1
|
Xu YJ, Zeng K, Ren Y, Mao CY, Ye YH, Zhu XT, Sun ZY, Cao BY, Zhang ZB, Xu GQ, Huang ZQ, Mao XL. Inhibition of USP10 induces myeloma cell apoptosis by promoting cyclin D3 degradation. Acta Pharmacol Sin 2023; 44:1920-1931. [PMID: 37055530 PMCID: PMC10462714 DOI: 10.1038/s41401-023-01083-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 03/23/2023] [Indexed: 04/15/2023]
Abstract
The cell cycle regulator cyclin D3 (CCND3) is highly expressed in multiple myeloma (MM) and it promotes MM cell proliferation. After a certain phase of cell cycle, CCND3 is rapidly degraded, which is essential for the strict control of MM cell cycle progress and proliferation. In the present study, we investigated the molecular mechanisms regulating CCND3 degradation in MM cells. By utilizing affinity purification-coupled tandem mass spectrometry, we identified the deubiquitinase USP10 interacting with CCND3 in human MM OPM2 and KMS11 cell lines. Furthermore, USP10 specifically prevented CCND3 from K48-linked polyubiquitination and proteasomal degradation, therefore enhancing its activity. We demonstrated that the N-terminal domain (aa. 1-205) of USP10 was dispensable for binding to and deubiquitinating CCND3. Although Thr283 was important for CCND3 activity, it was dispensable for CCND3 ubiquitination and stability modulated by USP10. By stabilizing CCND3, USP10 activated the CCND3/CDK4/6 signaling pathway, phosphorylated Rb, and upregulated CDK4, CDK6 and E2F-1 in OPM2 and KMS11 cells. Consistent with these findings, inhibition of USP10 by Spautin-1 resulted in accumulation of CCND3 with K48-linked polyubiquitination and degradation that synergized with Palbociclib, a CDK4/6 inhibitor, to induce MM cell apoptosis. In nude mice bearing myeloma xenografts with OPM2 and KMS11 cells, combined administration of Spautin-l and Palbociclib almost suppressed tumor growth within 30 days. This study thus identifies USP10 as the first deubiquitinase of CCND3 and also finds that targeting the USP10/CCND3/CDK4/6 axis may be a novel modality for the treatment of myeloma.
Collapse
Affiliation(s)
- Yu-Jia Xu
- Department of Hematology, the First Affiliated Hospital & GMU-GIBH Joint School of Life Sciences, the Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, 510120, China
- Guangdong & Guangzhou Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Kun Zeng
- Department of Pharmacology, Soochow University, Suzhou, 215123, China
| | - Ying Ren
- Department of Pharmacology, Soochow University, Suzhou, 215123, China
| | - Chen-Yu Mao
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ying-Hui Ye
- Department of Hematology, the First Affiliated Hospital & GMU-GIBH Joint School of Life Sciences, the Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, 510120, China
| | - Xiao-Ting Zhu
- Department of Hematology, the First Affiliated Hospital & GMU-GIBH Joint School of Life Sciences, the Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, 510120, China
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Zi-Ying Sun
- Guangdong & Guangzhou Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Bi-Yin Cao
- Department of Pharmacology, Soochow University, Suzhou, 215123, China
| | - Zu-Bin Zhang
- Department of Pharmacology, Soochow University, Suzhou, 215123, China
| | - Guo-Qiang Xu
- Department of Pharmacology, Soochow University, Suzhou, 215123, China
| | - Zhen-Qian Huang
- Department of Hematology, the First Affiliated Hospital & GMU-GIBH Joint School of Life Sciences, the Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, 510120, China.
| | - Xin-Liang Mao
- Department of Hematology, the First Affiliated Hospital & GMU-GIBH Joint School of Life Sciences, the Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, 510120, China.
- Guangdong & Guangzhou Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
- Department of Pharmacology, Soochow University, Suzhou, 215123, China.
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| |
Collapse
|
2
|
Castellanet O, Ahmad F, Vinik Y, Mills GB, Habermann B, Borg JP, Lev S, Lamballe F, Maina F. BCL-XL blockage in TNBC models confers vulnerability to inhibition of specific cell cycle regulators. Theranostics 2021; 11:9180-9197. [PMID: 34646365 PMCID: PMC8490507 DOI: 10.7150/thno.60503] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/23/2021] [Indexed: 12/29/2022] Open
Abstract
Cell cycle regulators are frequently altered in Triple-Negative Breast Cancer (TNBC). Emerging agents targeting these signals offer the possibility to design new combinatorial therapies. However, preclinical models that recapitulate TNBC primary resistance and heterogeneity are essential to evaluate the potency of these combined treatments. Methods: Bioinformatic processing of human breast cancer datasets was used to analyse correlations between expression levels of cell cycle regulators and patient survival outcome. The MMTV-R26Met mouse model of TNBC resistance and heterogeneity was employed to analyse expression and targeting vulnerability of cell cycle regulators in the presence of BCL-XL blockage. Robustness of outcomes and selectivity was further explored using a panel of human breast cancer cells. Orthotopic studies in nude mice were applied for preclinical evaluation of efficacy and toxicity. Alterations of protein expression, phosphorylation, and/or cellular localisation were analysed by western blots, reverse phase protein array, and immunocytochemistry. Bioinformatics was performed to highlight drug's mechanisms of action. Results: We report that high expression levels of the BCL2L1 gene encoding BCL-XL and of specific cell cycle regulators correlate with poor survival outcomes of TNBC patients. Blockage of BCL-XL confers vulnerability to drugs targeting CDK1/2/4, but not FOXM1, CDK4/6, Aurora A and Aurora B, to all MMTV-R26Met and human TNBC cell lines tested. Combined blockage of BCL-XL and CDK1/2/4 interfered with tumour growth in vivo. Mechanistically, we show that, co-targeting of BCL-XL and CDK1/2/4 synergistically inhibited cell viability by combinatorial depletion of survival and RTK/AKT signals, and concomitantly restoring FOXO3a tumour suppression actions. This was accompanied by an accumulation of DNA damage and consequently apoptosis. Conclusions: Our studies illustrate the possibility to exploit the vulnerability of TNBC cells to CDK1/2/4 inhibition by targeting BCL-XL. Moreover, they underline that specificity matters in targeting cell cycle regulators for combinatorial anticancer therapies.
Collapse
Affiliation(s)
- Olivier Castellanet
- Aix Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), Turing Center for Living Systems, Parc Scientifique de Luminy, Marseille (France)
| | - Fahmida Ahmad
- Aix Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), Turing Center for Living Systems, Parc Scientifique de Luminy, Marseille (France)
| | - Yaron Vinik
- Weizmann Institute of Science, Department of Molecular Cell Biology, Rehovot (Israel)
| | | | - Bianca Habermann
- Aix Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), Turing Center for Living Systems, Parc Scientifique de Luminy, Marseille (France)
| | - Jean-Paul Borg
- Aix Marseille Univ, Centre de Recherche en Cancérologie de Marseille (CRCM), Equipe labellisée Ligue 'Cell polarity, cell signaling and cancer', Inserm, CNRS, Institut Paoli-Calmettes, Marseille (France)
- Institut Universitaire de France (IUF)
| | - Sima Lev
- Weizmann Institute of Science, Department of Molecular Cell Biology, Rehovot (Israel)
| | - Fabienne Lamballe
- Aix Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), Turing Center for Living Systems, Parc Scientifique de Luminy, Marseille (France)
| | - Flavio Maina
- Aix Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), Turing Center for Living Systems, Parc Scientifique de Luminy, Marseille (France)
| |
Collapse
|
3
|
Thompson BJ, Bhansali R, Diebold L, Cook DE, Stolzenburg L, Casagrande AS, Besson T, Leblond B, Désiré L, Malinge S, Crispino JD. DYRK1A controls the transition from proliferation to quiescence during lymphoid development by destabilizing Cyclin D3. J Exp Med 2015; 212:953-70. [PMID: 26008897 PMCID: PMC4451127 DOI: 10.1084/jem.20150002] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 04/29/2015] [Indexed: 11/16/2022] Open
Abstract
Pre-B and pre-T lymphocytes must orchestrate a transition from a highly proliferative state to a quiescent one during development. Cyclin D3 is essential for these cells' proliferation, but little is known about its posttranslational regulation at this stage. Here, we show that the dual specificity tyrosine-regulated kinase 1A (DYRK1A) restrains Cyclin D3 protein levels by phosphorylating T283 to induce its degradation. Loss of DYRK1A activity, via genetic inactivation or pharmacologic inhibition in mice, caused accumulation of Cyclin D3 protein, incomplete repression of E2F-mediated gene transcription, and failure to properly couple cell cycle exit with differentiation. Expression of a nonphosphorylatable Cyclin D3 T283A mutant recapitulated these defects, whereas inhibition of Cyclin D:CDK4/6 mitigated the effects of DYRK1A inhibition or loss. These data uncover a previously unknown role for DYRK1A in lymphopoiesis, and demonstrate how Cyclin D3 protein stability is negatively regulated during exit from the proliferative phases of B and T cell development.
Collapse
Affiliation(s)
| | - Rahul Bhansali
- Division of Hematology/Oncology, Northwestern University, Chicago, IL 60208
| | - Lauren Diebold
- Division of Hematology/Oncology, Northwestern University, Chicago, IL 60208
| | - Daniel E Cook
- Division of Hematology/Oncology, Northwestern University, Chicago, IL 60208
| | | | | | - Thierry Besson
- Normandie Université, COBRA, UMR 6014 and FR 3038; Université Rouen; INSA Rouen; Centre National de la Recherche Scientifique, Bâtiment IRCOF, 76821 Mont St. Aignan, France
| | | | | | | | - John D Crispino
- Division of Hematology/Oncology, Northwestern University, Chicago, IL 60208
| |
Collapse
|
4
|
Weng HY, Huang HL, Zhao PP, Zhou H, Qu LH. Translational repression of cyclin D3 by a stable G-quadruplex in its 5' UTR: implications for cell cycle regulation. RNA Biol 2012; 9:1099-109. [PMID: 22858673 DOI: 10.4161/rna.21210] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
cyclin D3 (CCND3) is one of the three D-type cyclins that regulate the G1/S phase transition of the cell cycle. Expression of CCND3 is observed in nearly all proliferating cells; however, the presence of high levels of CCND3 has been linked to a poor prognosis for several types of cancer. Therefore, further mechanistic studies on the regulation of CCND3 expression are urgently needed to provide therapeutic implications. In this study, we report that a conserved RNA G-quadruplex-forming sequence (hereafter CRQ), located in the 5' UTR of mammalian CCND3 mRNA, is able to fold into an extremely stable, intramolecular, parallel G-quadruplex in vitro. The CRQ G-quadruplex dramatically reduces the activity of a reporter gene in human cell lines, but it has little impact on its mRNA level, indicating a translational repression. Moreover, the CRQ sequence in its natural context inhibits translation of CCND3. Disruption of the G-quadruplex structure by G/U-mutation or deletion results in an elevated expression of CCND3 and an increased phosphorylation of Rb, a downstream target of CCND3, which promotes progression of cells through the G1 phase. Our results add to the growing understanding of the regulation of CCND3 expression and provide a potential therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Heng-You Weng
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, China
| | | | | | | | | |
Collapse
|
5
|
The Discodermia calyx toxin calyculin a enhances cyclin D1 phosphorylation and degradation, and arrests cell cycle progression in human breast cancer cells. Toxins (Basel) 2011; 3:105-19. [PMID: 22069692 PMCID: PMC3210456 DOI: 10.3390/toxins3010105] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 01/08/2011] [Accepted: 01/21/2011] [Indexed: 01/24/2023] Open
Abstract
Cyclin D1 is a key regulator of the cell cycle that is over expressed in more than half of breast cancer patients. The levels of cyclin D1 are controlled primarily through post-translational mechanisms and phosphorylation of cyclin D1 at T286 induces its proteasomal degradation. To date, no studies have explored the involvement of phosphatases in this process. Here we treated human breast cancer cells with the structurally distinct toxins calyculin A, okadaic acid, and cantharidin, which are known to inhibit Ser/Thr phosphatases of the PPP family. At low nanomolar concentrations calyculin A induced T286 phosphorylation and degradation of cyclin D1 via the proteosome in MDA-MB-468 and MDA-MB-231 cells. Cyclin D1 degradation also was dose-dependently induced by okadaic acid and catharidin, implicating a negative regulatory role for type-2A phosphatases. These effects occurred without increasing phosphorylation of p70S6K, cyclin D3, or myosin light chain that were used as endogenous reporters of cellular PP2A and PP1 activity. A reverse phase phosphoprotein array analysis revealed increased phosphorylation of only 6 out of 33 Ser/Thr phosphosites, indicating selective inhibition of phosphatases by calyculin A. Calyculin A treatment induced cell cycle arrest in MDA-MB-468 and MCF-7 breast cancer cells. These findings suggest that a specific pool of type-2A phosphatase is inhibited by calyculin A leading to the degradation of cyclin D1 in human breast cancer cells. The results highlight the utility of toxins as pharmacological probes and points to the T286 cyclin D1 phosphatase inhibited by calyculin A as a possible target for chemotherapy to treat triple negative breast cancer.
Collapse
|
6
|
Anderson AA, Child ES, Prasad A, Elphick LM, Mann DJ. Cyclin D1 and cyclin D3 show divergent responses to distinct mitogenic stimulation. J Cell Physiol 2010; 225:638-45. [PMID: 20458731 DOI: 10.1002/jcp.22207] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
D-type cyclins predominantly regulate progression through the cell cycle by their interactions with cyclin-dependent kinases (cdks). Here, we show that stimulating mitogenesis of Swiss 3T3 cells with phorbol esters or forskolin can induce divergent responses in the expression levels, localization and activation state of cyclin D1 and cyclin D3. Phorbol ester-mediated protein kinase C stimulation induces S phase entry which is dependent on MAPK activation and increases the levels and activation of cyclin D1, whereas forskolin-mediated cAMP-dependent protein kinase A stimulation induces mitogenesis that is independent of MAPK, but dependent upon mTor and specifically increases the level and activation of cyclin D3. These findings uncover additional levels of complexity in the regulation of the cell cycle at the level of the D-type cyclins and thus may have important therapeutic implications in cancers where specific D-cyclins are overexpressed.
Collapse
|
7
|
Karyo R, Eskira Y, Pinhasov A, Belmaker R, Agam G, Eldar-Finkelman H. Identification of eukaryotic elongation factor-2 as a novel cellular target of lithium and glycogen synthase kinase-3. Mol Cell Neurosci 2010; 45:449-55. [PMID: 20708687 DOI: 10.1016/j.mcn.2010.08.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2010] [Revised: 07/27/2010] [Accepted: 08/01/2010] [Indexed: 01/07/2023] Open
Abstract
Inhibition of glycogen synthase kinase-3 (GSK-3) is thought to be a major consequence of the biological and clinical activity of the mood stabilizer lithium, however, lithium and GSK-3 may activate distinct cellular pathways. We employed a proteomic method to uncover new downstream targets of lithium, and then examined how these proteins are related to GSK-3. Proteomic analysis identified eukaryotic elongation factor-2 (eEF-2) as a cellular target of lithium. This was verified in SH-SY5Y cells and animal models. In cells, lithium decreased eEF-2 phosphorylation at its key inhibitory site, threonine 56, and blocked the enhancement of eEF-2 phosphorylation normally coupled with stress conditions such as nutrient and serum deprivation. Unexpectedly, inhibition of GSK-3 enhanced eEF-2 phosphorylation, and overexpression of GSK-3α or GSK-3β resulted in a strong reduction in eEF-2 phosphorylation. Chronic administration of lithium reduced the hippocampal fraction of phospho-eEF-2 (phospho-eEF-2/total eEF-2) twofold in two different mouse strains. In summary, unexpectedly eEF-2 is activated by both lithium and GSK-3, whereas, lithium treatment and inhibition of GSK-3 have opposing effects on eEF-2.
Collapse
Affiliation(s)
- Racheli Karyo
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | | | |
Collapse
|
8
|
The age-associated decline of glycogen synthase kinase 3beta plays a critical role in the inhibition of liver regeneration. Mol Cell Biol 2009; 29:3867-80. [PMID: 19398579 DOI: 10.1128/mcb.00456-09] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Aging reduces the regenerative capacities of many tissues. In this paper, we show a critical role of the glycogen synthase kinase 3beta (GSK3beta)-cyclin D3 pathway in the loss of the regenerative capacity of the liver. In young animals, high levels of growth hormone (GH) increase expression of GSK3beta, which associates with cyclin D3 and triggers degradation of cyclin D3. In livers of old mice, the GSK3beta promoter is repressed by C/EBPbeta-histone deacetylase 1 (HDAC1) complexes, leading to the reduction of GSK3beta. The treatment of old mice with GH increases expression of GSK3beta via removal of the C/EBPbeta-HDAC1 complexes from the GSK3beta promoter. We found that the GSK3beta-cyclin D3 pathway is also altered in young GH-deficient Little mice and that treatment of Little mice with GH corrects the GSK3beta-cyclin D3 pathway. We present evidence that GSK3beta regulates liver proliferation by controlling growth-inhibitory activity of C/EBPalpha. The downregulation of GSK3beta in young mice inhibits liver proliferation after partial hepatectomy via the cyclin D3-C/EBPalpha pathway, while the elevation of GSK3beta in old mice accelerates liver proliferation. Thus, this paper shows that GSK3beta is a critical regulator of liver proliferation and that the reduction of GSK3beta with age causes the loss of regenerative capacities of the liver.
Collapse
|