1
|
Chronic clomipramine treatment increases hippocampal volume in rats exposed to chronic unpredictable mild stress. Transl Psychiatry 2022; 12:245. [PMID: 35688836 PMCID: PMC9187713 DOI: 10.1038/s41398-022-02006-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 12/29/2022] Open
Abstract
It is well known that neuroinflammation is closely related to the pathophysiology of depression. Due to individual differences in clinical research, the reduction of hippocampal volume in patients with depression is still controversial. In this experiment, we studied a typical kind of tricyclic antidepressant, clomipramine. We designed a series of experiments to find its role in depressive-like behavior, hippocampal neuroinflammation as well as hippocampal volume changes induced by chronic unpredictable mild stress (CMS). Rats exhibited defective behavior and hippocampal neuroinflammation after 12 weeks of CMS, which included elevated expression of cleaved interleukin-1β (IL-1β) and NLRP3 inflammasome together with the activation of microglia. Rats exposed to CMS showed weakened behavioral defects, reduced expression of IL-18, IL-6, and IL-1β along with reversed activation of microglia after clomipramine treatment. This indicates that the antidepressant effect of clomipramine may be related to the reduced expression of NLRP3 inflammasome and cleaved IL-1β. Moreover, we found an increased hippocampal volume in rats exposed to CMS after clomipramine treatment while CMS failed to affect hippocampal volume. All these results indicate that the NLRP3 inflammasome of microglia in the hippocampus is related to the antidepressant effects of clomipramine and CMS-induced depressive-like behavior in rats.
Collapse
|
2
|
Zhang S, Zong Y, Ren Z, Hu J, Wu X, Xiao H, Qin S, Zhou G, Ma Y, Zhang Y, Yu J, Wang K, Lu G, Liu Q. Regulation of indoleamine 2, 3-dioxygenase in hippocampal microglia by NLRP3 inflammasome in lipopolysaccharide-induced depressive-like behaviors. Eur J Neurosci 2020; 52:4586-4601. [PMID: 33098156 DOI: 10.1111/ejn.15016] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/28/2020] [Accepted: 09/30/2020] [Indexed: 12/20/2022]
Abstract
In the brain, NLRP3 (Nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin-domain-containing 3) inflammasome is mainly expressed in microglia located in the hippocampus and other mood-regulated regions, which are particularly susceptible to stress. The activation of NLRP3 inflammasome and production of the activation products may contribute to the development of depressive disorder and memory deficits. Indoleamine 2, 3-dioxygenase (IDO) is a key factor mediating inflammation and major depressive disorder (MDD). We here generated NLRP3 and apoptosis-associated speck-like protein containing caspase recruitment domain (ASC)-knockout mice, respectively, to verify the effects of NLRP3 or ASC deficiency on lipopolysaccharide (LPS)-induced depressive-like behaviors, neuroinflammation, and regulation of IDO expression. Furthermore, we treated these mice with the antidepressant clomipramine (CLO) to observe its effect on depressive-like behaviors and the expression of the NLRP3 inflammasome and LPS-induced IDO. We found that intraperitoneal LPS administration led to marked depressive-like behavior and neuroinflammation. NLRP3 or ASC deficiency attenuated LPS-induced depressive-like symptoms and increased IDO gene expression, which was accompanied by inhibition of LPS-induced microglial activation, suggesting that IDO may be a downstream mediator of the NLRP3 inflammasome in inflammation-mediated depressive-like behaviors. Clomipramine administration ameliorated depressive-like behavior in LPS-treated mice by regulating the expression of ASC and IDO. In conclusion, NLRP3 inflammasome is involved in LPS-induced depressive-like behaviors, and that NLRP3 and ASC may play roles in regulating IDO expression in microglia. This may be a potential mechanism for its involvement in MDD. The antidepressant effect of clomipramine may be exerted through the regulation of ASC-mediated expression of IDO.
Collapse
Affiliation(s)
- Shanshan Zhang
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ying Zong
- Department of Health Toxicology, College of Tropical Medicine and Public Health, Second Military Medical University, Shanghai, China.,Suzhou CTI Biotechnology Co., Ltd., Jiangsu, China
| | - Zhonggan Ren
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Juntao Hu
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xinyuan Wu
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Honglei Xiao
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Song Qin
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai, Shanghai, China
| | - Guomin Zhou
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai, Shanghai, China
| | - Yuanyuan Ma
- State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Yaodong Zhang
- Henan Neural Development Engineering Research Center, Children's Hospital Affiliated to Zhengzhou University, Henan, China
| | - Jin Yu
- Department of Integrative Medicine and Neurobiology School of Basic Medical Sciences, Shanghai, China
| | - Kaidi Wang
- Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Guocai Lu
- Department of Health Toxicology, College of Tropical Medicine and Public Health, Second Military Medical University, Shanghai, China.,Suzhou CTI Biotechnology Co., Ltd., Jiangsu, China
| | - Qiong Liu
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai, Shanghai, China
| |
Collapse
|
3
|
Page KC, Anday EK. Dietary Exposure to Excess Saturated Fat During Early Life Alters Hippocampal Gene Expression and Increases Risk for Behavioral Disorders in Adulthood. Front Neurosci 2020; 14:527258. [PMID: 33013310 PMCID: PMC7516040 DOI: 10.3389/fnins.2020.527258] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 08/21/2020] [Indexed: 02/01/2023] Open
Abstract
Purpose Maternal and postnatal diets result in long-term changes in offspring brain and behavior; however, the key mediators of these developmental changes are not well-defined. In this study, we investigated the impact of maternal and post-weaning high-fat diets on gene expression of key components mediating hippocampal synaptic efficacy. In addition, we evaluated the risk for impaired stress-coping and anxiety-like behaviors in adult offspring exposed to obesogenic diets during early life. Methods Dams were fed a control (C) or high-fat (HF) diet prior to mating, pregnancy, and lactation. Male offspring from control chow and high-fat fed dams were weaned to control chow or HF diets. The forced swim test (FST) and the elevated-plus maze (EPM) were used to detect stress-coping and anxiety-like behavior, respectively. Real-time RT-PCR and ELISA were used to analyze hippocampal expression of genes mediating synaptic function. Results Animals fed a HF diet post-weaning spent more time immobile in the FST. Swimming time was reduced in response to both maternal and post-weaning HF diets. Both maternal and post-weaning HF diets contributed to anxiety-like behavior in animals exposed to the EPM. Maternal and post-weaning HF diets were associated with a significant decrease in mRNA and protein expression for hippocampal GDNF, MAP2, SNAP25, and synaptophysin. Hippocampal mRNA expression of key serotonergic and glutamatergic receptors also exhibited differential responses to maternal and post-weaning HF diets. Hippocampal serotonergic receptor 5HT1A mRNA was reduced in response to both the maternal and post-weaning diet, whereas, 5HT2A receptor mRNA expression was increased in response to the maternal HF diet. The glutamate AMPA receptor subunit, GluA1, mRNA expression was significantly reduced in response to both diets, whereas no change was detected in GluA2 subunit mRNA expression. Conclusion These data demonstrate that the expression of genes mediating synaptic function are differentially affected by maternal and post-weaning high-fat diets. The post-weaning high-fat diet clearly disturbs both behavior and gene expression. In addition, although the transition to control diet at weaning partially compensates for the adverse effects of the maternal HF diet, the negative consequence of the maternal HF diet is exacerbated by continuing the high-fat diet post-weaning. We present evidence to support the claim that these dietary influences increase the risk for anxiety and impaired stress-coping abilities in adulthood.
Collapse
Affiliation(s)
- Kathleen C Page
- Department of Biology, Bucknell University, Lewisburg, PA, United States
| | - Endla K Anday
- College of Medicine, Drexel University, Philadelphia, PA, United States
| |
Collapse
|
4
|
Youssef M, Atsak P, Cardenas J, Kosmidis S, Leonardo ED, Dranovsky A. Early life stress delays hippocampal development and diminishes the adult stem cell pool in mice. Sci Rep 2019; 9:4120. [PMID: 30858462 PMCID: PMC6412041 DOI: 10.1038/s41598-019-40868-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 02/18/2019] [Indexed: 12/18/2022] Open
Abstract
Early life stress predisposes to mental illness and behavioral dysfunction in adulthood, but the mechanisms underlying these persistent effects are poorly understood. Stress throughout life impairs the structure and function of the hippocampus, a brain system undergoing considerable development in early life. The long-term behavioral consequences of early life stress may therefore be due in part to interference with hippocampal development, in particular with assembly of the dentate gyrus (DG) region of the hippocampus. We investigated how early life stress produces long-term alterations in DG structure by examining DG assembly and the generation of a stable adult stem cell pool in routine housing and after stress induced by the limited bedding/nesting paradigm in mice. We found that early life stress leads to a more immature, proliferative DG than would be expected for the animal's age immediately after stress exposure, suggesting that early life stress delays DG development. Adult animals exposed to early life stress exhibited a reduction in the number of DG stem cells, but unchanged neurogenesis suggesting a depletion of the stem cell pool with compensation in the birth and survival of adult-born neurons. These results suggest a developmental mechanism by which early life stress can induce long-term changes in hippocampal function by interfering with DG assembly and ultimately diminishing the adult stem cell pool.
Collapse
Affiliation(s)
- Mary Youssef
- Department of Psychiatry, Columbia University, New York, NY, 10032, USA
- Division of Systems Neuroscience, New York State Psychiatric Institute, New York, NY, 10032, USA
- Graduate Program in Neurobiology and Behavior, Columbia University, New York, NY, 10032, USA
| | - Piray Atsak
- Department of Psychiatry, Columbia University, New York, NY, 10032, USA
- Division of Systems Neuroscience, New York State Psychiatric Institute, New York, NY, 10032, USA
- Department of Cognitive Neuroscience, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN, Nijmegen, The Netherlands
| | - Jovani Cardenas
- Department of Psychiatry, Columbia University, New York, NY, 10032, USA
- Division of Systems Neuroscience, New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Stylianos Kosmidis
- Department of Neuroscience, Columbia University, New York, NY, 10032, USA
- Howard Hughes Medical Institute, Columbia University, New York, NY, 10032, USA
- New York State Psychiatric Institute, New York, NY, 10032, USA
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, 10032, USA
| | - E David Leonardo
- Department of Psychiatry, Columbia University, New York, NY, 10032, USA.
- Division of Systems Neuroscience, New York State Psychiatric Institute, New York, NY, 10032, USA.
| | - Alex Dranovsky
- Department of Psychiatry, Columbia University, New York, NY, 10032, USA.
- Division of Systems Neuroscience, New York State Psychiatric Institute, New York, NY, 10032, USA.
| |
Collapse
|
5
|
Levy MJF, Boulle F, Steinbusch HW, van den Hove DLA, Kenis G, Lanfumey L. Neurotrophic factors and neuroplasticity pathways in the pathophysiology and treatment of depression. Psychopharmacology (Berl) 2018; 235:2195-2220. [PMID: 29961124 PMCID: PMC6061771 DOI: 10.1007/s00213-018-4950-4] [Citation(s) in RCA: 192] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 06/18/2018] [Indexed: 02/06/2023]
Abstract
Depression is a major health problem with a high prevalence and a heavy socioeconomic burden in western societies. It is associated with atrophy and impaired functioning of cortico-limbic regions involved in mood and emotion regulation. It has been suggested that alterations in neurotrophins underlie impaired neuroplasticity, which may be causally related to the development and course of depression. Accordingly, mounting evidence suggests that antidepressant treatment may exert its beneficial effects by enhancing trophic signaling on neuronal and synaptic plasticity. However, current antidepressants still show a delayed onset of action, as well as lack of efficacy. Hence, a deeper understanding of the molecular and cellular mechanisms involved in the pathophysiology of depression, as well as in the action of antidepressants, might provide further insight to drive the development of novel fast-acting and more effective therapies. Here, we summarize the current literature on the involvement of neurotrophic factors in the pathophysiology and treatment of depression. Further, we advocate that future development of antidepressants should be based on the neurotrophin theory.
Collapse
Affiliation(s)
- Marion J F Levy
- Centre de Psychiatrie et Neurosciences (Inserm U894), Université Paris Descartes, 102-108 rue de la santé, 75014, Paris, France
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands
- EURON-European Graduate School of Neuroscience, Maastricht, The Netherlands
| | - Fabien Boulle
- Centre de Psychiatrie et Neurosciences (Inserm U894), Université Paris Descartes, 102-108 rue de la santé, 75014, Paris, France
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands
- EURON-European Graduate School of Neuroscience, Maastricht, The Netherlands
| | - Harry W Steinbusch
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands
- EURON-European Graduate School of Neuroscience, Maastricht, The Netherlands
| | - Daniël L A van den Hove
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands
- EURON-European Graduate School of Neuroscience, Maastricht, The Netherlands
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany
| | - Gunter Kenis
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands
- EURON-European Graduate School of Neuroscience, Maastricht, The Netherlands
| | - Laurence Lanfumey
- Centre de Psychiatrie et Neurosciences (Inserm U894), Université Paris Descartes, 102-108 rue de la santé, 75014, Paris, France.
- EURON-European Graduate School of Neuroscience, Maastricht, The Netherlands.
| |
Collapse
|
6
|
Yue N, Li B, Yang L, Han QQ, Huang HJ, Wang YL, Wang J, Yu R, Wu GC, Liu Q, Yu J. Electro-Acupuncture Alleviates Chronic Unpredictable Stress-Induced Depressive- and Anxiety-Like Behavior and Hippocampal Neuroinflammation in Rat Model of Depression. Front Mol Neurosci 2018; 11:149. [PMID: 29946236 PMCID: PMC6007169 DOI: 10.3389/fnmol.2018.00149] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 04/16/2018] [Indexed: 12/12/2022] Open
Abstract
Depression is the second leading cause of disability worldwide. The effects of clinical depression may be mediated by neuroinflammation such as activation of microglia and high levels of proinflammatory cytokines in certain brain areas. Traditional Chinese medicine techniques such as electro-acupuncture (EA) are used extensively in Asia to treat mental health disorders. However, EA has not been rigorously studied in treatment of depression. This study was designed to assess the effectiveness of EA on depressive-like behavior and explore the role of hippocampal neuroinflammation in the potential antidepressant effect of EA. In this study, we used six chronic unpredictable stressors daily in a random sequence for 10 weeks. EA were performed on “Bai-Hui” (Du-20) (+) and “Yang-Ling-Quan” (GB-34, the right side; −) acupoints by an EA apparatus (HANS Electronic Apparatus, LH202H, 2/100 Hz, 0.3 mA) for 30 min once every other day for last 4 weeks. The behavior tests including open field test and forced swimming test, which are widely used to assess depressive and anxiety-like behavior were performed on the Monday and Tuesday of the eleventh week. The results showed that 10 week of chronic unpredictable stress (CUS) caused behavioral deficits in rats and neuroinflammation in hippocampus, such as increased expression of NLRP3 inflammasome components, upregulated mRNA level of IL-1β and the protein level of IL-1β mature form (p17) and activation of microglia. Moreover, 4 weeks of EA treatment significantly attenuated behavioral deficits caused by CUS. EA’s antidepressant effect was accompanied by markedly decreased expression of certain NLRP3 inflammasome components and matured IL-1β. Meanwhile, EA treatment can significantly reverse CUS-induced increases in P2X7 receptor, Iba-1, IL-18, TNFα and IL-6 expression and decreases in GFAP expression. In conclusion, EA exhibited the antidepressant effect and alleviated the hippocampal neuroinflammation. These findings may provide insight into the role of hippocampal neuroinflammation in the antidepressant effect of EA.
Collapse
Affiliation(s)
- Na Yue
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Bing Li
- Center Laboratories, Jinshan Hospital of Fudan University, Shanghai, China
| | - Liu Yang
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qiu-Qin Han
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hui-Jie Huang
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ya-Lin Wang
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jing Wang
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Rui Yu
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Gen-Cheng Wu
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qiong Liu
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.,Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai, Shanghai, China
| | - Jin Yu
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Jimenez AG, Winward JD, Smith DM, Ragan CM. Effects of short-term clomipramine on anxiety-like behavior, cellular metabolism, and oxidative stress in primary fibroblast cells of male and female rats. Physiol Rep 2018; 6:e13615. [PMID: 29745454 PMCID: PMC5943669 DOI: 10.14814/phy2.13615] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 01/08/2018] [Accepted: 01/16/2018] [Indexed: 01/21/2023] Open
Abstract
Anxiety is the most prevalent mental disorder among adults in the United States and females tend to have significantly higher rates of anxiety compared with men. Common treatments for anxiety include usage of selective serotonin reuptake inhibitors (SSRIs) and tricyclic antidepressants, however, sex differences in the efficacy of these drugs exist. In this study, we were interested in determining if acutely manipulating serotonin mechanisms at the whole-animal level affects cellular metabolism and oxidative stress in primary fibroblast cells from clomipramine-treated Sprague-Dawley rats. Our groups included a female and male control group that was injected with a saline solution, a female and male group that was injected with a low dosage of clomipramine, and a female and male group of rats that were injected with a high dosage of clomipramine. We then compared cellular oxygen consumption rates, rates of glycolysis and oxidative stress parameters in primary fibroblasts grown from each of the groups described above. We found that clomipramine-treated rats had significantly lower rates of glycolysis and glycolytic capacity, regardless of sex. Coupling efficiency was significantly higher in male rats compared with female rats across treatment groups. Our data suggest that in female rats reduced glutathione (GSH) is nonsignificantly reduced, yet lipid peroxidation (LPO) damage still accumulates, meaning that enzymatic antioxidants may be acting to reduce any continual increases in LPO damage. This is a metabolically costly process that may be happening because of our drug treatments. Our results provide further evidence of sex differences in the behavioral and metabolic responses to short-term clomipramine treatment. Continued investigation into these sex differences may reveal their potential for improving our understanding of how different therapeutic interventions may be better suited for treating males and females.
Collapse
Affiliation(s)
| | | | - Dana M. Smith
- Department of PsychologyNeuroscience ProgramColgate UniversityHamiltonNew York
| | - Christina M. Ragan
- Department of PsychologyNeuroscience ProgramColgate UniversityHamiltonNew York
- Present address:
Psychology DepartmentPurdue University NorthwestWestvilleIndiana
| |
Collapse
|
8
|
Gheorghe A, Qiu W, Galea LAM. Hormonal Regulation of Hippocampal Neurogenesis: Implications for Depression and Exercise. Curr Top Behav Neurosci 2018; 43:379-421. [PMID: 30414016 DOI: 10.1007/7854_2018_62] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Adult hippocampal neurogenesis exists in all mammalian species, including humans, and although there has been considerable research investigating the function and regulation of neurogenesis, there remain many open questions surrounding the complexity of this phenomenon. This stems partially from the fact that neurogenesis is a multistage process that involves proliferation, differentiation, migration, survival, and eventual integration of new cells into the existing hippocampal circuitry, each of which can be independently influenced. The function of adult neurogenesis in the hippocampus is related to stress regulation, behavioral efficacy of antidepressants, long-term spatial memory, forgetting, and pattern separation. Steroid hormones influence the regulation of hippocampal neurogenesis, stress regulation, and cognition and differently in males and females. In this chapter, we will briefly tap into the complex network of steroid hormone modulation of neurogenesis in the hippocampus with specific emphasis on stress, testosterone, and estrogen. We examine the possible role of neurogenesis in the etiology of depression and influencing treatment by examining the influence of both pharmacological (selective serotonin reuptake inhibitors, tricyclic antidepressants) treatments and non-pharmacological (exercise) remedies.
Collapse
Affiliation(s)
- Ana Gheorghe
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.,Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada
| | - Wansu Qiu
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.,Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada
| | - Liisa A M Galea
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada. .,Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada. .,Department of Psychology, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
9
|
Scarante FF, Vila-Verde C, Detoni VL, Ferreira-Junior NC, Guimarães FS, Campos AC. Cannabinoid Modulation of the Stressed Hippocampus. Front Mol Neurosci 2017; 10:411. [PMID: 29311804 PMCID: PMC5742214 DOI: 10.3389/fnmol.2017.00411] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/27/2017] [Indexed: 12/31/2022] Open
Abstract
Exposure to stressful situations is one of the risk factors for the precipitation of several psychiatric disorders, including Major Depressive Disorder, Posttraumatic Stress Disorder and Schizophrenia. The hippocampal formation is a forebrain structure highly associated with emotional, learning and memory processes; being particularly vulnerable to stress. Exposure to stressful stimuli leads to neuroplastic changes and imbalance between inhibitory/excitatory networks. These changes have been associated with an impaired hippocampal function. Endocannabinoids (eCB) are one of the main systems controlling both excitatory and inhibitory neurotransmission, as well as neuroplasticity within the hippocampus. Cannabinoids receptors are highly expressed in the hippocampus, and several lines of evidence suggest that facilitation of cannabinoid signaling within this brain region prevents stress-induced behavioral changes. Also, chronic stress modulates hippocampal CB1 receptors expression and endocannabinoid levels. Moreover, cannabinoids participate in mechanisms related to synaptic plasticity and adult neurogenesis. Here, we discussed the main findings supporting the involvement of hippocampal cannabinoid neurotransmission in stress-induced behavioral and neuroplastic changes.
Collapse
Affiliation(s)
- Franciele F Scarante
- Department of Pharmacology, School of Medicine of Ribeirão Preto, Centre for Interdisciplinary Research on Applied Neurosciences (NAPNA), Cannabinoid Research Institute, University of São Paulo, São Paulo, Brazil
| | - Carla Vila-Verde
- Department of Pharmacology, School of Medicine of Ribeirão Preto, Centre for Interdisciplinary Research on Applied Neurosciences (NAPNA), Cannabinoid Research Institute, University of São Paulo, São Paulo, Brazil
| | - Vinícius L Detoni
- Department of Pharmacology, School of Medicine of Ribeirão Preto, Centre for Interdisciplinary Research on Applied Neurosciences (NAPNA), Cannabinoid Research Institute, University of São Paulo, São Paulo, Brazil
| | - Nilson C Ferreira-Junior
- Department of Pharmacology, School of Medicine of Ribeirão Preto, Centre for Interdisciplinary Research on Applied Neurosciences (NAPNA), Cannabinoid Research Institute, University of São Paulo, São Paulo, Brazil
| | - Francisco S Guimarães
- Department of Pharmacology, School of Medicine of Ribeirão Preto, Centre for Interdisciplinary Research on Applied Neurosciences (NAPNA), Cannabinoid Research Institute, University of São Paulo, São Paulo, Brazil
| | - Alline C Campos
- Department of Pharmacology, School of Medicine of Ribeirão Preto, Centre for Interdisciplinary Research on Applied Neurosciences (NAPNA), Cannabinoid Research Institute, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
10
|
Zhang GF, Liu WX, Qiu LL, Guo J, Wang XM, Sun HL, Yang JJ, Zhou ZQ. Repeated ketamine administration redeems the time lag for citalopram's antidepressant-like effects. Eur Psychiatry 2015; 30:504-510. [DOI: 10.1016/j.eurpsy.2014.11.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 10/16/2014] [Accepted: 11/09/2014] [Indexed: 01/31/2023] Open
Abstract
AbstractCurrent available antidepressants exhibit low remission rate with a long response lag time. Growing evidence has demonstrated acute sub-anesthetic dose of ketamine exerts rapid, robust, and lasting antidepressant effects. However, a long term use of ketamine tends to elicit its adverse reactions. The present study aimed to investigate the antidepressant-like effects of intermittent and consecutive administrations of ketamine on chronic unpredictable mild stress (CUMS) rats, and to determine whether ketamine can redeem the time lag for treatment response of classic antidepressants. The behavioral responses were assessed by the sucrose preference test, forced swimming test, and open field test. In the first stage of experiments, all the four treatment regimens of ketamine (10 mg/kg ip, once daily for 3 or 7 consecutive days, or once every 7 or 3 days, in a total 21 days) showed robust antidepressant-like effects, with no significant influence on locomotor activity and stereotype behavior in the CUMS rats. The intermittent administration regimens produced longer antidepressant-like effects than the consecutive administration regimens and the administration every 7 days presented similar antidepressant-like effects with less administration times compared with the administration every 3 days. In the second stage of experiments, the combination of ketamine (10 mg/kg ip, once every 7 days) and citalopram (20 mg/kg po, once daily) for 21 days caused more rapid and sustained antidepressant-like effects than citalopram administered alone. In summary, repeated sub-anesthestic doses of ketamine can redeem the time lag for the antidepressant-like effects of citalopram, suggesting the combination of ketamine and classic antidepressants is a promising regimen for depression with quick onset time and stable and lasting effects.
Collapse
|
11
|
Jedynak P, Kos T, Sandi C, Kaczmarek L, Filipkowski RK. Mice with ablated adult brain neurogenesis are not impaired in antidepressant response to chronic fluoxetine. J Psychiatr Res 2014; 56:106-11. [PMID: 24931850 DOI: 10.1016/j.jpsychires.2014.05.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 04/29/2014] [Accepted: 05/13/2014] [Indexed: 12/28/2022]
Abstract
The neurogenesis hypothesis of major depression has two main facets. One states that the illness results from decreased neurogenesis while the other claims that the very functioning of antidepressants depends on increased neurogenesis. In order to verify the latter, we have used cyclin D2 knockout mice (cD2 KO mice), known to have virtually no adult brain neurogenesis, and we demonstrate that these mice successfully respond to chronic fluoxetine. After unpredictable chronic mild stress, mutant mice showed depression-like behavior in forced swim test, which was eliminated with chronic fluoxetine treatment, despite its lack of impact on adult hippocampal neurogenesis in cD2 KO mice. Our results suggest that new neurons are not indispensable for the action of antidepressants such as fluoxetine. Using forced swim test and tail suspension test, we also did not observe depression-like behavior in control cD2 KO mice, which argues against the link between decreased adult brain neurogenesis and major depression.
Collapse
Affiliation(s)
- Paulina Jedynak
- Laboratory of Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Tomasz Kos
- Department of Behavioral Neuroscience & Drug Development, Institute of Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland
| | - Carmen Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Leszek Kaczmarek
- Laboratory of Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Robert K Filipkowski
- Laboratory of Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; Department of Biological Psychology, University of Finance and Management in Warsaw, 01-030 Warsaw, Poland; Behavior and Metabolism Research Laboratory, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland.
| |
Collapse
|
12
|
Wen L, Jin Y, Li L, Sun S, Cheng S, Zhang S, Zhang Y, Svenningsson P. Exercise prevents raphe nucleus mitochondrial overactivity in a rat depression model. Physiol Behav 2014; 132:57-65. [PMID: 24813829 DOI: 10.1016/j.physbeh.2014.04.050] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 04/04/2014] [Accepted: 04/29/2014] [Indexed: 12/26/2022]
Abstract
Monoamine deficit and mitochondrial dysfunction may underlie depression. Serotoninergic neurons from raphe nuclei project widely and may be involved in depression. This study used chronic unpredictable stress (CUS) in rats as a model of depression to assess the effects of CUS, exercise and fluoxetine on mitochondrial function and serotonin levels in the raphe nuclei. Rats were divided into 4 groups (6 per group): control (C); depression (D), CUS for 28days; depression+exercise (DE), treadmill exercises from days 11-28 of CUS; depression+fluoxetine (DF), fluoxetine (5mg/kg/d i.g.) from days 11 to 28 of CUS. Behavioral changes were assessed using body weight, sucrose consumption tests (anhedonia) and open field tests (locomotor/exploratory behavior). Raphe nucleus mitochondrial function was determined using the respiratory control ratio, ATP synthesis rate, and activities of superoxide dismutase and glutathione peroxidase. Serotonin levels were measured in the raphe nuclei and hippocampus. On day 28 of CUS, body weight was higher in group C than in groups D, DE and DF (P<0.001), and higher in group DE than in group D or DF (P<0.05). Sucrose consumption was higher in group C than in groups D, DE and DF (P<0.001), higher in group DE than in groups D (P<0.001) or DF (P<0.05), and higher in group DF than in group D (P<0.05). All measures of mitochondrial function were increased in group D compared with the other groups (P<0.01). Hippocampal serotonin was lower in group D than in the other groups (P<0.01); levels in the raphe nuclei were elevated in group DE compared with the remaining groups (P<0.001). CUS in rats may cause overactivation of the mitochondria in the raphe nuclei, and exercise training may suppress these changes.
Collapse
Affiliation(s)
- Li Wen
- Tianjin Key Laboratory of Exercise Physical & Sport Medicine, Tianjin University of Sport, Tianjin 300381, PR China.
| | - Yahong Jin
- Sport Administration Key Laboratory of Sports Psychological and Physiological Regulation, Tianjin University of Sport, Tianjin 300381, PR China
| | - Lei Li
- Sport Administration Key Laboratory of Sports Psychological and Physiological Regulation, Tianjin University of Sport, Tianjin 300381, PR China
| | - Shuangyu Sun
- Tianjin Key Laboratory of Exercise Physical & Sport Medicine, Tianjin University of Sport, Tianjin 300381, PR China
| | - Shixiang Cheng
- Institute of Traumatic Brain Injury and Neurology of Chinese Armed Police Forces, Center for Neurology and Neurosurgery of Logistics College of Chinese Armed Police Forces, Tianjin, PR China
| | - Sai Zhang
- Institute of Traumatic Brain Injury and Neurology of Chinese Armed Police Forces, Center for Neurology and Neurosurgery of Logistics College of Chinese Armed Police Forces, Tianjin, PR China
| | - Yong Zhang
- Tianjin Key Laboratory of Exercise Physical & Sport Medicine, Tianjin University of Sport, Tianjin 300381, PR China
| | - Per Svenningsson
- Laboratory of Translational Neuropharmacology, Department of Clinical Neuroscience, Karolinska Institute, Karolinska University Hospital Solna, Center for Molecular Medicine/Translational Neuropharmacology, Solna, Sweden.
| |
Collapse
|
13
|
Peragine D, Simpson J, Mooney S, Lovern M, Holmes M. Social regulation of adult neurogenesis in a eusocial mammal. Neuroscience 2014; 268:10-20. [DOI: 10.1016/j.neuroscience.2014.02.044] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 01/27/2014] [Accepted: 02/26/2014] [Indexed: 12/17/2022]
|
14
|
Li LH, Wang ZC, Yu J, Zhang YQ. Ovariectomy results in variable changes in nociception, mood and depression in adult female rats. PLoS One 2014; 9:e94312. [PMID: 24710472 PMCID: PMC3978042 DOI: 10.1371/journal.pone.0094312] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 03/15/2014] [Indexed: 01/08/2023] Open
Abstract
Decline in the ovarian hormones with menopause may influence somatosensory, cognitive, and affective processing. The present study investigated whether hormonal depletion alters the nociceptive, depressive-like and learning behaviors in experimental rats after ovariectomy (OVX), a common method to deplete animals of their gonadal hormones. OVX rats developed thermal hyperalgesia in proximal and distal tail that was established 2 weeks after OVX and lasted the 7 weeks of the experiment. A robust mechanical allodynia was also occurred at 5 weeks after OVX. In the 5th week after OVX, dilute formalin (5%)-induced nociceptive responses (such as elevating and licking or biting) during the second phase were significantly increased as compared to intact and sham-OVX females. However, chronic constriction injury (CCI) of the sciatic nerve-induced mechanical allodynia did not differ as hormonal status (e.g. OVX and ovarian intact). Using formalin-induced conditioned place avoidance (F-CPA), which is believed to reflect the pain-related negative emotion, we further found that OVX significantly attenuated F-CPA scores but did not alter electric foot-shock-induced CPA (S-CPA). In the open field and forced swimming test, there was an increase in depressive-like behaviors in OVX rats. There was no detectable impairment of spatial performance by Morris water maze task in OVX rats up to 5 weeks after surgery. Estrogen replacement retrieved OVX-induced nociceptive hypersensitivity and depressive-like behaviors. This is the first study to investigate the impacts of ovarian removal on nociceptive perception, negative emotion, depressive-like behaviors and spatial learning in adult female rats in a uniform and standard way.
Collapse
Affiliation(s)
- Li-Hong Li
- Institute of Neurobiology, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Zhe-Chen Wang
- Institute of Neurobiology, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Jin Yu
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, Shanghai Medical Colloge, Fudan University, Shanghai, China
| | - Yu-Qiu Zhang
- Institute of Neurobiology, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
- * E-mail:
| |
Collapse
|
15
|
Muto J, Lee H, Lee H, Uwaya A, Park J, Nakajima S, Nagata K, Ohno M, Ohsawa I, Mikami T. Oral administration of inosine produces antidepressant-like effects in mice. Sci Rep 2014; 4:4199. [PMID: 24569499 PMCID: PMC3935199 DOI: 10.1038/srep04199] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 02/06/2014] [Indexed: 12/22/2022] Open
Abstract
Inosine, a breakdown product of adenosine, has recently been shown to exert immunomodulatory and neuroprotective effects. We show here that the oral administration of inosine has antidepressant-like effects in two animal models. Inosine significantly enhanced neurite outgrowth and viability of primary cultured neocortical neurons, which was suppressed by adenosine A1 and A2A receptor agonists. Oral administration of inosine to mice transiently increased its concentration in the brain and enhanced neuronal proliferation in the dentate gyrus, accompanied by phosphorylation of mitogen-activated protein kinase and increase in transcript level of brain-derived neurotrophic factor. In stress models, oral inosine prevented an increase in immobility time in forced swim test after chronically unexpected stress and mitigated a reduction in sucrose preference after chronic social defeat stress. These results indicate that oral administration of inosine has the potential to prevent depressive disorder via adenosine receptors.
Collapse
Affiliation(s)
- Junko Muto
- 1] Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan [2] Department of Health and Sports Science, Nippon Medical School, Kawasaki, Japan
| | - Hosung Lee
- 1] Department of Health and Sports Science, Nippon Medical School, Kawasaki, Japan [2] Department of Biochemistry and Cell Biology, Institute of Development and Aging Science, Graduate School of Medicine, Nippon Medical School, Kawasaki, Japan
| | - Hyunjin Lee
- 1] Department of Health and Sports Science, Nippon Medical School, Kawasaki, Japan [2] Department of Biochemistry and Cell Biology, Institute of Development and Aging Science, Graduate School of Medicine, Nippon Medical School, Kawasaki, Japan
| | - Akemi Uwaya
- 1] Department of Health and Sports Science, Nippon Medical School, Kawasaki, Japan [2] Department of Biochemistry and Cell Biology, Institute of Development and Aging Science, Graduate School of Medicine, Nippon Medical School, Kawasaki, Japan
| | - Jonghyuk Park
- 1] Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan [2] Department of Health and Sports Science, Nippon Medical School, Kawasaki, Japan
| | - Sanae Nakajima
- 1] Department of Health and Sports Science, Nippon Medical School, Kawasaki, Japan [2] Department of Biochemistry and Cell Biology, Institute of Development and Aging Science, Graduate School of Medicine, Nippon Medical School, Kawasaki, Japan [3] Kyoritsu Women's Junior College, Tokyo, Japan
| | - Kazufumi Nagata
- 1] Department of Health and Sports Science, Nippon Medical School, Kawasaki, Japan [2] Department of Biochemistry and Cell Biology, Institute of Development and Aging Science, Graduate School of Medicine, Nippon Medical School, Kawasaki, Japan
| | - Makoto Ohno
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan
| | - Ikuroh Ohsawa
- Biological Process of Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Toshio Mikami
- Department of Health and Sports Science, Nippon Medical School, Kawasaki, Japan
| |
Collapse
|
16
|
Electroacupuncture promotes proliferation of amplifying neural progenitors and preserves quiescent neural progenitors from apoptosis to alleviate depressive-like and anxiety-like behaviours. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:872568. [PMID: 24719647 PMCID: PMC3955608 DOI: 10.1155/2014/872568] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 01/21/2014] [Accepted: 01/22/2014] [Indexed: 11/18/2022]
Abstract
The present study was designed to investigate the effects of electroacupuncture (EA) on depressive-like and anxiety-like behaviours and neural progenitors in the hippocampal dentate gyrus (DG) in a chronic unpredictable stress (CUS) rat model of depression. After being exposed to a CUS procedure for 2 weeks, rats were subjected to EA treatment, which was performed on acupoints Du-20 (Bai-Hui) and GB-34 (Yang-Ling-Quan), once every other day for 15 consecutive days (including 8 treatments), with each treatment lasting for 30 min. The behavioural tests (i.e., forced swimming test, elevated plus-maze test, and open-field entries test) revealed that EA alleviated the depressive-like and anxiety-like behaviours of the stressed rats. Immunohistochemical results showed that proliferative cells (BrdU-positive) in the EA group were significantly larger in number compared with the Model group. Further, the results showed that EA significantly promoted the proliferation of amplifying neural progenitors (ANPs) and simultaneously inhibited the apoptosis of quiescent neural progenitors (QNPs). In a word, the mechanism underlying the antidepressant-like effects of EA is associated with enhancement of ANPs proliferation and preserving QNPs from apoptosis.
Collapse
|
17
|
Effects of stress and MDMA on hippocampal gene expression. BIOMED RESEARCH INTERNATIONAL 2014; 2014:141396. [PMID: 24511526 PMCID: PMC3910535 DOI: 10.1155/2014/141396] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 09/18/2013] [Accepted: 10/10/2013] [Indexed: 11/17/2022]
Abstract
MDMA (3,4-methylenedioxymethamphetamine) is a substituted amphetamine and popular drug of abuse. Its mood-enhancing short-term effects may prompt its consumption under stress. Clinical studies indicate that MDMA treatment may mitigate the symptoms of stress disorders such as posttraumatic stress syndrome (PTSD). On the other hand, repeated administration of MDMA results in persistent deficits in markers of serotonergic (5-HT) nerve terminals that have been viewed as indicative of 5-HT neurotoxicity. Exposure to chronic stress has been shown to augment MDMA-induced 5-HT neurotoxicity. Here, we examine the transcriptional responses in the hippocampus to MDMA treatment of control rats and rats exposed to chronic stress. MDMA altered the expression of genes that regulate unfolded protein binding, protein folding, calmodulin-dependent protein kinase activity, and neuropeptide signaling. In stressed rats, the gene expression profile in response to MDMA was altered to affect sensory processing and responses to tissue damage in nerve sheaths. Subsequent treatment with MDMA also markedly altered the genetic responses to stress such that the stress-induced downregulation of genes related to the circadian rhythm was reversed. The data support the view that MDMA-induced transcriptional responses accompany the persistent effects of this drug on neuronal structure/function. In addition, MDMA treatment alters the stress-induced transcriptional signature.
Collapse
|
18
|
Kim HJ, Kim W, Kong SY. Antidepressants for neuro-regeneration: from depression to Alzheimer's disease. Arch Pharm Res 2013; 36:1279-90. [PMID: 24129616 DOI: 10.1007/s12272-013-0238-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 08/17/2013] [Indexed: 02/05/2023]
Abstract
Recently identified new potential functions of antidepressants in the treatment of neurodegenerative will be introduced. Antidepressants are reported to regulate stem cell fate to regenerate neurons in the adult hippocampus and are effective in reducing toxic amyloid peptides and are known to increase neurotrophic factor such as brain-derived neurotrophic factor. Clinical trial data support that antidepressants have potential to treat Alzheimer's disease.
Collapse
Affiliation(s)
- Hyun-Jung Kim
- Laboratory of Molecular and Stem Cell Pharmacology, College of Pharmacy, Chung-Ang University, Seoul, 156-756, Republic of Korea,
| | | | | |
Collapse
|
19
|
Chambers RA. Adult hippocampal neurogenesis in the pathogenesis of addiction and dual diagnosis disorders. Drug Alcohol Depend 2013; 130:1-12. [PMID: 23279925 PMCID: PMC3640791 DOI: 10.1016/j.drugalcdep.2012.12.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 11/19/2012] [Accepted: 12/06/2012] [Indexed: 12/11/2022]
Abstract
BACKGROUND As knowledge deepens about how new neurons are born, differentiate, and wire into the adult mammalian brain, growing evidence depicts hippocampal neurogenesis as a special form of neuroplasticity that may be impaired across psychiatric disorders. This review provides an integrated-evidence based framework describing a neurogenic basis for addictions and addiction vulnerability in mental illness. METHODS Basic studies conducted over the last decade examining the effects of addictive drugs on adult neurogenesis and the impact of neurogenic activity on addictive behavior were compiled and integrated with relevant neurocomputational and human studies. RESULTS While suppression of hippocampal neurogenic proliferation appears to be a universal property of addictive drugs, the pathophysiology of addictions involves neuroadaptative processes within frontal-cortical-striatal motivation circuits that the neurogenic hippocampus regulates via direct projections. States of suppressed neurogenic activity may simultaneously underlie psychiatric and cognitive symptoms, but also confer or signify hippocampal dysfunction that heightens addiction vulnerability in mental illness as a basis for dual diagnosis disorders. CONCLUSIONS Research on pharmacological, behavioral and experiential strategies that enhance adaptive regulation of hippocampal neurogenesis holds potential in advancing preventative and integrative treatment strategies for addictions and dual diagnosis disorders.
Collapse
Affiliation(s)
- R Andrew Chambers
- Laboratory for Translational Neuroscience of Dual Diagnosis & Development, Department of Psychiatry, Indiana University School of Medicine, 791 Union Drive, Indianapolis, IN 46202, United States.
| |
Collapse
|
20
|
Suri D, Veenit V, Sarkar A, Thiagarajan D, Kumar A, Nestler EJ, Galande S, Vaidya VA. Early stress evokes age-dependent biphasic changes in hippocampal neurogenesis, BDNF expression, and cognition. Biol Psychiatry 2013; 73:658-66. [PMID: 23237316 PMCID: PMC4051354 DOI: 10.1016/j.biopsych.2012.10.023] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 09/28/2012] [Accepted: 10/24/2012] [Indexed: 01/03/2023]
Abstract
BACKGROUND Adult-onset stressors exert opposing effects on hippocampal neurogenesis and cognition, with enhancement observed following mild stress and dysfunction following severe chronic stress. While early life stress evokes persistent changes in anxiety, it is unknown whether early stress differentially regulates hippocampal neurogenesis, trophic factor expression, and cognition across the life span. METHODS Hippocampal-dependent cognitive behavior, neurogenesis, and epigenetic regulation of brain-derived neurotrophic factor (Bdnf) expression was examined at distinct time points across the life span in rats subjected to the early stress of maternal separation (ES) and control groups. We also examined the influence of chronic antidepressant treatment on the neurogenic, neurotrophic, and cognitive changes in middle-aged ES animals. RESULTS Animals subjected to early stress of maternal separation examined during postnatal life and young adulthood exhibited enhanced hippocampal neurogenesis, decreased repressive histone methylation at the Bdnf IV promoter along with enhanced BDNF levels, and improved performance on the stress-associated Morris water maze. Strikingly, opposing changes in hippocampal neurogenesis and epigenetic regulation of Bdnf IV expression, concomitant with impairments on hippocampal-dependent cognitive tasks, were observed in middle-aged ES animals. Chronic antidepressant treatment with amitriptyline attenuated the maladaptive neurogenic, epigenetic, transcriptional, and cognitive effects in middle-aged ES animals. CONCLUSIONS Our study provides novel insights into the short- and long-term consequences of ES, demonstrating both biphasic and unique, age-dependent changes at the molecular, epigenetic, neurogenic, and behavioral levels. These results indicate that early stress may transiently endow animals with a potential adaptive advantage in stressful environments but across a life span is associated with long-term deleterious effects.
Collapse
|
21
|
Liu Q, Zhu HY, Li B, Wang YQ, Yu J, Wu GC. Chronic clomipramine treatment restores hippocampal expression of glial cell line-derived neurotrophic factor in a rat model of depression. J Affect Disord 2012; 141:367-72. [PMID: 22658339 DOI: 10.1016/j.jad.2012.03.018] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 02/05/2012] [Accepted: 03/08/2012] [Indexed: 12/31/2022]
Abstract
BACKGROUND Because there is evidence that certain neurotrophic factors are involved in depression and the mechanism of antidepressant treatment, it is hypothesized that neurotrophic factors may also play a functional role in the etiology of depression and treatment. Glial cell line-derived neurotrophic factor (GDNF) is a member of the transforming growth factor (TGF-β)-super-family. We performed a study to assess the impact of chronic unpredictable stress (CUS) and clomipramine treatment on GDNF expression in the rat hippocampus. METHOD Using a rat model of CUS-induced depression, we administered clomipramine, one of the typical antidepressants, every day for 3 weeks starting 2 weeks after the beginning of the experiment. GDNF level in the hippocampus was detected by immunohistochemsitry, Western blot analysis, and reverse transcription-polymerase chain reaction (RT-PCR). Behavioral changes were measured by forced swimming test (FST) and open field test (OFT). RESULTS Animals exposed to CUS showed depression-like behavior and exhibited a significant decrease in GDNF expression in the hippocampus. Chronic clomipramine treatment reversed the behavioral deficits and the decrease in GDNF levels induced by CUS. LIMITATION The relatively small number of the depression-model rats may cause some bias of behavioral tests. CONCLUSION In our study, chronic clomipramine treatment restored GDNF expression in the hippocampus of CUS-induced depression rats, suggesting that GDNF is involved in the behavioral responses to antidepressants. The beneficial effects of clomipramine suggest that GDNF may be a viable target for new antidepressant drug development.
Collapse
Affiliation(s)
- Qiong Liu
- Department of integrative medicine and neurobiology, Shanghai medical college, Fudan University, Shanghai 200032, PR China
| | | | | | | | | | | |
Collapse
|
22
|
Hill MN, Hellemans KGC, Verma P, Gorzalka BB, Weinberg J. Neurobiology of chronic mild stress: parallels to major depression. Neurosci Biobehav Rev 2012; 36:2085-117. [PMID: 22776763 PMCID: PMC4821201 DOI: 10.1016/j.neubiorev.2012.07.001] [Citation(s) in RCA: 321] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 06/21/2012] [Accepted: 07/01/2012] [Indexed: 01/28/2023]
Abstract
The chronic mild (or unpredictable/variable) stress (CMS) model was developed as an animal model of depression more than 20 years ago. The foundation of this model was that following long-term exposure to a series of mild, but unpredictable stressors, animals would develop a state of impaired reward salience that was akin to the anhedonia observed in major depressive disorder. In the time since its inception, this model has also been used for a variety of studies examining neurobiological variables that are associated with depression, despite the fact that this model has never been critically examined to validate that the neurobiological changes induced by CMS are parallel to those documented in depressive disorder. The aim of the current review is to summarize the current state of knowledge regarding the effects of chronic mild stress on neurobiological variables, such as neurochemistry, neurochemical receptor expression and functionality, neurotrophin expression and cellular plasticity. These findings are then compared to those of clinical research examining common variables in populations with depressive disorders to determine if the changes observed following chronic mild stress are in fact consistent with those observed in major depression. We conclude that the chronic mild stress paradigm: (1) evokes an array of neurobiological changes that mirror those seen in depressive disorders and (2) may be a suitable tool to investigate novel systems that could be disturbed in depression, and thus aid in the development of novel targets for the treatment of depression.
Collapse
Affiliation(s)
- Matthew N Hill
- Departments of Cell Biology and Anatomy, Hotchkiss Brain Institute, University of Calgary, Calgary, AB Canada.
| | | | | | | | | |
Collapse
|
23
|
Wainwright SR, Lieblich SE, Galea LAM. Hypogonadism predisposes males to the development of behavioural and neuroplastic depressive phenotypes. Psychoneuroendocrinology 2011; 36:1327-41. [PMID: 21481538 DOI: 10.1016/j.psyneuen.2011.03.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 02/09/2011] [Accepted: 03/08/2011] [Indexed: 11/17/2022]
Abstract
The incidence of depression is 2-3× higher in women particularly during the reproductive years, an occurrence that has been associated with levels of sex hormones. The age-related decline of testosterone levels in men corresponds with the increased acquisition of depressive symptoms, and hormone replacement therapy can be efficacious in treating depression in hypogonadal men. Although it is not possible to model depression in rodents, it is possible to model some of the symptoms of depression including a dysregulated stress response and altered neuroplasticity. Among animal models of depression, chronic mild unpredictable stress (CMS) is a common paradigm used to induce depressive-like behaviours in rodents, disrupt the hypothalamic-pituitary adrenal axis and decrease hippocampal neuroplasticity. The purpose of this study was to assess the effect of hypogonadism, produced by gonadectomy, on the acquisition of depressive-like behaviours and changes in hippocampal neuroplasticity in adult male Sprague-Dawley rats. A 21-day unpredictable CMS protocol was used on gonadectomised (GDX) and sham-operated males which produced an attenuation of weight gain in the GDX males receiving CMS treatment (GDX-CMS). Behavioural analysis was carried out to assess anxiety- and depressive-like behaviours. The combination of GDX and CMS produced greater passive behaviours within the forced swim test than CMS exposure alone. Similarly, hippocampal cell proliferation, neurogenesis and the expression of the neuroplastic protein polysialated neural cell adhesion molecule (PSA-NCAM) were all significantly reduced in the GDX-CMS group compared to all other treatment groups. These findings indicate that testicular hormones confer resiliency to chronic stress in males therefore reducing the likelihood of developing putative physiological, behavioural or neurological depressive-like phenotypes.
Collapse
Affiliation(s)
- Steven R Wainwright
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada
| | | | | |
Collapse
|
24
|
Balk RDS, Silva MHD, Bridi JC, Carvalho NR, Portella RDL, Dobrachinski F, Amaral GP, Barcelos R, Dias GRM, Rocha JBTD, Barbosa NBV, Soares FAA. Effect of repeated restraint stress and clomipramine on Na+/K+-ATPase activity and behavior in rats. Int J Dev Neurosci 2011; 29:909-16. [PMID: 21762772 DOI: 10.1016/j.ijdevneu.2011.06.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 06/26/2011] [Accepted: 06/27/2011] [Indexed: 01/28/2023] Open
Abstract
Activation of the limbic-hypothalamic-pituitary-adrenal axis (LHPA) and the release of glucocorticoids are fundamental for the adaptive response and immediate survival of an organism in reaction to acute stimuli. However, high levels of glucocorticoids in the brain may produce neuronal injury and a decrease of Na(+)/K(+)-ATPase activity, with effects on neurotransmitter signaling, neural activity, as well as the whole animal behavior. Clomipramine is a tricyclic antidepressant that inhibits the reuptake of serotonin and norepinephrine by indirect actions on the dopaminergic system and LHPA axis. Its chronic use increases the body's ability to cope with stress; however, high doses can potentiate its side effects on memory, learning, and sensory motor function. The purpose of the present study was to compare the effect of repeated restraint stress and clomipramine treatment on Na(+)/K(+)-ATPase activity and on the behavior of male rats. Changes in the behavioral response were evaluated by measuring the memory, learning, anxiety, and exploratory responses. Our results showed that exposure to repeated restraint stress reduced levels of Na(+)/K(+)-ATPase in brain structures and changed short and long-term memory, learning, and exploratory response when compared to the control group. Exposure to clomipramine treatment increased anxiety levels and reduced Na(+)/K(+)-ATPase activity in the cerebral cortex as well as short term memory, learning, and exploratory response. In conclusion, the present results provide additional evidence concerning how repeated restraint stress and clomipramine chronically administered at higher dose levels affect the neural activity and behavior of male rats.
Collapse
Affiliation(s)
- Rodrigo de Souza Balk
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Campus UFSM, Santa Maria, RS, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Parihar VK, Hattiangady B, Kuruba R, Shuai B, Shetty AK. Predictable chronic mild stress improves mood, hippocampal neurogenesis and memory. Mol Psychiatry 2011; 16:171-83. [PMID: 20010892 PMCID: PMC2891880 DOI: 10.1038/mp.2009.130] [Citation(s) in RCA: 172] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Maintenance of neurogenesis in adult hippocampus is important for functions such as mood and memory. As exposure to unpredictable chronic stress (UCS) results in decreased hippocampal neurogenesis, enhanced depressive- and anxiety-like behaviors, and memory dysfunction, it is believed that declined hippocampal neurogenesis mainly underlies the behavioral and cognitive abnormalities after UCS. However, the effects of predictable chronic mild stress (PCMS) such as the routine stress experienced in day-to-day life on functions such as mood, memory and hippocampal neurogenesis are unknown. Using FST and EPM tests on a prototype of adult rats, we demonstrate that PCMS (comprising 5 min of daily restraint stress for 28 days) decreases depressive- and anxiety-like behaviors for prolonged periods. Moreover, we illustrate that decreased depression and anxiety scores after PCMS are associated with ~1.8-fold increase in the production and growth of new neurons in the hippocampus. Additionally, we found that PCMS leads to enhanced memory function in WMT as well as NORT. Collectively, these findings reveal that PCMS is beneficial to adult brain function, which is exemplified by increased hippocampal neurogenesis and improved mood and cognitive function.
Collapse
Affiliation(s)
- Vipan K. Parihar
- Medical Research & Surgery Services, Veterans Affairs Medical Center, Durham, North Carolina 27705.,Department of Surgery (Division of Neurosurgery), Duke University Medical Center, Durham NC 27710
| | - Bharathi Hattiangady
- Medical Research & Surgery Services, Veterans Affairs Medical Center, Durham, North Carolina 27705.,Department of Surgery (Division of Neurosurgery), Duke University Medical Center, Durham NC 27710
| | - Ramkumar Kuruba
- Medical Research & Surgery Services, Veterans Affairs Medical Center, Durham, North Carolina 27705.,Department of Surgery (Division of Neurosurgery), Duke University Medical Center, Durham NC 27710
| | - Bing Shuai
- Medical Research & Surgery Services, Veterans Affairs Medical Center, Durham, North Carolina 27705.,Department of Surgery (Division of Neurosurgery), Duke University Medical Center, Durham NC 27710
| | - Ashok. K. Shetty
- Medical Research & Surgery Services, Veterans Affairs Medical Center, Durham, North Carolina 27705.,Department of Surgery (Division of Neurosurgery), Duke University Medical Center, Durham NC 27710.,Correspondence should be addressed to: Ashok K. Shetty, M.Sc., Ph.D. Professor, Division of Neurosurgery Department of Surgery Box 3807, Duke University Medical Center Durham, NC 27710. Phone: (919) – 286-0411, Ext. 7096
| |
Collapse
|
26
|
Hayase T. Depression-related anhedonic behaviors caused by immobilization stress: a comparison with nicotine-induced depression-like behavioral alterations and effects of nicotine and/or "antidepressant" drugs. J Toxicol Sci 2011; 36:31-41. [DOI: 10.2131/jts.36.31] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
27
|
Hsieh J, Eisch AJ. Epigenetics, hippocampal neurogenesis, and neuropsychiatric disorders: unraveling the genome to understand the mind. Neurobiol Dis 2010; 39:73-84. [PMID: 20114075 DOI: 10.1016/j.nbd.2010.01.008] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 01/07/2010] [Accepted: 01/11/2010] [Indexed: 01/16/2023] Open
Abstract
In mature, differentiated neurons in the central nervous system (CNS), epigenetic mechanisms--including DNA methylation, histone modification, and regulatory noncoding RNAs--play critical roles in encoding experience and environmental stimuli into stable, behaviorally meaningful changes in gene expression. For example, epigenetic changes in mature hippocampal neurons have been implicated in learning and memory and in a variety of neuropsychiatric disorders, including depression. With all the recent (and warranted) attention given to epigenetic modifications in mature neurons, it is easy to forget that epigenetic mechanisms were initially described for their ability to promote differentiation and drive cell fate in embryonic and early postnatal development, including neurogenesis. Given the discovery of ongoing neurogenesis in the adult brain and the intriguing links among adult hippocampal neurogenesis, hippocampal function, and neuropsychiatric disorders, it is timely to complement the ongoing discussions on the role of epigenetics in mature neurons with a review on what is currently known about the role of epigenetics in adult hippocampal neurogenesis. The process of adult hippocampal neurogenesis is complex, with neural stem cells (NSCs) giving rise to fate-restricted progenitors and eventually mature dentate gyrus granule cells. Notably, neurogenesis occurs within an increasingly well-defined "neurogenic niche", where mature cellular elements like vasculature, astrocytes, and neurons release signals that can dynamically regulate neurogenesis. Here we review the evidence that key stages and aspects of adult neurogenesis are driven by epigenetic mechanisms. We discuss the intrinsic changes occurring within NSCs and their progeny that are critical for neurogenesis. We also discuss how extrinsic changes occurring in cellular components in the niche can result in altered neurogenesis. Finally we describe the potential relevance of epigenetics for understanding the relationship between hippocampal neurogenesis in neuropsychiatric disorders. We propose that a more thorough understanding of the molecular and genetic mechanisms that control the complex process of neurogenesis, including the proliferation and differentiation of NSCs, will lead to novel therapeutics for the treatment of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Jenny Hsieh
- Department of Molecular Biology, University of Texas Southwestern Medical Center, TX 75390, USA.
| | | |
Collapse
|
28
|
Liu Q, Li B, Zhu HY, Wang YQ, Yu J, Wu GC. Clomipramine treatment reversed the glial pathology in a chronic unpredictable stress-induced rat model of depression. Eur Neuropsychopharmacol 2009; 19:796-805. [PMID: 19616923 DOI: 10.1016/j.euroneuro.2009.06.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 05/26/2009] [Accepted: 06/09/2009] [Indexed: 01/17/2023]
Abstract
Growing evidence indicates that glia pathology contributes to the pathophysiology and possibly the etiology of depression. The study investigates changes in behaviors and glial fibrillary associated protein (GFAP) in the rat hippocampus after chronic unpredictable stress (CUS), a rat model of depression. Furthermore, we studied the effects of clomipramine, one of tricyclic antidepressants (TCAs), known to modulate serotonin and norepinephrine uptake, on CUS-induced depressive-like behaviors and GFAP levels. Rats exposed to CUS showed behavioral deficits in physical state, open field test and forced swimming test and exhibited a significant decrease in GFAP expression in the hippocampus. Interestingly, the behavioral and GFAP expression changes induced by CUS were reversed by chronic treatment with the antidepressant clomipramine. The beneficial effects of clomipramine treatment on CUS-induced depressive-like behavior and GFAP expression provide further validation of our hypothesis that glial dysfunction contributes to the pathophysiology of depression and that glial elements may represent viable targets for new antidepressant drug development.
Collapse
Affiliation(s)
- Qiong Liu
- Institute of Acupuncture Research (WHO Collaborating Center for Traditional Medicine), Institutes of Brain Science, Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | | | | | | | | | | |
Collapse
|