1
|
Li C, Lu W, Zhang H. BTB domain and CNC homolog 2: A master regulator that controls immune response and cancer progression. Biochim Biophys Acta Rev Cancer 2025; 1880:189325. [PMID: 40252853 DOI: 10.1016/j.bbcan.2025.189325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 04/10/2025] [Accepted: 04/13/2025] [Indexed: 04/21/2025]
Abstract
BTB domain and CNC homolog 2 (BACH2) is a transcription repressor from the basic region leucine zipper (bZIP) family. Although BACH2 is predominantly expressed in lymphoid cells, it plays pivotal roles throughout hematological development and differentiation, ranging from the regulation of hematopoietic stem and progenitor cell (HSPC) lineage commitment to the development of both innate and adaptive immune cells. Given its extensive regulation of immunity, it is not surprising that BACH2 has been implicated in cancer, particularly in hematological malignancies. While multiple findings indicate that BACH2 acts primarily as a tumor suppressor, other findings suggest that BACH2, whether within tumor cells or their surrounding microenvironment, may contribute to tumorigenesis and progression, highlighting the complexity of its roles and the diverse networks involved in different contexts. In this review, we provide a comprehensive overview of the evolving roles of BACH2 across various stages of hematopoiesis, with a particular focus on its associations with cancer and its therapeutic potential in a wide range of cancer types.
Collapse
Affiliation(s)
- Chenyang Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan 650118, China
| | - Wei Lu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan 650118, China; Kunming Medical University, Kunming, Yunnan 650500, China
| | - Han Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan 650118, China.
| |
Collapse
|
2
|
Wang X, Woo HH, Wei M, Gibson S, Miranda M, Rush D, Cragun J, Zheng W, Yao G, Chambers SK. miR-449, identified through antiandrogen exposure, mitigates functional biomarkers associated with ovarian cancer risk. Sci Rep 2024; 14:29937. [PMID: 39622842 PMCID: PMC11611913 DOI: 10.1038/s41598-024-80173-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 11/15/2024] [Indexed: 12/06/2024] Open
Abstract
The involvement of the androgen receptor (AR) pathway in developing epithelial ovarian cancer is increasingly acknowledged. However, the specific mechanisms by which anti-androgen agents, such as flutamide, may prevent ovarian cancer and their efficacy remain unknown. This study was initiated by investigating the impact of flutamide on miRNA expression in women at high risk (HR) for ovarian cancer. Ovarian and tubal tissues, free from ovarian, tubal, peritoneal cancers, and serous tubal intraepithelial carcinoma (STIC), were collected from untreated and flutamide-treated HR women as well as low-risk (LR) women controls. We performed miRNA sequencing on these 3 sample cohorts and observed that flutamide normalized miRNA levels in HR tissues, notably upregulating the miR-449 family to levels seen in LR tissues. In subsequent tests in primary ovarian epithelial cells and ovarian cancer cell lines (SKOV3 and Hey), flutamide also increased miR-449a and miR-449b-5p levels. Introducing mimics of these miRNAs reduced the mRNA and protein levels of AR and colony-stimulating factor 1 receptor (CSF1R, also known as c-fms), both of which are known contributors to ovarian cancer progression, with emerging evidence also supporting their roles in ovarian cancer initiation. Ovarian cancer cell migration was inhibited upon introducing miR-449a and miR-449b-5p mimics. Together, our study suggests a novel dual-inhibitory mechanism of flutamide on the AR pathway (AR expression suppression in addition to direct androgen antagonism) and supports its chemopreventive potential in ovarian cancer, especially for HR patients with low miR-449 expression.
Collapse
Affiliation(s)
- Xia Wang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi, China
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - Ho-Hyung Woo
- Department of Obstetrics and Gynecology, University of Arizona, Tucson, AZ, USA
- University of Arizona Cancer Center, Tucson, AZ, USA
| | - Michelle Wei
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - Steven Gibson
- Department of Obstetrics and Gynecology, University of Arizona, Tucson, AZ, USA
- University of Arizona Cancer Center, Tucson, AZ, USA
| | - Mitzi Miranda
- Department of Obstetrics and Gynecology, University of Arizona, Tucson, AZ, USA
- University of Arizona Cancer Center, Tucson, AZ, USA
| | - Demaretta Rush
- Department of Pathology, University of Arizona, Tucson, AZ, USA
| | - Janiel Cragun
- Department of Obstetrics and Gynecology, University of Arizona, Tucson, AZ, USA
- University of Arizona Cancer Center, Tucson, AZ, USA
| | - Wenxin Zheng
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Guang Yao
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA.
- University of Arizona Cancer Center, Tucson, AZ, USA.
| | - Setsuko K Chambers
- Department of Obstetrics and Gynecology, University of Arizona, Tucson, AZ, USA.
- University of Arizona Cancer Center, Tucson, AZ, USA.
| |
Collapse
|
3
|
Abstract
The enzyme acetylcholinesterase (AChE) is a serine hydrolase whose primary function is to degrade acetylcholine (ACh) and terminate neurotransmission. Apart from its role in synaptic transmission, AChE has several "non-classical" functions in non-neuronal cells. AChE is involved in cellular growth, apoptosis, drug resistance pathways, response to stress signals and inflammation. The observation that the functional activity of AChE is altered in human tumors (relative to adjacent matched normal tissue) has raised several intriguing questions about its role in the pathophysiology of human cancers. Published reports show that AChE is a vital regulator of oncogenic signaling pathways involving proliferation, differentiation, cell-cell adhesion, migration, invasion and metastasis of primary tumors. The objective of this book chapter is to provide a comprehensive overview of the contributions of the AChE-signaling pathway in the growth of progression of human cancers. The AChE isoforms, AChE-T, AChE-R and AChE-S are robustly expressed in human cancer cell lines as well in human tumors (isolated from patients). Traditionally, AChE-modulators have been used in the clinic for treatment of neurodegenerative disorders. Emerging studies reveal that these drugs could be repurposed for the treatment of human cancers. The discovery of potent, selective AChE ligands will provide new knowledge about AChE-regulatory pathways in human cancers and foster the hope of novel therapies for this disease.
Collapse
Affiliation(s)
- Stephen D Richbart
- Department of Biomedical Sciences, Toxicology Research Cluster, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Justin C Merritt
- Department of Biomedical Sciences, Toxicology Research Cluster, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Nicholas A Nolan
- West Virginia University Medical School, Morgantown, WV, United States
| | - Piyali Dasgupta
- Department of Biomedical Sciences, Toxicology Research Cluster, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States.
| |
Collapse
|
4
|
Wu Y, Wei X, Feng H, Hu B, Liu B, Luan Y, Ruan Y, Liu X, Liu Z, Wang S, Liu J, Wang T. An eleven metabolic gene signature-based prognostic model for clear cell renal cell carcinoma. Aging (Albany NY) 2020; 12:23165-23186. [PMID: 33221754 PMCID: PMC7746370 DOI: 10.18632/aging.104088] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 08/31/2020] [Indexed: 12/13/2022]
Abstract
In this study, we performed bioinformatics and statistical analyses to investigate the prognostic significance of metabolic genes in clear cell renal cell carcinoma (ccRCC) using the transcriptome data of 539 ccRCC and 72 normal renal tissues from TCGA database. We identified 79 upregulated and 45 downregulated (n=124) metabolic genes in ccRCC tissues. Eleven prognostic metabolic genes (NOS1, ALAD, ALDH3B2, ACADM, ITPKA, IMPDH1, SCD5, FADS2, ACHE, CA4, and HK3) were identified by further analysis. We then constructed an 11-metabolic gene signature-based prognostic risk score model and classified ccRCC patients into high- and low-risk groups. Overall survival (OS) among the high-risk ccRCC patients was significantly shorter than among the low-risk ccRCC patients. Receiver operating characteristic (ROC) curve analysis of the prognostic risk score model showed that the areas under the ROC curve for the 1-, 3-, and 5-year OS were 0.810, 0.738, and 0.771, respectively. Thus, our prognostic model showed favorable predictive power in the TCGA and E-MTAB-1980 ccRCC patient cohorts. We also established a nomogram based on these eleven metabolic genes and validated internally in the TCGA cohort, showing an accurate prediction for prognosis in ccRCC.
Collapse
Affiliation(s)
- Yue Wu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Xian Wei
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Huan Feng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Bintao Hu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Bo Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Yang Luan
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Yajun Ruan
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Xiaming Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Zhuo Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Shaogang Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Jihong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Tao Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| |
Collapse
|
5
|
Circulating miRNA Profiling of Women at High Risk for Ovarian Cancer. Transl Oncol 2019; 12:714-725. [PMID: 30856556 PMCID: PMC6411608 DOI: 10.1016/j.tranon.2019.01.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 01/17/2019] [Accepted: 01/21/2019] [Indexed: 01/12/2023] Open
Abstract
Survival of epithelial ovarian cancer patients remains poor without significant change over many decades. There is a need to better identify women at high risk (HR) for ovarian cancer. We propose that miRNA dysregulation may play critical roles in the early stages of ovarian cancer development. Circulating miRNAs may represent an important biomarker in this context, and miRNA profiling of serum in women at HR compared to those at low risk (LR) may give insights in tumor initiation pathways. There is also rationale for a specific focus on regulation of the androgen and its related hypoxia pathways in tumor initiation. We hypothesized that subsets of these pathway related miRNAs may be downregulated in the HR state. Serum from four HR and five LR women were sequenced and analyzed for 2083 miRNAs. We found 137 miRNAs dysregulated between the HR and LR groups, of which 36 miRNAs were overexpressed in HR and the vast majority (101 miRNAs or 74%) downregulated in the HR, when compared to LR serum. mRNA targets for the differentially expressed miRNAs were analyzed from three different miRNA-mRNA interaction resources. Functional association analysis of hypoxia and androgen pathway mRNA targets of dysregulated miRNAs in HR serum revealed that all but one of the miRNAs that target 52 hypoxia genes were downregulated in HR compared to LR serum. Androgen pathway analysis also had a similar expression pattern where all but one of the miRNAs that target these 135 identified genes were downregulated in HR serum. Overall, there were 91 differentially expressed miRNA-mRNA pairings in the hypoxia analysis. In the androgen-related analysis, overall, there were 429 differentially expressed miRNA-mRNA pairs. Our pilot study suggests that almost all miRNAs that are conserved and/or validated are downregulated in the HR compared to LR serum. This study, which requires validation, suggests that, via miRNA dysregulation, involvement of both hypoxia and its related androgen pathways may contribute to the HR state. This pilot study is the first report to our knowledge that studies circulating miRNA profiling of HR and LR women.
Collapse
|
6
|
The Role of Androgen Receptor Signaling in Ovarian Cancer. Cells 2019; 8:cells8020176. [PMID: 30791431 PMCID: PMC6406955 DOI: 10.3390/cells8020176] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 02/14/2019] [Accepted: 02/16/2019] [Indexed: 12/13/2022] Open
Abstract
Emerging evidence has suggested that androgen receptor signaling plays an important role in ovarian cancer outgrowth. Specifically, androgen receptor activation appears to be associated with increased risks of developing ovarian cancer and inducing tumor progression. However, conflicting findings have also been reported. This review summarizes and discusses the available data indicating the involvement of androgens as well as androgen receptor and related signals in ovarian carcinogenesis and cancer growth. Although the underlying molecular mechanisms for androgen receptor functions in ovarian cancer remain far from being fully understood, current observations may offer effective chemopreventive and therapeutic approaches, via modulation of androgen receptor activity, against ovarian cancer. Indeed, several clinical trials have been conducted to determine the efficacy of androgen deprivation therapy in patients with ovarian cancer.
Collapse
|
7
|
Campoy FJ, Vidal CJ, Muñoz-Delgado E, Montenegro MF, Cabezas-Herrera J, Nieto-Cerón S. Cholinergic system and cell proliferation. Chem Biol Interact 2016; 259:257-265. [PMID: 27083142 DOI: 10.1016/j.cbi.2016.04.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 04/05/2016] [Accepted: 04/08/2016] [Indexed: 12/31/2022]
Abstract
The cholinergic system, comprising acetylcholine, the proteins responsible for acetylcholine synthesis and release, acetylcholine receptors and cholinesterases, is expressed by most human cell types. Acetylcholine is a neurotransmitter, but also a local signalling molecule which regulates basic cell functions, and cholinergic responses are involved in cell proliferation and apoptosis. So, activation of nicotinic and muscarinic receptors has a proliferative and anti-apoptotic effect in many cells. The content of choline acetyltransferase, acetylcholine receptors and cholinesterases is altered in many tumours, and cholinesterase content correlates with patient survival in some cancers. During apoptosis, acetylcholinesterase is induced and appears in the nuclei. Acetylcholinesterase participates in the regulation of cell proliferation and apoptosis through hydrolysis of acetylcholine and by other catalytic and non catalytic mechanisms, in a variant-specific manner. This review gathers information on the role of cholinergic system and specially acetylcholinesterase in cell proliferation and apoptosis.
Collapse
Affiliation(s)
- F J Campoy
- Departamento de Bioquímica y Biología Molecular-A, Universidad de Murcia, IMIB, Regional Campus of International Excellence "Campus Mare Nostrum", E-30071 Murcia, Spain.
| | - C J Vidal
- Departamento de Bioquímica y Biología Molecular-A, Universidad de Murcia, IMIB, Regional Campus of International Excellence "Campus Mare Nostrum", E-30071 Murcia, Spain
| | - E Muñoz-Delgado
- Departamento de Bioquímica y Biología Molecular-A, Universidad de Murcia, IMIB, Regional Campus of International Excellence "Campus Mare Nostrum", E-30071 Murcia, Spain
| | - M F Montenegro
- Departamento de Bioquímica y Biología Molecular-A, Universidad de Murcia, IMIB, Regional Campus of International Excellence "Campus Mare Nostrum", E-30071 Murcia, Spain
| | - J Cabezas-Herrera
- Molecular Therapy and Biomarker Research Group, Clinical Analysis Service, University Hospital Virgen de la Arrixaca, IMIB-Arrixaca, E-30120 El Palmar, Murcia, Spain
| | - S Nieto-Cerón
- Molecular Therapy and Biomarker Research Group, Clinical Analysis Service, University Hospital Virgen de la Arrixaca, IMIB-Arrixaca, E-30120 El Palmar, Murcia, Spain
| |
Collapse
|
8
|
Tatemichi Y, Shibazaki M, Yasuhira S, Kasai S, Tada H, Oikawa H, Suzuki Y, Takikawa Y, Masuda T, Maesawa C. Nucleus accumbens associated 1 is recruited within the promyelocytic leukemia nuclear body through SUMO modification. Cancer Sci 2015; 106:848-56. [PMID: 25891951 PMCID: PMC4520636 DOI: 10.1111/cas.12680] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 03/31/2015] [Accepted: 04/14/2015] [Indexed: 01/25/2023] Open
Abstract
Nucleus accumbens associated 1 (NACC1) is a cancer-associated BTB/POZ (pox virus and zinc finger/bric-a-brac tramtrack broad complex) gene, and is involved in several cellular functions in neurons, cancer and stem cells. Some of the BTB/POZ proteins associated with cancer biology are SUMOylated, which appears to play an important role in transcription regulation. We show that NACC1 is SUMOylated on a phylogenetically conserved lysine (K167) out of three consensus SUMOylation motif sites. Amino acid substitution in the SIM sequence (SIM/M) within the BTB/POZ domain partially reduced K167 SUMOylation activity of NACC1. Overexpression of GFP-NACC1 fusion protein leads to formation of discrete nuclear foci similar to promyelocytic leukemia nuclear bodies (PML-NB), which colocalized with SUMO paralogues (SUMO1/2/3). Both NACC1 nuclear body formation and colocalization with SUMO paralogues were completely suppressed in the GFP-NACC1-SIM/M mutant, whereas they were partially maintained in the NACC1 K167R mutant. Confocal immunofluorescence analysis showed that endogenous and exogenous NACC1 proteins colocalized with endogenous PML protein. A pull-down assay revealed that the consensus motifs of the SUMO acceptor site at K167 and the SIM within the BTB/POZ domain were both necessary for efficient binding to PML protein. Our study demonstrates that NACC1 can be modified by SUMO paralogues, and cooperates with PML protein.
Collapse
Affiliation(s)
- Yoshinori Tatemichi
- Department of Tumor Biology, Institute of Biomedical Sciences, Iwate Medical University, Yahaba-cho, Japan.,Department of Internal Medicine, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Masahiko Shibazaki
- Department of Tumor Biology, Institute of Biomedical Sciences, Iwate Medical University, Yahaba-cho, Japan
| | - Shinji Yasuhira
- Department of Tumor Biology, Institute of Biomedical Sciences, Iwate Medical University, Yahaba-cho, Japan
| | - Shuya Kasai
- Department of Tumor Biology, Institute of Biomedical Sciences, Iwate Medical University, Yahaba-cho, Japan
| | - Hiroshi Tada
- Department of Tumor Biology, Institute of Biomedical Sciences, Iwate Medical University, Yahaba-cho, Japan
| | - Hiroki Oikawa
- Department of Pathology, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Yuji Suzuki
- Department of Internal Medicine, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Yasuhiro Takikawa
- Department of Internal Medicine, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Tomoyuki Masuda
- Department of Pathology, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Chihaya Maesawa
- Department of Tumor Biology, Institute of Biomedical Sciences, Iwate Medical University, Yahaba-cho, Japan
| |
Collapse
|
9
|
Castillo-González AC, Pelegrín-Hernández JP, Nieto-Cerón S, Madrona AP, Noguera JA, López-Moreno MF, Rodríguez-López JN, Vidal CJ, Hellín-Meseguer D, Cabezas-Herrera J. Unbalanced acetylcholinesterase activity in larynx squamous cell carcinoma. Int Immunopharmacol 2015; 29:81-6. [PMID: 26002584 DOI: 10.1016/j.intimp.2015.05.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 05/04/2015] [Accepted: 05/07/2015] [Indexed: 01/01/2023]
Abstract
Previous reports have demonstrated that a non-neuronal cholinergic system is expressed aberrantly in airways. A proliferative effect is exerted directly by cholinergic agonists through the activation of nicotinic and muscarinic receptors. In cancer, particularly those related with smoking, the mechanism through which tumour cells respond to aberrantly activated cholinergic signalling is a key question. Fifty paired pieces of larynx squamous cell carcinoma and adjacent non-cancerous tissue were compared in terms of their acetylcholinesterase activity (AChE). The AChE activity in non-cancerous tissues (0.248 ± 0.030 milliunits per milligram of wet tissue; mU/mg) demonstrates that upper respiratory tissues express sufficient AChE activity for controlling the level of acetylcholine (ACh). In larynx carcinomas, the AChE activity decreased to 0.157 ± 0.024 mU/mg (p=0.009). Larynx cancer patients exhibiting low ACh-degrading enzymatic activity had a significantly shorter overall survival (p=0.031). Differences in the mRNA levels of alternatively spliced AChE isoforms and molecular compositions were noted between glottic and supraglottic cancers. Our results suggest that the low AChE activity observed in larynx squamous cell carcinoma may be useful for predicting the outcome of patients.
Collapse
Affiliation(s)
- Ana Cristina Castillo-González
- Molecular Therapy and Biomarkers Research Group, Clinical Analysis Service, University Hospital Virgen de la Arrixaca, IMIB-Arrixaca, Ctra Madrid-Cartagena s/n, El Palmar, 30120 Murcia, Spain; Department of Biochemistry and Molecular Biology A, School of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain
| | - Juan Pablo Pelegrín-Hernández
- Otorhinolaryngology Surgical Service, University Hospital Virgen de la Arrixaca IMIB-Arrixaca, Ctra Madrid-Cartagena s/n, El Palmar, 30120 Murcia, Spain
| | - Susana Nieto-Cerón
- Molecular Therapy and Biomarkers Research Group, Clinical Analysis Service, University Hospital Virgen de la Arrixaca, IMIB-Arrixaca, Ctra Madrid-Cartagena s/n, El Palmar, 30120 Murcia, Spain
| | - Antonio Piñero Madrona
- Surgery Service of University Hospital Virgen de la Arrixaca IMIB, Ctra Madrid-Cartagena s/n, El Palmar, 30120 Murcia, Spain
| | - José Antonio Noguera
- Molecular Therapy and Biomarkers Research Group, Clinical Analysis Service, University Hospital Virgen de la Arrixaca, IMIB-Arrixaca, Ctra Madrid-Cartagena s/n, El Palmar, 30120 Murcia, Spain
| | - María Fuensanta López-Moreno
- Molecular Therapy and Biomarkers Research Group, Clinical Analysis Service, University Hospital Virgen de la Arrixaca, IMIB-Arrixaca, Ctra Madrid-Cartagena s/n, El Palmar, 30120 Murcia, Spain
| | - José Neptuno Rodríguez-López
- Surgery Service of University Hospital Virgen de la Arrixaca IMIB, Ctra Madrid-Cartagena s/n, El Palmar, 30120 Murcia, Spain
| | - Cecilio J Vidal
- Surgery Service of University Hospital Virgen de la Arrixaca IMIB, Ctra Madrid-Cartagena s/n, El Palmar, 30120 Murcia, Spain
| | - Diego Hellín-Meseguer
- Otorhinolaryngology Surgical Service, University Hospital Virgen de la Arrixaca IMIB-Arrixaca, Ctra Madrid-Cartagena s/n, El Palmar, 30120 Murcia, Spain.
| | - Juan Cabezas-Herrera
- Molecular Therapy and Biomarkers Research Group, Clinical Analysis Service, University Hospital Virgen de la Arrixaca, IMIB-Arrixaca, Ctra Madrid-Cartagena s/n, El Palmar, 30120 Murcia, Spain.
| |
Collapse
|
10
|
Castillo-González AC, Nieto-Cerón S, Pelegrín-Hernández JP, Montenegro MF, Noguera JA, López-Moreno MF, Rodríguez-López JN, Vidal CJ, Hellín-Meseguer D, Cabezas-Herrera J. Dysregulated cholinergic network as a novel biomarker of poor prognostic in patients with head and neck squamous cell carcinoma. BMC Cancer 2015; 15:385. [PMID: 25956553 PMCID: PMC4435806 DOI: 10.1186/s12885-015-1402-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 04/29/2015] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND In airways, a proliferative effect is played directly by cholinergic agonists through nicotinic and muscarinic receptors activation. How tumors respond to aberrantly activated cholinergic signalling is a key question in smoking-related cancer. This research was addressed to explore a possible link of cholinergic signalling changes with cancer biology. METHODS Fifty-seven paired pieces of head and neck squamous cell carcinoma (HNSCC) and adjacent non-cancerous tissue (ANCT) were compared for their mRNA levels for ACh-related proteins and ACh-hydrolyzing activity. RESULTS The measurement in ANCT of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activities (5.416 ± 0.501 mU/mg protein and 6.350 ± 0.599 mU/mg protein, respectively) demonstrated that upper respiratory tract is capable of controlling the availability of ACh. In HNSCC, AChE and BChE activities dropped to 3.584 ± 0.599 mU/mg protein (p = 0.002) and 3.965 ± 0.423 mU/mg protein (p < 0.001). Moreover, tumours with low AChE activity and high BChE activity were associated with shorter patient overall survival. ANCT and HNSCC differed in mRNA levels for AChE-T, α3, α5, α9 and β2 for nAChR subunits. Tobacco exposure had a great impact on the expression of both AChE-H and AChE-T mRNAs. Unaffected and cancerous pieces contained principal AChE dimers and BChE tetramers. The lack of nerve-born PRiMA-linked AChE agreed with pathological findings on nerve terminal remodelling and loss in HNSCC. CONCLUSIONS Our results suggest that the low AChE activity in HNSCC can be used to predict survival in patients with head and neck cancer. So, the ChE activity level can be used as a reliable prognostic marker.
Collapse
Affiliation(s)
- Ana Cristina Castillo-González
- Molecular Therapy and Biomarkers Research Group, Clinical Analysis Service, University Hospital Virgen de la Arrixaca, IMIB-Arrixaca, Ctra Madrid-Cartagena s/n, El Palmar, Murcia, 30120, Spain.
| | - Susana Nieto-Cerón
- Molecular Therapy and Biomarkers Research Group, Clinical Analysis Service, University Hospital Virgen de la Arrixaca, IMIB-Arrixaca, Ctra Madrid-Cartagena s/n, El Palmar, Murcia, 30120, Spain.
| | - Juan Pablo Pelegrín-Hernández
- Otorhinolaryngology Surgical Service, University Hospital Virgen de la Arrixaca IMIB-Arrixaca, Ctra Madrid-Cartagena s/n, El Palmar, Murcia, 30120, Spain.
| | - María Fernanda Montenegro
- Department of Biochemistry and Molecular Biology A, School of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", IMIB-University of Murcia, Murcia, 30100, Spain.
| | - José Antonio Noguera
- Molecular Therapy and Biomarkers Research Group, Clinical Analysis Service, University Hospital Virgen de la Arrixaca, IMIB-Arrixaca, Ctra Madrid-Cartagena s/n, El Palmar, Murcia, 30120, Spain.
| | - María Fuensanta López-Moreno
- Molecular Therapy and Biomarkers Research Group, Clinical Analysis Service, University Hospital Virgen de la Arrixaca, IMIB-Arrixaca, Ctra Madrid-Cartagena s/n, El Palmar, Murcia, 30120, Spain.
| | - José Neptuno Rodríguez-López
- Department of Biochemistry and Molecular Biology A, School of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", IMIB-University of Murcia, Murcia, 30100, Spain.
| | - Cecilio J Vidal
- Department of Biochemistry and Molecular Biology A, School of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", IMIB-University of Murcia, Murcia, 30100, Spain.
| | - Diego Hellín-Meseguer
- Otorhinolaryngology Surgical Service, University Hospital Virgen de la Arrixaca IMIB-Arrixaca, Ctra Madrid-Cartagena s/n, El Palmar, Murcia, 30120, Spain.
| | - Juan Cabezas-Herrera
- Molecular Therapy and Biomarkers Research Group, Clinical Analysis Service, University Hospital Virgen de la Arrixaca, IMIB-Arrixaca, Ctra Madrid-Cartagena s/n, El Palmar, Murcia, 30120, Spain.
| |
Collapse
|
11
|
Xi HJ, Wu RP, Liu JJ, Zhang LJ, Li ZS. Role of acetylcholinesterase in lung cancer. Thorac Cancer 2015; 6:390-8. [PMID: 26273392 PMCID: PMC4511315 DOI: 10.1111/1759-7714.12249] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 02/07/2015] [Indexed: 12/14/2022] Open
Abstract
Acetylcholinesterase (AChE) plays a key role in catalytic hydrolysis of cholinergic neurotransmitters. Intensive research has proven the involvement of this protein in novel functions, such as cell adhesion, differentiation, and proliferation. In addition, several recent studies have indicated that acetylcholinesterase is potentially a marker and regulator of apoptosis. Importantly, AChE is also a promising tumor suppressor. In this review, we briefly summarize the involvement of AChE in apoptosis and cancer, focusing on the role of AChE in lung cancer, as well as the therapeutic consideration of AChE for cancer therapy.
Collapse
Affiliation(s)
- Hui-Jun Xi
- Digestive Endoscopy Center, Changhai Hospital, Second Military Medical University Shanghai, China
| | - Ren-Pei Wu
- Digestive Endoscopy Center, Changhai Hospital, Second Military Medical University Shanghai, China
| | - Jing-Jing Liu
- School of Nursing, Second Military Medical University Shanghai, China
| | - Ling-Juan Zhang
- Department of Nursing, Changhai Hospital, Second Military Medical University Shanghai, China
| | - Zhao-Shen Li
- Digestive Endoscopy Center, Changhai Hospital, Second Military Medical University Shanghai, China ; Department of Gastroenterology, Changhai Hospital, Second Military Medical University Shanghai, China
| |
Collapse
|
12
|
Gruessner C, Gruessner A, Glaser K, AbuShahin N, Zhou Y, Laughren C, Wright H, Pinkerton S, Yi X, Stoffer J, Azodi M, Zheng W, Chambers SK. Flutamide and biomarkers in women at high risk for ovarian cancer: preclinical and clinical evidence. Cancer Prev Res (Phila) 2014; 7:896-905. [PMID: 24950779 PMCID: PMC4154987 DOI: 10.1158/1940-6207.capr-13-0408] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We hypothesized that (i) preclinical biologic evidence exists for the role of androgens in ovarian cancer development and (ii) flutamide treatment of women at high risk for ovarian cancer may identify meaningful tissue biomarkers of androgen action and of ovarian cancer initiation. We showed that androgen ablation of male mice led to a 24-fold decrease in tumor burden from serous ovarian cells. In a phase II study, we studied the effect of preoperative flutamide treatment (125 mg/day × 6 weeks) in 12 women versus 47 controls, 47% with BRCA mutation. We analyzed immunohistochemical scores of candidate proteins CSF-1, CSF-1R, and ErbB4 in the epithelium and stroma of fallopian tube, ovary, and ovarian endosalpingiosis. Flutamide decreased the levels, notably, of CSF-1 and ErbB4 in ovarian stroma (P ≤ 0.0006) and ovarian endosalpingiosis (P ≤ 0.01), ErbB4 in ovarian epithelium (P = 0.006), and CSF-1R in ovarian endosalpingiosis (P = 0.009). Our logistic regression model clearly distinguished the flutamide patients from controls (P ≤ 0.0001). Our analysis of the precision of this model of CSF-1 and ErbB4 expression in ovarian stroma achieved 100% sensitivity and 97% specificity (AUC = 0.99). Thus, our data suggest that a short 6-week exposure of flutamide reversed elevated levels of CSF-1 and ErbB4 (both of which we had previously found correlated with high risk status). CSF-1 and ErbB4 in ovarian stroma led to a model with high predictive value for flutamide sensitivity. The effect of flutamide on marker expression in ovarian endosalpingiosis, previously associated with BRCA carrier status, suggests that ovarian endosalpingiosis may be a latent precursor to pelvic serous cancers.
Collapse
Affiliation(s)
- Christine Gruessner
- College of Medicine, University of Arizona, Tucson, Arizona. Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, Arizona
| | - Angelika Gruessner
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, Arizona
| | - Katherine Glaser
- College of Medicine, University of Arizona, Tucson, Arizona. Department of Obstetrics and Gynecology, University of Arizona, Tucson, Arizona
| | | | - Yi Zhou
- University of Arizona Cancer Center, Tucson, Arizona
| | | | | | | | - Xiaofang Yi
- University of Arizona Cancer Center, Tucson, Arizona
| | | | - Masoud Azodi
- Department of Obstetrics and Gynecology, Yale University, New Haven, Connecticut
| | - Wenxin Zheng
- College of Medicine, University of Arizona, Tucson, Arizona. University of Arizona Cancer Center, Tucson, Arizona. Department of Pathology, University of Arizona, Tucson, Arizona
| | - Setsuko K Chambers
- College of Medicine, University of Arizona, Tucson, Arizona. Department of Obstetrics and Gynecology, University of Arizona, Tucson, Arizona. University of Arizona Cancer Center, Tucson, Arizona.
| |
Collapse
|
13
|
de Toledo MCS, Sarian LO, Sallum LF, Andrade LLA, Vassallo J, de Paiva Silva GR, Pinto GA, Soares FA, Fonseca CDPP, Derchain SFM. Analysis of the contribution of immunologically-detectable HER2, steroid receptors and of the "triple-negative" tumor status to disease-free and overall survival of women with epithelial ovarian cancer. Acta Histochem 2014; 116:440-7. [PMID: 24238473 DOI: 10.1016/j.acthis.2013.09.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 09/16/2013] [Accepted: 09/30/2013] [Indexed: 12/15/2022]
Abstract
We assessed associations between steroid receptors including: estrogen-alpha, estrogen-beta, androgen receptor, progesterone receptor, the HER2 status and triple-negative epithelial ovarian cancer (ERα-/PR-/HER2-; TNEOC) status and survival in women with epithelial ovarian cancer. The study included 152 women with primary epithelial ovarian cancer. The status of steroid receptor and HER2 was determined by immunohistochemistry. Disease-free and overall survival were calculated and compared with steroid receptor and HER2 status as well as clinicopathological features using the Cox Proportional Hazards model. A mean follow-up period of 43.6 months (interquartile range=41.4 months) was achieved where 44% of patients had serous tumor, followed by mucinous (23%), endometrioid (9%), mixed (9%), undifferentiated (8.5%) and clear cell tumors (5.3%). ER-alpha staining was associated with grade II-III tumors. Progesterone receptor staining was positively associated with a Body Mass Index≥25. Androgen receptor positivity was higher in serous tumors. In stand-alone analysis of receptor contribution to survival, estrogen-alpha positivity was associated with greater disease-free survival. However, there was no significant association between steroid receptor expression, HER2 status, or TNEOC status, and overall survival. Although estrogen-alpha, androgen receptor, progesterone receptor and the HER2 status were associated with key clinical features of the women and pathological characteristics of the tumors, these associations were not implicated in survival. Interestingly, women with TNEOC seem to fare the same way as their counterparts with non-TNEOC.
Collapse
Affiliation(s)
- Maria Carolina Szymanski de Toledo
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, State University of Campinas - Unicamp, Campinas, São Paulo, Brazil
| | - Luis Otavio Sarian
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, State University of Campinas - Unicamp, Campinas, São Paulo, Brazil.
| | - Luis Felipe Sallum
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, State University of Campinas - Unicamp, Campinas, São Paulo, Brazil
| | - Liliana Lucci Angelo Andrade
- Department of Pathology, Faculty of Medical Sciences, State University of Campinas - Unicamp, Campinas, São Paulo, Brazil
| | - José Vassallo
- Laboratory of Experimental Pathology, CAISM - Unicamp, Campinas, São Paulo, Brazil
| | - Geisilene Russano de Paiva Silva
- Department of Pathology, Faculty of Medical Sciences, State University of Campinas - Unicamp, Campinas, São Paulo, Brazil; Laboratory of Experimental Pathology, CAISM - Unicamp, Campinas, São Paulo, Brazil
| | | | - Fernando Augusto Soares
- Department of Pathology, Hospital do Câncer A C Camargo, Fundação Antonio Prudente de São Paulo, Brazil
| | | | - Sophie F M Derchain
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, State University of Campinas - Unicamp, Campinas, São Paulo, Brazil
| |
Collapse
|
14
|
Yu C, Liu SL, Qi MH, Zou X. Cinnamaldehyde/chemotherapeutic agents interaction and drug-metabolizing genes in colorectal cancer. Mol Med Rep 2013; 9:669-76. [PMID: 24276478 DOI: 10.3892/mmr.2013.1830] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Accepted: 11/20/2013] [Indexed: 11/06/2022] Open
Abstract
Cinnamaldehyde is an active monomer isolated from the stem bark of Cinnamomum cassia, a traditional oriental medicinal herb, which is known to possess marked antitumor effects in vitro and in vivo. The aim of the present study was to examine the potential advantages of using cinnamaldehyde in combination with chemotherapeutic agents commonly used in colorectal carcinoma (CRC) therapy, as well as to investigate the effect of cinnamaldehyde on chemotherapeutic-associated gene expression. The synergistic interaction of cinnamaldehyde and chemotherapeutic agents on human CRC HT-29 and LoVo cells was evaluated using the combination index (CI) method. The double staining with Annexin V conjugated to fluorescein-isothiocyanate and phosphatidylserine was employed for apoptosis detection. The expression of drug-metabolizing genes, including excision repair cross‑complementing 1 (ERCC1), orotate phosphoribosyltransferase (OPRT), thymidylate synthase (TS), breast cancer susceptibility gene 1 (BRCA1) and topoisomerase 1 (TOPO1), all in HT-29 and LoVo cells, with or without the addition of cinnamaldehyde, was examined by quantitative polymerase chain reaction (PCR). Cinnamaldehyde had a synergistic effect on the chemotherapeutic agents cytotoxicity in HT-29 and LoVo cells. In addition, cinnamaldehyde suppressed BRCA1, TOPO1, ERCC1 and TS mRNA expression, except for OPRT expression, which was markedly upregulated. Our findings indicate that cinnamaldehyde appears to be a promising candidate as an adjuvant in combination therapy with 5-fluorouracil (5-FU) and oxaliplatin (OXA), two chemotherapeutic agents used in CRC treatment. The possible mechanisms of its action may involve the regulation of drug‑metabolizing genes.
Collapse
Affiliation(s)
- Chen Yu
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210046, P.R. China
| | - Shen-Lin Liu
- Senior Expert Consultation Center, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Ming-Hao Qi
- National Clinical Research Base of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Xi Zou
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
15
|
Ovarian surface epithelium as a source of ovarian cancers: Unwarranted speculation or evidence-based hypothesis? Gynecol Oncol 2013; 130:246-51. [DOI: 10.1016/j.ygyno.2013.03.021] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 03/16/2013] [Accepted: 03/23/2013] [Indexed: 11/20/2022]
|
16
|
Salmon AY, Salmon-Divon M, Zahavi T, Barash Y, Levy-Drummer RS, Jacob-Hirsch J, Peretz T. Determination of molecular markers for BRCA1 and BRCA2 heterozygosity using gene expression profiling. Cancer Prev Res (Phila) 2013; 6:82-90. [PMID: 23341570 DOI: 10.1158/1940-6207.capr-12-0105] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Approximately 5% of all breast cancers can be attributed to an inherited mutation in one of two cancer susceptibility genes, BRCA1 and BRCA2. We searched for genes that have the potential to distinguish healthy BRCA1 and BRCA2 mutation carriers from noncarriers based on differences in expression profiling. Using expression microarrays, we compared gene expression of irradiated lymphocytes from BRCA1 and BRCA2 mutation carriers versus control noncarriers. We identified 137 probe sets in BRCA1 carriers and 1,345 in BRCA2 carriers with differential gene expression. Gene Ontology analysis revealed that most of these genes relate to regulation pathways of DNA repair processes, cell-cycle regulation, and apoptosis. Real-time PCR was conducted on the 36 genes, which were most prominently differentially expressed in the microarray assay; 21 genes were shown to be significantly differentially expressed in BRCA1 and/or BRCA2 mutation carriers as compared with controls (P < 0.05). On the basis of a validation study with 40 mutation carriers and 17 noncarriers, a multiplex model that included six or more coincidental genes of 18 selected genes was constructed to predict the risk of carrying a mutation. The results using this model showed sensitivity 95% and specificity 88%. In summary, our study provides insight into the biologic effect of heterozygous mutations in BRCA1 and BRCA2 genes in response to ionizing irradiation-induced DNA damage. We also suggest a set of 18 genes that can serve as a prediction and screening tool for BRCA1 or BRCA2 mutational carriers by using easily obtained lymphocytes.
Collapse
Affiliation(s)
- Asher Y Salmon
- Sharett Institute of Oncology, Hadassah Hebrew University Medical Center, Jerusalem, Israel.
| | | | | | | | | | | | | |
Collapse
|
17
|
Cholinesterase activities and biochemical determinations in patients with prostate cancer: Influence of Gleason score, treatment and bone metastasis. Biomed Pharmacother 2012; 66:249-55. [DOI: 10.1016/j.biopha.2011.11.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 11/21/2011] [Indexed: 11/24/2022] Open
|
18
|
Rosbrook GO, Stead MA, Carr SB, Wright SC. The structure of the Bach2 POZ-domain dimer reveals an intersubunit disulfide bond. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2011; 68:26-34. [PMID: 22194330 DOI: 10.1107/s0907444911048335] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 11/14/2011] [Indexed: 11/10/2022]
Abstract
Bach2 is a transcriptional repressor that is expressed during specific stages of B-cell development and in neuronal cells. It plays a critical role in modulating class-switch recombination during the differentiation of mature B cells to antibody-secreting plasma cells and it is also an important regulator of apoptotic responses to oxidative stress. Bach2 has been implicated both as an oncogene and as a tumour suppressor in human malignancy. The interaction of Bach2 with its target genes is mediated via its basic leucine-zipper region, whereas the N-terminal POZ domain recruits transcriptional co-repressors and class II histone deacetylases. Here, the crystal structure of the human Bach2 POZ domain is reported at 2.1 Å resolution. The Bach2 POZ-domain dimer resembles the POZ-domain dimers of the POZ zinc finger transcription factors and dimerization is independent of an N-terminal region that has previously been implicated in the dimerization of the POZ basic leucine-zipper protein Bach1. The Bach2 POZ domain crystallized in two forms which differed by the presence of an intersubunit disulfide bond. The intersubunit disulfide bond is present both in bacterially expressed Bach2 POZ domain in solution and in protein expressed in transfected eukaryotic cells. These crystal structures will be relevant for understanding the regulation of Bach2 in response to oxidative stress and for the design of therapeutics that target the Bach2 POZ domain in human malignancy.
Collapse
|
19
|
Fekete T, Rásó E, Pete I, Tegze B, Liko I, Munkácsy G, Sipos N, Rigó J, Györffy B. Meta-analysis of gene expression profiles associated with histological classification and survival in 829 ovarian cancer samples. Int J Cancer 2011; 131:95-105. [PMID: 21858809 DOI: 10.1002/ijc.26364] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 06/27/2011] [Indexed: 01/16/2023]
Abstract
Transcriptomic analysis of global gene expression in ovarian carcinoma can identify dysregulated genes capable to serve as molecular markers for histology subtypes and survival. The aim of our study was to validate previous candidate signatures in an independent setting and to identify single genes capable to serve as biomarkers for ovarian cancer progression. As several datasets are available in the GEO today, we were able to perform a true meta-analysis. First, 829 samples (11 datasets) were downloaded, and the predictive power of 16 previously published gene sets was assessed. Of these, eight were capable to discriminate histology subtypes, and none was capable to predict survival. To overcome the differences in previous studies, we used the 829 samples to identify new predictors. Then, we collected 64 ovarian cancer samples (median relapse-free survival 24.5 months) and performed TaqMan Real Time Polimerase Chain Reaction (RT-PCR) analysis for the best 40 genes associated with histology subtypes and survival. Over 90% of subtype-associated genes were confirmed. Overall survival was effectively predicted by hormone receptors (PGR and ESR2) and by TSPAN8. Relapse-free survival was predicted by MAPT and SNCG. In summary, we successfully validated several gene sets in a meta-analysis in large datasets of ovarian samples. Additionally, several individual genes identified were validated in a clinical cohort.
Collapse
Affiliation(s)
- Tibor Fekete
- Semmelweis University, 1st Department of Gynecology, Budapest.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Yang Q, Orman MA, Berthiaume F, Ierapetritou MG, Androulakis IP. Dynamics of short-term gene expression profiling in liver following thermal injury. J Surg Res 2011; 176:549-58. [PMID: 22099593 DOI: 10.1016/j.jss.2011.09.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 09/23/2011] [Accepted: 09/27/2011] [Indexed: 02/01/2023]
Abstract
BACKGROUND Severe trauma, including burns, triggers a systemic response that significantly impacts on the liver, which plays a key role in the metabolic and immune responses aimed at restoring homeostasis. While many of these changes are likely regulated at the gene expression level, there is a need to better understand the dynamics and expression patterns of burn injury-induced genes in order to identify potential regulatory targets in the liver. Herein we characterized the response within the first 24 h in a standard animal model of burn injury using a time series of microarray gene expression data. METHODS Rats were subjected to a full thickness dorsal scald burn injury covering 20% of their total body surface area while under general anesthesia. Animals were saline resuscitated and sacrificed at defined time points (0, 2, 4, 8, 16, and 24 h). Liver tissues were explanted and analyzed for their gene expression profiles using microarray technology. Sham controls consisted of animals handled similarly but not burned. After identifying differentially expressed probe sets between sham and burn conditions over time, the concatenated data sets corresponding to these differentially expressed probe sets in burn and sham groups were combined and analyzed using a "consensus clustering" approach. RESULTS The clustering method of expression data identified 621 burn-responsive probe sets in four different co-expressed clusters. Functional characterization revealed that these four clusters are mainly associated with pro-inflammatory response, anti-inflammatory response, lipid biosynthesis, and insulin-regulated metabolism. Cluster 1 pro-inflammatory response is rapidly up-regulated (within the first 2 h) following burn injury, while Cluster 2 anti-inflammatory response is activated later on (around 8 h post-burn). Cluster 3 lipid biosynthesis is down-regulated rapidly following burn, possibly indicating a shift in the utilization of energy sources to produce acute phase proteins, which serve the anti-inflammatory response. Cluster 4 insulin-regulated metabolism was down-regulated late in the observation window (around 16 h post-burn), which suggests a potential mechanism to explain the onset of hypermetabolism, a delayed but well-known response that is characteristic of severe burns and trauma with potential adverse outcome. CONCLUSIONS Simultaneous analysis and comparison of gene expression profiles for both burn and sham control groups provided a more accurate estimation of the activation time, expression patterns, and characteristics of a certain burn-induced response based on which the cause-effect relationships among responses were revealed.
Collapse
Affiliation(s)
- Qian Yang
- Chemical and Biochemical Engineering Department, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, USA
| | | | | | | | | |
Collapse
|
21
|
|
22
|
Muñoz-Delgado E, Montenegro MF, Campoy FJ, Moral-Naranjo MT, Cabezas-Herrera J, Kovacs G, Vidal CJ. Expression of cholinesterases in human kidney and its variation in renal cell carcinoma types. FEBS J 2010; 277:4519-29. [PMID: 20883446 DOI: 10.1111/j.1742-4658.2010.07861.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Despite the aberrant expression of cholinesterases in tumours, the question of their possible contribution to tumorigenesis remains unsolved. The identification in kidney of a cholinergic system has paved the way to functional studies, but details on renal cholinesterases are still lacking. To fill the gap and to determine whether cholinesterases are abnormally expressed in renal tumours, paired pieces of normal kidney and renal cell carcinomas (RCCs) were compared for cholinesterase activity and mRNA levels. In studies with papillary RCC (pRCC), conventional RCC, chromophobe RCC, and renal oncocytoma, acetylcholinesterase activity increased in pRCC (3.92 ± 3.01 mU·mg(-1), P = 0.031) and conventional RCC (2.64 ± 1.49 mU·mg(-1), P = 0.047) with respect to their controls (1.52 ± 0.92 and 1.57 ± 0.44 mU·mg(-1)). Butyrylcholinesterase activity increased in pRCC (5.12 ± 2.61 versus 2.73 ± 1.15 mU·mg(-1), P = 0.031). Glycosylphosphatidylinositol-linked acetylcholinesterase dimers and hydrophilic butyrylcholinesterase tetramers predominated in control and cancerous kidney. Acetylcholinesterase mRNAs with exons E1c and E1e, 3'-alternative T, H and R acetylcholinesterase mRNAs and butyrylcholinesterase mRNA were identified in kidney. The levels of acetylcholinesterase and butyrylcholinesterase mRNAs were nearly 1000-fold lower in human kidney than in colon. Whereas kidney and renal tumours showed comparable levels of acetylcholinesterase mRNA, the content of butyrylcholinesterase mRNA was increased 10-fold in pRCC. The presence of acetylcholinesterase and butyrylcholinesterase mRNAs in kidney supports their synthesis in the organ itself, and the prevalence of glycosylphosphatidylinositol-anchored acetylcholinesterase explains the splicing to acetylcholinesterase-H mRNA. The consequences of butyrylcholinesterase upregulation for pRCC growth are discussed.
Collapse
|
23
|
Nieto-Cerón S, Vargas-López H, Pérez-Albacete M, Tovar-Zapata I, Martínez-Hernández P, Rodríguez-López JN, Cabezas-Herrera J. Analysis of cholinesterases in human prostate and sperm: implications in cancer and fertility. Chem Biol Interact 2010; 187:432-5. [PMID: 20356562 DOI: 10.1016/j.cbi.2010.03.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 03/08/2010] [Accepted: 03/19/2010] [Indexed: 01/23/2023]
Abstract
Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) are postulated to play non-cholinergic roles in cellular physiology. The probable implication of cholinesterases (ChEs) in several human pathologies prompted us to study the cholinergic components in the male reproductive system. Surgical pieces of prostatic cancer (PC) and benign prostatic hyperplasia (BPH) were analyzed for AChE and BChE activity. Loosely (S1) and tightly (S2) bound AChE and BChE forms were characterized by sedimentation analysis. The mean AChE activity in BHP samples was 2.38+/-0.56 mU/mg (nmol of the substrate hydrolysed per minute and per milligram protein) and 2.57+/-0.61 mU/mg in S1 and S2, respectively. The AChE activity did not vary with cancer, showing 2.46+/-0.45 mU/mg in S1 and 2.70+/-0.53 mU/mg in S2 from PC samples. Amphiphilic dimers and monomers and hydrophilic dimers of AChE were identified in BHP and PC tissues. Their contribution was affected by cancer with a great increase in hydrophilic dimers in the cancerous samples. Significant levels of both AChE and BChE activities were found in seminal fluid and homogenates from spermatozoids. Enzymatic activity dropped in samples with abnormal seminal parameters as sperm count and mobility.
Collapse
Affiliation(s)
- Susana Nieto-Cerón
- Research Unit of Clinical Analysis Service, University Hospital Virgen de la Arrixaca, El Palmar, Murcia 30120, Spain
| | | | | | | | | | | | | |
Collapse
|
24
|
Li AJ, McAllister P, Karlan BY. Impact of androgen receptor cytosine-adenine-guanine polymorphisms on clinical outcome in BRCA mutation-associated epithelial ovarian cancers. Gynecol Oncol 2009; 116:105-8. [PMID: 19818997 DOI: 10.1016/j.ygyno.2009.09.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 09/10/2009] [Accepted: 09/17/2009] [Indexed: 11/16/2022]
Abstract
PURPOSE Androgen signaling may function in the pathobiology of epithelial ovarian cancers associated with mutations in the BRCA1/2 genes. Androgen receptor (AR) activity correlates inversely with length of a polymorphic cytosine-adenine-guanine (CAG) repeat in exon 1. We hypothesized that AR CAG allele length is a modifier of clinical outcome in BRCA1/2 mutation positive women with ovarian cancer. EXPERIMENTAL DESIGN We identified BRCA1/2 ovarian cancer patients with banked serum from which we PCR amplified the CAG repeat region. We abstracted clinical and survival data, and examined CAG repeat length <19 as a short AR allelotype. We calculated a sample size of 60 patients to determine a 24-month difference in survival. RESULT In 62 patients, 43 (69%) had BRCA1 mutations and 19 (31%) had BRCA2 mutations. Fifteen (24%) were found to have a short AR allelotype. Patients with a short AR did not demonstrate statistical differences in progression-free survival (43 months vs. 28 months for long AR) or overall survival (78 months vs. 142 months for long AR). In patients with BRCA2 mutations alone, a short AR correlated with decreased overall survival (31 months) compared to 126 months for those with a long AR (p=0.01). CONCLUSIONS AR allelotype length did not correlate with survival in this statistically representative cohort of patients with BRCA1/2 mutations. Potential associations between short AR and outcome in BRCA2-associated ovarian cancers remain to be determined.
Collapse
Affiliation(s)
- Andrew J Li
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Suite 160W, Los Angeles, CA 90048, USA.
| | | | | |
Collapse
|
25
|
Sheach LA, Adeney EM, Kucukmetin A, Wilkinson SJ, Fisher AD, Elattar A, Robson CN, Edmondson RJ. Androgen-related expression of G-proteins in ovarian cancer. Br J Cancer 2009; 101:498-503. [PMID: 19623182 PMCID: PMC2720237 DOI: 10.1038/sj.bjc.6605153] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Epidemiological and in vitro data implicate androgens in the aetiology of ovarian cancer, but the mechanisms by which this is mediated are unclear. In this study, we wished to examine the effects of androgens on gene expression in ovarian cancer. METHODS The expression of androgen receptor (AR) in OVCAR3 and OSEC2 cells was confirmed using immunoblotting and response to androgens was measured using flow cytometric assessment of S-phase fraction. The differential gene expression between androgen stimulated and unstimulated OVCAR3 ovarian cancer cells was examined with a cDNA microarray. The upregulation of a subset of these genes was then confirmed with reverse transcriptase PCR in both OVCAR3 and OSEC2, an ovarian epithelial cell line. Finally, the clinical significance of this upregulation was investigated by examining the expression of Rab25 and Rab35, two G-protein-related molecules in an ovarian cancer tissue microarray (TMA). RESULTS OVCAR3 and OSEC2 cells were shown to express the AR and showed an increase in S-phase fraction in response to androgen treatment. Treatment of OVCAR3 cells with androgen resulted in a significant upregulation of 121 genes. These findings were confirmed for a subset of seven monomeric G-protein-related genes in both OVCAR3 and OSEC2 cells. After staining for Rab25 and Rab35, the majority of TMA sections examined showed expression for Rab25 (92%) and Rab35 (95%). The expression of Rab25 correlated with histological grade, and expression was higher in endometrioid (median histoscore 10.5) than serous (7.5) or mucinous (5.3) tumours. The expression of Rab25 correlated positively with AR expression supporting its role as an androgen responsive gene in ovarian cancer. CONCLUSIONS These results suggest that androgens can effect expression of the oncogenic GTPases in ovarian cancer. We propose that the androgen responsive Rab35 may have clinical importance as a biomarker of AR function.
Collapse
Affiliation(s)
- L A Sheach
- Northern Institute for Cancer Research, Newcastle University, Newcastle, UK
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Györffy B, Dietel M, Fekete T, Lage H. A snapshot of microarray-generated gene expression signatures associated with ovarian carcinoma. Int J Gynecol Cancer 2008; 18:1215-33. [PMID: 18217975 DOI: 10.1111/j.1525-1438.2007.01169.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
It was hypothesized that analysis of global gene expression in ovarian carcinoma can identify dysregulated genes that can serve as molecular markers and provide further insight into carcinogenesis and provide the basis for development of new diagnostic tools as well as new targeted therapy protocols. By applying bioinformatics tools for screening of biomedical databases, a gene expression profile databank, specific for ovarian carcinoma, was constructed with utilizable data sets published in 28 studies that applied different array technology platforms. The data sets were divided into four compartments: (i) genes associated with carcinogenesis: in 14 studies, 1881 genes were extracted, 75 genes were identified in more than one study, and only 4 genes (PRKCBP1, SPON1, TACSTD1, and PTPRM) were identified in three studies. (ii) Genes associated with histologic subtypes: in four studies, 463 genes could be identified, but none of them was identified in more than a single study. (iii) Genes associated with therapy response: in seven studies, 606 genes were identified from which 38 were differentially regulated in at least two studies, 3 genes (TMSB4X, GRN, and TJP1) in three studies, and 1 gene (IFITM1) in four studies. (iv) Genes associated with prognosis and progression: 254 genes were found in seven studies. From these genes, merely three were identified in at least two different studies. This snapshot of available gene expression data not only provides independently described potential diagnostic and therapeutic targets for ovarian carcinoma but also emphasizes the drawbacks of the current state of global gene expression analyses in ovarian cancer.
Collapse
Affiliation(s)
- B Györffy
- Charité Campus Mitte, Institute of Pathology, Berlin, Germany
| | | | | | | |
Collapse
|
27
|
Cancer-associated differences in acetylcholinesterase activity in bronchial aspirates from patients with lung cancer. Clin Sci (Lond) 2008; 115:245-53. [PMID: 18211261 DOI: 10.1042/cs20070393] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In non-neuronal contexts, ACh (acetylcholine) is thought to be involved in the regulation of vital cell functions, such as proliferation, differentiation, apoptosis and cell-cell interaction. In airways, most cells express the non-neuronal cholinergic system, each containing a specific set of components required for synthesis, signal transduction and ACh hydrolysis. The aim of the present study was determine the expression of cholinergic system components in bronchial aspirates from control subjects and patients with lung cancer. We conducted an analysis of cholinergic components in the stored soluble and cellular fraction of bronchial aspirates from non-cancerous patients and patients diagnosed with lung cancer. The results show that the fluid secreted by human lung cells contains enough AChE (acetylcholinesterase) activity to control ACh levels. Thus these findings demonstrate that: (i) AChE activity is significantly lower in aspirates from squamous cell carcinomas; (ii) the molecular distribution of AChE in both bronchial cells and fluids consisted of amphiphilic monomers and dimers; and (iii) choline acetyltransferase, nicotinic receptors and cholinesterases are expressed in cultured human lung cells, as demonstrated by RT-PCR (reverse transcriptase-PCR). It appears that the non-neuronal cholinergic system is involved in lung physiology and lung cancer. The physiological consequences of the presence of non-neuronal ACh will depend on the particular cholinergic signalling network in each cell type. Clarifying the pathophysiological actions of ACh remains an essential task and warrants further investigation.
Collapse
|
28
|
Auersperg N, Woo MM, Gilks CB. The origin of ovarian carcinomas: A developmental view. Gynecol Oncol 2008; 110:452-4. [PMID: 18603285 DOI: 10.1016/j.ygyno.2008.05.031] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Accepted: 05/19/2008] [Indexed: 11/26/2022]
|
29
|
Royer L, Reimann M, Andreopoulos B, Schroeder M. Unraveling protein networks with power graph analysis. PLoS Comput Biol 2008; 4:e1000108. [PMID: 18617988 PMCID: PMC2424176 DOI: 10.1371/journal.pcbi.1000108] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Accepted: 05/29/2008] [Indexed: 11/28/2022] Open
Abstract
Networks play a crucial role in computational biology, yet their analysis and representation is still an open problem. Power Graph Analysis is a lossless transformation of biological networks into a compact, less redundant representation, exploiting the abundance of cliques and bicliques as elementary topological motifs. We demonstrate with five examples the advantages of Power Graph Analysis. Investigating protein-protein interaction networks, we show how the catalytic subunits of the casein kinase II complex are distinguishable from the regulatory subunits, how interaction profiles and sequence phylogeny of SH3 domains correlate, and how false positive interactions among high-throughput interactions are spotted. Additionally, we demonstrate the generality of Power Graph Analysis by applying it to two other types of networks. We show how power graphs induce a clustering of both transcription factors and target genes in bipartite transcription networks, and how the erosion of a phosphatase domain in type 22 non-receptor tyrosine phosphatases is detected. We apply Power Graph Analysis to high-throughput protein interaction networks and show that up to 85% (56% on average) of the information is redundant. Experimental networks are more compressible than rewired ones of same degree distribution, indicating that experimental networks are rich in cliques and bicliques. Power Graphs are a novel representation of networks, which reduces network complexity by explicitly representing re-occurring network motifs. Power Graphs compress up to 85% of the edges in protein interaction networks and are applicable to all types of networks such as protein interactions, regulatory networks, or homology networks. Networks play a crucial role in biology and are often used as a way to represent experimental results. Yet, their analysis and representation is still an open problem. Recent experimental and computational progress yields networks of increased size and complexity. There are, for example, small- and large-scale interaction networks, regulatory networks, genetic networks, protein-ligand interaction networks, and homology networks analyzed and published regularly. A common way to access the information in a network is though direct visualization, but this fails as it often just results in “fur balls” from which little insight can be gathered. On the other hand, clustering techniques manage to avoid the problems caused by the large number of nodes and even larger number of edges by coarse-graining the networks and thus abstracting details. But these also fail, since, in fact, much of the biology lies in the details. This work presents a novel methodology for analyzing and representing networks. Power Graphs are a lossless representation of networks, which reduces network complexity by explicitly representing re-occurring network motifs. Moreover, power graphs can be clearly visualized: they compress up to 90% of the edges in biological networks and are applicable to all types of networks such as protein interaction, regulatory networks, or homology networks.
Collapse
Affiliation(s)
- Loïc Royer
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | | | | | | |
Collapse
|
30
|
Bibliography. Current world literature. Adrenal cortex. Curr Opin Endocrinol Diabetes Obes 2008; 15:284-299. [PMID: 18438178 DOI: 10.1097/med.0b013e3283040e80] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
31
|
Mor I, Bruck T, Greenberg D, Berson A, Schreiber L, Grisaru D, Soreq H. Alternate AChE-R variants facilitate cellular metabolic activity and resistance to genotoxic stress through enolase and RACK1 interactions. Chem Biol Interact 2008; 175:11-21. [PMID: 18572152 DOI: 10.1016/j.cbi.2008.05.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Revised: 05/11/2008] [Accepted: 05/12/2008] [Indexed: 12/25/2022]
Abstract
Tumorogenic transformation is a multifaceted cellular process involving combinatorial protein-protein interactions that modulate different cellular functions. Here, we report apparent involvement in two independent tumorogenic processes by distinct partner protein interactions of the stress-induced acetylcholinesterase AChE-R and N-AChE-R variants. Human testicular tumors showed elevated levels of N-terminally extended N-AChE-R compared with healthy tissue, indicating alternate promoter usage in the transformed cells. Two-hybrid screens demonstrate that the C-terminus common to both N-AChE-R and AChE-R interacts either with the glycolytic enzyme enolase or with the scaffold protein RACK1. In vitro, the AChE-R C-terminal peptide ARP elevated enolase's activity by 12%, suggesting physiological relevance for this interaction. Correspondingly, CHO cells expressing either human AChE-R or N-AChE-R but not AChE-S showed a 25% increase in cellular ATP levels, indicating metabolic significance for this upregulation of enolase activity. ATP levels could be reduced by AChE-targeted siRNA in CHO cells expressing AChE-R but not AChE-S, attributing this elevation to the AChE-R C-terminus. Additionally, transfected CHO cells expressing AChE-R but not N-AChE-R showed resistance to up to 60 microM of the common chemotherapeutic agent, cis-platinum, indicating AChE-R involvement in another molecular pathway. cis-Platinum elevates the expression of the apoptosis-regulator p53-like protein, p73, which is inactivated by interaction with the scaffold protein RACK1. In co-transfected cells, AChE-R competed with endogenous RACK1 for p73 interaction. Moreover, AChE-R-transfected CHO cells presented higher levels than control cells of the pro-apoptotic TAp73 as well as the anti-apoptotic dominant negative DeltaNp73 protein, leading to an overall decrease in the proportion of pro-apoptotic p73. Together, these findings are compatible with the hypothesis that in cancer cells, both AChE-R and N-AChE-R elevate cellular ATP levels and that AChE-R modifies p73 gene expression by facilitating two independent cellular pathways, thus conferring both a selective metabolic advantage and a genotoxic resistance.
Collapse
Affiliation(s)
- Inbal Mor
- The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | | | | | | | | |
Collapse
|
32
|
Schwartz DE, Gong P, Shepard KL. Time-resolved Förster-resonance-energy-transfer DNA assay on an active CMOS microarray. Biosens Bioelectron 2008; 24:383-90. [PMID: 18515059 DOI: 10.1016/j.bios.2008.04.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Revised: 04/15/2008] [Accepted: 04/17/2008] [Indexed: 11/16/2022]
Abstract
We present an active oligonucleotide microarray platform for time-resolved Förster-resonance-energy-transfer (TR-FRET) assays. In these assays, immobilized probe is labeled with a donor fluorophore and analyte target is labeled with a fluorescence quencher. Changes in the fluorescence decay lifetime of the donor are measured to determine the extent of hybridization. In this work, we demonstrate that TR-FRET assays have reduced sensitivity to variances in probe surface density compared with standard fluorescence-based microarray assays. Use of an active array substrate, fabricated in a standard complementary metal-oxide-semiconductor (CMOS) process, provides the additional benefits of reduced system complexity and cost. The array consists of 4096 independent single-photon avalanche diode (SPAD) pixel sites and features on-chip time-to-digital conversion. We demonstrate the functionality of our system by measuring a DNA target concentration series using TR-FRET with semiconductor quantum dot donors.
Collapse
Affiliation(s)
- David Eric Schwartz
- Department of Electrical Engineering, Bioelectronic Systems Laboratory, Columbia University, NY 10027, USA.
| | | | | |
Collapse
|
33
|
Li AJ, Elmore RG, Pavelka JC, Karlan BY. Hyperandrogenism, mediated by obesity and receptor polymorphisms, promotes aggressive epithelial ovarian cancer biology. Gynecol Oncol 2007; 107:420-3. [PMID: 17825390 DOI: 10.1016/j.ygyno.2007.07.059] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Revised: 07/17/2007] [Accepted: 07/18/2007] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Epidemiologic data suggest that aberrant androgen homeostasis may promote aggressive epithelial ovarian cancer biology. Hyperandrogenism results from both obesity and expression of polymorphic androgen receptor (AR) allelotypes harboring short cytosine-adenine-guanine (CAG) repeat sequences; both have been shown to independently correlate with poor overall survival in ovarian cancer. We have hypothesized that the combination of these factors further manifests an aggressive ovarian cancer phenotype. METHODS Genotype analysis of the AR CAG polymorphism was performed on 81 patients with papillary serous epithelial ovarian cancer. Medical records were reviewed for body mass index (BMI), clinico-pathologic factors, and survival. Data were examined using the Fishers exact test, Kaplan-Meier survival, and Cox regression analyses. RESULTS Overweight or obese women (BMI > or = 25) with a short AR allele (< or = 19 CAG repeats) demonstrated statistically shorter progression-free survival (9 months) when compared to underweight or ideal body weight women (BMI < 25) and a long AR allele (> 19 CAG repeats; 26 months, p=0.0002). Overweight/obese women with a short AR allele also demonstrated shorter overall survival (34 months) when compared to underweight/ideal body weight women with a long AR allele (59 months, p=0.036). On multivariate analyses, the combination of a short AR allele and BMI > 25 was an independent poor prognostic factor after controlling for age, stage, grade, optimal cytoreduction, and AR allele length and BMI independently (p=0.05). CONCLUSION These data provide further evidence that suggest that hyperandrogenism promotes an aggressive epithelial ovarian cancer phenotype.
Collapse
Affiliation(s)
- Andrew J Li
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Suite 160W, Los Angeles, CA 90048, USA.
| | | | | | | |
Collapse
|