1
|
Pareek A, Kumar D, Pareek A, Gupta MM, Jeandet P, Ratan Y, Jain V, Kamal MA, Saboor M, Ashraf GM, Chuturgoon A. Retinoblastoma: An update on genetic origin, classification, conventional to next-generation treatment strategies. Heliyon 2024; 10:e32844. [PMID: 38975183 PMCID: PMC11226919 DOI: 10.1016/j.heliyon.2024.e32844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 05/23/2024] [Accepted: 06/10/2024] [Indexed: 07/09/2024] Open
Abstract
The most prevalent paediatric vision-threatening medical condition, retinoblastoma (RB), has been a global concern for a long time. Several conventional therapies, such as systemic chemotherapy and focal therapy, have been used for curative purposes; however, the search for tumour eradication with the least impact on surrounding tissues is still ongoing. This review focuses on the genetic origin, classification, conventional treatment modalities, and their combination with nano-scale delivery systems for active tumour targeting. In addition, the review also delves into ongoing clinical trials and patents, as well as emerging therapies such as gene therapy and immunotherapy for the treatment of RB. Understanding the role of genetics in the development of RB has refined its treatment strategy according to the genetic type. New approaches such as nanostructured drug delivery systems, galenic preparations, nutlin-3a, histone deacetylase inhibitors, N-MYC inhibitors, pentoxifylline, immunotherapy, gene therapy, etc. discussed in this review, have the potential to circumvent the limitations of conventional therapies and improve treatment outcomes for RB. In summary, this review highlights the importance and need for novel approaches as alternative therapies that would ultimately displace the shortcomings associated with conventional therapies and reduce the enucleation rate, thereby preserving global vision in the affected paediatric population.
Collapse
Affiliation(s)
- Ashutosh Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, 304022, Rajasthan, India
| | - Deepanjali Kumar
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, 304022, Rajasthan, India
| | - Aaushi Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, 304022, Rajasthan, India
| | - Madan Mohan Gupta
- School of Pharmacy, Faculty of Medical Sciences, The University of the West Indies, St. Augustine 3303, Trinidad and Tobago
| | - Philippe Jeandet
- Research Unit Induced Resistance and Plant Bioprotection - USC INRAe 1488, University of Reims, PO Box 1039, 51687, Reims, France
| | - Yashumati Ratan
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, 304022, Rajasthan, India
| | - Vivek Jain
- Department of Pharmaceutical Sciences, Mohan Lal Sukhadia University, Udaipur, 313001, India
| | - Mohammad Amjad Kamal
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, West China School of Nursing, Frontiers Science Centre for Disease-related Molecular Network, West China Hospital, Sichuan University, China
- King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
- Enzymoics, Novel Global Community Educational Foundation, 7 Peterlee Place, Hebersham, NSW, 2770, Australia
| | - Muhammad Saboor
- Department of Medical Laboratory Science, College of Health Sciences, and Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Ghulam Md Ashraf
- Department of Medical Laboratory Science, College of Health Sciences, and Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Anil Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa
| |
Collapse
|
2
|
Paternot S, Raspé E, Meiller C, Tarabichi M, Assié J, Libert F, Remmelink M, Bisteau X, Pauwels P, Blum Y, Le Stang N, Tabone‐Eglinger S, Galateau‐Sallé F, Blanquart C, Van Meerbeeck JP, Berghmans T, Jean D, Roger PP. Preclinical evaluation of CDK4 phosphorylation predicts high sensitivity of pleural mesotheliomas to CDK4/6 inhibition. Mol Oncol 2024; 18:866-894. [PMID: 36453028 PMCID: PMC10994244 DOI: 10.1002/1878-0261.13351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 11/04/2022] [Accepted: 11/30/2022] [Indexed: 12/05/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive cancer with limited therapeutic options. We evaluated the impact of CDK4/6 inhibition by palbociclib in 28 MPM cell lines including 19 patient-derived ones, using various approaches including RNA-sequencing. Palbociclib strongly and durably inhibited the proliferation of 23 cell lines, indicating a unique sensitivity of MPM to CDK4/6 inhibition. When observed, insensitivity to palbociclib was mostly explained by the lack of active T172-phosphorylated CDK4. This was associated with high p16INK4A (CDKN2A) levels that accompany RB1 defects or inactivation, or (unexpectedly) CCNE1 overexpression in the presence of wild-type RB1. Prolonged palbociclib treatment irreversibly inhibited proliferation despite re-induction of cell cycle genes upon drug washout. A senescence-associated secretory phenotype including various potentially immunogenic components was irreversibly induced. Phosphorylated CDK4 was detected in 80% of 47 MPMs indicating their sensitivity to CDK4/6 inhibitors. Its absence in some highly proliferative MPMs was linked to very high p16 (CDKN2A) expression, which was also observed in public datasets in tumours from short-survival patients. Our study supports the evaluation of CDK4/6 inhibitors for MPM treatment, in monotherapy or combination therapy.
Collapse
Affiliation(s)
- Sabine Paternot
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM)Université Libre de BruxellesBelgium
- ULB‐Cancer Research Center (U‐CRC)Université Libre de BruxellesBelgium
| | - Eric Raspé
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM)Université Libre de BruxellesBelgium
- ULB‐Cancer Research Center (U‐CRC)Université Libre de BruxellesBelgium
| | - Clément Meiller
- Université de ParisCentre de Recherche des Cordeliers, Inserm, Sorbonne Université, Functional Genomics of Solid TumorsFrance
| | - Maxime Tarabichi
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM)Université Libre de BruxellesBelgium
- ULB‐Cancer Research Center (U‐CRC)Université Libre de BruxellesBelgium
| | - Jean‐Baptiste Assié
- Université de ParisCentre de Recherche des Cordeliers, Inserm, Sorbonne Université, Functional Genomics of Solid TumorsFrance
- CEpiA (Clinical Epidemiology and Ageing), EA 7376‐IMRBUniversity Paris‐Est CréteilFrance
- GRC OncoThoParisEst, Service de Pneumologie, CHI Créteil, UPECCréteilFrance
| | - Frederick Libert
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM)Université Libre de BruxellesBelgium
- ULB‐Cancer Research Center (U‐CRC)Université Libre de BruxellesBelgium
- BRIGHTCore, ULBBrusselsBelgium
| | - Myriam Remmelink
- Department of Pathology, Erasme HospitalUniversité Libre de BruxellesBelgium
| | - Xavier Bisteau
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM)Université Libre de BruxellesBelgium
- ULB‐Cancer Research Center (U‐CRC)Université Libre de BruxellesBelgium
| | - Patrick Pauwels
- Center for Oncological Research (CORE)Integrated Personalized and Precision Oncology Network (IPPON)WilrijkBelgium
- Department of PathologyAntwerp University HospitalEdegemBelgium
| | - Yuna Blum
- Programme Cartes d'Identité des Tumeurs (CIT), Ligue Nationale Contre Le CancerParisFrance
- Present address:
IGDR UMR 6290, CNRS, Université de Rennes 1France
| | - Nolwenn Le Stang
- MESOBANK, Department of Biopathology, Centre Léon BérardLyonFrance
| | | | - Françoise Galateau‐Sallé
- MESOBANK, Department of Biopathology, Centre Léon BérardLyonFrance
- Cancer Research Center INSERM U1052‐CNRS 5286RLyonFrance
| | | | | | - Thierry Berghmans
- Clinic of Thoracic OncologyInstitut Jules Bordet, Université Libre de BruxellesBrusselsBelgium
| | - Didier Jean
- Université de ParisCentre de Recherche des Cordeliers, Inserm, Sorbonne Université, Functional Genomics of Solid TumorsFrance
| | - Pierre P. Roger
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM)Université Libre de BruxellesBelgium
- ULB‐Cancer Research Center (U‐CRC)Université Libre de BruxellesBelgium
| |
Collapse
|
3
|
Pentimalli F, Forte IM, Esposito L, Indovina P, Iannuzzi CA, Alfano L, Costa C, Barone D, Rocco G, Giordano A. RBL2/p130 is a direct AKT target and is required to induce apoptosis upon AKT inhibition in lung cancer and mesothelioma cell lines. Oncogene 2018; 37:3657-3671. [PMID: 29606701 DOI: 10.1038/s41388-018-0214-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 12/30/2017] [Accepted: 02/03/2018] [Indexed: 12/29/2022]
Abstract
The retinoblastoma (RB) protein family includes RB1/p105, RBL1/p107, and RBL2/p130, which are key factors in cell-cycle regulation and stand at the crossroads of multiple pathways dictating cell fate decisions. The role of RB proteins in apoptosis is controversial because they can inhibit or promote apoptosis depending on the context, on the apoptotic stimuli and on their intrinsic status, impacting on the response to antitumoral treatments. Here we identified RBL2/p130 as a direct substrate of the AKT kinase, a key antiapoptotic factor hyperactive in multiple cancer types. We showed that RBL2/p130 and AKT1 physically interact and AKT phosphorylates RBL2/p130 Ser941, located in the pocket domain, but not when this residue is mutated into Ala. We found that pharmacological inhibition of AKT, through the highly selective AKT inhibitor VIII (AKTiVIII), impairs RBL2/p130 Ser941 phosphorylation and increases RBL2/p130 stability, mRNA expression and nuclear levels in both lung cancer and mesothelioma cell lines, mirroring the more extensively studied effects on the p27 cell-cycle inhibitor. Consistently, AKT inhibition reduced cell viability, induced cell accumulation in G0/G1, and triggered apoptosis, which proved to be largely dependent on RBL2/p130 itself, as shown upon RBL2/p130 silencing. AKT inhibition induced RBL2/p130-dependent apoptosis also in HEK-293 cells, in which re-expression of a short hairpin-resistant RBL2/p130 was able to rescue AKTiVIII-induced apoptosis upon RBL2/p130 silencing. Our data also showed that the combination of AKT and cyclin-dependent kinases (CDK) inhibitors, which converge on the re-activation of RBL2/p130 antitumoral potential, could be a promising anticancer strategy.
Collapse
Affiliation(s)
- Francesca Pentimalli
- Oncology Research Center of Mercogliano (CROM), Istituto Nazionale Tumori - IRCCS, "Fondazione G. Pascale", 80131, Napoli, Italy.
| | - Iris M Forte
- Oncology Research Center of Mercogliano (CROM), Istituto Nazionale Tumori - IRCCS, "Fondazione G. Pascale", 80131, Napoli, Italy
| | - Luca Esposito
- Oncology Research Center of Mercogliano (CROM), Istituto Nazionale Tumori - IRCCS, "Fondazione G. Pascale", 80131, Napoli, Italy
| | - Paola Indovina
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Scienceand Technology, Temple University, Philadelphia, PA, 19122, USA
| | - Carmelina A Iannuzzi
- Oncology Research Center of Mercogliano (CROM), Istituto Nazionale Tumori - IRCCS, "Fondazione G. Pascale", 80131, Napoli, Italy.,Department of Medicine, Surgery and Neuroscience, University of Siena, 53100, Siena, Italy
| | - Luigi Alfano
- Oncology Research Center of Mercogliano (CROM), Istituto Nazionale Tumori - IRCCS, "Fondazione G. Pascale", 80131, Napoli, Italy
| | - Caterina Costa
- Oncology Research Center of Mercogliano (CROM), Istituto Nazionale Tumori - IRCCS, "Fondazione G. Pascale", 80131, Napoli, Italy
| | - Daniela Barone
- Oncology Research Center of Mercogliano (CROM), Istituto Nazionale Tumori - IRCCS, "Fondazione G. Pascale", 80131, Napoli, Italy.,Department of Medicine, Surgery and Neuroscience, University of Siena, 53100, Siena, Italy
| | - Gaetano Rocco
- Division of Thoracic Surgery, Department of Thoracic Surgery and Oncology, Istituto Nazionale Tumori "Fondazione G. Pascale"; IRCCS, 80131, Napoli, Italy
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Scienceand Technology, Temple University, Philadelphia, PA, 19122, USA. .,Department of Medicine, Surgery and Neuroscience, University of Siena, 53100, Siena, Italy.
| |
Collapse
|
4
|
Danda R, Ganapathy K, Sathe G, Madugundu AK, Ramachandran S, Krishnan UM, Khetan V, Rishi P, Keshava Prasad TS, Pandey A, Krishnakumar S, Gowda H, Elchuri SV. Proteomic profiling of retinoblastoma by high resolution mass spectrometry. Clin Proteomics 2016; 13:29. [PMID: 27799869 PMCID: PMC5080735 DOI: 10.1186/s12014-016-9128-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 09/23/2016] [Indexed: 02/07/2023] Open
Abstract
Background Retinoblastoma is an ocular neoplastic cancer caused primarily due to the mutation/deletion of RB1 gene. Due to the rarity of the disease very limited information is available on molecular changes in primary retinoblastoma. High throughput analysis of retinoblastoma transcriptome is available however the proteomic landscape of retinoblastoma remains unexplored. In the present study we used high resolution mass spectrometry-based quantitative proteomics to identify proteins associated with pathogenesis of retinoblastoma. Methods We used five pooled normal retina and five pooled retinoblastoma tissues to prepare tissue lysates. Equivalent amount of proteins from each group was trypsin digested and labeled with iTRAQ tags. The samples were analyzed on Orbitrap Velos mass spectrometer. We further validated few of the differentially expressed proteins by immunohistochemistry on primary tumors. Results We identified and quantified a total of 3587 proteins in retinoblastoma when compared with normal adult retina. In total, we identified 899 proteins that were differentially expressed in retinoblastoma with a fold change of ≥2 of which 402 proteins were upregulated and 497 were down regulated. Insulin growth factor 2 mRNA binding protein 1 (IGF2BP1), chromogranin A, fetuin A (ASHG), Rac GTPase-activating protein 1 and midkine that were found to be overexpressed in retinoblastoma were further confirmed by immunohistochemistry by staining 15 independent retinoblastoma tissue sections. We further verified the effect of IGF2BP1 on cell proliferation and migration capability of a retinoblastoma cell line using knockdown studies. Conclusions In the present study mass spectrometry-based quantitative proteomic approach was applied to identify proteins differentially expressed in retinoblastoma tumor. This study identified the mitochondrial dysfunction and lipid metabolism pathways as the major pathways to be deregulated in retinoblastoma. Further knockdown studies of IGF2BP1 in retinoblastoma cell lines revealed it as a prospective therapeutic target for retinoblastoma. Electronic supplementary material The online version of this article (doi:10.1186/s12014-016-9128-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ravikanth Danda
- Department of Ocular Pathology, Vision Research Foundation, Sankara Nethralaya, Chennai, Tamilnadu 600006 India ; Centre for Nanotechnology and Advanced Biomaterials, Shanmugha Arts, Science, Technology and Research Academy University, Tanjore, Tamilnadu India
| | - Kalaivani Ganapathy
- Department of Ocular Pathology, Vision Research Foundation, Sankara Nethralaya, Chennai, Tamilnadu 600006 India
| | - Gajanan Sathe
- Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka 560066 India
| | - Anil K Madugundu
- Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka 560066 India
| | - Sharavan Ramachandran
- Department of Ocular Pathology, Vision Research Foundation, Sankara Nethralaya, Chennai, Tamilnadu 600006 India
| | - Uma Maheswari Krishnan
- Centre for Nanotechnology and Advanced Biomaterials, Shanmugha Arts, Science, Technology and Research Academy University, Tanjore, Tamilnadu India
| | - Vikas Khetan
- Shri Bhagwan Mahavir Vitreoretinal Services and Ocular Oncology Services, Medical Research Foundation, Sankara Nethralaya, Chennai, Tamilnadu 600006 India
| | - Pukhraj Rishi
- Shri Bhagwan Mahavir Vitreoretinal Services and Ocular Oncology Services, Medical Research Foundation, Sankara Nethralaya, Chennai, Tamilnadu 600006 India
| | - T S Keshava Prasad
- Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka 560066 India
| | - Akhilesh Pandey
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA ; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA ; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA ; Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Subramanian Krishnakumar
- Department of Ocular Pathology, Vision Research Foundation, Sankara Nethralaya, Chennai, Tamilnadu 600006 India
| | - Harsha Gowda
- Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka 560066 India
| | - Sailaja V Elchuri
- Department of Nano-Biotechnology, Vision Research Foundation, Sankara Nethralaya, Chennai, Tamilnadu 600006 India
| |
Collapse
|
5
|
Abstract
Epigenetics is currently one of the most promising areas of study in the field of biomedical research. Scientists have dedicated their efforts to studying epigenetic mechanisms in cancer for centuries. Additionally, the field has expanded from simply studying DNA methylation to other areas, such as histone modification, non-coding RNA, histone variation, nucleosome location, and chromosome remodeling. In ocular tumors, a large amount of epigenetic exploration has expanded from single genes to the genome-wide level. Most importantly, because epigenetic changes are reversible, several epigenetic drugs have been developed for the treatment of cancer. Herein, we review the current understanding of epigenetic mechanisms in ocular tumors, including but not limited to retinoblastoma and uveal melanoma. Furthermore, the development of new pharmacological strategies is summarized.
Collapse
Affiliation(s)
- Xuyang Wen
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Linna Lu
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Zhang He
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
6
|
Applying particle swarm optimization-based decision tree classifier for cancer classification on gene expression data. Appl Soft Comput 2014. [DOI: 10.1016/j.asoc.2014.08.032] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Kapatai G, Brundler MA, Jenkinson H, Kearns P, Parulekar M, Peet AC, McConville CM. Gene expression profiling identifies different sub-types of retinoblastoma. Br J Cancer 2013; 109:512-25. [PMID: 23756868 PMCID: PMC3721394 DOI: 10.1038/bjc.2013.283] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 05/16/2013] [Accepted: 05/16/2013] [Indexed: 02/06/2023] Open
Abstract
Background: Mutation of the RB1 gene is necessary but not sufficient for the development of retinoblastoma. The nature of events occurring subsequent to RB1 mutation is unclear, as is the retinal cell-of-origin of this tumour. Methods: Gene expression profiling of 21 retinoblastomas was carried out to identify genetic events that contribute to tumorigenesis and to obtain information about tumour histogenesis. Results: Expression analysis showed a clear separation of retinoblastomas into two groups. Group 1 retinoblastomas express genes associated with a range of different retinal cell types, suggesting derivation from a retinal progenitor cell type. Recurrent chromosomal alterations typical of retinoblastoma, for example, chromosome 1q and 6p gain and 16q loss were also a feature of this group, and clinically they were characterised by an invasive pattern of tumour growth. In contrast, group 2 retinoblastomas were found to retain many characteristics of cone photoreceptor cells and appear to exploit the high metabolic capacity of this cell type in order to promote tumour proliferation. Conclusion: Retinoblastoma is a heterogeneous tumour with variable biology and clinical characteristics.
Collapse
Affiliation(s)
- G Kapatai
- School of Cancer Sciences, Vincent Drive, University of Birmingham, Birmingham, UK
| | | | | | | | | | | | | |
Collapse
|
8
|
Indovina P, Marcelli E, Casini N, Rizzo V, Giordano A. Emerging roles of RB family: new defense mechanisms against tumor progression. J Cell Physiol 2013; 228:525-35. [PMID: 22886479 DOI: 10.1002/jcp.24170] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 07/31/2012] [Indexed: 12/14/2022]
Abstract
The retinoblastoma (RB) family of proteins, including RB1/p105, retinoblastoma-like 1 (RBL1/p107), and retinoblastoma-like 2 (RBL2/p130), is principally known for its central role on cell cycle regulation. The inactivation of RB proteins confers a growth advantage and underlies multiple types of tumors. Recently, it has been shown that RB proteins have other important roles, such as preservation of chromosomal stability, induction and maintenance of senescence and regulation of apoptosis, cellular differentiation, and angiogenesis. RB proteins are involved in many cellular pathways and act as transcriptional regulators able to bind several transcription factors, thus antagonizing or potentiating their functions. Furthermore, RB proteins might control the expression of specific target genes by recruiting chromatin remodeling enzymes. Although many efforts have been made to dissect the different functions of RB proteins, it remains still unclear which are necessary for cancer suppression and the role they play at distinct steps of carcinogenesis. Moreover, RB proteins can behave differently in various cell types or cell states. Elucidating the intricate RB protein network in regulating cell fate might provide the knowledge necessary to explain their potent tumor suppressor activity and to design novel therapeutic strategies.
Collapse
Affiliation(s)
- Paola Indovina
- Department of Human Pathology and Oncology, University of Siena, Siena, Italy
| | | | | | | | | |
Collapse
|
9
|
Kim JH, Kim YW, Kim IW, Park DC, Kim YW, Lee KH, Jang CK, Ahn WS. Identification of candidate biomarkers using the Experion™ automated electrophoresis system in serum samples from ovarian cancer patients. Int J Oncol 2013; 42:1257-62. [PMID: 23443953 DOI: 10.3892/ijo.2013.1803] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 11/02/2012] [Indexed: 11/05/2022] Open
Abstract
Ovarian cancer is the most common cause of disease-related death in women globally. Detection of ovarian cancer using new biomarkers is necessary for early diagnosis. To date, there have been no obvious biomarkers for ovarian cancer detection in the incipient stage. In this study, we discovered potential diagnostic serological biomarkers for ovarian cancer using the Experion™ automated electrophoresis system. Sera from 14 healthy women and 84 ovarian cancer patients at stages I- IV were applied to the Experion to compare the protein expression levels. To examine the protein expression pattern of Experion data, proteins in the samples were resolved using 10 and 15% sodium dodecyl sulfate-polyacrylamide gel electrophoresis and visualized by silver staining. The candidate biomarkers elevated in ovarian cancer were purified and determined using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. α-2-macroglobulin (173.7 kDa), ceruloplasmin (147 kDa), inter-α-trypsin inhibitor family heavy chain-related protein (126 kDa), C-1 inhibitor (115.2 kDa) and hemoglobin α/β (14.4 kDa were overexpressed in the ovarian cancer sera. This study documents a novel way to measure ovarian cancer or cancer-related proteins for biomarkers using the Experion assay system, which should be easily adaptable for high-throughput diagnosis to establish databases of ovarian cancer for clinical applications.
Collapse
Affiliation(s)
- Ju Hee Kim
- Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul 130-040, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Little MP, Kleinerman RA, Stiller CA, Li G, Kroll ME, Murphy MFG. Analysis of retinoblastoma age incidence data using a fully stochastic cancer model. Int J Cancer 2012; 130:631-40. [PMID: 21387305 PMCID: PMC3167952 DOI: 10.1002/ijc.26039] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 02/11/2011] [Indexed: 11/08/2022]
Abstract
Retinoblastoma (RB) is an important ocular malignancy of childhood. It has been commonly accepted for some time that knockout of the two alleles of the RB1 gene is the principal molecular target associated with the occurrence of RB. In this article, we examine the validity of the two-hit theory for RB by comparing the fit of a stochastic model with two or more mutational stages. Unlike many such models, our model assumes a fully stochastic stem cell compartment, which is crucial to its behavior. Models are fitted to a population-based dataset comprising 1,553 cases of RB for the period 1962-2000 in Great Britain (England, Scotland and Wales). The population incidence of RB is best described by a fully stochastic model with two stages, although models with a deterministic stem cell compartment yield equivalent fit; models with three or more stages fit much less well. The results strongly suggest that knockout of the two alleles of the RB1 gene is necessary and may be largely sufficient for the development of RB, in support of Knudson's two-hit hypothesis.
Collapse
Affiliation(s)
- Mark P Little
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, DHHS, NIH, Bethesda, MD 20852-7238, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Gibault L, Pérot G, Chibon F, Bonnin S, Lagarde P, Terrier P, Coindre JM, Aurias A. New insights in sarcoma oncogenesis: a comprehensive analysis of a large series of 160 soft tissue sarcomas with complex genomics. J Pathol 2010; 223:64-71. [PMID: 21125665 DOI: 10.1002/path.2787] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 09/09/2010] [Accepted: 09/15/2010] [Indexed: 01/10/2023]
Abstract
Adult soft tissue sarcomas (STS) are rare tumours of mesenchymal lineage. Based on cytogenetic and comparative genomic hybridization (CGH) data, they can be divided into 'STS with simple genomics', displaying a characteristic genetic alteration, and 'STS with complex genomics' (SCG), where multiple genomic alterations occur. This latter group is mostly composed of leiomyosarcomas (LMS) and pleiomorphic undifferentiated tumours previously labelled as 'malignant fibrous histiocytomas' (MFH), corresponding in fact to myxofibrosarcomas (MFS), pleiomorphic liposarcomas/rhabdomyosarcomas (P-LPS, P-RMS), and undifferentiated pleiomorphic sarcomas (UPS). Their pathobiology is still not well understood, leading to challenges in diagnosis and therapeutic management. We report here a comprehensive study encompassing array-CGH and transcriptome analysis data of a large series of 160 SCG. Non-supervised clustering of transcriptome data led to the identification of five groups of tumours, one of them (group A) corresponding to well-differentiated LMS and the other four (B-E) to 'MFH' and poorly differentiated LMS. Welch analysis of transcriptome data in these groups allowed us to retrieve several genes of potential interest. Among them, RB1 alteration is a constant thread in SCG, often associated with RBL2 loss. PTEN tumour suppressor deletion would also stand out as a major recurrent event, especially in groups A, C, and D. The WNT canonical pathway could be potentially involved, as demonstrated by up-regulation of one of its inhibitors, DKK1, in groups D and E, whereas DKK1 is significantly down-regulated in groups A, B, and C. These data suggest a very complex interplay between pathways downstream of PTEN and the WNT canonical pathway, providing new hints about SCG pathobiology and their potential therapeutic targets.
Collapse
Affiliation(s)
- Laure Gibault
- Genetics and Biology of Cancers, Institut Curie, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
12
|
|
13
|
Abstract
Retinoblastoma (Rb), the most common intraocular tumor in childhood, is caused by the loss of function of both retinoblastoma susceptibility gene (RB1 or Rb1) alleles. In 1971, Alfred Knudson proposed his "two-hit" theory based upon empiric observations of the clinical genetics of Rb, revealing the role of tumor-suppressor genes in human cancer. Knudson proposed that: "In the dominant inherited form of Rb, one mutation is inherited via germ line and the second occurs in somatic cells. In the nonhereditary form, both mutations occur in somatic cells." The Knudson hypothesis was validated later with the cloning of RB1, the first tumor-suppressor gene to be identified. A few years later, Harbour extended these findings to small-cell lung cancer, showing that the RB1 locus was disrupted in tumors other than Rb and osteosarcoma. Since then, it has been found that most, if not all, tumors have defects in their RB1 pathway through genetic lesions in the RB1 gene itself or other genes in the pathway. The history of Rb research highlights how basic research on a rare childhood cancer can have a much broader effect on a disease that affects millions of people each year worldwide.
Collapse
Affiliation(s)
- C Sábado Alvarez
- Servei d'Oncologia i Hematologia Pediàtrica, Hospital Materno Infantil Vall d'Hebron, Barcelona, Spain.
| |
Collapse
|
14
|
Rossi A, Caracciolo V, Russo G, Reiss K, Giordano A. Medulloblastoma: from molecular pathology to therapy. Clin Cancer Res 2008; 14:971-6. [PMID: 18281528 DOI: 10.1158/1078-0432.ccr-07-2072] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Medulloblastoma is the most common malignant tumor of central nervous system in children. Patients affected by medulloblastoma may be categorized as high-risk and standard-risk patients, based on the clinical criteria and histologic features of the disease. Currently, multimodality treatment, including surgery, radiotherapy, and chemotherapy is considered as the most effective strategy against these malignant cerebellar tumors of the childhood. Despite the potential poor outcomes of these lesions, the 5-year survival stands, at present, at 70% to 80% for standard-risk patients, whereas high-risk patients have a 5-year survival of 55% to 76%. Attempts to further reduce the morbidity and mortality associated with medulloblastoma have been restricted by the toxicity of conventional treatments and the infiltrative nature of the disease. Over the past decade, new discoveries in molecular biology have revealed new insights in signaling pathways regulating medulloblastoma tumor formation. Recent advances in the molecular biology of medulloblastoma indicate that the classification of these embryonal tumors, solely based on histology and clinical criteria, may not be adequate enough. Better understanding of the growth control mechanisms involved in the development and progression of medulloblastoma will allow a better classification, leading to the improvement of the existing therapies, as well as to the development of new therapeutic approaches.
Collapse
Affiliation(s)
- Alessandra Rossi
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Department of Neuroscience, School of Medicine, Temple University, Philadelphia, Pennsylvania 19122, USA
| | | | | | | | | |
Collapse
|
15
|
Abstract
AIM HMGB1 (high-mobility group box-1) is a nuclear protein containing a consensus RB (retinoblastoma)-binding LXCXE motif. In this study, we studied the potential association of HMGB1 and RB and the in vitro and in vivo activities of HMGB1 in human breast cancer cells. METHODS The protein-protein interaction was determined by immunoprecipitation-Western blotting and glutathione-S-transferase capture assays; cell growth and radiosensitivity were examined by cell counts, MTT assay, and clonogenic assay; cell cycle progression and apoptosis were evaluated using flow cytometry; and the antitumor activity of HMGB1 was examined with tumor xenografts in nude mice. RESULTS HMGB1 was associated with RB via a LXCXE motif-dependent mechanism. HMGB1 enhanced the ability of RB for E2F and cyclin A transcription repression. The increased expression of HMGB1 conferred an altered phenotypes characterized by the suppression of cell growth; G1 arrest and apoptosis was induced in MCF-7 cells containing the wild-type retinoblastoma (Rb) gene, but showed no activities in BT-549 cells containing the Rb gene deletion. The HMGB1-induced apoptosis accompanied by caspase 3 activation and PARP (poly(ADP-ribose)polymerase) cleavage. HMGB1 elevated the radiosensitivity of breast cancer cells in both the MCF-7 and BT-549 cell lines. The enhanced expression of HMGB1 caused a suppression of growth of MCF-7 tumor xenografts in nude mice, while LXCXE-defective HMGB1 completely lost antitumor growth activity. CONCLUSION HMGB1 functions as a tumor suppressor and radiosensitizer in breast cancer. A HMGB1-RB interaction is critical for the HMGB1-mediated transcriptional repression, cell growth inhibition, G1 cell cycle arrest, apoptosis induction, and tumor growth suppression, but is not required for radiosensitization. Therefore, it may be possible to design new therapies for the treatment of breast cancer that exert their effects by modulating the HMGB1 and RB regulatory pathway and HMGB1-related gene therapy.
Collapse
Affiliation(s)
- Yang Jiao
- School of Radiology and Public Health, Soochow University, Suzhou 215123, China
| | | | | |
Collapse
|
16
|
Caracciolo V, Reiss K, Crozier-Fitzgerald C, De Pascali F, Macaluso M, Khalili K, Giordano A, Claudio PP. Interplay between the retinoblastoma related pRb2/p130 and E2F-4 and -5 in relation to JCV-TAg. J Cell Physiol 2007; 212:96-104. [PMID: 17385710 DOI: 10.1002/jcp.21005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Human polyomaviruses, which include JC virus (JCV) and BK virus (BKV), as well as the simian virus 40 (SV40), have been associated with human tumors and have been shown to be highly tumorigenic in experimental animal models. Although the mechanism by which JCV induces tumorigenesis is not entirely clear, earlier studies point to the involvement of the viral early protein T-antigen which has the ability to bind and inactivate tumor suppressors and cell cycle regulatory proteins, such as the retinoblastoma family proteins and p53. We investigated if the distribution between nucleus and cytoplasm of the transcription factors E2F4 and E2F5 is mediated by pRb2/p130 and if the presence of JCV T-antigen may impair this shuttling by sequestering pRb2/p130. The results showed that E2F4 was prevalently localized in the nucleus of both T-antigen positive and -negative R503 cells independently of the cell cycle phase. E2F5 instead was prevalently localized in the cytoplasmic fraction in G(0)/G(1), S-phase synchronized, and asynchronous R503 and R503 T-Ag positive cells. The presence of T-antigen did not influence the subcellular localization of these transcription factors E2F4 and E2F5, at least in this murine cellular model. Moreover, Small interference RNA experiments directed toward silencing the Rb2/p130 gene demonstrated that pRb2/p130 does not play a predominant role in the nuclear transportation of E2F4 and E2F5.
Collapse
Affiliation(s)
- Valentina Caracciolo
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania 19122, USA
| | | | | | | | | | | | | | | |
Collapse
|