 13 introns, and specifies a predicted 533 amino acid protein. Southern blot analysis revealed that CHK2 exists as a single copy in the rainbow trout genome. Recombinant protein representing the FHA domain was used to generate polyclonal anti-CHK2 antibodies. While CHK2 transcript levels were relatively low in gill and high in brain, the opposite was true for protein levels. Both gill and brain cell cultures were treated with bleomycin, which induces double-strand DNA breaks. There was no effect on levels of CHK2 in gill cells, suggesting that the protein is constitutively active in this tissue. In contrast, brain cells upregulated CHK2 in a dose-dependent manner. The tissue specific expression of CHK2 and its ability to respond to bleomycin treatment suggests that some checkpoint proteins may serve as suitable biomarkers for DNA damage in rainbow trout and other fish species.
Collapse
|
19
|
Krumschnabel G, Podrabsky JE. Fish as model systems for the study of vertebrate apoptosis. Apoptosis 2008; 14:1-21. [PMID: 19082731 DOI: 10.1007/s10495-008-0281-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Accepted: 11/17/2008] [Indexed: 01/18/2023]
Abstract
Apoptosis is a process of pivotal importance for multi-cellular organisms and due to its implication in the development of cancer and degenerative disease it is intensively studied in humans and mammalian model systems. Invertebrate models of apoptosis have been well-studied, especially in C. elegans and D. melanogaster, but as these are evolutionarily distant from mammals the relevance of findings for human research is sometimes limited. Presently, a non-mammalian vertebrate model for studying apoptosis is missing. However, in the past few years an increasing number of studies on cell death in fish have been published and thus new model systems may emerge. This review aims at highlighting the most important of these findings, showing similarities and dissimilarities between fish and mammals, and will suggest topics for future research. In addition, the outstanding usefulness of fish as research models will be pointed out, hoping to spark future research on this exciting, often underrated group of vertebrates.
Collapse
Affiliation(s)
- Gerhard Krumschnabel
- Division of Developmental Immunology, Biocenter, Innsbruck Medical University, 6020 Innsbruck, Austria.
| | | |
Collapse
|
20
|
Krumschnabel G, Maehr T, Nawaz M, Schwarzbaum PJ, Manzl C. Staurosporine-induced cell death in salmonid cells: the role of apoptotic volume decrease, ion fluxes and MAP kinase signaling. Apoptosis 2008; 12:1755-68. [PMID: 17624593 DOI: 10.1007/s10495-007-0103-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Apoptotic cell death in mammalian models is frequently associated with cell shrinkage. Inhibition of apoptotic volume decrease (AVD) is cytoprotective, suggesting that cell shrinkage is an important early event in apoptosis. In salmonid hepatoma and gill cells staurosporine induced apoptosis, as assessed by activation of effector caspases, nuclear condensation, and a decrease of mitochondrial membrane potential (MMP), and these changes were accompanied by cell shrinkage. The Cl- transport inhibitor DIDS and the K+ channel inhibitor quinidine prevented AVD, but only DIDS inhibited apoptosis. Other Cl- flux inhibitors, as well as a pan-caspase inhibitor, did not prevent cell shrinkage, but still prevented caspase activation. Furthermore, regulatory volume decrease (RVD) under hypotonic conditions was not facilitated, but diminished in apoptotic cells. Since all transport inhibitors used blocked RVD, but only DIDS and quinidine inhibited AVD, the ion transporters involved in both processes are apparently not identical. In addition, our data indicate that inhibition of Cl- fluxes rather than blocking cell shrinkage or K+ fluxes is important for preventing apoptosis. In line with this, inhibition of MAP kinases reduced RVD and not AVD, but still diminished caspase activation. Finally, we observed that MAP kinases were activated upon staurosporine treatment and that at least activation of ERK was prevented when AVD was inhibited.
Collapse
Affiliation(s)
- Gerhard Krumschnabel
- Department of Ecophysiology, Institute of Zoology, University of Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria.
| | | | | | | | | |
Collapse
|
21
|
Villiard É, Brinkmann H, Moiseeva O, Mallette FA, Ferbeyre G, Roy S. Urodele p53 tolerates amino acid changes found in p53 variants linked to human cancer. BMC Evol Biol 2007; 7:180. [PMID: 17903248 PMCID: PMC2072957 DOI: 10.1186/1471-2148-7-180] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Accepted: 09/28/2007] [Indexed: 11/18/2022] Open
Abstract
Background Urodele amphibians like the axolotl are unique among vertebrates in their ability to regenerate and their resistance to develop cancers. It is unknown whether these traits are linked at the molecular level. Results Blocking p53 signaling in axolotls using the p53 inhibitor, pifithrin-α, inhibited limb regeneration and the expression of p53 target genes such as Mdm2 and Gadd45, suggesting a link between tumor suppression and regeneration. To understand this relationship we cloned the p53 gene from axolotl. When comparing its sequence with p53 from other organisms, and more specifically human we observed multiple amino acids changes found in human tumors. Phylogenetic analysis of p53 protein sequences from various species is in general agreement with standard vertebrate phylogeny; however, both mice-like rodents and teleost fishes are fast evolving. This leads to long branch attraction resulting in an artefactual basal emergence of these groups in the phylogenetic tree. It is tempting to assume a correlation between certain life style traits (e.g. lifespan) and the evolutionary rate of the corresponding p53 sequences. Functional assays of the axolotl p53 in human or axolotl cells using p53 promoter reporters demonstrated a temperature sensitivity (ts), which was further confirmed by performing colony assays at 37°C. In addition, axolotl p53 was capable of efficient transactivation at the Hmd2 promoter but has moderate activity at the p21 promoter. Endogenous axolotl p53 was activated following UV irradiation (100 j/m2) or treatment with an alkylating agent as measured using serine 15 phosphorylation and the expression of the endogenous p53 target Gadd45. Conclusion Urodele p53 may play a role in regeneration and has evolved to contain multiple amino acid changes predicted to render the human protein defective in tumor suppression. Some of these mutations were probably selected to maintain p53 activity at low temperature. However, other significant changes in the axolotl proteins may play more subtle roles on p53 functions, including DNA binding and promoter specificity and could represent useful adaptations to ensure p53 activity and tumor suppression in animals able to regenerate or subject to large variations in oxygen levels or temperature.
Collapse
Affiliation(s)
- Éric Villiard
- Department of Biochemistry, Faculty of Medicine, Université de Montréal, Montréal, QC, H3C 3J7, Canada
| | - Henner Brinkmann
- Department of Biochemistry, Faculty of Medicine, Université de Montréal, Montréal, QC, H3C 3J7, Canada
| | - Olga Moiseeva
- Department of Biochemistry, Faculty of Medicine, Université de Montréal, Montréal, QC, H3C 3J7, Canada
| | - Frédérick A Mallette
- Department of Biochemistry, Faculty of Medicine, Université de Montréal, Montréal, QC, H3C 3J7, Canada
| | - Gerardo Ferbeyre
- Department of Biochemistry, Faculty of Medicine, Université de Montréal, Montréal, QC, H3C 3J7, Canada
| | - Stéphane Roy
- Department of Biochemistry, Faculty of Medicine, Université de Montréal, Montréal, QC, H3C 3J7, Canada
- Department of Stomatology, Faculty of Dentistry, Université de Montréal, Montréal, QC, H3C 3J7, Canada
| |
Collapse
|