1
|
Chu MC, Mao WC, Wu HF, Chang YC, Lu TI, Lee CW, Chung YJ, Hsieh TH, Chang HS, Chen YF, Lin CH, Tang CW, Lin HC. Transient plasticity response is regulated by histone deacetylase inhibitor in oxygen-glucose deprivation condition. Pharmacol Rep 2023; 75:1200-1210. [PMID: 37695500 DOI: 10.1007/s43440-023-00525-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND The pathological form of synaptic plasticity, ischemic long-term potentiation (iLTP), induced by oxygen and glucose deprivation (OGD), is implicated in the acute phase of stroke with the potentiation of N-methyl-D-aspartate receptor (NMDAR). While there has been widespread attention on the excitatory system, a recent study reported that γ-aminobutyric acid (GABA)ergic system is also involved in iLTP. Valproic acid (VPA), a histone deacetylase inhibitor, protects against ischemic damage. However, whether VPA regulates early phase plasticity in ischemic stroke remains unknown. The present study aims to investigate the potential role and mechanism of VPA in ischemic stroke. METHODS A brief exposure of OGD on the hippocampal slices and the induction of photothrombotic ischemia (PTI) were used as ex vivo and in vivo models of ischemic stroke, respectively. RESULTS Using extracellular recordings, iLTP was induced in the hippocampal Schaffer collateral pathway following OGD exposure. VPA treatment abolished hippocampal iLTP via GABAA receptor enhancement and extracellular signal-regulated kinase (ERK) phosphorylation. Administration of VPA reduced brain infarct volume and motor dysfunction in mice with PTI. Moreover, VPA protected against ischemic injury by upregulating the GABAergic system and ERK phosphorylation, as well as by reducing of matrix metalloproteinase in a PTI-induced ischemic stroke model. CONCLUSIONS Together, this study revealed the protection of VPA in ex vivo OGD-induced pathological form of neuroplasticity and in vivo PTI-induced brain damage and motor dysfunction through rescuing GABAergic deficiency and the pathological hallmarks of ischemia.
Collapse
Affiliation(s)
- Ming-Chia Chu
- Department and Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wei-Chang Mao
- Department of Psychiatry, Cheng-Hsin General Hospital, Taipei, Taiwan
| | - Han-Fang Wu
- Department of Optometry, MacKay Medical College, New Taipei City, Taiwan
| | - Yun-Chi Chang
- Department and Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ting-I Lu
- Department and Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chi-Wei Lee
- Department and Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yueh-Jung Chung
- Department and Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tsung-Han Hsieh
- Department and Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsun-Shuo Chang
- School of Pharmacy, College of Pharmacy, Kaoshiung Medical University, Kaoshiung, Taiwan
| | - Yih-Fung Chen
- School of Pharmacy, College of Pharmacy, Kaoshiung Medical University, Kaoshiung, Taiwan
- Graduate Institute of Natural Products, College of Pharmacy, Kaoshiung Medical University, Kaoshiung, Taiwan
| | - Chia-Hsien Lin
- Department of Health Industry Management, Kainan University, Taoyuan, Taiwan
| | - Chih-Wei Tang
- Department of Neurology, Far Eastern Memorial Hospital, New Taipei City, Taiwan.
| | - Hui-Ching Lin
- Department and Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institute, Taipei, Taiwan.
| |
Collapse
|
2
|
Chen J, Huang L, Yang Y, Xu W, Qin Q, Qin R, Liang X, Lai X, Huang X, Xie M, Chen L. Somatic Cell Reprogramming for Nervous System Diseases: Techniques, Mechanisms, Potential Applications, and Challenges. Brain Sci 2023; 13:brainsci13030524. [PMID: 36979334 PMCID: PMC10046178 DOI: 10.3390/brainsci13030524] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Nervous system diseases present significant challenges to the neuroscience community due to ethical and practical constraints that limit access to appropriate research materials. Somatic cell reprogramming has been proposed as a novel way to obtain neurons. Various emerging techniques have been used to reprogram mature and differentiated cells into neurons. This review provides an overview of somatic cell reprogramming for neurological research and therapy, focusing on neural reprogramming and generating different neural cell types. We examine the mechanisms involved in reprogramming and the challenges that arise. We herein summarize cell reprogramming strategies to generate neurons, including transcription factors, small molecules, and microRNAs, with a focus on different types of cells.. While reprogramming somatic cells into neurons holds the potential for understanding neurological diseases and developing therapeutic applications, its limitations and risks must be carefully considered. Here, we highlight the potential benefits of somatic cell reprogramming for neurological disease research and therapy. This review contributes to the field by providing a comprehensive overview of the various techniques used to generate neurons by cellular reprogramming and discussing their potential applications.
Collapse
Affiliation(s)
- Jiafeng Chen
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Lijuan Huang
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Yue Yang
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Wei Xu
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Qingchun Qin
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Rongxing Qin
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Xiaojun Liang
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Xinyu Lai
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Nanning 530021, China
| | - Xiaoying Huang
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Minshan Xie
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Li Chen
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Nanning 530021, China
| |
Collapse
|
3
|
Tawarayama H, Hirata Y, Uchida K, Himori N, Uesato S, Nakazawa T. Isozyme-specific histone deacetylase 1/2 inhibitor K560 attenuates oxidative stress-induced retinal cell death. Neurosci Lett 2023; 793:136978. [PMID: 36435210 DOI: 10.1016/j.neulet.2022.136978] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/23/2022] [Accepted: 11/20/2022] [Indexed: 11/24/2022]
Abstract
Oxidative stress-induced damage is an underlying mechanism in the pathogenesis of age-related retinal diseases. Here, we examined the effects of K560, a potential candidate drug for the treatment of these diseases, on oxidative stress-induced retinal cell death. K560 is a novel isozyme-specific inhibitor of histone deacetylase 1 and 2 (HDAC1/2). Histone acetylation in retinal lysates and dissociated retinal cells was detected with a western blot analysis and cell-based enzyme-linked immunosorbent assay (ELISA), respectively. The viability of mouse retinal cells was measured with an alamarBlue assay. We used immunohistochemistry for RNA binding protein with multiple splicing (RBPMS) to visualize the retinal ganglion cells (RGCs) of mice. An ELISA analysis indicated that histone acetylation was enhanced in dissociated mouse retinal cells treated with K560. The cell viability assay indicated that K560 attenuated both exogenous hydrogen peroxide-induced and endogenous oxidative stress-induced cell death in dissociated retinal cells. Western blot analysis indicated that intravitreal K560 administration enhanced the acetylation of histones H3 and H4 in mouse retinal lysates. To examine the effect of K560 on oxidative stress-induced RGC death, we performed whole-mount immunohistochemistry for RBPMS on retinas dissected from eyes treated with K560 or vehicle on day one, and K560 or vehicle and NMDA on day two. Quantification of RBPMS-immunopositive cells indicated that K560 attenuated NMDA-induced RGC death. Taken together, our findings suggest that administration of a HDAC1/2-specific inhibitor K560 may be effective in the treatment of oxidative stress-mediated retinal degeneration and have less cytotoxicity than other known HDAC inhibitors, which are known to target a wide range of HDAC family members.
Collapse
Affiliation(s)
- Hiroshi Tawarayama
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan; Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan.
| | - Yoshiyuki Hirata
- Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | - Keiko Uchida
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Noriko Himori
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan; Department of Aging Vision Healthcare, Tohoku University Graduate School of Biomedical Engineering, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Shinichi Uesato
- Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | - Toru Nakazawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan; Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan; Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan; Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan.
| |
Collapse
|
4
|
Wang R, Qin Z, Luo H, Pan M, Liu M, Yang P, Shi T. Prognostic value of PNN in prostate cancer and its correlation with therapeutic significance. Front Genet 2022; 13:1056224. [PMID: 36468018 PMCID: PMC9708726 DOI: 10.3389/fgene.2022.1056224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/31/2022] [Indexed: 10/11/2023] Open
Abstract
Prostate cancer (PCa) is the most common malignancy. New biomarkers are in demand to facilitate the management. The role of the pinin protein (encoded by PNN gene) in PCa has not been thoroughly explored yet. Using The Cancer Genome Atlas (TCGA-PCa) dataset validated with Gene Expression Omnibus (GEO) and protein expression data retrieved from the Human Protein Atlas, the prognostic and diagnostic values of PNN were studied. Highly co-expressed genes with PNN (HCEG) were constructed for pathway enrichment analysis and drug prediction. A prognostic signature based on methylation status using HCEG was constructed. Gene set enrichment analysis (GSEA) and the TISIDB database were utilised to analyse the associations between PNN and tumour-infiltrating immune cells. The upregulated PNN expression in PCa at both transcription and protein levels suggests its potential as an independent prognostic factor of PCa. Analyses of the PNN's co-expression network indicated that PNN plays a role in RNA splicing and spliceosomes. The prognostic methylation signature demonstrated good performance for progression-free survival. Finally, our results showed that the PNN gene was involved in splicing-related pathways in PCa and identified as a potential biomarker for PCa.
Collapse
Affiliation(s)
- Ruisong Wang
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, China
- Changde Research Centre for Artificial Intelligence and Biomedicine, Changde, China
- Affiliated Hospital of Hunan University of Arts and Science (the Maternal and Child Health Hospital), Changde, Hunan, China
| | - Ziyi Qin
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, China
| | - Huiling Luo
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, China
| | - Meisen Pan
- Affiliated Hospital of Hunan University of Arts and Science (the Maternal and Child Health Hospital), Changde, Hunan, China
- Medical College, Hunan University of Arts and Science, Changde, Hunan, China
| | - Mingyao Liu
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, China
- Changde Research Centre for Artificial Intelligence and Biomedicine, Changde, China
| | - Pinhong Yang
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, China
- Changde Research Centre for Artificial Intelligence and Biomedicine, Changde, China
- Hunan Provincial Ley Laboratory for Molecular Immunity Techonology of Aquatic Animal Diseases, Changde, China
| | - Tieliu Shi
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, China
- Changde Research Centre for Artificial Intelligence and Biomedicine, Changde, China
| |
Collapse
|
5
|
Liu S, Tian H, Niu Y, Yu C, Xie L, Jin Z, Niu W, Ren J, Fu L, Yao Z. Combined cell grafting and VPA administration facilitates neural repair through axonal regeneration and synaptogenesis in traumatic brain injury. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1289-1300. [PMID: 36148950 PMCID: PMC9828309 DOI: 10.3724/abbs.2022123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Neuronal regeneration and functional recovery are severely compromised following traumatic brain injury (TBI). Treatment options, including cell transplantation and drug therapy, have been shown to benefit TBI, although the underlying mechanisms remain elusive. In this study, neural stem cells (NSCs) are transplanted into TBI-challenged mice, together with olfactory ensheathing cells (OECs) or followed by valproic acid (VPA) treatment. Both OEC grafting and VPA treatment facilitate the differentiation of NSCs into neurons (including endogenous and exogenous neurons) and significantly attenuate neurological functional defects in TBI mice. Combination of NSCs with OECs or VPA administration leads to overt improvement in axonal regeneration, synaptogenesis, and synaptic plasticity in the cerebral cortex in TBI-challenged mice, as shown by retrograde corticospinal tract tracing, electron microscopy, growth-associated protein 43 (GAP43), and synaptophysin (SYN) analyses. However, these beneficial effects of VPA are reversed by local delivery of N-methyl-D-aspartate (NMDA) into tissues surrounding the injury epicenter in the cerebral cortex, accompanied by a pronounced drop in axons and synapses in the brain. Our findings reveal that increased axonal regeneration and synaptogenesis evoked by cell grafting and VPA fosters neural repair in a murine model of TBI. Moreover, VPA-induced neuroprotective roles are antagonized by exogenous NMDA administration and its concomitant decrease in the number of neurons of local brain, indicating that increased neurons induced by VPA treatment mediate axonal regeneration and synaptogenesis in mice after TBI operation. Collectively, this study provides new insights into NSC transplantation therapy for TBI.
Collapse
Affiliation(s)
- Sujuan Liu
- Department of Anatomy and EmbryologySchool of Basic Medical ScienceTianjin Medical UniversityTianjin300070China
| | - Haili Tian
- School of KinesiologyShanghai University of SportShanghai200438China
| | - Yanmei Niu
- Department of RehabilitationSchool of Medical TechnologyTianjin Medical UniversityTianjin300070China
| | - Chunxia Yu
- Department of Physiology and PathophysiologySchool of Basic Medical ScienceTianjin Medical UniversityTianjin300070China
| | - Lingjian Xie
- Department of Physiology and PathophysiologySchool of Basic Medical ScienceTianjin Medical UniversityTianjin300070China
| | - Zhe Jin
- Tianjin Yaohua Binhai SchoolTianjin300000China
| | - Wenyan Niu
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education)Department of ImmunologySchool of Basic Medical ScienceTianjin Medical UniversityTianjin300070China
| | - Jun Ren
- Department of CardiologyZhongshan Hospital Fudan UniversityShanghai Institute of Cardiovascular DiseasesShanghai200032China,Department of Laboratory Medicine and PathologyUniversity of WashingtonSeattleWA98195USA,Correspondence address. Tel: +86-22-83336819; (Z.Y.) / Tel: +86-22-83336107; (L.F.) / Tel: +86-21-64041990; (J.R.) @
| | - Li Fu
- Department of RehabilitationSchool of Medical TechnologyTianjin Medical UniversityTianjin300070China,Department of Physiology and PathophysiologySchool of Basic Medical ScienceTianjin Medical UniversityTianjin300070China,Correspondence address. Tel: +86-22-83336819; (Z.Y.) / Tel: +86-22-83336107; (L.F.) / Tel: +86-21-64041990; (J.R.) @
| | - Zhi Yao
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education)Department of ImmunologySchool of Basic Medical ScienceTianjin Medical UniversityTianjin300070China,Correspondence address. Tel: +86-22-83336819; (Z.Y.) / Tel: +86-22-83336107; (L.F.) / Tel: +86-21-64041990; (J.R.) @
| |
Collapse
|
6
|
Naseh M, Bayat M, Akbari S, Vatanparast J, Shabani M, Haghighi AB, Haghani M. Neuroprotective effects of sodium valproate on hippocampal cell and volume, and cognitive function in a rat model of focal cerebral ischemia. Physiol Behav 2022; 251:113806. [PMID: 35417732 DOI: 10.1016/j.physbeh.2022.113806] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 02/07/2023]
Abstract
Valproate (VPA) as a histone deacetylase (HDAC) inhibitor has shown neuroprotective effects in neurodegenerative diseases. This study evaluated whether VPA treatment ameliorated the synaptic plasticity dysfunction, hippocampal neuronal loss, and spatial memory deficits induced by cerebral ischemia in the middle cerebral artery occlusion (MCAO) model. Thirty-two male Sprague-Dawley rats were randomly divided into 4 groups control, sham, cerebral ischemia+vehicle (MCAO+V), and MCAO+VPA. The right common carotid artery was occluded for 1 hour. VPA (300 mg/kg) or vehicles were injected intraperitoneally on days 0,1,2 and 3 of the reperfusion. After 7 days of reperfusion the Morris water maze, passive avoidance, and open field tests were performed. Hippocampal synaptic plasticity in the CA1 area was recorded by field potential recording. We used the term neuronal Input-Output (I/O) function and paired-pulse ratio (PPR) to refer to basal synaptic transmission and presynaptic neurotransmitter release probability respectively. After that, the brains were removed for assaying stereological parameters of the CA1 neurons. Our results showed the VPA administration significantly reduced the total infarct volume, improved MCAO-induced spatial learning -memory, fear memory, and anxiety compared to the MCAO+V group. In addition, the field potential recording showed that VPA significantly ameliorated the impaired the long- term potentiation (LTP) induced by MCAO, without any effects on basal synaptic transmission and neurotransmitter release probability. Therefore, it seems that a decrease in total infarct volume and induction of long-term potentiation via postsynaptic mechanisms is responsible for improving MCAO-induced cognitive impairment.
Collapse
Affiliation(s)
- Maryam Naseh
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahnaz Bayat
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Somayeh Akbari
- Department of Physiology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jafar Vatanparast
- Department of Biology, School of Science, Shiraz University, Shiraz, Iran
| | - Mohammad Shabani
- Kerman Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Masoud Haghani
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Physiology, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
7
|
Gao X, Zeb S, He YY, Guo Y, Zhu YM, Zhou XY, Zhang HL. Valproic Acid Inhibits Glial Scar Formation after Ischemic Stroke. Pharmacology 2022; 107:263-280. [PMID: 35316816 DOI: 10.1159/000514951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 02/02/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Cerebral ischemia induces reactive proliferation of astrocytes (astrogliosis) and glial scar formation. As a physical and biochemical barrier, the glial scar not only hinders spontaneous axonal regeneration and neuronal repair but also deteriorates the neuroinflammation in the recovery phase of ischemic stroke. OBJECTIVES Previous studies have shown the neuroprotective effects of the valproic acid (2-n-propylpentanoic acid, VPA) against ischemic stroke, but its effects on the ischemia-induced formation of astrogliosis and glial scar are still unknown. As targeting astrogliosis has become a therapeutic strategy for ischemic stroke, this study was designed to determine whether VPA can inhibit the ischemic stroke-induced glial scar formation and to explore its molecular mechanisms. METHODS Glial scar formation was induced by an ischemia-reperfusion (I/R) model in vivo and an oxygen and glucose deprivation (OGD)-reoxygenation (OGD/Re) model in vitro. Animals were treated with an intraperitoneal injection of VPA (250 mg/kg/day) for 28 days, and the ischemic stroke-related behaviors were assessed. RESULTS Four weeks of VPA treatment could markedly reduce the brain atrophy volume and improve the behavioral deficits in rats' I/R injury model. The results showed that VPA administrated upon reperfusion or 1 day post-reperfusion could also decrease the expression of the glial scar makers such as glial fibrillary acidic protein, neurocan, and phosphacan in the peri-infarct region after I/R. Consistent with the in vivo data, VPA treatment showed a protective effect against OGD/Re-induced astrocytic cell death in the in vitro model and also decreased the expression of GFAP, neurocan, and phosphacan. Further studies revealed that VPA significantly upregulated the expression of acetylated histone 3, acetylated histone 4, and heat-shock protein 70.1B in the OGD/Re-induced glial scar formation model. CONCLUSION VPA produces neuroprotective effects and inhibits the glial scar formation during the recovery period of ischemic stroke via inhibition of histone deacetylase and induction of Hsp70.1B.
Collapse
Affiliation(s)
- Xue Gao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Jiangsu Key, Soochow University, Suzhou, China
| | - Salman Zeb
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Jiangsu Key, Soochow University, Suzhou, China
| | - Yuan-Yuan He
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Jiangsu Key, Soochow University, Suzhou, China
| | - Yi Guo
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Jiangsu Key, Soochow University, Suzhou, China
| | - Yong-Ming Zhu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Jiangsu Key, Soochow University, Suzhou, China
| | - Xian-Yong Zhou
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Jiangsu Key, Soochow University, Suzhou, China
| | - Hui-Ling Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Jiangsu Key, Soochow University, Suzhou, China
| |
Collapse
|
8
|
Fereshetyan K, Chavushyan V, Danielyan M, Yenkoyan K. Assessment of behavioral, morphological and electrophysiological changes in prenatal and postnatal valproate induced rat models of autism spectrum disorder. Sci Rep 2021; 11:23471. [PMID: 34873263 PMCID: PMC8648736 DOI: 10.1038/s41598-021-02994-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 11/25/2021] [Indexed: 11/23/2022] Open
Abstract
Autism spectrum disorders (ASD) are neurodevelopmental disorders, that are characterized by core symptoms, such as alterations of social communication and restrictive or repetitive behavior. The etiology and pathophysiology of disease is still unknown, however, there is a strong interaction between genetic and environmental factors. An intriguing point in autism research is identification the vulnerable time periods of brain development that lack compensatory homeostatic corrections. Valproic acid (VPA) is an antiepileptic drug with a pronounced teratogenic effect associated with a high risk of ASD, and its administration to rats during the gestation is used for autism modeling. It has been hypothesized that valproate induced damage and functional alterations of autism target structures may occur and evolve during early postnatal life. Here, we used prenatal and postnatal administrations of VPA to investigate the main behavioral features which are associated with autism spectrum disorders core symptoms were tested in early juvenile and adult rats. Neuroanatomical lesion of autism target structures and electrophysiological studies in specific neural circuits. Our results showed that prenatal and early postnatal administration of valproate led to the behavioral alterations that were similar to ASD. Postnatally treated group showed tendency to normalize in adulthood. We found pronounced structural changes in the brain target regions of prenatally VPA-treated groups, and an absence of abnormalities in postnatally VPA-treated groups, which confirmed the different severity of VPA across different stages of brain development. The results of this study clearly show time dependent effect of VPA on neurodevelopment, which might be explained by temporal differences of brain regions' development process. Presumably, postnatal administration of valproate leads to the dysfunction of synaptic networks that is recovered during the lifespan, due to the brain plasticity and compensatory ability of circuit refinement. Therefore, investigations of compensatory homeostatic mechanisms activated after VPA administration and directed to eliminate the defects in postnatal brain, may elucidate strategies to improve the course of disease.
Collapse
Affiliation(s)
- Katarine Fereshetyan
- grid.427559.80000 0004 0418 5743Neuroscience Laboratory, Cobrain Center, Yerevan State Medical University named after M. Heratsi, 2 Koryun Str., 0025 Yerevan, Armenia ,grid.427559.80000 0004 0418 5743Department of Biochemistry, Yerevan State Medical University named after M. Heratsi, Yerevan, Armenia
| | - Vergine Chavushyan
- grid.427559.80000 0004 0418 5743Neuroscience Laboratory, Cobrain Center, Yerevan State Medical University named after M. Heratsi, 2 Koryun Str., 0025 Yerevan, Armenia ,grid.501896.3Laboratory of Neuroendocrine Relations, L. A. Orbeli Institute of Physiology NAS, Yerevan, Armenia
| | - Margarita Danielyan
- grid.427559.80000 0004 0418 5743Neuroscience Laboratory, Cobrain Center, Yerevan State Medical University named after M. Heratsi, 2 Koryun Str., 0025 Yerevan, Armenia ,grid.501896.3Laboratory of Histochemistry and Electromicroscopy, L. A. Orbeli Institute of Physiology NAS, Yerevan, Armenia
| | - Konstantin Yenkoyan
- Neuroscience Laboratory, Cobrain Center, Yerevan State Medical University named after M. Heratsi, 2 Koryun Str., 0025, Yerevan, Armenia. .,Department of Biochemistry, Yerevan State Medical University named after M. Heratsi, Yerevan, Armenia.
| |
Collapse
|
9
|
The Effect of Valproic Acid Exposure throughout Development on Microglia Number in the Prefrontal Cortex, Hippocampus and Cerebellum. Neuroscience 2021; 481:166-177. [PMID: 34780921 DOI: 10.1016/j.neuroscience.2021.11.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 01/14/2023]
Abstract
Microglia serve as resident immune cells in the brain, responding to insults and pathological developments. They have also been implicated in shaping synaptic development and regulation. The present study examined microglial cell density in a number of brain regions across select postnatal (P) ages along with the effects of valproic acid (VPA) on microglia density. Specifically, C57BL/6JCx3CR1+/GFP mice were examined for microglial cell number changes on P7, P14, P30, and P60 under baseline conditions and following 400 mg/kg VPA or saline. The prefrontal cortex (PFC), hippocampus and cerebellum were observed. Under control conditions, the results showed a shift in the number of microglia in these brain areas throughout development with a peak density in the hippocampus at P14 and an increase in PFC microglial numbers from P15 to P30. Interestingly, VPA treatment enhanced microglial numbers in a region-specific manner. VPA at P7 increased microglial cell number in the hippocampus and cerebellum whereas P14 VPA treatment altered microglial density in the cerebellum only. Cerebellar increases also occurred after VPA at P30, and were attended by an effect of increased numbers in the PFC. Finally, animals treated with VPA at P60 exhibited decreased microglia density in the hippocampus only. These results suggest rapid VPA-induced increases in microglial cell density in a developmentally-regulated fashion which differs across distinct brain areas. Furthermore, in the context of prior reports that early VPA causes excitotoxic damage, the present findings suggest early VPA exposure may provide a model for studying altered microglial responses to early toxicant challenge.
Collapse
|
10
|
C-11, a New Antiepileptic Drug Candidate: Evaluation of the Physicochemical Properties and Impact on the Protective Action of Selected Antiepileptic Drugs in the Mouse Maximal Electroshock-Induced Seizure Model. Molecules 2021; 26:molecules26113144. [PMID: 34074008 PMCID: PMC8197310 DOI: 10.3390/molecules26113144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/18/2021] [Accepted: 05/21/2021] [Indexed: 11/17/2022] Open
Abstract
C-11 is a hybrid compound derived from 2-(2,5-dioxopyrrolidin-1-yl) propanamide, with a wide spectrum of anticonvulsant activity and low neurotoxicity. The aim of this study was to determine the effects of C-11 on the protective action of various antiepileptic drugs (i.e., carbamazepine CBZ, lacosamide LCM, lamotrigine LTG, and valproate VPA) against maximal electroshock-induced seizures (MES) in mice, as well as its neuroprotective and physicochemical/pharmacokinetic properties. Results indicate that C-11 (30 mg/kg, i.p.) significantly enhanced the anticonvulsant action of LCM (p < 0.001) and VPA (p < 0.05) but not that of CBZ and LTG in the MES test. Neither C-11 (30 mg/kg) alone nor its combination with other anticonvulsant drugs (at their ED50 values from the MES test) affected motor coordination; skeletal muscular strength and long-term memory, as determined in the chimney; grip strength and passive avoidance tests, respectively. Pharmacokinetic characterization revealed that C-11 had no impact on total brain concentrations of LCM or VPA in mice. Qualitative analysis of neuroprotective properties of C-11, after a single administration of pilocarpine, revealed no protective effect of this substance in the tested animals. Determination of physicochemical descriptors showed that C-11 meets the drug-likeness requirements resulting from Lipinski and Veber’s rules and prediction of gastrointestinal absorption and brain penetration, which is extremely important for the CNS-active compounds.
Collapse
|
11
|
Mohammed MA, Gharib DM, Reyad HR, Mohamed AA, Elroby FA, Mahmoud HS. Antioxidant and anti-inflammatory properties of alpha-lipoic acid protect against valproic acid-induced liver injury. Can J Physiol Pharmacol 2021; 99:499-505. [PMID: 33275538 DOI: 10.1139/cjpp-2019-0456] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Valproic acid (VPA) is one of the most used antiepileptic drugs despite of its many adverse effects such as anemia, leucopenia, thrombocytopenia, and liver toxicity. The hepatoprotective effect of alpha-lipoic acid (ALA) was confirmed. The aim of this study was to detect the protective effect of ALA against the adverse effects of VPA. To study this, 30 white albino Wistar male rats were divided into four groups. Group I was the control group; Group II included rats that received ALA (100 mg·kg-1·day-1) orally for 14 days; Group III and Group IV included rats that received VPA (500 mg·kg-1·day-1) for 15 days intraperitoneally, but Group IV rats received ALA (100 mg·kg-1·day-1) orally for 14 days prior to VPA. Blood samples were collected and livers were excised from rats for colorimetric analysis and quantitative real-time PCR. The rats that received VPA showed leucopenia, thrombocytopenia, a significant decrease of superoxide dismutase, glutathione, nuclear factor erythroid 2-related factor 2, and sirtuin 1, besides a significant increase of malondialdehyde and tumor necrosis factor α. Prior treatment with ALA prevented all these results; ALA protected against VPA-induced liver damage and hematological disturbance via antioxidant and anti-inflammatory properties.
Collapse
Affiliation(s)
| | | | - Hoda Ramadan Reyad
- Department of Biochemistry, Faculty of Medicine, Beni-Suef University, Egypt
| | - Alaa Aboud Mohamed
- Department of Biochemistry, Faculty of Medicine, Beni-Suef University, Egypt
| | - Fadwa A Elroby
- Department of Forensic Medicine and Toxicology, Faculty of Medicine, Beni-Suef University, Egypt
| | - Hoda Sayed Mahmoud
- Department of Forensic Medicine and Toxicology, Faculty of Medicine, Beni-Suef University, Egypt
| |
Collapse
|
12
|
Kim H, Rhee SJ, Lee H, Han D, Lee TY, Kim M, Kim EY, Kwon JS, Shin H, Kim H, Ahn YM, Ha K. Identification of altered protein expression in major depressive disorder and bipolar disorder patients using liquid chromatography-tandem mass spectrometry. Psychiatry Res 2021; 299:113850. [PMID: 33711561 DOI: 10.1016/j.psychres.2021.113850] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/28/2021] [Indexed: 01/07/2023]
Abstract
Emerging high-throughput proteomic technologies have recently been considered as a powerful means of identifying substrates involved in mood disorders. We performed proteomic profiling using liquid chromatography-tandem mass spectrometry to identify dysregulated proteins in plasma samples of 42 and 45 patients with major depressive disorder (MDD) and bipolar disorder (BD), respectively, in comparison to 51 healthy controls (HCs). Fourteen and six proteins in MDD and BD patients, respectively, were differentially expressed compared to HCs, among which coagulation factor XIII A chain (F13A1), platelet basic protein (PPBP), platelet facor 4 (PF4), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and thymosin beta-4 (TMSB4X) were altered in both disorders. For proteins dysregulated in both, except F13A1, higher fold changes were observed in MDD than in BD patients. These findings may help identify candidate biomarkers of mood disorders and elucidate their underlying pathophysiology and biochemical abnormalities.
Collapse
Affiliation(s)
- Hyeyoung Kim
- Department of Psychiatry, Inha University Hospital, Incheon, Republic of Korea; Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sang Jin Rhee
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hyunju Lee
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Dohyun Han
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Tae Young Lee
- Department of Neuropsychiatry, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Minah Kim
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Eun Young Kim
- Department of Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jun Soo Kwon
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea; Institute of Human Behavioral Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea; Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hyunsuk Shin
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hyeyoon Kim
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yong Min Ahn
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea; Institute of Human Behavioral Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea.
| | - Kyooseob Ha
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea; Institute of Human Behavioral Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea.
| |
Collapse
|
13
|
Zhang R, Mu J, Chi J, Jiang W, Chi X. The role of picornavirus infection in epileptogenesis. ACTA EPILEPTOLOGICA 2021. [DOI: 10.1186/s42494-021-00040-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractPicornaviridae are a family of small positive-strand RNA viruses, and transmitted via the respiratory or fecal-oral route. The neurotropic picornaviruses can induce acute or late recurrent seizures following central nervous system infection, by infecting the peripheral nerve, crossing the blood-brain barrier and migrating in the Trojan-horse method. Theiler’s murine encephalomyelitis virus (TMEV), as a member of Picornaviridae family, can cause encephalitis, leading to chronic spontaneous seizures. TMEV-infected C57BL/6 mice have been used as an animal model for exploring the mechanism of epileptogenesis and assessing new antiepileptic drugs. Astrogliosis, neuronal death and microglial recruitment have been detected in the hippocampus following the picornaviruse-induced encephalitis. The macrophages, monocytes, neutrophils, as well as IL-6 and TNF-α released by them, play an important role in the epileptogenesis. In this review, we summarize the clinical characteristics of picornavirus infection, and the immunopathology involved in the TMEV-induced epilepsy.
Collapse
|
14
|
Zaidi SAH, Guzman W, Singh S, Mehrotra S, Husain S. Changes in Class I and IIb HDACs by δ-Opioid in Chronic Rat Glaucoma Model. Invest Ophthalmol Vis Sci 2020; 61:4. [PMID: 33263714 PMCID: PMC7718808 DOI: 10.1167/iovs.61.14.4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Purpose This study determines if δ-opioid receptor agonist (i.e. SNC-121)-induced epigenetic changes via regulation of histone deacetylases (HDACs) for retinal ganglion cell (RGC) neuroprotection in glaucoma model. Methods Intraocular pressure was raised in rat eyes by injecting 2M hypertonic saline into the limbal veins. SNC-121 (1 mg/kg; i.p.) was administered to the animals for 7 days. Retinas were collected at days 7 and 42, post-injury followed by measurement of HDAC activities, mRNA, and protein expression by enzyme assay, quantitative real-time PCR (qRT-PCR), Western blotting, and immunohistochemistry. Results The visual acuity, contrast sensitivity, and pattern electroretinograms (ERGs) were declined in ocular hypertensive animals, which were significantly improved by SNC-121 treatment. Class I and IIb HDACs activities were significantly increased at days 7 and 42 in ocular hypertensive animals. The mRNA and protein expression of HDAC 1 was increased by 1.33 ± 0.07-fold and 20.2 ± 2.7%, HDAC 2 by 1.4 ± 0.05-fold and 17.0 ± 2.4%, HDAC 3 by 1.4 ± 0.06-fold and 17.4 ± 3.4%, and HDAC 6 by 1.5 ± 0.09-fold and 15.1 ± 3.3% at day 7, post-injury. Both the mRNA and protein expression of HDACs were potentiated further at day 42 in ocular hypertensive animals. HDAC activities, mRNA, and protein expression were blocked by SNC-121 treatment at days 7 and 42 in ocular hypertensive animals. Conclusions Data suggests that class I and IIb HDACs are activated and upregulated during early stages of glaucoma. Early intervention with δ-opioid receptor activation resulted in the prolonged suppression of class I and IIb HDACs activities and expression, which may, in part, play a crucial role in RGC neuroprotection.
Collapse
Affiliation(s)
- Syed A H Zaidi
- Department of Ophthalmology, Storm Eye Institute, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Wendy Guzman
- Department of Ophthalmology, Storm Eye Institute, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Sudha Singh
- Department of Ophthalmology, Storm Eye Institute, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Shikhar Mehrotra
- Department of Surgery, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Shahid Husain
- Department of Ophthalmology, Storm Eye Institute, Medical University of South Carolina, Charleston, South Carolina, United States
| |
Collapse
|
15
|
Pan Z, Oh J, Huang L, Zeng Z, Duan P, Li Z, Yun Y, Kim J, Ha Y, Cao K. The combination of forskolin and VPA increases gene expression efficiency to the hypoxia/neuron-specific system. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:933. [PMID: 32953733 PMCID: PMC7475429 DOI: 10.21037/atm-20-3871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background Spinal cord injury (SCI) tends to damage neural tissue and generate a hypoxic environment. Studies have confirmed that single therapy with gene or stem cells is inefficient, but research into combining stem cells and gene therapy in treating tissue damage has been undertaken to overcome the related limitations, which include low gene delivery efficiency and therapeutic outcome. Thus, a combination of stem cells, gene therapy, and a hypoxia-specific system may be useful for the reconstruction of SCI. Methods To synergistically treat SCI, a combined platform using a hypoxia/neuron-inducible gene expression system (HNIS) and human induced-neural stem cells (hiNSCs) produced by direct reprogramming was designed. Sox2- or nestin-positive hiNSCs were differentiated to Tuj1-, MAP2-, or NeuN-positive neurons. Results HNIS showed consistent hypoxia/neuron-specific gene expression in hiNSCs cultured under hypoxia. In particular, the HNIS-hiNSC combined platform revealed a complex pattern with higher gene expression compared with a single platform. In addition, we found that an optimal combination of small molecules, such as CHIR99021, valproic acid (VPA), glycogen synthase kinase-3β (GSK3β), and histone deacetylase (HDAC) inhibitors, could significantly enhance gene expression with HNIS-hiNSCs in the hypoxic environment. Conclusions This experiment demonstrated that HNIS-hiNSCs combined with GSK3 and HDAC inhibitors may present another promising strategy in the treatment of SCI.
Collapse
Affiliation(s)
- Zhimin Pan
- Spine Center, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Department of Neurosurgery, Spine and Spinal Cord Institute, Yonsei University College of Medicine, Seoul, Republic of Korea.,Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jinsoo Oh
- Department of Neurosurgery, Spine and Spinal Cord Institute, Yonsei University College of Medicine, Seoul, Republic of Korea.,Brain Korea 21 PLUS Project for Medical Science, College of Medicine, Yonsei University, Seoul, Republic of Korea
| | - Lu Huang
- Department of Child Health and Care, Jiangxi Maternal and Child Health Hospital, Nanchang, China
| | - Zhaoxun Zeng
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Pingguo Duan
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhiyun Li
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yeomin Yun
- Department of Neurosurgery, Spine and Spinal Cord Institute, Yonsei University College of Medicine, Seoul, Republic of Korea.,Brain Korea 21 PLUS Project for Medical Science, College of Medicine, Yonsei University, Seoul, Republic of Korea
| | - Janghwan Kim
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Yoon Ha
- Department of Neurosurgery, Spine and Spinal Cord Institute, Yonsei University College of Medicine, Seoul, Republic of Korea.,Brain Korea 21 PLUS Project for Medical Science, College of Medicine, Yonsei University, Seoul, Republic of Korea
| | - Kai Cao
- Spine Center, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
16
|
Fan B, Wang J, Zha D, Qiu J, Chen F. ATP depletion induced cochlear hair cells death through histone deacetylation in vitro. Neurosci Lett 2020; 727:134918. [PMID: 32200029 DOI: 10.1016/j.neulet.2020.134918] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/19/2020] [Accepted: 03/17/2020] [Indexed: 01/01/2023]
Abstract
Previous studies have shown histone modifications being present in cochlear hair cells in animal models of hearing loss. Our past studies have shown that ATP depletion, histone deacetylase (HDAC) upregulation, and histone deacetylation occur in cochlea after noise exposure, and these are linked to hair cell death. Whether ATP depletion correlates with the expression level of HDACs and acetylation of histones is still unknown. In this study, we investigated the changes in the expression of HDACs and the level of histone acetylation in cochlear hair cells using an ATP-depleted explant culture of mouse organ of Corti. We found that the expression of HDAC3 and HDAC6 increased and hair cells were lost after oligomycin A (OA) treatment. Meanwhile, the acetylation level of histone H2B reduced. However, when oligomycin was combined with an HDAC inhibitor, trichostatin A (TSA), the acetylation level of histone H3 was restored. Moreover, combined treatment of oligomycin and TSA or sodium butyrate (NaB) attenuated oligomycin-induced cochlear hair cell loss. In conclusion, our results indicated that ATP depletion led to histone deacetylation and eventually resulted in hair cell death.
Collapse
Affiliation(s)
- Bei Fan
- Department of Otolaryngology Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jie Wang
- Department of Otolaryngology Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Dingjun Zha
- Department of Otolaryngology Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jianhua Qiu
- Department of Otolaryngology Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Fuquan Chen
- Department of Otolaryngology Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
17
|
Avagliano L, Massa V, George TM, Qureshy S, Bulfamante G, Finnell RH. Overview on neural tube defects: From development to physical characteristics. Birth Defects Res 2019; 111:1455-1467. [PMID: 30421543 PMCID: PMC6511489 DOI: 10.1002/bdr2.1380] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 07/29/2018] [Indexed: 12/18/2022]
Abstract
Neural tube defects (NTDs) are the second most common congenital malformations in humans affecting the development of the central nervous system. Although NTD pathogenesis has not yet been fully elucidated, many risk factors, both genetic and environmental, have been extensively reported. Classically divided in two main sub-groups (open and closed defects) NTDs present extremely variable prognosis mainly depending on the site of the lesion. Herein, we review the literature on the histological and pathological features, epidemiology, prenatal diagnosis, and prognosis, based on the type of defect, with the aim of providing important information based on NTDs classification for clinicians and scientists.
Collapse
Affiliation(s)
- Laura Avagliano
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milan, Italy
| | - Valentina Massa
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milan, Italy
| | - Timothy M. George
- Pediatric Neurosurgery, Dell Children’s Medical Center, Department of Neurosurgery, The University of Texas at Austin Dell Medical School, Austin, Texas, USA
| | - Sarah Qureshy
- Department of Pediatrics, The University of Texas at Austin Dell Medical School, Austin, Texas, USA
| | - Gaetano Bulfamante
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milan, Italy
| | - Richard H. Finnell
- Department of Pediatrics, The University of Texas at Austin Dell Medical School, Austin, Texas, USA
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology and Medicine, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
18
|
Chen WJ, Ma L, Li MS, Ma X. Valproic acid's effects on visual acuity in retinitis pigmentosa: a systemic review and Meta-analysis. Int J Ophthalmol 2019; 12:129-134. [PMID: 30662852 DOI: 10.18240/ijo.2019.01.20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 09/18/2018] [Indexed: 11/23/2022] Open
Abstract
AIM To gain a better understanding of the overall efficacy of valproic acid (VPA) treatment for retinitis pigmentosa (RP). METHODS Publications in PubMed, EMBASE, Cochrane Library, Web of Science and Clinicaltrials.gov were searched for clinical trials of patients with RP assigned to treatment with VPA. Patients' pre- and post-treatment visual field (VF) and best-corrected visual acuity (BCVA) scores were extracted and compared to assess changes. RESULTS A total of 78 reports were retrieved and 6 studies involving 116 patients were included in the Meta-analysis. The combined results showed a significant decrease in logarithm of minimal angle of resolution (logMAR) scores, calculated using baseline and post-treatment BCVA (P<0.00001, mean difference=-0.05, 95%CI: -0.05, -0.04, I 2=36%) scores, which means there was considerable improvement in visual acuity. Meanwhile, more BCVA changes were observed in short-term (≤6mo) treatment studies (P<0.00001, mean difference=-0.05, 95%CI: -0.05, -0.04, I 2=38%), studies conducted in Asia (P<0.00001, mean difference=-0.05, 95%CI: -0.05, -0.04, I 2=4%), studies with a sample size of 30 or fewer patients (P<0.00001, mean difference=-0.05, 95%CI: -0.05, -0.04, I 2=38%) and prospective studies (P<0.00001, mean difference=-0.05, 95%CI: -0.05, -0.04, I 2=0%). However, VPA's effect on VF was inconsistent across studies (P=0.75, mean difference=-22.76, 95%CI: -160.56, 115.05, I 2=68%). CONCLUSION This Meta-analysis reveals that most RP patients who were treated with VPA showed improvement in BCVA. However, its effect on VF remains inconsistent. VPA may be a promising treatment for RP.
Collapse
Affiliation(s)
- Wen-Jun Chen
- Department of Ophthalmology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
| | - Li Ma
- Department of Ophthalmology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
| | - Ming-Shu Li
- Department of Ophthalmology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
| | - Xiang Ma
- Department of Ophthalmology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
| |
Collapse
|
19
|
Western PS. Epigenomic drugs and the germline: Collateral damage in the home of heritability? Mol Cell Endocrinol 2018; 468:121-133. [PMID: 29471014 DOI: 10.1016/j.mce.2018.02.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 02/16/2018] [Accepted: 02/16/2018] [Indexed: 02/07/2023]
Abstract
The testis and ovary provide specialised environments that nurture germ cells and facilitate their maturation, culminating in the production of mature gametes that can found the following generation. The sperm and egg not only transmit genetic information, but also epigenetic modifications that affect the development and physiology of offspring. Importantly, the epigenetic information contained in mature sperm and oocytes can be influenced by a range of environmental factors, such as diet, chemicals and drugs. An increasing range of studies are revealing how gene-environment interactions are mediated through the germline. Outside the germline, altered epigenetic state is common in a range of diseases, including many cancers. As epigenetic modifications are reversible, pharmaceuticals that directly target epigenetic modifying proteins have been developed and are delivering substantial benefits to patients, particularly in oncology. While providing the most effective patient treatment is clearly the primary concern, some patients will want to conceive children after treatment. However, the impacts of epigenomic drugs on the male and female gametes are poorly understood and whether these drugs will have lasting effects on patients' germline epigenome and subsequent offspring remains largely undetermined. Currently, evidence based clinical guidelines for use of epigenomic drugs in patients of reproductive age are limited in this context. Developing a deeper understanding of the epigenetic mechanisms regulating the germline epigenome and its impact on inherited traits and disease susceptibility is required to determine how specific epigenomic drugs might affect the germline and inheritance. Understanding these potential effects will facilitate the development of informed clinical guidelines appropriate for the use of epigenomic drugs in patients of reproductive age, ultimately improving the safety of these therapies in the clinic.
Collapse
Affiliation(s)
- Patrick S Western
- Centre for Reproductive Health, Hudson Institute of Medical Research and Department of Molecular and Translational Science, Monash University, Clayton, Victoria, 3168, Australia.
| |
Collapse
|
20
|
Jhelum P, Karisetty BC, Kumar A, Chakravarty S. Implications of Epigenetic Mechanisms and their Targets in Cerebral Ischemia Models. Curr Neuropharmacol 2018; 15:815-830. [PMID: 27964703 PMCID: PMC5652028 DOI: 10.2174/1570159x14666161213143907] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 11/07/2016] [Accepted: 12/09/2016] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Understanding the complexities associated with the ischemic condition and identifying therapeutic targets in ischemia is a continued challenge in stroke biology. Emerging evidence reveals the potential involvement of epigenetic mechanisms in the incident and outcome of stroke, suggesting novel therapeutic options of targeting different molecules related to epigenetic regulation. OBJECTIVE This review summarizes our current understanding of ischemic pathophysiology, describes various in vivo and in vitro models of ischemia, and examines epigenetic modifications associated with the ischemic condition. METHOD We focus on microRNAs, DNA methylation, and histone modifying enzymes, and present how epigenetic studies are revealing novel drug target candidates in stroke. CONCLUSION Finally, we discuss emerging approaches for the prevention and treatment of stroke and post-stroke effects using pharmacological interventions with a wide therapeutic window.
Collapse
Affiliation(s)
- Priya Jhelum
- Chemical Biology, CSIR, Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad 500007, India
| | - Bhanu C Karisetty
- Chemical Biology, CSIR, Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad 500007, India
| | - Arvind Kumar
- CSIR, Centre for Cellular and Molecular Biology, Habsiguda, Uppal Road, Hyderabad 500007, India
| | - Sumana Chakravarty
- Chemical Biology, CSIR-Indian Institute of Chemical Technology (IICT), Tarnaka, Hyderabad-500007, India
| |
Collapse
|
21
|
Understanding the molecular mechanisms underlying mood stabilizer treatments in bipolar disorder: Potential involvement of epigenetics. Neurosci Lett 2018; 669:24-31. [DOI: 10.1016/j.neulet.2016.06.045] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/21/2016] [Accepted: 06/22/2016] [Indexed: 11/23/2022]
|
22
|
Mairuae N, Cheepsunthorn P. Valproic acid attenuates nitric oxide and interleukin-1β production in lipopolysaccharide-stimulated iron-rich microglia. Biomed Rep 2018. [PMID: 29541456 DOI: 10.3892/br.2018.1062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Iron accumulation in activated microglia has been consistently reported in neurodegenerative diseases. Previous results suggest that these cells facilitate neuroinflammation leading to neuronal cell death. Therefore, chemical compounds that alleviate the activation of iron-rich microglia may result in neuroprotection. In the present study, the effect of valproic acid (VPA) on microglial activation under iron-rich conditions was investigated. BV-2 microglial cells were exposed to lipopolysaccharide (LPS; 1 µg/ml) and iron (300 µg/ml) with or without VPA (1.6 mM). The results demonstrated that VPA attenuated the activation of iron-rich BV2 cells induced by LPS by down-regulating the mRNA expression of inducible nitric oxide (NO) synthase and interleukin 1β (IL-1β; P<0.01), to ultimately reduce the production of NO and IL-1β (P<0.01). These events were accompanied by an attenuation in the nuclear translocation of nuclear factor-κB p65 subunit (P<0.01). These findings suggest that VPA may be therapeutically useful for attenuating the activation of iron-rich microglia.
Collapse
Affiliation(s)
- Nootchanat Mairuae
- Biomedical Research Unit, Faculty of Medicine, Mahasarakham University, Maha Sarakham 44000, Thailand
| | - Poonlarp Cheepsunthorn
- Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
23
|
Karki P, Hong P, Johnson J, Pajarillo E, Son DS, Aschner M, Lee EY. Arundic Acid Increases Expression and Function of Astrocytic Glutamate Transporter EAAT1 Via the ERK, Akt, and NF-κB Pathways. Mol Neurobiol 2017; 55:5031-5046. [PMID: 28812276 PMCID: PMC5964991 DOI: 10.1007/s12035-017-0709-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 08/02/2017] [Indexed: 12/22/2022]
Abstract
Glutamate is the major excitatory neurotransmitter in the brain, but excessive synaptic glutamate must be removed to prevent excitotoxic injury and death. Two astrocytic glutamate transporters, excitatory amino acid transporter (EAAT) 1 and 2, play a major role in eliminating excess glutamate from the synapse. Dysregulation of EAAT1 contributes to the pathogenesis of multiple neurological disorders, such as Alzheimer's disease (AD), ataxia, traumatic brain injuries, and glaucoma. In the present study, we investigated the effect of arundic acid on EAAT1 to determine its efficacy in enhancing the expression and function of EAAT1, and its possible mechanisms of action. The studies were carried out in human astrocyte H4 cells as well as in human primary astrocytes. Our findings show that arundic acid upregulated EAAT1 expression at the transcriptional level by activating nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Arundic acid increased astrocytic EAAT1 promoter activity, messenger RNA (mRNA)/protein levels, and glutamate uptake, while pharmacological inhibition of NF-κB or mutation on NF-κB binding sites in the EAAT1 promoter region abrogated these effects. Arundic acid increased NF-κB reporter activity and induced NF-κB nuclear translocation as well as its bindings to the EAAT1 promoter. Furthermore, arundic acid activated the Akt and ERK signaling pathways to enhance EAAT1 mRNA/protein levels. Finally, arundic acid attenuated manganese-induced decrease in EAAT1 expression by inhibiting expression of the transcription factor Ying Yang 1 (YY1). These results demonstrate that arundic acid increases the expression and function of EAAT1 via the Akt, ERK, and NF-κB signaling pathways, and reverses Mn-induced EAAT1 repression by inhibiting the Mn-induced YY1 activation.
Collapse
Affiliation(s)
- Pratap Karki
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL, 32307, USA
| | - Peter Hong
- Department of Physiology, Meharry Medical College, Nashville, TN, 37208, USA
| | - James Johnson
- Department of Physiology, Meharry Medical College, Nashville, TN, 37208, USA
| | - Edward Pajarillo
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL, 32307, USA
| | - Deok-Soo Son
- Department of Physiology, Meharry Medical College, Nashville, TN, 37208, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Eunsook Y Lee
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL, 32307, USA.
| |
Collapse
|
24
|
Dissecting bipolar disorder complexity through epigenomic approach. Mol Psychiatry 2016; 21:1490-1498. [PMID: 27480490 PMCID: PMC5071130 DOI: 10.1038/mp.2016.123] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 06/09/2016] [Accepted: 06/13/2016] [Indexed: 01/16/2023]
Abstract
In recent years, numerous studies of gene regulation mechanisms have emerged in neuroscience. Epigenetic modifications, described as heritable but reversible changes, include DNA methylation, DNA hydroxymethylation, histone modifications and noncoding RNAs. The pathogenesis of psychiatric disorders, such as bipolar disorder, may be ascribed to a complex gene-environment interaction (G × E) model, linking the genome, environmental factors and epigenetic marks. Both the high complexity and the high heritability of bipolar disorder make it a compelling candidate for neurobiological analyses beyond DNA sequencing. Questions that are being raised in this review are the precise phenotype of the disorder in question, and also the trait versus state debate and how these concepts are being implemented in a variety of study designs.
Collapse
|
25
|
Therapeutic progress in amyotrophic lateral sclerosis-beginning to learning. Eur J Med Chem 2016; 121:903-917. [DOI: 10.1016/j.ejmech.2016.06.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 04/29/2016] [Accepted: 06/10/2016] [Indexed: 12/11/2022]
|
26
|
Edalatmanesh MA, Hosseini M, Ghasemi S, Golestani S, Sadeghnia HR, Mousavi SM, Vafaee F. Valproic acid-mediated inhibition of trimethyltin-induced deficits in memory and learning in the rat does not directly depend on its anti-oxidant properties. Ir J Med Sci 2016; 185:75-84. [PMID: 25638225 DOI: 10.1007/s11845-014-1224-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Accepted: 11/01/2014] [Indexed: 12/26/2022]
Abstract
BACKGROUND Trimethyltin (TMT) acts as a potent neurotoxic compound especially for the hippocampus. The effects of valproic acid (VPA) on TMT-induced learning and memory deficits were investigated. METHODS The rats were divided into: (1) control, (2) TMT, (3) TMT-VPA 1, (4) TMT-VPA 5, (5) TMT-VPA 10. TMT was injected as a single dose (12 mg/kg, ip) in groups 2-5. The animals of groups 3-5 were treated by 1, 5, and 10 mg/kg of VPA for 2 weeks. Learning and memory deficits were assessed by Morris water maze (MWM) and passive avoidance (PA) tests. The markers of oxidative stress mainly malondialdehyde (MDA) level and total thiol content were measured in the brain regions. RESULTS In MWM test, escape latency and traveled path in the TMT group were higher than control (p < 0.05 and p < 0.01). Treatment by 1, 5, and 10 mg/kg of VPA reduced escape latency and traveled path (p < 0.01-p < 0.001). In PA test, the time latency to enter the dark compartment in TMT group was lower than control group (p < 0.01). Treatment by 5 and 10 mg/kg of VPA increased the time latency (p < 0.05-p < 0.001). MDA concentration in hippocampal tissues of TMT group was higher while, total thiol content was lower than control ones (p < 0.05). Pretreatment with 10 mg/kg of VPA decreased the MDA level while, increased total thiol content (p < 0.01). CONCLUSIONS The results of present study showed that VPA attenuates TMT-induced memory deficits. Protective effects against brain tissues oxidative damage might have a role in the beneficial effects of VPA.
Collapse
Affiliation(s)
- M A Edalatmanesh
- Department of Biology, Faculty of Basic Sciences, Fars Science and Research Branch, Islamic Azad University, Shiraz, Iran
| | - M Hosseini
- Neurocognitive Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Neurogenic Inflammation Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - S Ghasemi
- Neurogenic Inflammation Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - S Golestani
- Department of Biology, Faculty of Basic Sciences, Fars Science and Research Branch, Islamic Azad University, Shiraz, Iran
| | - H R Sadeghnia
- Neurocognitive Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - S M Mousavi
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - F Vafaee
- Neurogenic Inflammation Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
27
|
Neuroprotection as a Potential Therapeutic Perspective in Neurodegenerative Diseases: Focus on Antiepileptic Drugs. Neurochem Res 2015; 41:340-52. [PMID: 26721507 DOI: 10.1007/s11064-015-1809-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 12/10/2015] [Accepted: 12/14/2015] [Indexed: 02/07/2023]
Abstract
Neuroprotection is conceived as one of the potential tool to prevent or slow neuronal death and hence a therapeutic hope to treat neurodegenerative diseases, like Parkinson's and Alzheimer's diseases. Increase of oxidative stress, mitochondrial dysfunction, excitotoxicity, inflammatory changes, iron accumulation, and protein aggregation have been identified as main causes of neuronal death and adopted as targets to test experimentally the putative neuroprotective effects of various classes of drugs. Among these agents, antiepileptic drugs (AEDs), both the old and the newer generations, have shown to exert protective effects in different experimental models. Their mechanism of action is mediated mainly by modulating the activity of sodium, calcium and potassium channels as well as the glutamatergic and GABAergic (gamma-aminobutyric acid) synapses. Neurological pathologies in which a neuroprotective action of AEDs has been demonstrated in specific experimental models include: cerebral ischemia, Parkinson's disease, and Alzheimer's disease. Although the whole of experimental data indicating that neuroprotection can be achieved is remarkable and encouraging, no firm data have been produced in humans so far and, at the present time, neuroprotection still remains a challenge for the future.
Collapse
|
28
|
Uzdensky AB, Berezhnaya EV, Kovaleva VD, Neginskaya MA, Rudkovskii MV, Sharifulina SA. The response of neurons and glial cells of crayfish to photodynamic treatment: Transcription factors and epigenetic regulation. BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY 2015. [DOI: 10.1134/s1990747815050190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Karki P, Kim C, Smith K, Son DS, Aschner M, Lee E. Transcriptional Regulation of the Astrocytic Excitatory Amino Acid Transporter 1 (EAAT1) via NF-κB and Yin Yang 1 (YY1). J Biol Chem 2015; 290:23725-37. [PMID: 26269591 DOI: 10.1074/jbc.m115.649327] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Indexed: 12/19/2022] Open
Abstract
Astrocytic glutamate transporter excitatory amino acid transporter (EAAT) 1, also known as glutamate aspartate transporter (GLAST) in rodents, is one of two glial glutamate transporters that are responsible for removing excess glutamate from synaptic clefts to prevent excitotoxic neuronal death. Despite its important role in neurophysiological functions, the molecular mechanisms of EAAT1 regulation at the transcriptional level remain to be established. Here, we report that NF-κB is a main positive transcription factor for EAAT1, supported by the following: 1) EAAT1 contains two consensus sites for NF-κB, 2) mutation of NF-κB binding sites decreased EAAT1 promoter activity, and 3) activation of NF-κB increased, whereas inhibition of NF-κB decreased EAAT1 promoter activity and mRNA/protein levels. EGF increased EAAT1 mRNA/protein levels and glutamate uptake via NF-κB. The transcription factor yin yang 1 (YY1) plays a role as a critical negative regulator of EAAT1, supported by the following: 1) the EAAT1 promoter contains multiple consensus sites for YY1, 2) overexpression of YY1 decreased EAAT1 promoter activity and mRNA/protein levels, and 3) knockdown of YY1 increased EAAT1 promoter activity and mRNA/protein levels. Manganese decreased EAAT1 expression via YY1. Epigenetic modifiers histone deacetylases (HDACs) served as co-repressors of YY1 to further decrease EAAT1 promoter activity, whereas inhibition of HDACs reversed manganese-induced decrease of EAAT1 expression. Taken together, our findings suggest that NF-κB is a critical positive regulator of EAAT1, mediating the stimulatory effects of EGF, whereas YY1 is a negative regulator of EAAT1 with HDACs as co-repressors, mediating the inhibitory effects of manganese on EAAT1 regulation.
Collapse
Affiliation(s)
- Pratap Karki
- From the Department of Physiology, School of Medicine, Meharry Medical College, Nashville, Tennessee 37208
| | - Clifford Kim
- the Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02115, and
| | - Keisha Smith
- From the Department of Physiology, School of Medicine, Meharry Medical College, Nashville, Tennessee 37208
| | - Deok-Soo Son
- From the Department of Physiology, School of Medicine, Meharry Medical College, Nashville, Tennessee 37208
| | - Michael Aschner
- the Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Eunsook Lee
- From the Department of Physiology, School of Medicine, Meharry Medical College, Nashville, Tennessee 37208,
| |
Collapse
|
30
|
Ookubo M, Sadamatsu M, Yoshimura A, Suzuki S, Kato N, Kojima H, Yamada N, Kanai H. Aberrant Monoaminergic System in Thyroid Hormone Receptor-β Deficient Mice as a Model of Attention-Deficit/Hyperactivity Disorder. Int J Neuropsychopharmacol 2015; 18:pyv004. [PMID: 25612897 PMCID: PMC4540106 DOI: 10.1093/ijnp/pyv004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Thyroid hormone receptors are divided into 2 functional types: TRα and TRβ. Thyroid hormone receptors play pivotal roles in the developing brain, and disruption of thyroid hormone receptors can produce permanent behavioral abnormality in animal models and humans. METHODS Here we examined behavioralchanges, regional monoamine metabolism, and expression of epigenetic modulatory proteins, including acetylated histone H3 and histone deacetylase, in the developing brain of TRα-disrupted (TRα (0/0) ) and TRβ-deficient (TRβ (-/-) ) mice. Tissue concentrations of dopamine, serotonin (5-hydroxytryptamine) and their metabolites in the mesocorticolimbic pathway were measured. RESULTS TRβ (-/-) mice, a model of attention-deficit/hyperactivity disorder, showed significantly high exploratory activity and reduced habituation, whereas TRα (0/0) mice showed normal exploratory activity. The biochemical profiles of dopamine and 5-hydroxytryptamine showed significantly low dopamine metabolic rates in the caudate putamen and nucleus accumbens and overall low 5-hydroxytryptamine metabolic rates in TRβ (-/-) mice, but not in TRα (0/0) mice. Furthermore, the expression of acetylated histone H3 was low in the dorsal raphe of TRβ (-/-) mice, and histone deacetylase 2/3 proteins were widely increased in the mesolimbic system. CONCLUSIONS These findings suggest that TRβ deficiency causes dysfunction of the monoaminergic system, accompanied by epigenetic disruption during the brain maturation process.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hirohiko Kanai
- Department of Psychiatry, Shiga University of Medical Science, Shiga, Japan (Drs Ookubo, Yoshimura, Yamada, and Kanai); Department of Psychiatry, Minakuchi Hospital, Shiga, Japan (Dr Ookubo); Department of Psychology and Psychiatry, Human Sciences, Kinjo Gakuin University, Aich, Japan (Dr Sadamatsu); Department of Thyroid and Endocrinology, Fukushima Medical University, Fukushima, Japan (Dr Suzuki); Department of Psychiatry, Showa University School of Medicine, Tokyo, Japan (Dr Kato); Department of Molecular Genetics in Medicine, Shiga University of Medical Science, Shiga, Japan (Dr. Kojima); Department of Psychiatry, Japanese Red Cross Society Nagahama Hospital, Shiga, Japan (Dr. Kanai).
| |
Collapse
|
31
|
Zhang JY, Zhang F, Hong CQ, Giuliano AE, Cui XJ, Zhou GJ, Zhang GJ, Cui YK. Critical protein GAPDH and its regulatory mechanisms in cancer cells. Cancer Biol Med 2015; 12:10-22. [PMID: 25859407 PMCID: PMC4383849 DOI: 10.7497/j.issn.2095-3941.2014.0019] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 12/26/2014] [Indexed: 02/04/2023] Open
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), initially identified as a glycolytic enzyme and considered as a housekeeping gene, is widely used as an internal control in experiments on proteins, mRNA, and DNA. However, emerging evidence indicates that GAPDH is implicated in diverse functions independent of its role in energy metabolism; the expression status of GAPDH is also deregulated in various cancer cells. One of the most common effects of GAPDH is its inconsistent role in the determination of cancer cell fate. Furthermore, studies have described GAPDH as a regulator of cell death; other studies have suggested that GAPDH participates in tumor progression and serves as a new therapeutic target. However, related regulatory mechanisms of its numerous cellular functions and deregulated expression levels remain unclear. GAPDH is tightly regulated at transcriptional and posttranscriptional levels, which are involved in the regulation of diverse GAPDH functions. Several cancer-related factors, such as insulin, hypoxia inducible factor-1 (HIF-1), p53, nitric oxide (NO), and acetylated histone, not only modulate GAPDH gene expression but also affect protein functions via common pathways. Moreover, posttranslational modifications (PTMs) occurring in GAPDH in cancer cells result in new activities unrelated to the original glycolytic function of GAPDH. In this review, recent findings related to GAPDH transcriptional regulation and PTMs are summarized. Mechanisms and pathways involved in GAPDH regulation and its different roles in cancer cells are also described.
Collapse
Affiliation(s)
- Jin-Ying Zhang
- 1 Department of Physiology, Guangdong Medical College, Dongguan 523808, China ; 2 Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou 515041, China ; 3 Department of Surgery, Women's Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Fan Zhang
- 1 Department of Physiology, Guangdong Medical College, Dongguan 523808, China ; 2 Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou 515041, China ; 3 Department of Surgery, Women's Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Chao-Qun Hong
- 1 Department of Physiology, Guangdong Medical College, Dongguan 523808, China ; 2 Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou 515041, China ; 3 Department of Surgery, Women's Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Armando E Giuliano
- 1 Department of Physiology, Guangdong Medical College, Dongguan 523808, China ; 2 Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou 515041, China ; 3 Department of Surgery, Women's Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Xiao-Jiang Cui
- 1 Department of Physiology, Guangdong Medical College, Dongguan 523808, China ; 2 Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou 515041, China ; 3 Department of Surgery, Women's Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Guang-Ji Zhou
- 1 Department of Physiology, Guangdong Medical College, Dongguan 523808, China ; 2 Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou 515041, China ; 3 Department of Surgery, Women's Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Guo-Jun Zhang
- 1 Department of Physiology, Guangdong Medical College, Dongguan 523808, China ; 2 Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou 515041, China ; 3 Department of Surgery, Women's Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Yu-Kun Cui
- 1 Department of Physiology, Guangdong Medical College, Dongguan 523808, China ; 2 Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou 515041, China ; 3 Department of Surgery, Women's Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
32
|
Bollino D, Balan I, Aurelian L. Valproic acid induces neuronal cell death through a novel calpain-dependent necroptosis pathway. J Neurochem 2015; 133:174-86. [PMID: 25581256 DOI: 10.1111/jnc.13029] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 12/24/2014] [Accepted: 01/05/2015] [Indexed: 02/06/2023]
Abstract
A growing body of evidence indicates that valproic acid (VPA), a histone deacetylase inhibitor used to treat epilepsy and mood disorders, has histone deacetylase-related and -unrelated neurotoxic activity, the mechanism of which is still poorly understood. We report that VPA induces neuronal cell death through an atypical calpain-dependent necroptosis pathway that initiates with downstream activation of c-Jun N-terminal kinase 1 (JNK1) and increased expression of receptor-interacting protein 1 (RIP-1) and is accompanied by cleavage and mitochondrial release/nuclear translocation of apoptosis-inducing factor, mitochondrial release of Smac/DIABLO, and inhibition of the anti-apoptotic protein X-linked inhibitor of apoptosis (XIAP). Coinciding with apoptosis-inducing factor nuclear translocation, VPA induces phosphorylation of the necroptosis-associated histone H2A family member H2AX, which is known to contribute to lethal DNA degradation. These signals are inhibited in neuronal cells that express constitutively activated MEK/ERK and/or PI3-K/Akt survival pathways, allowing them to resist VPA-induced cell death. The data indicate that VPA has neurotoxic activity and identify a novel calpain-dependent necroptosis pathway that includes JNK1 activation and RIP-1 expression. A growing body of evidence indicates that valproic acid (VPA) has neurotoxic activity, the mechanism of which is still poorly understood. We report, for the first time, that VPA activates a previously unrecognized calpain-dependent necroptosis cascade that initiates with JNK1 activation and involves AIF cleavage/nuclear translocation and H2AX phosphorylation as well as an altered Smac/DIABLO to XIAP balance.
Collapse
Affiliation(s)
- Dominique Bollino
- Department of Pharmacology, University of Maryland, Baltimore, Maryland, USA
| | | | | |
Collapse
|
33
|
Zaky A, Mahmoud M, Awad D, El Sabaa BM, Kandeel KM, Bassiouny AR. Valproic acid potentiates curcumin-mediated neuroprotection in lipopolysaccharide induced rats. Front Cell Neurosci 2014; 8:337. [PMID: 25374508 PMCID: PMC4204527 DOI: 10.3389/fncel.2014.00337] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 10/01/2014] [Indexed: 11/13/2022] Open
Abstract
The etiology of neuroinflammation is complex and comprises multifactorial, involving both genetic and environmental factors during which diverse genetic and epigenetic modulations are implicated. Curcumin (Cur) and valproic acid (VPA), histone deacetylase 1 inhibitor, have neuroprotective effects. The present study was designed with an aim to investigate the ability of co-treatment of both compounds (Cur or VPA, 200 mg/kg) for 4 weeks to augment neuroprotection and enhance brain recovery from intra-peritoneal injection of (250 μg/kg) lipopolysaccharide-stimulated neuroinflammatory condition on rat brain cortex. Cortex activation and the effects of combined treatment and production of proinflammatory mediators, cyclooxygenase-2 (COX-2), APE1, and nitric oxide/inducible nitric oxide synthase (iNOS) were investigated. Neuroinflammation development was assessed by histological analyses and by investigating associated indices [β-secretase (BACE1), amyloid protein precursor (APP), presenilin (PSEN-1), and PSEN-2)]. Furthermore we measured the expression profile of lethal-7 (let-7) miRNAs members a, b, c, e, and f in all groups, a highly abundant regulator of gene expression in the CNS. Protein and mRNA levels of neuroinflammation markers COX-2, BACE1, APP, and iNOS were also attenuated by combined therapy. On the other hand, assessment of the indicated five let-7 members, showed distinct expression profile pattern in the different groups. Let-7 a, b, and c disappeared in the induced group, an effect that was partially suppressed by co-addition of either Cur or VPA. These data suggest that the combined treatment induced significantly the expression of the five members when compared to rats treated with Cur or VPA only as well as to self-recovery group, which indicates a possible benefit from the synergistic effect of Cur-VPA combination as therapeutic agents for neuroinflammation and its associated disorders. The mechanism elucidated here highlights the particular drug-induced expression profile of let-7 family as new targets for future pharmacological development.
Collapse
Affiliation(s)
- Amira Zaky
- Department of Biochemistry, Faculty of Science, Alexandria University Alexandria, Egypt
| | - Mariam Mahmoud
- Department of Biochemistry, Faculty of Science, Alexandria University Alexandria, Egypt
| | - Doaa Awad
- Department of Biochemistry, Faculty of Science, Alexandria University Alexandria, Egypt
| | | | - Kamal M Kandeel
- Department of Biochemistry, Faculty of Science, Alexandria University Alexandria, Egypt
| | - Ahmad R Bassiouny
- Department of Biochemistry, Faculty of Science, Alexandria University Alexandria, Egypt
| |
Collapse
|
34
|
Tomioka T, Maruoka H, Kawa H, Yamazoe R, Fujiki D, Shimoke K, Ikeuchi T. The histone deacetylase inhibitor trichostatin A induces neurite outgrowth in PC12 cells via the epigenetically regulated expression of the nur77 gene. Neurosci Res 2014; 88:39-48. [PMID: 25128386 DOI: 10.1016/j.neures.2014.07.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 07/12/2014] [Accepted: 07/17/2014] [Indexed: 01/25/2023]
Abstract
Histone deacetylase (HDAC) inhibitors induce histone acetylation and gene expression by changing local chromatin structures. They can thereby influence various cells to proliferate or differentiate. It has been reported that trichostatin A (TSA) or valproic acid (VPA) can induce the neuronal differentiation of mouse embryonic neural stem cells and rat cerebellar granule cells. It is unclear however which gene is responsible for the neuronal differentiation induced by HDAC inhibitors. In this study, we investigated the contribution of immediate early gene (IEG) nur77 to the neuronal differentiation induced by TSA. We report that TSA induces neurite outgrowth in PC12 cells, and C646, an inhibitor of HAT (histone acetyl transferase) (p300), prevents TSA-induced neurite formation. The acetylation of the Lys14 residue of histone H3, and mRNA and protein expression of nur77 gene were found to be stimulated after treatment with TSA, but not in the presence of C646. A knock-down of nur77 inhibits the neurite outgrowth induced by TSA. Furthermore, the ectopic expression of nur77 significantly elicits neurite formation in PC12 cells. These results suggest that the expression of nur77, which is up-regulated via the TSA-induced acetylation of Lys14 on histone H3, is essential for the neuronal differentiation in TSA-induced PC12 cells.
Collapse
Affiliation(s)
- Takuma Tomioka
- Laboratory of Neurobiology, Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering and Strategic Research Base, Kansai University, 3-3-35, Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Hiroki Maruoka
- Laboratory of Neurobiology, Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering and Strategic Research Base, Kansai University, 3-3-35, Yamate-cho, Suita, Osaka 564-8680, Japan; Technical Research Laboratory, Kurabo Industries Ltd., Neyagawa, Osaka 572-0823, Japan
| | - Hiromichi Kawa
- Laboratory of Neurobiology, Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering and Strategic Research Base, Kansai University, 3-3-35, Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Ryosuke Yamazoe
- Laboratory of Neurobiology, Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering and Strategic Research Base, Kansai University, 3-3-35, Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Daichi Fujiki
- Laboratory of Neurobiology, Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering and Strategic Research Base, Kansai University, 3-3-35, Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Koji Shimoke
- Laboratory of Neurobiology, Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering and Strategic Research Base, Kansai University, 3-3-35, Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Toshihiko Ikeuchi
- Laboratory of Neurobiology, Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering and Strategic Research Base, Kansai University, 3-3-35, Yamate-cho, Suita, Osaka 564-8680, Japan.
| |
Collapse
|
35
|
Alsarraf O, Fan J, Dahrouj M, Chou CJ, Menick DR, Crosson CE. Acetylation: a lysine modification with neuroprotective effects in ischemic retinal degeneration. Exp Eye Res 2014; 127:124-31. [PMID: 25064603 DOI: 10.1016/j.exer.2014.07.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 07/09/2014] [Accepted: 07/15/2014] [Indexed: 12/13/2022]
Abstract
Neuroretinal ischemic injury contributes to several degenerative diseases in the eye and the resulting pathogenic processes involving a series of necrotic and apoptotic events. This study investigates the time and extent of changes in acetylation, and whether this influences function and survival of neuroretinal cells following injury. Studies evaluated the time course of changes in histone deacetylase (HDAC) activity, histone-H3 acetylation and caspase-3 activation levels as well as retinal morphology and function (electroretinography) following ischemia. In addition, the effect of two HDAC inhibitors, trichostatin-A and valproic acid were also investigated. In normal eyes, retinal ischemia produced a significant increase in HDAC activity within 2 h that was followed by a corresponding significant decrease in protein acetylation by 4 h. Activated caspase-3 levels were significantly elevated by 24 h. Treatment with HDAC inhibitors blocked the early decrease in protein acetylation and activation of caspase-3. Retinal immunohistochemistry demonstrated that systemic administration of trichostatin-A or valproic acid, resulted in hyperacetylation of all retinal layers after systemic treatment. In addition, HDAC inhibitors provided a significant functional and structural neuroprotection at seven days following injury relative to vehicle-treated eyes. These results provide evidence that increases in HDAC activity is an early event following retinal ischemia, and are accompanied by corresponding decreases in acetylation in advance of caspase-3 activation. In addition to preserving acetylation status, the administration of HDAC inhibitors suppressed caspase activation and provided structural and functional neuroprotection in model of ischemic retinal injury. Taken together these data provide evidence that decrease in retinal acetylation status is a central event in ischemic retinal injury, and the hyperacetylation induced by HDAC inhibition can provide acute neuroprotection.
Collapse
Affiliation(s)
- Oday Alsarraf
- 167 Ashley Avenue, Storm Eye Institute, Department of Ophthalmology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Jie Fan
- 167 Ashley Avenue, Storm Eye Institute, Department of Ophthalmology, Medical University of South Carolina, Charleston, SC 29425, USA.
| | - Mohammad Dahrouj
- 167 Ashley Avenue, Storm Eye Institute, Department of Ophthalmology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - C James Chou
- 167 Ashley Avenue, Storm Eye Institute, Department of Ophthalmology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Donald R Menick
- 167 Ashley Avenue, Storm Eye Institute, Department of Ophthalmology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Craig E Crosson
- 167 Ashley Avenue, Storm Eye Institute, Department of Ophthalmology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
36
|
|
37
|
Ma XH, Gao Q, Jia Z, Zhang ZW. Neuroprotective capabilities of TSA against cerebral ischemia/reperfusion injury via PI3K/Akt signaling pathway in rats. Int J Neurosci 2014; 125:140-6. [DOI: 10.3109/00207454.2014.912217] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
38
|
Xuan AG, Pan XB, Wei P, Ji WD, Zhang WJ, Liu JH, Hong LP, Chen WL, Long DH. Valproic acid alleviates memory deficits and attenuates amyloid-β deposition in transgenic mouse model of Alzheimer's disease. Mol Neurobiol 2014; 51:300-12. [PMID: 24854198 DOI: 10.1007/s12035-014-8751-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 05/13/2014] [Indexed: 12/12/2022]
Abstract
In the brains of patients with Alzheimer's disease (AD) and transgenic AD mouse models, astrocytes and microglia activated by amyloid-β (Aβ) contribute to the inflammatory process that develops around injury in the brain. Valproic acid (VPA) has been shown to have anti-inflammatory function. The present study intended to explore the therapeutic effect of VPA on the neuropathology and memory deficits in APPswe/PS1ΔE9 (APP/PS1) transgenic mice. Here, we report that VPA-treated APP/PS1 mice markedly improved memory deficits and decreased Aβ deposition compared with the vehicle-treated APP/PS1 mice. Moreover, the extensive astrogliosis and microgliosis as well as the increased expression in interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) in the hippocampus and cortex of APP/PS1 transgenic mice were significantly reduced following administration of VPA, which attenuated neuronal degeneration. Concomitantly, VPA alleviated the levels of p65 NF-κB phosphorylation and enhanced the levels of acetyl-H3, Bcl-2, and phospho-glycogen synthase kinase (GSK)-3β that occurred in the hippocampus of APP/PS1 transgenic mice. These results demonstrate that VPA could significantly ameliorate spatial memory impairment and Aβ deposition at least in part via the inhibition of inflammation, suggesting that administration of VPA could provide a therapeutic approach for AD.
Collapse
Affiliation(s)
- Ai-Guo Xuan
- Department of Anatomy, Guangzhou Medical University, Guangzhou, 510182, Guangdong, China,
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Hippocampus, hippocampal sclerosis and epilepsy. Pharmacol Rep 2014; 65:555-65. [PMID: 23950578 DOI: 10.1016/s1734-1140(13)71033-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 03/13/2013] [Indexed: 01/29/2023]
Abstract
Hippocampal sclerosis (HS) is considered one of the major pathogenic factors of drug-resistant temporal lobe epilepsy. HS is characterized by selective loss of pyramidal neurons - especially of sectors CA1 and CA3 of the hippocampus - pathological proliferation of interneuron networks, and severe glia reaction. These changes occur in the course of long-term and complex epileptogenesis. The authors, on the basis of a review of the literature and own experience, present the pathomechanisms leading to hippocampal sclerosis and epileptogenesis, including various morphological and functional elements of this structure of the brain and pharmacological possibilities of preventing these processes.
Collapse
|
40
|
Fessler EB, Chibane FL, Wang Z, Chuang DM. Potential roles of HDAC inhibitors in mitigating ischemia-induced brain damage and facilitating endogenous regeneration and recovery. Curr Pharm Des 2014; 19:5105-20. [PMID: 23448466 DOI: 10.2174/1381612811319280009] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 02/18/2013] [Indexed: 02/06/2023]
Abstract
Ischemic stroke is a leading cause of death and disability worldwide, with few available treatment options. The pathophysiology of cerebral ischemia involves both early phase tissue damage, characterized by neuronal death, inflammation, and blood-brain barrier breakdown, followed by late phase neurovascular recovery. It is becoming clear that any promising treatment strategy must target multiple points in the evolution of ischemic injury to provide substantial therapeutic benefit. Histone deacetylase (HDAC) inhibitors are a class of drugs that increase the acetylation of histone and non-histone proteins to activate transcription, enhance gene expression, and modify the function of target proteins. Acetylation homeostasis is often disrupted in neurological conditions, and accumulating evidence suggests that HDAC inhibitors have robust protective properties in many preclinical models of these disorders, including ischemic stroke. Specifically, HDAC inhibitors such as trichostatin A, valproic acid, sodium butyrate, sodium 4-phenylbutyrate, and suberoylanilide hydroxamic acid have been shown to provide robust protection against excitotoxicity, oxidative stress, ER stress, apoptosis, inflammation, and bloodbrain barrier breakdown. Concurrently, these agents can also promote angiogenesis, neurogenesis and stem cell migration to dramatically reduce infarct volume and improve functional recovery after experimental cerebral ischemia. In the following review, we discuss the mechanisms by which HDAC inhibitors exert these protective effects and provide evidence for their strong potential to ultimately improve stroke outcome in patients.
Collapse
Affiliation(s)
- Emily B Fessler
- Molecular Neurobiology Section, National Institute of Mental Health, National Institutes of Health, 10 Center Dr, MSC 1363, Bethesda, MD 20892-1363, USA
| | | | | | | |
Collapse
|
41
|
Sharifulina SA, Komandirov MA, Uzdensky AB. Epigenetic regulation of death of crayfish glial cells but not neurons induced by photodynamic impact. Brain Res Bull 2014; 102:15-21. [PMID: 24502940 DOI: 10.1016/j.brainresbull.2014.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Revised: 01/19/2014] [Accepted: 01/22/2014] [Indexed: 12/30/2022]
Abstract
Epigenetic processes are involved in regulation of cell functions and survival, but their role in responses of neurons and glial cells to oxidative injury is insufficiently explored. Here, we studied the role of DNA methylation and histone deacetylation in reactions of neurons and surrounding glial cells to photodynamic treatment that induces oxidative stress and cell death. Isolated crayfish stretch receptor consisting of a single mechanoreceptor neuron surrounded by glial cells was photosensitized with aluminum phthalocyanine Photosens that induced neuron inactivation, necrosis of the neuron and glia, and glial apoptosis. Inhibitors of DNA methylation 5-azacytidine and 5-aza-2'-deoxycytidine (decitabine) reduced the level of PDT-induced necrosis of glial cells but not neurons by 1.3 and 2.0 times, respectively, and did not significantly influence apoptosis of glial cells. Histone deacetylase inhibitors valproic acid and trichostatin A inhibited PDT-induced both necrosis and apoptosis of satellite glial cells but not neurons by 1.6-2.7 times. Thus, in the crayfish stretch receptor DNA methylation and histone deacetylation are involved in epigenetic control of glial but not neuronal necrosis. Histone deacetylation also participates in glial apoptosis.
Collapse
Affiliation(s)
- S A Sharifulina
- A.B. Kogan Research Institute for Neurocybernetics, Southern Federal University, Rostov-on-Don 344090, Russia
| | - M A Komandirov
- Department of Biophysics and Biocybernetics, Southern Federal University, Rostov-on-Don 344090, Russia
| | - A B Uzdensky
- A.B. Kogan Research Institute for Neurocybernetics, Southern Federal University, Rostov-on-Don 344090, Russia; Department of Biophysics and Biocybernetics, Southern Federal University, Rostov-on-Don 344090, Russia.
| |
Collapse
|
42
|
Zhang C, Zhu J, Zhang J, Li H, Zhao Z, Liao Y, Wang X, Su J, Sang S, Yuan X, Liu Q. Neuroprotective and anti-apoptotic effects of valproic acid on adult rat cerebral cortex through ERK and Akt signaling pathway at acute phase of traumatic brain injury. Brain Res 2014; 1555:1-9. [PMID: 24508577 DOI: 10.1016/j.brainres.2014.01.051] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Revised: 01/27/2014] [Accepted: 01/29/2014] [Indexed: 01/06/2023]
Abstract
Mood stabilizer valproic acid (VPA), a widely used antiepileptic drug that has been demonstrated neuroprotective effect against various insults through multiple signaling pathways. The role of VPA in traumatic brain injury (TBI) remains unclear. In the present study, we investigated the neuroprotective potency of VPA for protection against TBI in adult rats, focusing on studying signaling mediators of two well characterized pro-survival molecules, extracellular signal-regulated protein kinase (ERK) and Akt. We found that treatment of VPA after TBI significantly attenuated brain edema, reduced contusion volume and the rate of neuronal apoptosis. The treatment also partly blocked an increase in capase-3 activity. VPA markedly up-regulated the activity of ERK and Akt expression. Moreover, treatment with either PD98059, an ERK inhibitor and/or LY294002, an Akt inhibitor, attenuated the neuroprotection of VPA against TBI to varying degrees. Taken together, these results demonstrated that treatment with VPA after TBI could be neuroprotective via activation of ERK and Akt signaling pathways.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Neurosurgery, Xiangya Hospital, Central-South University, Changsha, Hunan 410008, PR China
| | - Jie Zhu
- Department of Neurosurgery, 101th Hospital of PLA, Rescue Center of Craniocerebral Injuries of PLA, Wuxi, Jiangsu 214044, PR China
| | - Jing Zhang
- Department of Otorhinolaryngology, Head and Neck Surgery, Lanzhou General Hospital of Lanzhou Military Command, Lanzhou, Gansu 730050, PR China
| | - Haoyu Li
- Department of Neurosurgery, Xiangya Hospital, Central-South University, Changsha, Hunan 410008, PR China
| | - Zijin Zhao
- Department of Neurosurgery, Xiangya Hospital, Central-South University, Changsha, Hunan 410008, PR China
| | - Yiwei Liao
- Department of Neurosurgery, Xiangya Hospital, Central-South University, Changsha, Hunan 410008, PR China
| | - Xiangyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central-South University, Changsha, Hunan 410008, PR China
| | - Jun Su
- Department of Neurosurgery, Xiangya Hospital, Central-South University, Changsha, Hunan 410008, PR China
| | - Shushan Sang
- Department of Neurosurgery, Xiangya Hospital, Central-South University, Changsha, Hunan 410008, PR China
| | - Xianrui Yuan
- Department of Neurosurgery, Xiangya Hospital, Central-South University, Changsha, Hunan 410008, PR China.
| | - Qing Liu
- Department of Neurosurgery, Xiangya Hospital, Central-South University, Changsha, Hunan 410008, PR China.
| |
Collapse
|
43
|
Lazo-Gómez R, Ramírez-Jarquín UN, Tovar-Y-Romo LB, Tapia R. Histone deacetylases and their role in motor neuron degeneration. Front Cell Neurosci 2013; 7:243. [PMID: 24367290 PMCID: PMC3852234 DOI: 10.3389/fncel.2013.00243] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2013] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease, characterized by the progressive loss of motor neurons. The cause of this selective neuronal death is unknown, but transcriptional dysregulation is recently emerging as an important factor. The physical substrate for the regulation of the transcriptional process is chromatin, a complex assembly of histones and DNA. Histones are subject to several post-translational modifications, like acetylation, that are a component of the transcriptional regulation process. Histone acetylation and deacetylation is performed by a group of enzymes (histone acetyltransferases (HATs) and deacetylases, respectively) whose modulation can alter the transcriptional state of many regions of the genome, and thus may be an important target in diseases that share this pathogenic process, as is the case for ALS. This review will discuss the present evidence of transcriptional dysregulation in ALS, the role of histone deacetylases (HDACs) in disease pathogenesis, and the novel pharmacologic strategies that are being comprehensively studied to prevent motor neuron death, with focus on sirtuins (SIRT) and their effectors.
Collapse
Affiliation(s)
- Rafael Lazo-Gómez
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, D. F. México
| | - Uri N Ramírez-Jarquín
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, D. F. México
| | - Luis B Tovar-Y-Romo
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, D. F. México
| | - Ricardo Tapia
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, D. F. México
| |
Collapse
|
44
|
Kim JN, Kim MK, Cho KS, Choi CS, Park SH, Yang SI, Joo SH, Park JH, Bahn G, Shin CY, Lee HJ, Han SH, Kwon KJ. Valproic Acid Regulates α-Synuclein Expression through JNK Pathway in Rat Primary Astrocytes. Biomol Ther (Seoul) 2013; 21:222-8. [PMID: 24265868 PMCID: PMC3830121 DOI: 10.4062/biomolther.2013.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 04/23/2013] [Accepted: 05/02/2013] [Indexed: 11/05/2022] Open
Abstract
Although the role of α-synuclein aggregation on Parkinson's disease is relatively well known, the physiological role and the regulatory mechanism governing the expression of α-synuclein are unclear yet. We recently reported that α-synuclein is expressed and secreted from cultured astrocytes. In this study, we investigated the effect of valproic acid (VPA), which has been suggested to provide neuroprotection by increasing α-synuclein in neuron, on α-synuclein expression in rat primary astrocytes. VPA concentrationdependently increased the protein expression level of α-synuclein in cultured rat primary astrocytes with concomitant increase in mRNA expression level. Likewise, the level of secreted α-synuclein was also increased by VPA. VPA increased the phosphorylation of Erk1/2 and JNK and pretreatment of a JNK inhibitor SP600125 prevented the VPA-induced increase in α-synuclein. Whether the increased α-synuclein in astrocytes is involved in the reported neuroprotective effects of VPA awaits further investigation.
Collapse
Affiliation(s)
- Jung Nam Kim
- Departments of Neuroscience, School of Medicine, Konkuk University, Seoul 143-701 ; Center for Neuroscience Research, SMART Institute Advanced Biomedical Sciences, School of Medicine, Konkuk University, Seoul 143-701
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Schweizer S, Meisel A, Märschenz S. Epigenetic mechanisms in cerebral ischemia. J Cereb Blood Flow Metab 2013; 33:1335-46. [PMID: 23756691 PMCID: PMC3764391 DOI: 10.1038/jcbfm.2013.93] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 05/14/2013] [Accepted: 05/21/2013] [Indexed: 01/27/2023]
Abstract
Treatment efficacy for ischemic stroke represents a major challenge. Despite fundamental advances in the understanding of stroke etiology, therapeutic options to improve functional recovery remain limited. However, growing knowledge in the field of epigenetics has dramatically changed our understanding of gene regulation in the last few decades. According to the knowledge gained from animal models, the manipulation of epigenetic players emerges as a highly promising possibility to target diverse neurologic pathologies, including ischemia. By altering transcriptional regulation, epigenetic modifiers can exert influence on all known pathways involved in the complex course of ischemic disease development. Beneficial transcriptional effects range from attenuation of cell death, suppression of inflammatory processes, and enhanced blood flow, to the stimulation of repair mechanisms and increased plasticity. Most striking are the results obtained from pharmacological inhibition of histone deacetylation in animal models of stroke. Multiple studies suggest high remedial qualities even upon late administration of histone deacetylase inhibitors (HDACi). In this review, the role of epigenetic mechanisms, including histone modifications as well as DNA methylation, is discussed in the context of known ischemic pathways of damage, protection, and regeneration.
Collapse
Affiliation(s)
- Sophie Schweizer
- Department of Neurology and Experimental Neurology, Center of Stroke Research Berlin, Charité University Medicine, Charitéplatz 1, Berlin, Germany
| | | | | |
Collapse
|
46
|
Wang P, Zhang P, Huang J, Li M, Chen X. Trichostatin A protects against cisplatin-induced ototoxicity by regulating expression of genes related to apoptosis and synaptic function. Neurotoxicology 2013; 37:51-62. [DOI: 10.1016/j.neuro.2013.03.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 03/10/2013] [Accepted: 03/18/2013] [Indexed: 11/25/2022]
|
47
|
Neuroprotective effects of the mood stabilizer lamotrigine against glutamate excitotoxicity: roles of chromatin remodelling and Bcl-2 induction. Int J Neuropsychopharmacol 2013; 16:607-20. [PMID: 22564541 PMCID: PMC6324934 DOI: 10.1017/s1461145712000429] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Lamotrigine (LTG), a phenyltriazine derivative and anti-epileptic drug, has emerged as an effective first-line treatment for bipolar mood disorder. Like the other mood stabilizers lithium and valproate, LTG also has neuroprotective properties but its exact mechanisms remain poorly defined. The present study utilized rat cerebellar granule cells (CGCs) to examine the neuroprotective effects of LTG against glutamate-induced excitotoxicity and to investigate potential underlying mechanisms. CGCs pretreated with LTG were challenged with an excitotoxic dose of glutamate. Pretreatment caused a time- and concentration-dependent inhibition of glutamate excitotoxicity with nearly full protection at higher doses (≥ 100 μm), as revealed by cell viability assays and morphology. LTG treatment increased levels of acetylated histone H3 and H4 as well as dose- and time-dependently enhanced B-cell lymphoma-2 (Bcl-2) mRNA and protein levels; these changes were associated with up-regulation of the histone acetylation and activity of the Bcl-2 promoter. Importantly, lentiviral-mediated Bcl-2 silencing by shRNA reduced both LTG-induced Bcl-2 mRNA up-regulation and neuroprotection against glutamate excitotoxicity. Finally, the co-presence of a sub-effective concentration of LTG (10 μm) with lithium or valproate produced synergistic neuroprotection. Together, our results demonstrate that the neuroprotective effects of LTG against glutamate excitotoxicity likely involve histone deacetylase inhibition and downstream up-regulation of anti-apoptotic protein Bcl-2. These underlying mechanisms may contribute to the clinical efficacy of LTG in treating bipolar disorder and warrant further investigation.
Collapse
|
48
|
Wallingford JB, Niswander LA, Shaw GM, Finnell RH. The continuing challenge of understanding, preventing, and treating neural tube defects. Science 2013; 339:1222002. [PMID: 23449594 DOI: 10.1126/science.1222002] [Citation(s) in RCA: 336] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Human birth defects are a major public health burden: The Center for Disease Control estimates that 1 of every 33 United States newborns presents with a birth defect, and worldwide the estimate approaches 6% of all births. Among the most common and debilitating of human birth defects are those affecting the formation of the neural tube, the precursor to the central nervous system. Neural tube defects (NTDs) arise from a complex combination of genetic and environmental interactions. Although substantial advances have been made in the prevention and treatment of these malformations, NTDs remain a substantial public health problem, and we are only now beginning to understand their etiology. Here, we review the process of neural tube development and how defects in this process lead to NTDs, both in humans and in the animal models that serve to inform our understanding of these processes. The insights we are gaining will help generate new intervention strategies to tackle the clinical challenges and to alleviate the personal and societal burdens that accompany these defects.
Collapse
Affiliation(s)
- John B Wallingford
- Howard Hughes Medical Institute, The University of Texas at Austin, Austin, TX 78712, USA.
| | | | | | | |
Collapse
|
49
|
Valproate promotes survival of retinal ganglion cells in a rat model of optic nerve crush. Neuroscience 2012; 224:282-93. [DOI: 10.1016/j.neuroscience.2012.07.056] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 07/24/2012] [Accepted: 07/26/2012] [Indexed: 12/21/2022]
|
50
|
Yu SH, Cho DC, Kim KT, Nam KH, Cho HJ, Sung JK. The neuroprotective effect of treatment of valproic Acid in acute spinal cord injury. J Korean Neurosurg Soc 2012; 51:191-8. [PMID: 22737297 PMCID: PMC3377874 DOI: 10.3340/jkns.2012.51.4.191] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 03/20/2012] [Accepted: 04/15/2012] [Indexed: 01/04/2023] Open
Abstract
OBJECTIVE Valproic acid (VPA), as known as histone deacetylase inhibitor, has neuroprotective effects. This study investigated the histological changes and functional recovery from spinal cord injury (SCI) associated with VPA treatment in a rat model. METHODS Locomotor function was assessed according to the Basso-Beattie-Bresnahan scale for 2 weeks in rats after receiving twice daily intraperitoneal injections of 200 mg/kg VPA or the equivalent volume of normal saline for 7 days following SCI. The injured spinal cord was then examined histologically, including quantification of cavitation. RESULTS Basso-Beattie-Bresnahan scale scores in rats receiving VPA were significantly higher than in the saline group (p<0.05). The cavity volume in the VPA group was significantly reduced compared with the control (saline-injected) group (p<0.05). The level of histone acetylation recovered in the VPA group, while it was significantly decreased in the control rats (p<0.05). The macrophage level was significantly decreased in the VPA group (p<0.05). CONCLUSION VPA influences the restoration of hyperacetylation and reduction of the inflammatory reaction resulting from SCI, and is effective for histology and motor function recovery.
Collapse
Affiliation(s)
- Song-Hee Yu
- Department of Neurosurgery, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Dae-chul Cho
- Department of Neurosurgery, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Kyoung-Tae Kim
- Department of Neurosurgery, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Kyung-Hun Nam
- Department of Neurosurgery, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Hee-Jung Cho
- Department of Anatomy, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Joo-Kyung Sung
- Department of Neurosurgery, School of Medicine, Kyungpook National University, Daegu, Korea
| |
Collapse
|