1
|
Tessier TM, Dodge MJ, MacNeil KM, Evans AM, Prusinkiewicz MA, Mymryk JS. Almost famous: Human adenoviruses (and what they have taught us about cancer). Tumour Virus Res 2021; 12:200225. [PMID: 34500123 PMCID: PMC8449131 DOI: 10.1016/j.tvr.2021.200225] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/25/2021] [Accepted: 09/03/2021] [Indexed: 12/11/2022] Open
Abstract
Papillomaviruses, polyomaviruses and adenoviruses are collectively categorized as the small DNA tumour viruses. Notably, human adenoviruses were the first human viruses demonstrated to be able to cause cancer, albeit in non-human animal models. Despite their long history, no human adenovirus is a known causative agent of human cancers, unlike a subset of their more famous cousins, including human papillomaviruses and human Merkel cell polyomavirus. Nevertheless, seminal research using human adenoviruses has been highly informative in understanding the basics of cell cycle control, gene expression, apoptosis and cell differentiation. This review highlights the contributions of human adenovirus research in advancing our knowledge of the molecular basis of cancer.
Collapse
Affiliation(s)
- Tanner M Tessier
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Mackenzie J Dodge
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Katelyn M MacNeil
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Andris M Evans
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Martin A Prusinkiewicz
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Joe S Mymryk
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada; Department of Otolaryngology, Head & Neck Surgery, The University of Western Ontario, London, ON, Canada; Department of Oncology, The University of Western Ontario, London, ON, Canada; London Regional Cancer Program, Lawson Health Research Institute, London, ON, Canada.
| |
Collapse
|
2
|
Zhao LJ, Loewenstein PM, Green M. The adenoviral E1A N-terminal domain represses MYC transcription in human cancer cells by targeting both p300 and TRRAP and inhibiting MYC promoter acetylation of H3K18 and H4K16. Genes Cancer 2016; 7:98-109. [PMID: 27382434 PMCID: PMC4918948 DOI: 10.18632/genesandcancer.99] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Human cancers frequently arise from increased expression of proto-oncogenes, such as MYC and HER2. Understanding the cellular pathways regulating the transcription and expression of proto-oncogenes is important for targeted therapies for cancer treatment. Adenoviral (Ad) E1A 243R (243 aa residues) is a viral oncoprotein that interacts with key regulators of gene transcription and cell proliferation. We have shown previously that the 80 amino acid N-terminal transcriptional repression domain of E1A 243R (E1A 1-80) can target the histone acetyltransferase (HAT) p300 and repress HER2 in the HER2-overexpressing human breast cancer cell line SKBR3. Expression of E1A 1-80 induces death of SKBR3 and other cancer cell lines. In this study, we performed total cell RNA sequence analysis and identified MYC as the regulatory gene for cellular proliferation most strongly repressed by E1A 1-80. By RT-quantitative PCR analysis we show that repression of MYC in SKBR3 cells occurs early after expression of E1A 1-80, suggesting that MYC may be an early responder of E1A 1-80-mediated transcriptional repression. Of interest, while E1A 1-80 repression of MYC occurs in all eight human cancer cell lines examined, repression of HER2 is cell-type dependent. We demonstrate by ChIP analysis that MYC transcriptional repression by E1A 1-80 is associated with inhibition of acetylation of H3K18 and H4K16 on the MYC promoter, as well as inhibition of RNA Pol II binding to the MYC promoter. Deletion mutant analysis of E1A 1-80 suggests that both p300/CBP and TRRAP are involved in E1A 1-80 repression of MYC transcription. Further, E1A 1-80 interaction with p300/CBP and TRRAP is correlated with inhibition of H3K18 and H4K16 acetylation on the MYC promoter, respectively. Our results indicate that E1A 1-80 may target two important pathways for histone modification to repress transcription in human cancer cells.
Collapse
Affiliation(s)
- Ling-Jun Zhao
- Institute for Molecular Virology, Department of Microbiology and Molecular Immunology, Saint Louis University School of Medicine, Doisy Research Center, St. Louis, Missouri, USA
| | - Paul M Loewenstein
- Institute for Molecular Virology, Department of Microbiology and Molecular Immunology, Saint Louis University School of Medicine, Doisy Research Center, St. Louis, Missouri, USA
| | - Maurice Green
- Institute for Molecular Virology, Department of Microbiology and Molecular Immunology, Saint Louis University School of Medicine, Doisy Research Center, St. Louis, Missouri, USA
| |
Collapse
|
3
|
The Cellular Protein Complex Associated with a Transforming Region of E1A Contains c-MYC. J Virol 2015; 90:1070-9. [PMID: 26559831 DOI: 10.1128/jvi.02039-15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 11/02/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The cell-transforming activity of human adenovirus 5 (hAd5) E1A is mediated by the N-terminal half of E1A, which interacts with three different major cellular protein complexes, p300/CBP, TRRAP/p400, and pRb family members. Among these protein interactions, the interaction of pRb family proteins with conserved region 2 (CR2) of E1A is known to promote cell proliferation by deregulating the activities of E2F family transcription factors. The functional consequences of interaction with the other two protein complexes in regulating the transforming activity of E1A are not well defined. Here, we report that the E1A N-terminal region also interacted with the cellular proto-oncoprotein c-MYC and the homolog of enhancer of yellow 2 (ENY2). Our results suggested that these proteins interacted with an essential E1A transforming domain spanning amino acid residues 26 to 35 which also interacted with TRRAP and p400. Small interfering RNA (siRNA)-mediated depletion of TRRAP reduced c-MYC interaction with E1A, while p400 depletion did not. In contrast, depletion of TRRAP enhanced ENY2 interaction with E1A, suggesting that ENY2 and TRRAP may interact with E1A in a competitive manner. The same E1A region additionally interacted with the constituents of a deubiquitinase complex consisting of USP22, ATXN7, and ATXN7L3 via TRRAP. Acute short hairpin RNA (shRNA)-mediated depletion of c-MYC reduced the E1A transforming activity, while depletion of ENY2 and MAX did not. These results suggested that the association of c-MYC with E1A may, at least partially, play a role in the E1A transformation activity, independently of MAX. IMPORTANCE The transforming region of adenovirus E1A consists of three short modules which complex with different cellular protein complexes. The mechanism by which one of the transforming modules, CR2, promotes cell proliferation, through inactivating the activities of the pRb family proteins, is better understood than the activities of the other domains. Our analysis of the E1A proteome revealed the presence of the proto-oncoprotein c-MYC and of ENY2. We mapped these interactions to a critical transforming module of E1A that was previously known to interact with the scaffolding molecule TRRAP and the E1A-binding protein p400. We showed that c-MYC interacted with E1A through TRRAP, while ENY2 interacted with it independently. The data reported here indicated that depletion of c-MYC in normal human cells reduced the transforming activity of E1A. Our result raises a novel paradigm in oncogenic transformation by a DNA viral oncogene, the E1A gene, that may exploit the activity of a cellular oncogene, the c-MYC gene, in addition to inactivation of the tumor suppressors, such as pRb.
Collapse
|
4
|
Srzentić S, Nikčević G, Spasovski D, Baščarević Z, Živković Z, Terzic-Šupić Z, Matanović D, Djordjević V, Pavlović S, Spasovski V. Predictive genetic markers of coagulation, inflammation and apoptosis in Perthes disease—Serbian experience. Eur J Pediatr 2015; 174:1085-92. [PMID: 25754626 DOI: 10.1007/s00431-015-2510-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 02/16/2015] [Accepted: 02/19/2015] [Indexed: 01/06/2023]
Abstract
UNLABELLED Perthes disease is one of the most common forms of pediatric femoral head osteonecrosis with an unknown etiology. Coagulation factors were the first genetic factors suspected to have a role in the pathogenesis of this disease, but studies showed inconsistent results. It is described that inflammation is present during early stages of Perthes disease, but its genetic aspect has not been studied extensively. Little is known regarding the status of apoptotic factors during the repair process that leads to the occurrence of hip deformity in patients. Therefore, the aim of this study was to analyze major mediators involved in coagulation, inflammation, and apoptotic processes as possible causative factors of Perthes disease. The study cohort consisted of 37 patients. Gene variants of TNF-α, FV, FII, and MTHFR genes were determined by PCR-RFLP, while IL-3 and PAI-1 were genotyped by direct sequencing. The expression level of Bax, Bcl-2, Bcl2L12, Fas and FasL was analyzed by quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR) technique. Our results showed a significantly increased level of expression of pro-apoptotic factor Bax along with significantly higher Bax/Bcl-2 ratio in the patient group. CONCLUSION The results presented indicate that apoptosis could be one of the factors contributing to the lack of balanced bone remodeling process in Perthes patients.
Collapse
Affiliation(s)
- Sanja Srzentić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, Belgrade, 11010, Serbia,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Valero ML, Cimas FJ, Arias L, Melgar-Rojas P, García E, Callejas-Valera JL, García-Cano J, Serrano-Oviedo L, Ángel de la Cruz-Morcillo M, Sánchez-Pérez I, Sánchez-Prieto R. E1a promotes c-Myc-dependent replicative stress: implications in glioblastoma radiosensitization. Cell Cycle 2013; 13:52-61. [PMID: 24196438 PMCID: PMC3925735 DOI: 10.4161/cc.26754] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 10/08/2013] [Accepted: 10/08/2013] [Indexed: 12/27/2022] Open
Abstract
The E1a gene from adenovirus is known to be a potent inducer of chemo/radiosensitivity in a wide range of tumors. However, the molecular bases of its radiosensitizer properties are still poorly understood. In an attempt to study this effect, U87MG cells, derived from a radio-resistant tumor as glioblastoma, where infected with lentivirus carrying E1a gene developing an acute sensitivity to ionizing radiation. The induction of radiosensitivity correlated with a marked G 2/M phase accumulation and a potent apoptotic response. Our findings demonstrate that c-Myc plays a pivotal role in E1a-associated radiosensitivity through the induction of a replicative stress situation, as our data support by genetic approaches, based in interference and overexpression in U87MG cells. In fact, we present evidence showing that Chk1 is a novel transcriptional target of E1a gene through the effect exerted by this adenoviral protein onto c-Myc. Moreover, c-Myc upregulation also explains the marked phosphorylation of H2AX associated to E1a expression in the absence of DNA damage. Indeed, all these observations were applicable to other experimental models, such as T98G, LN-405 and A172, rendering the same pattern in terms of radiosensitivity, cell cycle distribution, upregulation of Chk1, c-Myc, and phosphorylation pattern of H2AX. In summary, our data propose a novel mechanism to explain how E1a mediates radiosensitivity through the signaling axis E1a→c-Myc→ replicative stress situation. This novel mechanism of E1a-mediated radiosensitivity could be the key to open new possibilities in the current therapy of glioblastoma.
Collapse
Affiliation(s)
- María Llanos Valero
- Laboratorio de Oncología Molecular; Centro Regional de Investigaciones Biomédicas; Universidad de Castilla-La Mancha/PCyTA/ Unidad de Biomédicina UCLM-CSIC; Albacete, Spain
| | - Francisco Jose Cimas
- Laboratorio de Oncología Molecular; Centro Regional de Investigaciones Biomédicas; Universidad de Castilla-La Mancha/PCyTA/ Unidad de Biomédicina UCLM-CSIC; Albacete, Spain
| | - Laura Arias
- Laboratorio de Oncología Molecular; Centro Regional de Investigaciones Biomédicas; Universidad de Castilla-La Mancha/PCyTA/ Unidad de Biomédicina UCLM-CSIC; Albacete, Spain
| | - Pedro Melgar-Rojas
- Laboratorio de Oncología Molecular; Centro Regional de Investigaciones Biomédicas; Universidad de Castilla-La Mancha/PCyTA/ Unidad de Biomédicina UCLM-CSIC; Albacete, Spain
| | - Elena García
- Laboratorio de Oncología Molecular; Centro Regional de Investigaciones Biomédicas; Universidad de Castilla-La Mancha/PCyTA/ Unidad de Biomédicina UCLM-CSIC; Albacete, Spain
| | - Juan Luis Callejas-Valera
- Laboratorio de Oncología Molecular; Centro Regional de Investigaciones Biomédicas; Universidad de Castilla-La Mancha/PCyTA/ Unidad de Biomédicina UCLM-CSIC; Albacete, Spain
| | - Jesús García-Cano
- Laboratorio de Oncología Molecular; Centro Regional de Investigaciones Biomédicas; Universidad de Castilla-La Mancha/PCyTA/ Unidad de Biomédicina UCLM-CSIC; Albacete, Spain
| | - Leticia Serrano-Oviedo
- Laboratorio de Oncología Molecular; Centro Regional de Investigaciones Biomédicas; Universidad de Castilla-La Mancha/PCyTA/ Unidad de Biomédicina UCLM-CSIC; Albacete, Spain
| | - Miguel Ángel de la Cruz-Morcillo
- Laboratorio de Oncología Molecular; Centro Regional de Investigaciones Biomédicas; Universidad de Castilla-La Mancha/PCyTA/ Unidad de Biomédicina UCLM-CSIC; Albacete, Spain
| | - Isabel Sánchez-Pérez
- Department of Biochemistry; School of Medicine;Biomedical Research Institute of Madrid CSIC/UAM; Madrid, Spain
| | - Ricardo Sánchez-Prieto
- Laboratorio de Oncología Molecular; Centro Regional de Investigaciones Biomédicas; Universidad de Castilla-La Mancha/PCyTA/ Unidad de Biomédicina UCLM-CSIC; Albacete, Spain
| |
Collapse
|
6
|
Adenovirus E1A oncogene induces rereplication of cellular DNA and alters DNA replication dynamics. J Virol 2013; 87:8767-78. [PMID: 23740993 DOI: 10.1128/jvi.00879-13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The oncogenic property of the adenovirus (Ad) transforming E1A protein is linked to its capacity to induce cellular DNA synthesis which occurs as a result of its interaction with several host proteins, including pRb and p300/CBP. While the proteins that contribute to the forced induction of cellular DNA synthesis have been intensively studied, the nature of the cellular DNA replication that is induced by E1A in quiescent cells is not well understood. Here we show that E1A expression in quiescent cells leads to massive cellular DNA rereplication in late S phase. Using a single-molecule DNA fiber assay, we studied the cellular DNA replication dynamics in E1A-expressing cells. Our studies show that the DNA replication pattern is dramatically altered in E1A-expressing cells, with increased replicon length, fork velocity, and interorigin distance. The interorigin distance increased by about 3-fold, suggesting that fewer DNA replication origins are used in E1A-expressing cells. These aberrant replication events led to replication stress, as evidenced by the activation of the DNA damage response. In earlier studies, we showed that E1A induces c-Myc as a result of E1A binding to p300. Using an antisense c-Myc to block c-Myc expression, our results indicate that induction of c-Myc in E1A-expressing cells contributes to the induction of host DNA replication. Together, our results suggest that the E1A oncogene-induced cellular DNA replication stress is due to dramatically altered cellular replication events and that E1A-induced c-Myc may contribute to these events.
Collapse
|
7
|
Padmanabhan A, Li X, Bieberich CJ. Protein kinase A regulates MYC protein through transcriptional and post-translational mechanisms in a catalytic subunit isoform-specific manner. J Biol Chem 2013; 288:14158-14169. [PMID: 23504319 PMCID: PMC3656272 DOI: 10.1074/jbc.m112.432377] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 03/11/2013] [Indexed: 11/06/2022] Open
Abstract
MYC levels are tightly regulated in cells, and deregulation is associated with many cancers. In this report, we describe the existence of a MYC-protein kinase A (PKA)-polo-like kinase 1 (PLK1) signaling loop in cells. We report that sequential MYC phosphorylation by PKA and PLK1 protects MYC from proteasome-mediated degradation. Interestingly, short term pan-PKA inhibition diminishes MYC level, whereas prolonged PKA catalytic subunit α (PKACα) knockdown, but not PKA catalytic subunit β (PKACβ) knockdown, increases MYC. We show that the short term effect of pan-PKA inhibition on MYC is post-translational and the PKACα-specific long term effect on MYC is transcriptional. These data also reveal distinct functional roles among PKA catalytic isoforms in MYC regulation. We attribute this effect to differential phosphorylation selectivity among PKA catalytic subunits, which we demonstrate for multiple substrates. Further, we also show that MYC up-regulates PKACβ, transcriptionally forming a proximate positive feedback loop. These results establish PKA as a regulator of MYC and highlight the distinct biological roles of the different PKA catalytic subunits.
Collapse
Affiliation(s)
- Achuth Padmanabhan
- Department of Biological Sciences, the University of Maryland Baltimore County, Baltimore, Maryland 21250
| | - Xiang Li
- Department of Biological Sciences, the University of Maryland Baltimore County, Baltimore, Maryland 21250
| | - Charles J Bieberich
- Department of Biological Sciences, the University of Maryland Baltimore County, Baltimore, Maryland 21250; Marlene and Stewart Greenebaum Cancer Center, University of Maryland, Baltimore, Maryland 21201.
| |
Collapse
|
8
|
Gade P, Singh AK, Roy SK, Reddy SP, Kalvakolanu DV. Down-regulation of the transcriptional mediator subunit Med1 contributes to the loss of expression of metastasis-associated dapk1 in human cancers and cancer cells. Int J Cancer 2009; 125:1566-74. [PMID: 19521987 PMCID: PMC4010141 DOI: 10.1002/ijc.24493] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
DAPK1, a ca(+2)/calmodulin regulated serine/threonine kinase, is a major tumor suppressor, whose expression is lost in multiple tumor types. However, the mechanisms contributing to it are unclear. We have recently shown that CCAAT/Enhancer binding protein-beta (C/EBP-beta) is required for the basal and interferon gamma (IFN-gamma)-induced expression of dapk1 in many cell types. C/EBP-beta interacts with the transcriptional Mediator, a multisubunit complex that couples enhancer bound transcription factors to the basal transcriptional machinery in an IFN-gamma dependent manner for regulating dapk1 expression. Specifically, the Med1 (TRAP220/PBP/DRIP220/CRSP220) subunit associates with the enhancer bound C/EBP-beta at the CRE/ATF site of dapk1 in an IFN-gamma dependent manner for stimulating gene expression. Therefore, we investigated if the mechanism responsible for the loss of dapk1 expression in human cancers involves a failure to recruit C/EBP-beta and/or Med1 to the dapk1 promoter. We compared the relative occupancy of these factors at the dapk1 promoter at CRE/ATF sites in normal and cancer cell lines. A significantly lower binding of these factors to the CRE/ATF site of dapk1 promoter occurred in human cancer cell lines than in normal cells. We show that loss of Med1 expression correlates with a corresponding loss of dapk1 expression in a number of primary human lung carcinomas. Med1 levels were significantly lower in cancer cell lines than in normal controls. Importantly, we show that restoration of Med1 induces the expression of dapk1 in these cancer cells and also attenuates their metastatic potential in vivo. Our studies reveal a critical parameter limiting dapk1 expression in cancer cell lines.
Collapse
Affiliation(s)
- Padmaja Gade
- Department of Microbiology & Immunology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Ashish K. Singh
- Department of Microbiology & Immunology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Sanjit K. Roy
- Department of Microbiology & Immunology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201
| | | | - Dhananjaya V. Kalvakolanu
- Department of Microbiology & Immunology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
9
|
de Groof AJC, te Lindert MM, van Dommelen MMT, Wu M, Willemse M, Smift AL, Winer M, Oerlemans F, Pluk H, Fransen JAM, Wieringa B. Increased OXPHOS activity precedes rise in glycolytic rate in H-RasV12/E1A transformed fibroblasts that develop a Warburg phenotype. Mol Cancer 2009; 8:54. [PMID: 19646236 PMCID: PMC2734543 DOI: 10.1186/1476-4598-8-54] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Accepted: 07/31/2009] [Indexed: 12/11/2022] Open
Abstract
Background The Warburg phenotype in cancer cells has been long recognized, but there is still limited insight in the consecutive metabolic alterations that characterize its establishment. We obtained better understanding of the coupling between metabolism and malignant transformation by studying mouse embryonic fibroblast-derived cells with loss-of-senescence or H-RasV12/E1A-transformed phenotypes at different stages of oncogenic progression. Results Spontaneous immortalization or induction of senescence-bypass had only marginal effects on metabolic profiles and viability. In contrast, H-RasV12/E1A transformation initially caused a steep increase in oxygen consumption and superoxide production, accompanied by massive cell death. During prolonged culture in vitro, cell growth rate increased gradually, along with tumor forming potential in in vitro anchorage-independent growth assays and in vivo tumor formation assays in immuno-deficient mice. Notably, glucose-to-lactic acid flux increased with passage number, while cellular oxygen consumption decreased. This conversion in metabolic properties was associated with a change in mitochondrial NAD+/NADH redox, indicative of decreased mitochondrial tricarboxic acid cycle and OXPHOS activity. Conclusion The high rate of oxidative metabolism in newly transformed cells is in marked contrast with the high glycolytic rate in cells in the later tumor stage. In our experimental system, with cells growing under ambient oxygen conditions in nutrient-rich media, the shift towards this Warburg phenotype occurred as a step-wise adaptation process associated with augmented tumorigenic capacity and improved survival characteristics of the transformed cells. We hypothesize that early-transformed cells, which potentially serve as founders for new tumor masses may escape therapies aimed at metabolic inhibition of tumors with a fully developed Warburg phenotype.
Collapse
Affiliation(s)
- Ad J C de Groof
- Department of Cell Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Sankar N, Kadeppagari RK, Thimmapaya B. c-Myc-induced aberrant DNA synthesis and activation of DNA damage response in p300 knockdown cells. J Biol Chem 2009; 284:15193-205. [PMID: 19332536 DOI: 10.1074/jbc.m900776200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
We previously showed that in quiescent cells, p300/CBP (CREB-binding protein)family coactivators repress c-myc and prevent premature induction of DNA synthesis. p300/CBP-depleted cells exit G(1) early and continue to accumulate in S phase but do not progress into G(2)/M, and eventually they die of apoptosis. Here, we show that the S-phase arrest in these cells is because of an intra-S-phase block. The inappropriate DNA synthesis that occurs as a result of forced expression of c-myc leads to the activation of the DNA damage response as evidenced by the phosphorylation of several checkpoint related proteins and the formation of foci containing gamma-H2AX. The activation of checkpoint response is related to the induction of c-myc, as the phosphorylation of checkpoint proteins can be reversed when cells are treated with a c-Myc inhibitor or when Myc synthesis is blocked by short hairpin RNA. Using the DNA fiber assay, we show that in p300-depleted cells initiation of replication occurs from multiple replication origins. Chromatin loading of the Cdc45 protein also indicates increased origin activity in p300 knockdown cells. Immunofluorescence experiments indicate that c-Myc colocalizes with replication foci, consistent with the recently reported direct role of c-Myc in the initiation of DNA synthesis. Thus, the inappropriate S-phase entry of p300 down-regulated cells is likely to be because of c-Myc-induced deregulated replication origin activity, which results in replicative stress, activation of a DNA damage response, and S-phase arrest. Our results point to an important role for p300 in maintaining genomic integrity by negatively regulating c-myc.
Collapse
Affiliation(s)
- Natesan Sankar
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | | | |
Collapse
|
11
|
Adenovirus transforming protein E1A induces c-Myc in quiescent cells by a novel mechanism. J Virol 2009; 83:4810-22. [PMID: 19279113 DOI: 10.1128/jvi.02145-08] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previously we showed that the E1A binding proteins p300 and CBP negatively regulate c-Myc in quiescent cells and that binding of E1A to p300 results in the induction of c-Myc and thereby induction of S phase. We demonstrated that p300 and HDAC3 cooperate with the transcription factor YY1 at an upstream YY1 binding site and repress the Myc promoter. Here we show that the small E1A protein induces c-Myc by interfering with the protein-protein interaction between p300, YY1, and HDAC3. Wild-type E1A but not the E1A mutants that do not bind to p300 interfered in recruitment of YY1, p300, and HDAC3 to the YY1 binding site. As E1A started to accumulate after infection, it transiently associated with promoter-bound p300. Subsequently, YY1, p300, and HDAC3 began to dissociate from the promoter. Later in infection, E1A dissociated from the promoter as well as p300, YY1, and HDAC3. Removal of HDAC3 from the promoter correlated with increased acetylation of Myc chromatin and induction. In vivo E1A stably associated with p300 and dissociated YY1 and HDAC3 from the trimolecular complex. In vitro protein-protein interaction studies indicated that E1A initially binds to the p300-YY1-HDAC3 complex, briefly associates with it, and then dissociates the complex, recapitulating somewhat the in vivo situation. Thus, E1A binding to the C-terminal region of p300 disrupts the important corepressor function provided by p300 in repressing c-Myc. Our results reveal a novel mechanism by which a viral oncoprotein activates c-Myc in quiescent cells and raise the possibility that the oncoproteins encoded by the small-DNA tumor viruses may use this mechanism to induce c-Myc, which may be critical for cell transformation.
Collapse
|
12
|
Zhang Q, Shen Q, Celestino J, Milam MR, Westin SN, Lacour RA, Meyer LA, Shipley GL, Davies PJA, Deng L, Mccampbell AS, Broaddus RR, Lu KH. Enhanced estrogen-induced proliferation in obese rat endometrium. Am J Obstet Gynecol 2009; 200:186.e1-8. [PMID: 19185100 PMCID: PMC2880878 DOI: 10.1016/j.ajog.2008.08.064] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Revised: 06/04/2008] [Accepted: 08/30/2008] [Indexed: 11/24/2022]
Abstract
OBJECTIVE We tested the hypothesis that the proliferative estrogen effect on the endometrium is enhanced in obese vs lean animals. STUDY DESIGN Using Zucker fa/fa obese rats and lean control, we examined endometrial cell proliferation and the expression patterns of certain estrogen-regulated proproliferative and antiproliferative genes after short-term treatment with estradiol. RESULTS No significant morphologic/histologic difference was seen between the obese rats and the lean rats. Estrogen-induced proproliferative genes cyclin A and c-Myc messenger RNA expression were significantly higher in the endometrium of obese rats compared with those of the lean control. Expression of the antiproliferative gene p27Kip1 was suppressed by estrogen treatment in both obese and lean rats; however, the decrease was more pronounced in obese rats. Estrogen more strongly induced the antiproliferative genes retinaldehyde dehydrogenases 2 and secreted frizzled-related protein 4 in lean rats but had little or no effect in obese rats. CONCLUSION Enhancement of estrogen-induced endometrial proproliferative gene expression and suppression of antiproliferative gene expression was seen in the endometrium of obese vs lean animals.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Gynecologic Oncology, the University of Texas M.D. Anderson Cancer Center, Houston, Texas, 77030
| | - Qi Shen
- Department of Integrative Biology and Pharmacology, the University of Texas Medical School at Houston
| | - Joseph Celestino
- Department of Gynecologic Oncology, the University of Texas M.D. Anderson Cancer Center, Houston, Texas, 77030
| | - Michael R. Milam
- Department of Gynecologic Oncology, the University of Texas M.D. Anderson Cancer Center, Houston, Texas, 77030
| | - Shannon N. Westin
- Department of Gynecologic Oncology, the University of Texas M.D. Anderson Cancer Center, Houston, Texas, 77030
| | - Robin A. Lacour
- Department of Gynecologic Oncology, the University of Texas M.D. Anderson Cancer Center, Houston, Texas, 77030
| | - Larissa A. Meyer
- Department of Gynecologic Oncology, the University of Texas M.D. Anderson Cancer Center, Houston, Texas, 77030
| | - Gregory L. Shipley
- Department of Integrative Biology and Pharmacology, the University of Texas Medical School at Houston
| | - Peter J. A. Davies
- Department of Integrative Biology and Pharmacology, the University of Texas Medical School at Houston
| | - Lei Deng
- Department of Pathology, the University of Texas M.D. Anderson Cancer Center
| | | | - Russell R. Broaddus
- Department of Pathology, the University of Texas M.D. Anderson Cancer Center
| | - Karen H. Lu
- Department of Gynecologic Oncology, the University of Texas M.D. Anderson Cancer Center, Houston, Texas, 77030
| |
Collapse
|
13
|
Ulasov IV, Tyler MA, Rivera AA, Nettelbeck DM, Douglas JT, Lesniak MS. Evaluation of E1A double mutant oncolytic adenovectors in anti-glioma gene therapy. J Med Virol 2008; 80:1595-603. [PMID: 18649343 PMCID: PMC2365750 DOI: 10.1002/jmv.21264] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Malignant glioma, in particular glioblastoma multiforme (GBM), represents one of the most devastating cancers currently known and existing treatment regimens do little to change patient prognosis. Conditionally replicating adenoviral vectors (CRAds) represent attractive experimental anti-cancer agents with potential for clinical application. However, early protein products of the wild type adenovirus backbone--such as E1A--limit CRAds' replicative specificity. In this study, we evaluated the oncolytic potency and specificity of CRAds in which p300/CPB and/or pRb binding capacities of E1A were ablated to reduce non-specific replicative cytolysis. In vitro cytopathic assays, quantitative PCR analysis, Western blot, and flow cytometry studies demonstrate the superior anti-glioma efficacy of a double-mutated CRAd, Ad2/24CMV, which harbors mutations that reduce E1A binding to p300/CPB and pRb. When compared to its single-mutated and wild type counterparts, Ad2/24CMV demonstrated attenuated replication and cytotoxicity in representative normal human brain while displaying enhanced replicative cytotoxicity in malignant glioma. These results have implications for the development of double-mutated CRAd vectors for enhanced GBM therapy.
Collapse
Affiliation(s)
- Ilya V. Ulasov
- The Brain Tumor Center, The University of Chicago, Chicago, Illinois
| | - Matthew A. Tyler
- The Brain Tumor Center, The University of Chicago, Chicago, Illinois
| | - Angel A. Rivera
- Division of Human Gene Therapy, Departments of Medicine, Obstetrics & Gynecology, Pathology, and Surgery, The Gene Therapy Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Dirk M. Nettelbeck
- Helmholtz University Group Oncolytic Adenoviruses at DKFZ (German Cancer Research Center) and Department of Dermatology, Heidelberg University Hospital, Im Neuenheimer Feld 242, Heidelberg, Germany
| | - Joanne T. Douglas
- Division of Human Gene Therapy, Departments of Medicine, Obstetrics & Gynecology, Pathology, and Surgery, The Gene Therapy Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Maciej S. Lesniak
- The Brain Tumor Center, The University of Chicago, Chicago, Illinois
| |
Collapse
|
14
|
Singhal G, Kadeppagari RK, Sankar N, Thimmapaya B. Simian virus 40 large T overcomes p300 repression of c-Myc. Virology 2008; 377:227-32. [PMID: 18570961 PMCID: PMC2519027 DOI: 10.1016/j.virol.2008.04.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Accepted: 04/30/2008] [Indexed: 11/17/2022]
Abstract
We previously showed that in quiescent cells p300/CBP negatively regulates the cell cycle G1-S transition by keeping c-Myc in a repressed state and that adenovirus E1A induces c-Myc by binding to p300/CBP. Studies have shown that p300/CBP binding to simian virus 40 large T is indirect and mediated by p53. By using a series of large T mutants that fail to bind to various cellular proteins including p53 as well as cells where p300 is overexpressed or p53 is knocked down, we show that the association of large T with p300 contributes to the induction of c-Myc and the cell cycle. The induction of c-Myc by this mechanism is likely to be important in large T mediated cell cycle induction and cell transformation.
Collapse
Affiliation(s)
- Ghata Singhal
- Microbiology and Immunology Department, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | | | - Natesan Sankar
- Microbiology and Immunology Department, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Bayar Thimmapaya
- Microbiology and Immunology Department, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| |
Collapse
|
15
|
Sankar N, Baluchamy S, Kadeppagari RK, Singhal G, Weitzman S, Thimmapaya B. p300 provides a corepressor function by cooperating with YY1 and HDAC3 to repress c-Myc. Oncogene 2008; 27:5717-28. [PMID: 18542060 DOI: 10.1038/onc.2008.181] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We showed earlier that p300/CBP plays an important role in G1 progression by negatively regulating c-Myc and thereby preventing premature G1 exit. Here, we have studied the mechanism by which p300 represses c-Myc and show that in quiescent cells p300 cooperates with histone deacetylase 3 (HDAC3) to repress transcription. p300 and HDAC3 are recruited to the upstream YY1-binding site of the c-Myc promoter resulting in chromatin deacetylation and repression of c-Myc transcription. Consistent with this, ablation of p300, YY1 or HDAC3 expression results in chromatin acetylation and induction of c-Myc. These three proteins exist as a complex in vivo and form a multiprotein complex with the YY1-binding site in vitro. The C-terminal region of p300 is both necessary and sufficient for the repression of c-Myc. These and other results suggest that in quiescent cells the C-terminal region of p300 provides corepressor function and facilitates the recruitment of p300 and HDAC3 to the YY1-binding site and represses the c-Myc promoter. This corepressor function of p300 prevents the inappropriate induction of c-Myc and S phase.
Collapse
Affiliation(s)
- N Sankar
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | | | | | | | |
Collapse
|
16
|
Abstract
Adenovirus E1A drives oncogenesis by targeting key regulatory pathways that are critical for cellular growth control. The interaction of E1A with p400 is essential for many E1A activities, but the downstream target of this interaction is unknown. Here, we present evidence that the oncoprotein transcription factor Myc is the target of this interaction. We show that E1A stabilizes Myc protein via p400 and promotes the coassociation of Myc and p400 at Myc target genes, leading to their transcriptional induction. We also show that E1A requires Myc for its ability to activate Myc-dependent gene expression and induce apoptosis, and that forced expression of Myc is sufficient to rescue the activity of an E1A-mutant defective in p400 binding. Together, these findings establish that Myc, via p400, is an essential downstream target of E1A.
Collapse
|