1
|
Habil MR, Salazar-González RA, Doll MA, Hein DW. Bioactivation, Mutagenicity, DNA Damage, and Oxidative Stress Induced by 3,4-Dimethylaniline. Biomolecules 2024; 14:1562. [PMID: 39766269 PMCID: PMC11674834 DOI: 10.3390/biom14121562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/19/2024] [Accepted: 12/05/2024] [Indexed: 01/30/2025] Open
Abstract
3,4-Dimethylaniline (3,4-DMA) is present in cigarette smoke and widely used as an intermediate in dyes, drugs, and pesticides. Nucleotide excision repair-deficient Chinese hamster ovary (CHO) cells stably transfected with human CYP1A2 and N-acetyltransferase 1 (NAT1) alleles: NAT1*4 (reference allele) or NAT1*14B (the most common variant allele) were utilized to assess 3,4-DMA N-acetylation and hypoxanthine phosphoribosyl transferase (HPRT) mutations, double-strand DNA breaks and reactive oxygen species (ROS). CHO cells expressing NAT1*4 exhibited significantly (p < 0.001) higher 3,4-DMA N-acetylation rates than CHO cells expressing NAT1*14B both in vitro and in situ. In CHO cells expressing CYP1A2 and NAT1, 3,4-DMA caused concentration-dependent increases in reactive oxygen species (ROS), double-stranded DNA damage, and HPRT mutations. CHO cells expressing NAT1*4 and NAT1*14B exhibited concentration-dependent increases in ROS following treatment with 3,4-DMA (linear trend p < 0.001 and p < 0.0001 for NAT1*4 and NAT1*14B, respectively) that were lower than in CHO cells expressing CYP1A2 alone. DNA damage and oxidative stress induced by 3,4-DMA did not differ significantly (p >0.05) between CHO cells expressing NAT1*4 and NAT1*14B. CHO cells expressing NAT1*14B showed higher HPRT mutants (p < 0.05) than CHO cells expressing NAT1*4. These findings confirm 3,4-DMA genotoxicity consistent with potential carcinogenicity.
Collapse
Affiliation(s)
| | | | | | - David W. Hein
- Department of Pharmacology & Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA; (M.R.H.); (R.A.S.-G.); (M.A.D.)
| |
Collapse
|
2
|
Habil MR, Hein DW. Effects of dose and human N-acetyltransferase 1 genetic polymorphism in benzidine metabolism and genotoxicity. Arch Toxicol 2023; 97:1765-1772. [PMID: 37097310 PMCID: PMC10192036 DOI: 10.1007/s00204-023-03497-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/13/2023] [Indexed: 04/26/2023]
Abstract
Benzidine undergoes N-acetylation and following CYP1A2-catalyzed N-hydroxylation undergoes O-acetylation catalyzed by N-acetyltransferase 1 (NAT1). Benzidine exposure is associated with urinary bladder cancer but the effect of NAT1 genetic polymorphism on individual risk remains unclear. We used Chinese hamster ovary (CHO) cells transfected with human CYP1A2 and NAT1*4 allele (reference) or NAT1*14B (variant) to investigate the effects of dose and NAT1 polymorphism on benzidine metabolism and genotoxicity. Rates of benzidine N-acetylation in vitro were higher in CHO cells transfected with NAT1*4 compared to NAT1*14B. CHO cells transfected with NAT1*14B exhibited greater N-acetylation rates in situ than cells transfected with NAT1*4 at low doses of benzidine expected with environmental exposures but not at higher doses. NAT1*14B exhibited over tenfold lower apparent KM which resulted in higher intrinsic clearance for benzidine N-acetylation compared to CHO cells transfected with NAT1*4. Benzidine-induced hypoxanthine phosphoribosyl transferase (HPRT) mutations were higher in CHO cells transfected with NAT1*14B than with NAT1*4 (p < 0.001). Benzidine caused concentration-dependent increase in γ-H2AX signal (indicative of DNA double-strand breaks) in CHO cells transfected with NAT1*4 or NAT1*14B. CHO cells transfected with NAT1*14B exhibited significantly higher level of DNA damage than with NAT1*4 (p < 0.0001). Benzidine-induced ROS did not differ significantly (p > 0.05) between CHO cells transfected with NAT1*4 or NAT1*14B except at 50 μM. Levels of benzidine-induced DNA damage and reactive oxygen species (ROS) showed strong dose-dependent correlation. Our findings support human studies associating NAT1*14B with increased incidence or severity of urinary bladder cancer in workers exposed to benzidine.
Collapse
Affiliation(s)
- Mariam R Habil
- Department of Pharmacology and Toxicology and Brown Cancer Center, University of Louisville, School of Medicine, Louisville, KY, 40202, USA
| | - David W Hein
- Department of Pharmacology and Toxicology and Brown Cancer Center, University of Louisville, School of Medicine, Louisville, KY, 40202, USA.
| |
Collapse
|
3
|
Habil MR, Doll MA, Hein DW. Acetyl coenzyme A kinetic studies on N-acetylation of environmental carcinogens by human N-acetyltransferase 1 and its NAT1*14B variant. Front Pharmacol 2022; 13:931323. [PMID: 36386142 PMCID: PMC9650386 DOI: 10.3389/fphar.2022.931323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/30/2022] [Indexed: 01/11/2023] Open
Abstract
N-acetyltransferase 1 (NAT1) is a xenobiotic metabolizing enzyme that uses acetyl coenzyme A (AcCoA) as a cofactor for N-acetylation of many carcinogens including aromatic amines and alkylanilines. NAT1 is characterized by single nucleotide polymorphisms (SNPs) that may modulate affinity towards AcCoA. In the current study, we used Chinese hamster ovary (CHO) cells stably transfected with human NAT1*4 (reference allele) or NAT1*14B (variant allele) to measure AcCoA kinetic parameters for N-acetyltransferase activity measurements towards p-aminobenzoic acid (PABA), 4-aminobiphenyl (4-ABP), β-naphthylamine (BNA), benzidine and 3,4-dimethylaniline (3,4-DMA). Our results showed higher N-acetylation rates for each substrate catalyzed by NAT1*4 compared to NAT1*14B. NAT1*4 exhibited higher affinity to AcCoA when catalyzing the N-acetylation of BNA and benzidine compared to NAT1*14B. The results of the current study provide further insights into differences in carcinogen metabolism among individuals possessing the NAT1*14B haplotype.
Collapse
|
4
|
Hernández-González O, Herrera-Vargas DJ, Martínez-Leija ME, Zavala-Reyes D, Portales-Pérez DP. The role of arylamine N-acetyltransferases in chronic degenerative diseases: Their possible function in the immune system. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119297. [PMID: 35588943 DOI: 10.1016/j.bbamcr.2022.119297] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Since their discovery, arylamine N-acetyltransferases 1 and 2 (NAT1 and NAT2, respectively) have been associated with the metabolism of xenobiotics. NAT2 is the main factor in the therapeutic success of tuberculosis treatment due to its role in the biotransformation of isoniazid. However, researchers have started to investigate the possible participation of NAT1 and NAT2 (NATs) in carcinogenesis, although the mechanisms have not been elucidated fully. NATs enzymatic activity is essential in some types of cancer, such as breast cancer and acute lymphoblastic leukemia. Whether NAT1 and/or NAT2 participate in insulin resistance level in diabetes mellitus or in the immune system remains to be explored. Therefore, it is clear that its role in cell physiology has more implications than just metabolizing compounds.
Collapse
Affiliation(s)
| | | | - Miguel Ernesto Martínez-Leija
- Faculty of Chemical Sciences, Autonomous University of San Luis Potosí, Mexico; Research Center for Health Sciences and Biomedicine, Autonomous University of San Luis Potosí, Mexico
| | - Daniel Zavala-Reyes
- Research Center for Health Sciences and Biomedicine, Autonomous University of San Luis Potosí, Mexico
| | - Diana Patricia Portales-Pérez
- Faculty of Chemical Sciences, Autonomous University of San Luis Potosí, Mexico; Research Center for Health Sciences and Biomedicine, Autonomous University of San Luis Potosí, Mexico.
| |
Collapse
|
5
|
Cavaco MJ, Alcobia C, Oliveiros B, Mesquita LA, Carvalho A, Matos F, Carvalho JM, Villar M, Duarte R, Mendes J, Ribeiro C, Cordeiro CR, Regateiro F, Silva HC. Clinical and Genetic Risk Factors for Drug-Induced Liver Injury Associated with Anti-Tuberculosis Treatment-A Study from Patients of Portuguese Health Centers. J Pers Med 2022; 12:jpm12050790. [PMID: 35629211 PMCID: PMC9144180 DOI: 10.3390/jpm12050790] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 12/07/2022] Open
Abstract
Drug-induced liver injury (DILI) is an unpredictable and feared side effect of antituberculosis treatment (AT). The present study aimed to identify clinical and genetic variables associated with susceptibility to AT-associated hepatotoxicity in patients with pulmonary tuberculosis treated with a standard protocol. Of 233 patients enrolled, 90% prospectively, 103 developed liver injury: 37 with mild and 66 with severe phenotype (DILI). All patients with mild hepatitis had a RUCAM score ≥4 and all patients with DILI had a RUCAM score ≥ 6. Eight clinical variables and variants in six candidate genes were assessed. A logistic multivariate regression analysis identified four risk factors for AT-DILI: age ≥ 55 years (OR:3.67; 95% CI:1.82−7.41; p < 0.001), concomitant medication with other hepatotoxic drugs (OR:2.54; 95% CI:1.23−5.26; p = 0.012), NAT2 slow acetylator status (OR:2.46; 95% CI:1.25−4.84; p = 0.009), and carriers of p.Val444Ala variant for ABCB11 gene (OR:2.06; 95%CI:1.02−4.17; p = 0.044). The statistical model explains 24.9% of the susceptibility to AT-DILI, with an 8.9 times difference between patients in the highest and in the lowest quartiles of risk scores. This study sustains the complex architecture of AT-DILI. Prospective studies should evaluate the benefit of NAT2 and ABCB11 genotyping in AT personalization, particularly in patients over 55 years.
Collapse
Affiliation(s)
| | - Celeste Alcobia
- Department of Pneumology, Coimbra Hospital and Universitary Centre, 3004-561 Coimbra, Portugal; (C.A.); (C.R.C.)
- Pneumological Diagnostic Center of the Centre, 3000-075 Coimbra, Portugal
| | - Bárbara Oliveiros
- Laboratory of Biostatistics and Medical Informatics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal;
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal;
| | - Luís Alcides Mesquita
- Institute of Medical Genetics/UC Genomics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (L.A.M.); (J.M.); (C.R.); (F.R.)
| | - Aurora Carvalho
- Department of Pneumology, Vila Nova de Gaia Hospitalar Centre, 4434-502 Vila Nova de Gaia, Portugal;
| | - Fernando Matos
- Pneumological Diagnostic Center of Aveiro, 3810-042 Aveiro, Portugal;
| | | | - Miguel Villar
- Pneumological Diagnostic Center of Venda Nova, 2700-220 Lisboa, Portugal;
| | - Raquel Duarte
- Pneumological Diagnostic Center of Vila Nova de Gaia, 4400-088 Vila Nova de Gaia, Portugal;
| | - João Mendes
- Institute of Medical Genetics/UC Genomics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (L.A.M.); (J.M.); (C.R.); (F.R.)
| | - Carolina Ribeiro
- Institute of Medical Genetics/UC Genomics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (L.A.M.); (J.M.); (C.R.); (F.R.)
| | - Carlos Robalo Cordeiro
- Department of Pneumology, Coimbra Hospital and Universitary Centre, 3004-561 Coimbra, Portugal; (C.A.); (C.R.C.)
| | - Fernando Regateiro
- Institute of Medical Genetics/UC Genomics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (L.A.M.); (J.M.); (C.R.); (F.R.)
| | - Henriqueta Coimbra Silva
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal;
- Institute of Medical Genetics/UC Genomics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (L.A.M.); (J.M.); (C.R.); (F.R.)
| |
Collapse
|
6
|
Hein DW, Doll MA, Habil MR. Human N-Acetyltransferase 1 and 2 Differ in Affinity Towards Acetyl-Coenzyme A Cofactor and N-Hydroxy-Arylamine Carcinogens. Front Pharmacol 2022; 13:821133. [PMID: 35281898 PMCID: PMC8914035 DOI: 10.3389/fphar.2022.821133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/24/2022] [Indexed: 02/01/2023] Open
Abstract
Arylamine N-acetyltransferases catalyze the transfer of acetyl groups from the endogenous cofactor acetyl coenzyme A (AcCoA) to arylamine (N-acetylation) and N-hydroxy-arylamine (O-acetylation) acceptors. Humans express two arylamine N-acetyltransferase isozymes (NAT1 and NAT2) which catalyze both N- and O-acetylation but differ in genetic regulation, substrate selectivity, and expression in human tissues. We investigated recombinant human NAT1 and NAT2 expressed in an Escherichia coli JM105 and Schizosaccharomyces pombe expression systems as well as in Chinese hamster ovary (CHO) cells to assess the relative affinity of AcCoA for human NAT1 and NAT2. NAT1 and NAT2 affinity for AcCoA was higher for recombinant human NAT1 than NAT2 when catalyzing N-acetylation of aromatic amine carcinogens 2-aminofluroene (AF), 4-aminobiphenyl (ABP), and β-naphthylamine (BNA) and the metabolic activation of N-hydroxy-2-aminofluorene (N-OH-AF) and N-hydroxy-4-aminobiphenyl (N-OH-ABP) via O-acetylation. These results suggest that AcCoA level may influence differential rates of arylamine carcinogen metabolism catalyzed by NAT1 and NAT2 in human tissues. Affinity was higher for NAT2 than for NAT1 using N-OH-AF and N-OH-ABP as substrate consistent with a larger active site for NAT2. In conclusion, following recombinant expression in bacteria, yeast, and CHO cells, we report significant differences in affinity between human NAT1 and NAT2 for its required co-factor AcCoA, as well as for N-hydroxy-arylamines activated via O-acetylation. The findings provide important information to understand the relative contribution of human NAT1 vs NAT2 towards N-acetylation and O-acetylation reactions in human hepatic and extrahepatic tissues.
Collapse
|
7
|
Doll MA, Hein DW. 560G>A (rs4986782) (R187Q) Single Nucleotide Polymorphism in Arylamine N-Acetyltransferase 1 Increases Affinity for the Aromatic Amine Carcinogens 4-Aminobiphenyl and N-Hydroxy-4-Aminobiphenyl: Implications for Cancer Risk Assessment. Front Pharmacol 2022; 13:820082. [PMID: 35273499 PMCID: PMC8902414 DOI: 10.3389/fphar.2022.820082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/25/2022] [Indexed: 11/29/2022] Open
Abstract
Human arylamine N-acetyltransferase 1 (NAT1) catalyzes the N-acetylation of arylamine carcinogens such as 4-aminobiphenyl (ABP), and following N-hydroxylation, the O-acetylation of N-hydroxy-arylamine carcinogens such as N-hydroxy-ABP (N-OH-ABP). Genetic polymorphisms in NAT1 are linked to cancer susceptibility following exposures. The effects of individual single nucleotide polymorphisms (SNPs) in the NAT1 coding exon on Michaelis-Menten kinetic constants was assessed for ABP N-acetyltransferase and N-OH-ABP O-acetyltransferase activity following transfection of human NAT1 into COS-1 cells (SV40-transformed African green monkey kidney cells). NAT1 coding region SNPs 97C > T (rs56318881) (R33stop), 190C > T (rs56379106) (R64W), 559C > T (rs5030839) (R187stop) and 752A > T (rs56172717) (D251V) reduced ABP N- acetyltransferase and N-OH-ABP O-acetyltransferase activity below detection. 21T > G (rs4986992) (synonymous), 402T > C (rs146727732) (synonymous), 445G > A (rs4987076) (V149I), 613A > G (rs72554609) (M205V) and 640T > G (rs4986783) (S241A) did not significantly affect Vmax for ABP N-acetyltransferase or N-OH-ABP O-acetyltransferase. 781G > A (rs72554610) (E261K), and 787A > G (rs72554611) (I263V) slightly reduced ABP N-acetyltransferase and N-OH-ABP O-acetyltransferase activities whereas 560G > A (rs4986782) (R187Q) substantially and significantly reduced them. 560G > A (rs4986782) (R187Q) significantly reduced the apparent Km for ABP and N-OH-ABP a finding that was not observed with any of the other NAT1 SNPs tested. These findings suggest that the role of the 560G > A (rs4986782) (R187Q) SNP cancer risk assessment may be modified by exposure level to aromatic amine carcinogens such as ABP.
Collapse
Affiliation(s)
| | - David W. Hein
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, United States
| |
Collapse
|
8
|
Saleem S, Tahir IM, Iqbal T, Jamil A, Mehboob H, Akram M, Oladoye PO. Genetic polymorphism of NAT1 in local Pakistani population. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Functional variability of rhesus macaque (Macaca mulatta) NAT2 gene for drug-metabolising arylamine N-acetyltransferase 2. Biochem Pharmacol 2021; 188:114545. [PMID: 33831395 DOI: 10.1016/j.bcp.2021.114545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 11/21/2022]
Abstract
Human NAT2 is a polymorphic pharmacogene encoding for N-acetyltransferase 2, a hepatic enzyme active towards arylamine and arylhydrazine drugs, including the anti-tubercular antibiotic isoniazid. The isoenzyme also modulates susceptibility to chemical carcinogenesis, particularly of the bladder. Human NAT2 represents an ideal model for anthropological investigations into the demographic adaptation of worldwide populations to their xenobiotic environment. Its sequence appears to be subject to positive selection pressures that are population-specific and may be attributed to gene-environment interactions directly associated with exogenous chemical challenges. However, recent evidence suggests that the same evolutionary pattern may not be observed in other primates. Here, we report NAT2 polymorphism in 25 rhesus macaques (Macaca mulatta) and compare the frequencies and functional characteristics of 12 variants. Seven non-synonymous single nucleotide variations (SNVs) were identified, including one nonsense mutation. The missense SNVs were demonstrated to affect enzymatic function in a substrate-dependent manner, albeit more moderately than certain NAT1 SNVs recently characterised in the same cohort. Haplotypic and functional variability of NAT2 was comparable to that previously observed for NAT1 in the same population sample, suggesting that the two paralogues may have evolved under similar selective pressures in the rhesus macaque. This is different to the population variability distribution pattern reported for humans and chimpanzees. Recorded SNVs were also different from those found in other primates. The study contributes to further understanding of NAT2 functional polymorphism in the rhesus macaque, a non-human primate model used in biomedicine and pharmacology, indicating variability in xenobiotic acetylation that could affect drug metabolism.
Collapse
|
10
|
Leggett CS, Doll MA, States JC, Hein DW. Acetylation of putative arylamine and alkylaniline carcinogens in immortalized human fibroblasts transfected with rapid and slow acetylator N-acetyltransferase 2 haplotypes. Arch Toxicol 2021; 95:311-319. [PMID: 33136180 PMCID: PMC7855884 DOI: 10.1007/s00204-020-02901-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/02/2020] [Indexed: 10/23/2022]
Abstract
Exposure to alkylanilines found in tobacco smoke and indoor air is associated with risk of bladder cancer. Genetic factors significantly influence the metabolism of arylamine carcinogens and the toxicological outcomes that result from exposure. We utilized nucleotide excision repair (NER)-deficient immortalized human fibroblasts to examine the effects of human N-acetyltransferase 1 (NAT1), CYP1A2, and common rapid (NAT2*4) and slow (NAT2*5B or NAT2*7B) acetylator human N-acetyltransferase 2 (NAT2) haplotypes on environmental arylamine and alkylaniline metabolism. We constructed SV40-transformed human fibroblast cells that stably express human NAT2 alleles (NAT2*4, NAT2*5B, or NAT2*7B) and human CYP1A2. Human NAT1 and NAT2 apparent kinetic constants were determined following recombinant expression of human NAT1 and NAT2 in yeast for the arylamines benzidine, 4-aminobiphenyl (ABP), and 2-aminofluorene (2-AF), and the alkylanilines 2,5-dimethylaniline (DMA), 3,4-DMA, 3,5-DMA, 2-6-DMA, and 3-ethylaniline (EA) compared with those of the prototype NAT1-selective substrate p-aminobenzoic acid and NAT2-selective substrate sulfamethazine. Benzidine, 3,4-DMA, and 2-AF were preferential human NAT1 substrates, while 3,5-DMA, 2,5-DMA, 3-EA, and ABP were preferential human NAT2 substrates. Neither recombinant human NAT1 or NAT2 catalyzed the N-acetylation of 2,6-DMA. Among the alkylanilines, N-acetylation of 3,5-DMA was substantially higher in human fibroblasts stably expressing NAT2*4 versus NAT2*5B and NAT2*7B. The results provide important insight into the role of the NAT2 acetylator polymorphism (in the presence of competing NAT1 and CYP1A2-catalyzed N-acetylation and N-hydroxylation) on the metabolism of putative alkyaniline carcinogens. The N-acetylation of two alkylanilines associated with urinary bladder cancer (3-EA and 3,5-DMA) was modified by NAT2 acetylator polymorphism.
Collapse
Affiliation(s)
- Carmine S Leggett
- Department of Pharmacology and Toxicology and James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA
- American Association for Cancer Research, Washington, DC, USA
| | - Mark A Doll
- Department of Pharmacology and Toxicology and James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA
| | - J Christopher States
- Department of Pharmacology and Toxicology and James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA
| | - David W Hein
- Department of Pharmacology and Toxicology and James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA.
- University of Louisville Superfund Research Program, Louisville, KY, USA.
- University of Louisville Health Sciences Center, Kosair Charities CTR Room 303, 505 South Hancock Street, Louisville, KY, 40202, USA.
| |
Collapse
|
11
|
Dumouchel JL, Kramlinger VM. Case Study 10: A Case to Investigate Acetyl Transferase Kinetics. Methods Mol Biol 2021; 2342:781-808. [PMID: 34272717 DOI: 10.1007/978-1-0716-1554-6_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Major routes of metabolism for marketed drugs are predominately driven by enzyme families such as cytochromes P450 and UDP-glucuronosyltransferases. Less studied conjugative enzymes, like N-acetyltransferases (NATs), are commonly associated with detoxification pathways. However, in the clinic, the high occurrence of NAT polymorphism that leads to slow and fast acetylator phenotypes in patient populations has been linked to toxicity for a multitude of drugs. A key example of this is the observed clinical toxicity in patients who exhibit the slow acetylator phenotype and were treated with isoniazid. Toxicity in patients has led to detailed characterization of the two NAT isoforms and their polymorphic genotypes. Investigation in recombinant enzymes, genotyped hepatocytes, and in vivo transgenic models coupled with acetylator status-driven clinical studies have helped understand the role of NATs in drug development, clinical study design and outcomes, and potential roles in human disease models. The selected case studies herein document NAT enzyme kinetics to explore substrate overlap from two human isoforms, preclinical species considerations, and clinical genotype population concerns.
Collapse
Affiliation(s)
- Jennifer L Dumouchel
- Molecular Pharmacology and Physiology Graduate Training Program, Brown University, Providence, RI, USA.
| | - Valerie M Kramlinger
- Translational Medicine, Novartis Institutes for BioMedical Research, Inc., Cambridge, MA, USA
| |
Collapse
|
12
|
Abstract
Drug metabolizing enzymes catalyze the biotransformation of many of drugs and chemicals. The drug metabolizing enzymes are distributed among several evolutionary families and catalyze a range of detoxication reactions, including oxidation/reduction, conjugative, and hydrolytic reactions that serve to detoxify potentially toxic compounds. This detoxication function requires that drug metabolizing enzymes exhibit substrate promiscuity. In addition to their catalytic functions, many drug metabolizing enzymes possess functions unrelated to or in addition to catalysis. Such proteins are termed 'moonlighting proteins' and are defined as proteins with multiple biochemical or biophysical functions that reside in a single protein. This review discusses the diverse moonlighting functions of drug metabolizing enzymes and the roles they play in physiological functions relating to reproduction, vision, cell signaling, cancer, and transport. Further research will likely reveal new examples of moonlighting functions of drug metabolizing enzymes.
Collapse
Affiliation(s)
- Philip G Board
- John Curtin School of Medical Research, ANU College of Health and Medicine, The Australian National University, Canberra, ACT, Australia
| | - M W Anders
- Department of Pharmacology and Physiology, University of Rochester Medical Center, New York, NY, USA
| |
Collapse
|
13
|
El Kawak M, Dhaini HR, Jabbour ME, Moussa MA, El Asmar K, Aoun M. Slow N-acetylation as a possible contributor to bladder carcinogenesis. Mol Carcinog 2020; 59:1017-1027. [PMID: 32529781 DOI: 10.1002/mc.23232] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/08/2020] [Accepted: 05/27/2020] [Indexed: 12/23/2022]
Abstract
Bladder cancer (BCa) is an exophytic tumor that presents as either noninvasive confined to the mucosa (NMIBC) or invading the detrusor muscle (MIBC), and was recently further subgrouped into molecular subtypes. Arylamines, major BCa environmental and occupational risk factors, are mainly metabolized by the genetically polymorphic N-acetyltransferases 1, NAT1 and NAT2. In this study, we investigated the association between N-acetyltransferases genetic polymorphism and key MIBC and NMIBC tumor biomarkers and subtypes. A cohort of 250 males with histologically confirmed urothelial BCa was identified. Tumors were genotyped for NAT1 and NAT2 using real-time polymerase chain reaction (PCR), and characterized for mutations in TP53, RB1, and FGFR3 by PCR-restriction fragment length polymorphism. Pathology data and patients' smoking status were obtained from medical records. Pearson χ2 and Fisher exact tests were used to check for associations and interactions. Results show that NAT1 G560 A polymorphism is significantly associated with higher muscle-invasiveness (MIBC vs NMIBC; P = .001), higher tumor grade (high grade vs low grade; P = .011), and higher FGFR3 mutation frequency within the MIBC subgroup (P = .042; .027). NAT2 G857 A polymorphism is also found to be significantly associated with higher muscle-invasiveness (MIBC vs NMIBC; P = .041). Our results indicate that slow N-acetylation is a contributor to bladder carcinogenesis and muscle-invasiveness. These findings highlight NAT1 as a biomarker candidate in BCa and a potential target for drug development.
Collapse
Affiliation(s)
- Michelle El Kawak
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Department of Environmental Health, American University of Beirut, Beirut, Lebanon
| | - Hassan R Dhaini
- Department of Environmental Health, American University of Beirut, Beirut, Lebanon
| | - Michel E Jabbour
- Department of Urology, St George Hospital University Medical Center, Beirut, Lebanon
| | - Mohamad A Moussa
- Division of Urology, Al Zahraa University Hospital, Beirut, Lebanon
| | - Khalil El Asmar
- Department of Epidemiology and Population Health, American University of Beirut, Beirut, Lebanon
| | - Mona Aoun
- Department of Pathology, St George Hospital University Medical Center, Beirut, Lebanon
| |
Collapse
|
14
|
Population variability of rhesus macaque (Macaca mulatta) NAT1 gene for arylamine N-acetyltransferase 1: Functional effects and comparison with human. Sci Rep 2019; 9:10937. [PMID: 31358821 PMCID: PMC6662693 DOI: 10.1038/s41598-019-47485-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/08/2019] [Indexed: 12/25/2022] Open
Abstract
Human NAT1 gene for N-acetyltransferase 1 modulates xenobiotic metabolism of arylamine drugs and mutagens. Beyond pharmacogenetics, NAT1 is also relevant to breast cancer. The population history of human NAT1 suggests evolution through purifying selection, but it is unclear whether this pattern is evident in other primate lineages where population studies are scarce. We report NAT1 polymorphism in 25 rhesus macaques (Macaca mulatta) and describe the haplotypic and functional characteristics of 12 variants. Seven non-synonymous single nucleotide variations (SNVs) were identified and experimentally demonstrated to compromise enzyme function, mainly through destabilization of NAT1 protein and consequent activity loss. One non-synonymous SNV (c.560G > A, p.Arg187Gln) has also been characterized for human NAT1 with similar effects. Population haplotypic and functional variability of rhesus NAT1 was considerably higher than previously reported for its human orthologue, suggesting different environmental pressures in the two lineages. Known functional elements downstream of human NAT1 were also differentiated in rhesus macaque and other primates. Xenobiotic metabolizing enzymes play roles beyond mere protection from exogenous chemicals. Therefore, any link to disease, particularly carcinogenesis, may be via modulation of xenobiotic mutagenicity or more subtle interference with cell physiology. Comparative analyses add the evolutionary dimension to such investigations, assessing functional conservation/diversification among primates.
Collapse
|
15
|
Humans and Chimpanzees Display Opposite Patterns of Diversity in Arylamine N-Acetyltransferase Genes. G3-GENES GENOMES GENETICS 2019; 9:2199-2224. [PMID: 31068377 PMCID: PMC6643899 DOI: 10.1534/g3.119.400223] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Among the many genes involved in the metabolism of therapeutic drugs, human arylamine N-acetyltransferases (NATs) genes have been extensively studied, due to their medical importance both in pharmacogenetics and disease epidemiology. One member of this small gene family, NAT2, is established as the locus of the classic human acetylation polymorphism in drug metabolism. Current hypotheses hold that selective processes favoring haplotypes conferring lower NAT2 activity have been operating in modern humans’ recent history as an adaptation to local chemical and dietary environments. To shed new light on such hypotheses, we investigated the genetic diversity of the three members of the NAT gene family in seven hominid species, including modern humans, Neanderthals and Denisovans. Little polymorphism sharing was found among hominids, yet all species displayed high NAT diversity, but distributed in an opposite fashion in chimpanzees and bonobos (Pan genus) compared to modern humans, with higher diversity in Pan species at NAT1 and lower at NAT2, while the reverse is observed in humans. This pattern was also reflected in the results returned by selective neutrality tests, which suggest, in agreement with the predicted functional impact of mutations detected in non-human primates, stronger directional selection, presumably purifying selection, at NAT1 in modern humans, and at NAT2 in chimpanzees. Overall, the results point to the evolution of divergent functions of these highly homologous genes in the different primate species, possibly related to their specific chemical/dietary environment (exposome) and we hypothesize that this is likely linked to the emergence of controlled fire use in the human lineage.
Collapse
|
16
|
Functional expression of human arylamine N-acetyltransferase NAT1*10 and NAT1*11 alleles: a mini review. Pharmacogenet Genomics 2019; 28:238-244. [PMID: 30222709 DOI: 10.1097/fpc.0000000000000350] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The arylamine N-acetyltransferase (NAT) nomenclature committee assigns functional phenotypes for human arylamine N-acetyltransferase 1 (NAT1) alleles in those instances in which the committee determined a consensus has been achieved in the scientific literature. In the most recent nomenclature update, the committee announced that functional phenotypes for NAT1*10 and NAT1*11 alleles were not provided owing to a lack of consensus. Phenotypic inconsistencies observed among various studies for NAT1*10 and NAT1*11 may be owing to variable allelic expression among different tissues, the limitations of the genotyping assays (which mostly relied on techniques not involving direct DNA sequencing), the differences in recombinant protein expression systems used (bacteria, yeast, and mammalian cell lines) and/or the known inherent instability of human NAT1 protein, which requires very careful handling of native and recombinant cell lysates. Three recent studies provide consistent evidence of the mechanistic basis underlying the functional phenotype of NAT1*10 and NAT1*11 as 'increased-activity' alleles. Some NAT1 variants (e.g. NAT1*14, NAT1*17, and NAT1*22) may be designated as 'decreased-activity' alleles and other NAT1 variants (e.g. NAT1*15 and NAT1*19) may be designated as 'no-activity' alleles compared with the NAT1*4 reference allele. We propose that phenotypic designations as 'rapid' and 'slow' acetylator should be discontinued for NAT1 alleles, although these designations remain very appropriate for NAT2 alleles.
Collapse
|
17
|
Comparative analysis of xenobiotic metabolising N-acetyltransferases from ten non-human primates as in vitro models of human homologues. Sci Rep 2018; 8:9759. [PMID: 29950659 PMCID: PMC6021393 DOI: 10.1038/s41598-018-28094-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/14/2018] [Indexed: 12/13/2022] Open
Abstract
Xenobiotic metabolising N-acetyltransferases (NATs) perform biotransformation of drugs and carcinogens. Human NAT1 is associated with endogenous metabolic pathways of cells and is a candidate drug target for cancer. Human NAT2 is a well-characterised polymorphic xenobiotic metabolising enzyme, modulating susceptibility to drug-induced toxicity. Human NATs are difficult to express to high purification yields, complicating large-scale production for high-throughput screens or use in sophisticated enzymology assays and crystallography. We undertake comparative functional investigation of the NAT homologues of ten non-human primates, to characterise their properties and evaluate their suitability as models of human NATs. Considering the amount of generated recombinant protein, the enzymatic activity and thermal stability, the NAT homologues of non-human primates are demonstrated to be a much more effective resource for in vitro studies compared with human NATs. Certain NAT homologues are proposed as better models, such as the NAT1 of macaques Macaca mulatta and M. sylvanus, the NAT2 of Erythrocebus patas, and both NAT proteins of the gibbon Nomascus gabriellae which show highest homology to human NATs. This comparative investigation will facilitate in vitro screens towards discovery and optimisation of candidate pharmaceutical compounds for human NAT isoenzymes, while enabling better understanding of NAT function and evolution in primates.
Collapse
|
18
|
Dhaini HR, El Hafi B, Khamis AM. NAT1 genotypic and phenotypic contribution to urinary bladder cancer risk: a systematic review and meta-analysis. Drug Metab Rev 2017; 50:208-219. [PMID: 29258340 DOI: 10.1080/03602532.2017.1415928] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
N-acetyltransferase 1 (NAT1), a polymorphic Phase II enzyme, plays an essential role in metabolizing heterocyclic and aromatic amines, which are implicated in urinary bladder cancer (BCa). This systematic review investigates a possible association between the different NAT1 genetic polymorphisms and BCa risk. Medline, PubMed, EMBASE, Scopus, Web of Science, OpenGrey, and BASE databases were searched to identify eligible studies. The random-effect model was used to calculate pooled effects estimates. Statistical heterogeneity was tested with Chi-square and I2. Twenty case-control studies, including 5606 cases and 6620 controls, met the inclusion criteria. Pooled odds ratios (OR) analyses showed a statistically significant difference in NAT1*10 versus non-NAT1*10 acetylators in the total sample (OR: 0.87; 95% CI: 0.79-0.96) but was borderline among Caucasians (OR: 0.88 with 95% CI: 0.77-1.01). No statistically significant differences in BCa risk were found for: NAT1*10 versus NAT1*4 wild type (OR: 0.97; 95% CI: 0.78-1.19), NAT1 'Fast' versus 'Normal' acetylators (OR: 1.03; 95% CI: 0.84-1.27), and NAT1 'Slow' versus 'Fast' (OR: 2.32; 95% CI: 0.93-5.84) or 'Slow' versus 'Normal' acetylators (OR: 1.84; 95% CI: 0.92-3.68). When stratifying by smoking status, no statistically significant differences in BCa risk were found for NAT1*10 versus non-NAT1*10 acetylators among the different subgroups. Our study suggests a modest protective role for NAT1*10 and a possible risk contributory role for slow acetylation genotypes in BCa risk. Further research is recommended to confirm these associations.
Collapse
Affiliation(s)
- Hassan R Dhaini
- a Department of Environmental Health, Faculty of Health Sciences , American University of Beirut , Beirut , Lebanon
| | - Bassam El Hafi
- b Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine , American University of Beirut , Beirut , Lebanon
| | - Assem M Khamis
- c Faculty of Medicine , Clinical Research Institute, American University of Beirut , Beirut , Lebanon
| |
Collapse
|
19
|
Arylamine N-acetyltransferase 1 in situ N-acetylation on CD3+ peripheral blood mononuclear cells correlate with NATb mRNA and NAT1 haplotype. Arch Toxicol 2017; 92:661-668. [PMID: 29043425 DOI: 10.1007/s00204-017-2082-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/25/2017] [Indexed: 12/19/2022]
Abstract
Human arylamine N-acetyltransferase 1 (NAT1) is responsible for the activation and elimination of xenobiotic compounds and carcinogens. Genetic polymorphisms in NAT1 modify both drug efficacy and toxicity. Previous studies have suggested a role for NAT1 in the development of several diseases. The aim of the present study was to evaluate NAT1 protein expression and in situ N-acetylation capacity in peripheral blood mononuclear cells (PBMC), as well as their possible associations with the expression of NAT1 transcript and NAT1 genotype. We report NAT1 protein, mRNA levels, and N-acetylation in situ activity for PBMC obtained from healthy donors. NAT1-specific protein expression was higher in CD3+ cells than other major immune cell subtypes (CD19 or CD56 cells). N-acetylation of pABA varied markedly among the PBMC of participants, but correlated very significantly with levels of NAT1 transcripts. NAT1*4 subjects showed significantly (p = 0.017) higher apparent pABA V max of 71.3 ± 3.7 versus the NAT1*14B subjects apparent V max of 58.5 ± 2.5 nmoles Ac-pABA/24 h/million cells. Levels of pABA N-acetylation activity at each concentration of substrate evaluated also significantly correlated with NAT1 mRNA levels for all samples (p < 0.0001). This highly significant correlation was maintained for samples with the NAT1*4 (p = 0.002) and NAT1*14B haplotypes (p = 0.0106). These results provide the first documentation that NAT1-catalyzed N-acetylation in PBMC is higher in T cell than in other immune cell subtypes and that individual variation in N-acetylation capacity is dependent upon NAT1 mRNA and NAT1 haplotype.
Collapse
|
20
|
Cloete R, Akurugu WA, Werely CJ, van Helden PD, Christoffels A. Structural and functional effects of nucleotide variation on the human TB drug metabolizing enzyme arylamine N-acetyltransferase 1. J Mol Graph Model 2017. [PMID: 28628859 DOI: 10.1016/j.jmgm.2017.04.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The human arylamine N-acetyltransferase 1 (NAT1) enzyme plays a vital role in determining the duration of action of amine-containing drugs such as para-aminobenzoic acid (PABA) by influencing the balance between detoxification and metabolic activation of these drugs. Recently, four novel single nucleotide polymorphisms (SNPs) were identified within a South African mixed ancestry population. Modeling the effects of these SNPs within the structural protein was done to assess possible structure and function changes in the enzyme. The use of molecular dynamics simulations and stability predictions indicated less thermodynamically stable protein structures containing E264K and V231G, while the N245I change showed a stabilizing effect. Coincidently the N245I change displayed a similar free energy landscape profile to the known R64W amino acid substitution (slow acetylator), while the R242M displayed a similar profile to the published variant, I263V (proposed fast acetylator), and the wild type protein structure. Similarly, principal component analysis indicated that two amino acid substitutions (E264K and V231G) occupied less conformational clusters of folded states as compared to the WT and were found to be destabilizing (may affect protein function). However, two of the four novel SNPs that result in amino acid changes: (V231G and N245I) were predicted by both SIFT and POLYPHEN-2 algorithms to affect NAT1 protein function, while two other SNPs that result in R242M and E264K substitutions showed contradictory results based on SIFT and POLYPHEN-2 analysis. In conclusion, the structural methods were able to verify that two non-synonymous substitutions (E264K and V231G) can destabilize the protein structure, and are in agreement with mCSM predictions, and should therefore be experimentally tested for NAT1 activity. These findings could inform a strategy of incorporating genotypic data (i.e., functional SNP alleles) with phenotypic information (slow or fast acetylator) to better prescribe effective treatment using drugs metabolized by NAT1.
Collapse
Affiliation(s)
- Ruben Cloete
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Private Bag X17, Bellville, Cape Town 7535, South Africa.
| | - Wisdom A Akurugu
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Private Bag X17, Bellville, Cape Town 7535, South Africa.
| | - Cedric J Werely
- SAMRC Centre for Molecular and Cellular Biology, and DST-NRF Centre of Excellence for Biomedical TB Research. Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, P.O. Box 241, Cape Town 8000, South Africa.
| | - Paul D van Helden
- SAMRC Centre for Molecular and Cellular Biology, and DST-NRF Centre of Excellence for Biomedical TB Research. Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, P.O. Box 241, Cape Town 8000, South Africa.
| | - Alan Christoffels
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Private Bag X17, Bellville, Cape Town 7535, South Africa.
| |
Collapse
|
21
|
PharmGKB summary: very important pharmacogene information for N-acetyltransferase 2. Pharmacogenet Genomics 2014; 24:409-25. [PMID: 24892773 DOI: 10.1097/fpc.0000000000000062] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
Tang C, Liu H, Tang Y, Guo Y, Liang X, Guo L, Pi R, Yang J. Analysis of mitochondrial transcription factor A SNPs in alcoholic cirrhosis. Exp Ther Med 2013; 7:73-79. [PMID: 24348767 PMCID: PMC3861118 DOI: 10.3892/etm.2013.1353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 10/04/2013] [Indexed: 11/13/2022] Open
Abstract
Genetic susceptibility to alcoholic cirrhosis (AC) exists. We previously demonstrated hepatic mitochondrial DNA (mtDNA) damage in patients with AC compared with chronic alcoholics without cirrhosis. Mitochondrial transcription factor A (mtTFA) is central to mtDNA expression regulation and repair; however, it is unclear whether there are specific mtTFA single nucleotide polymorphisms (SNPs) in patients with AC and whether they affect mtDNA repair. In the present study, we screened mtTFA SNPs in patients with AC and analyzed their impact on the copy number of mtDNA in AC. A total of 50 patients with AC, 50 alcoholics without AC and 50 normal subjects were enrolled in the study. SNPs of full-length mtTFA were analyzed using the polymerase chain reaction (PCR) combined with gene sequencing. The hepatic mtTFA mRNA and mtDNA copy numbers were measured using quantitative PCR (qPCR), and mtTFA protein was measured using western blot analysis. A total of 18 mtTFA SNPs specific to patients with AC with frequencies >10% were identified. Two were located in the coding region and 16 were identified in non-coding regions. Conversely, there were five SNPs that were only present in patients with AC and normal subjects and had a frequency >10%. In the AC group, the hepatic mtTFA mRNA and protein levels were significantly lower than those in the other two groups. Moreover, the hepatic mtDNA copy number was significantly lower in the AC group than in the controls and alcoholics without AC. Based on these data, we conclude that AC-specific mtTFA SNPs may be responsible for the observed reductions in mtTFA mRNA, protein levels and mtDNA copy number and they may also increase the susceptibility to AC.
Collapse
Affiliation(s)
- Chun Tang
- Department of Hepatobiliary Surgery, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing 400042, P.R. China
| | - Hongming Liu
- Department of Hepatobiliary Surgery, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing 400042, P.R. China
| | - Yongliang Tang
- Department of Hepatobiliary Surgery, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing 400042, P.R. China
| | - Yong Guo
- Department of Hepatobiliary Surgery, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing 400042, P.R. China
| | - Xianchun Liang
- Department of Hepatobiliary Surgery, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing 400042, P.R. China
| | - Liping Guo
- Department of Hepatobiliary Surgery, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing 400042, P.R. China
| | - Ruxian Pi
- Department of Hepatobiliary Surgery, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing 400042, P.R. China
| | - Juntao Yang
- Department of Hepatobiliary Surgery, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing 400042, P.R. China
| |
Collapse
|
23
|
Djordjevic N, Carrillo JA, Ueda N, Gervasini G, Fukasawa T, Suda A, Jankovic S, Aklillu E. N-acetyltransferase-2 (NAT2) Gene Polymorphisms and Enzyme Activity in Serbs: Unprecedented High Prevalence of Rapid Acetylators in a White Population. J Clin Pharmacol 2013; 51:994-1003. [DOI: 10.1177/0091270010377630] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
24
|
Human N-acetyltransferase 1 *10 and *11 alleles increase protein expression through distinct mechanisms and associate with sulfamethoxazole-induced hypersensitivity. Pharmacogenet Genomics 2012; 21:652-64. [PMID: 21878835 DOI: 10.1097/fpc.0b013e3283498ee9] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES N-acetyltransferase 1 (NAT1) metabolizes drugs and environmental carcinogens. NAT1 alleles *10 and *11 have been proposed to alter protein level or enzyme activity compared with wild-type NAT1 *4 and to confer cancer risk, through uncertain pathways. This study characterizes regulatory polymorphisms and underlying mechanisms of NAT1 expression. METHODS We measured allelic NAT1 mRNA expression and translation, as a function of multiple transcription start sites, alternative splicing, and three 3'-polyadenylation sites in human livers (one of which was discovered in this study), B lymphocytes, and transfected cells. In a clinical study of 469 patients with HIV/AIDS treated with the NAT1/NAT2 substrate sulfamethoxazole (SMX), associations were tested between SMX-induced hypersensitivity and NAT1 *10 and *11 genotypes, together with known NAT2 polymorphisms. RESULTS NAT1 *10 and *11 were determined to act as common regulatory alleles accounting for most NAT1 expression variability, both leading to increased translation into active protein. NAT1 *11 (2.4% minor allele frequency) affected 3'-polyadenylation site usage, thereby increasing formation of NAT1 mRNA with intermediate length 3'-untranslated region (major isoform) at the expense of the short isoform, resulting in more efficient protein translation. NAT1 *10 (19% minor allele frequency) increased translation efficiency without affecting 3'-untranslated region polyadenylation site usage. Livers and B-lymphocytes with *11/*4 and *10/*10 genotypes displayed higher NAT1 immunoreactivity and NAT1 enzyme activity than the reference genotype *4/*4. Patients who carry *10/*10 and *11/*4 (fast NAT1 acetylators) were less likely to develop hypersensitivity to SMX, but this was observed only in individuals who are also carrying a slow NAT2 acetylator genotype. CONCLUSION NAT1 *10 and *11 significantly increase NAT1 protein level/enzyme activity, enabling the classification of carriers into reference and rapid acetylators. Rapid NAT1 acetylator status seems to protect against SMX toxicity by compensating for slow NAT2 acetylator status.
Collapse
|
25
|
Millner LM, Doll MA, Cai J, States JC, Hein DW. Phenotype of the most common "slow acetylator" arylamine N-acetyltransferase 1 genetic variant (NAT1*14B) is substrate-dependent. Drug Metab Dispos 2012; 40:198-204. [PMID: 22010219 PMCID: PMC3250052 DOI: 10.1124/dmd.111.041855] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 10/18/2011] [Indexed: 11/22/2022] Open
Abstract
Human arylamine N-acetyltransferase 1 (NAT1) is a phase II cytosolic enzyme responsible for the activation or deactivation of many arylamine compounds including pharmaceuticals and environmental carcinogens. NAT1 is highly polymorphic and has been associated with altered risk toward many cancers. NAT1*14B is characterized by a single nucleotide polymorphism in the coding region (rs4986782; 560G>A; R187Q). NAT1*14B is associated with higher frequency of smoking-induced lung cancer and is the most common "slow acetylator" arylamine NAT1 genetic variant. Previous studies have reported decreased N- and O-acetylation capacity and increased proteasomal degradation of NAT1 14B compared with the referent, NAT1 4. The current study is the first to investigate NAT1*14B expression using constructs that completely mimic NAT1 mRNA by including the 5'- and 3'-untranslated regions, together with the open reading frame of the referent, NAT1*4, or variant, NAT1*14B. Our results show that NAT1 14B is not simply associated with "slow acetylation." NAT1 14B-catalyzed acetylation phenotype is substrate-dependent, and NAT1 14B exhibits higher N- and O-acetylation catalytic efficiency as well as DNA adducts after exposure to the human carcinogen 4-aminobiphenyl.
Collapse
Affiliation(s)
- Lori M Millner
- Department of Pharmacology and Toxicology, James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | | | | | | | | |
Collapse
|
26
|
Zhu Y, States JC, Wang Y, Hein DW. Functional effects of genetic polymorphisms in the N-acetyltransferase 1 coding and 3' untranslated regions. BIRTH DEFECTS RESEARCH. PART A, CLINICAL AND MOLECULAR TERATOLOGY 2011; 91:77-84. [PMID: 21290563 PMCID: PMC3252750 DOI: 10.1002/bdra.20763] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 10/11/2010] [Accepted: 10/14/2010] [Indexed: 12/12/2022]
Abstract
BACKGROUND The functional effects of N-acetyltransferase 1 (NAT1) polymorphisms and haplotypes are poorly understood, compromising the validity of associations reported with diseases, including birth defects and numerous cancers. METHODS We investigated the effects of genetic polymorphisms within the NAT1 coding region and the 3'-untranslated region (3'-UTR) and their associated haplotypes on N- and O-acetyltransferase catalytic activities, and NAT1 mRNA and protein levels following recombinant expression in COS-1 cells. RESULTS 1088T>A (rs1057126; 3'-UTR) and 1095C>A (rs15561; 3'-UTR) each slightly reduced NAT1 catalytic activity and NAT1 mRNA and protein levels. A 9-bp (TAATAATAA) deletion between nucleotides 1065 and 1090 (3'-UTR) reduced NAT1 catalytic activity and NAT1 mRNA and protein levels. In contrast, a 445G>A (rs4987076; V149I), 459G>A (rs4986990; T153T), and 640T>G (rs4986783; S214A) coding region haplotype present in NAT1*11 increased NAT1 catalytic activity and NAT1 protein, but not NAT1 mRNA levels. A combination of the 9-bp (TAATAATAA) deletion and the 445G>A, 459G>A, and 640T>G coding region haplotypes, both present in NAT1*11, appeared to neutralize the opposing effects on NAT1 protein and catalytic activity, resulting in levels of NAT1 protein and catalytic activity that did not differ significantly from the NAT1*4 reference. CONCLUSIONS Because 1095C>A (3'-UTR) is the sole polymorphism present in NAT1*3, our data suggest that NAT1*3 is not functionally equivalent to the NAT1*4 reference. Furthermore, our findings provide biologic support for reported associations of 1088T>A and 1095C>A polymorphisms with birth defects.
Collapse
Affiliation(s)
- Yuanqi Zhu
- Department of Pharmacology & Toxicology, James Graham Brown Cancer Center, Birth Defects Center and Center for Environmental Genomics and Integrative Biology, University of Louisville School of Medicine, Louisville, Kentucky
| | - J. Christopher States
- Department of Pharmacology & Toxicology, James Graham Brown Cancer Center, Birth Defects Center and Center for Environmental Genomics and Integrative Biology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Yang Wang
- Department of Pediatrics, Center for Environmental Genomics and Integrative Biology, University of Louisville School of Medicine, Louisville, Kentucky
| | - David W. Hein
- Department of Pharmacology & Toxicology, James Graham Brown Cancer Center, Birth Defects Center and Center for Environmental Genomics and Integrative Biology, University of Louisville School of Medicine, Louisville, Kentucky
| |
Collapse
|
27
|
Hein DW. N-acetyltransferase SNPs: emerging concepts serve as a paradigm for understanding complexities of personalized medicine. Expert Opin Drug Metab Toxicol 2009; 5:353-66. [PMID: 19379125 PMCID: PMC2762189 DOI: 10.1517/17425250902877698] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Arylamine N-acetyltransferase 1 and 2 exhibit single nucleotide polymorphisms in human populations that modify drug and carcinogen metabolism. This paper updates the identity, location and functional effects of these single nucleotide polymorphisms and then follows with emerging concepts for understanding why pharmacogenetic findings may not be replicated consistently. Using this paradigm as an example, laboratory-based mechanistic analyses can reveal complexities such that genetic polymorphisms become biologically and medically relevant when confounding factors are more fully understood and considered. As medical care moves to a more personalized approach, the implications of these confounding factors will be important in understanding the complexities of personalized medicine.
Collapse
Affiliation(s)
- David W Hein
- University of Louisville School of Medicine, James Graham Brown Cancer Center, Center for Environmental Genomics and Integrative Biology, Department of Pharmacology & Toxicology, Louisville, KY 40292, USA.
| |
Collapse
|
28
|
Stanley LA, Sim E. Update on the pharmacogenetics of NATs: structural considerations. Pharmacogenomics 2009; 9:1673-93. [PMID: 19018723 DOI: 10.2217/14622416.9.11.1673] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The arylamine N-acetyltransferase (NAT) genes encode enzymes that catalyze the N-acetylation of aromatic amines and hydrazines and the O-acetylation of heterocyclic amines. These genes, which play a key role in cellular homeostasis as well as in gene-environment interactions, are subject to marked pharmacogenetic variation, and different combinations of SNPs in the human NAT genes lead to different acetylation phenotypes. Our understanding of the consequences of pharmacogenetic variability in NATs has recently been enhanced by structural studies showing that effects on protein folding, aggregation and turnover, as well as direct changes in active site topology, are involved. These developments pave the way for a better understanding of the role played by NATs in maintaining cellular homeostasis. In addition, the NATs represent a model for studying fundamental processes associated with protein folding and pharmacogenomic effects mediated by inheritance in human populations across a polymorphic region of the genome.
Collapse
|
29
|
Arylamine N-acetyltransferases: Structural and functional implications of polymorphisms. Toxicology 2008; 254:170-83. [DOI: 10.1016/j.tox.2008.08.022] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 08/29/2008] [Accepted: 08/31/2008] [Indexed: 12/12/2022]
|
30
|
Shin A, Shrubsole MJ, Rice JM, Cai Q, Doll MA, Long J, Smalley WE, Shyr Y, Sinha R, Ness RM, Hein DW, Zheng W. Meat intake, heterocyclic amine exposure, and metabolizing enzyme polymorphisms in relation to colorectal polyp risk. Cancer Epidemiol Biomarkers Prev 2008; 17:320-9. [PMID: 18268115 PMCID: PMC2572782 DOI: 10.1158/1055-9965.epi-07-0615] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Most colorectal cancers arise from adenomatous polyps or certain hyperplastic polyps. Only a few studies have investigated potential genetic modifiers of the associations between meat intake and polyp risk, and results are inconsistent. Using data from the Tennessee Colorectal Polyp Study, a large colonoscopy-based study, including 1,002 polyp cases (557 adenoma only, 250 hyperplastic polyp only, 195 both polyps) and 1,493 polyp-free patients, we evaluated the association of colorectal polyp risk with carcinogen exposure from meat and genetic polymorphisms in enzymes involved in heterocyclic amine (HCA) metabolism, including N-acetyltransferase 1 (NAT1) and N-acetyltransferase 2 (NAT2), cytochrome P450 1A2 (CYP1A2), and aryl hydrocarbon receptor (AhR). Data on intake levels of meats by preparation methods, doneness preferences, and other lifestyle factors were obtained. Fourteen single nucleotide polymorphisms in the AhR, CYP1A2, NAT1, and NAT2 genes were evaluated. No clear association was found for any polymorphisms with polyp risk. However, apparent interactions were found for intake of meat and HCAs with AhR, NAT1, and NAT2 genotypes, and the interactions were statistically significant for the group with both adenomatous and hyperplastic polyps. Dose-response relationships with meat or HCA intake were found only among those with the AhR GA/AA (rs2066853) genotype, NAT1 rapid, or NAT2 rapid/intermediate acetylators but not among those with other genotypes of these genes. This dose-response relationship was more evident among those with both AhR GA/AA and the NAT1 rapid acetylator than those without this genotype combination. These results provide strong evidence for a modifying effect of metabolizing genes on the association of meat intake and HCA exposure with colorectal polyp risk.
Collapse
Affiliation(s)
- Aesun Shin
- Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
- Currently at National Cancer Control Research Institute, National Cancer Center, Goyang-si, Korea
| | - Martha J. Shrubsole
- Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
- VA Tennessee Valley Geriatric Research, Education & Clinical Center, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - Jeffrey M. Rice
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Qiuyin Cai
- Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - Mark A. Doll
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Jirong Long
- Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - Walter E. Smalley
- Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
- VA Tennessee Valley Geriatric Research, Education & Clinical Center, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - Yu Shyr
- Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - Rashmi Sinha
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Reid M. Ness
- Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
- VA Tennessee Valley Geriatric Research, Education & Clinical Center, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - David W. Hein
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Wei Zheng
- Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
- VA Tennessee Valley Geriatric Research, Education & Clinical Center, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| |
Collapse
|
31
|
Walraven JM, Trent JO, Hein DW. Structure-function analyses of single nucleotide polymorphisms in human N-acetyltransferase 1. Drug Metab Rev 2008; 40:169-84. [PMID: 18259988 PMCID: PMC2265210 DOI: 10.1080/03602530701852917] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Human N-acetyltransferase 1 (NAT1) alleles are characterized by one or more single nucleotide polymorphisms (SNPs) associated with rapid and slow acetylation phenotypes. NAT1 both activates and deactivates arylamine drugs and carcinogens, and NAT1 polymorphisms are associated with increased frequencies of many cancers and birth defects. The recently resolved human NAT1 crystal structure was used to evaluate SNPs resulting in the protein substitutions R64W, V149I, R187Q, M205V, S214A, D251V, E261K, and I263V. The analysis enhances knowledge of NAT1 structure-function relationships, important for understanding associations of NAT1 SNPs with genetic predisposition to cancer, birth defects, and other diseases.
Collapse
Affiliation(s)
- Jason M Walraven
- Department of Pharmacology & Toxicology, James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky 40292, USA
| | | | | |
Collapse
|