1
|
Gonzalo Ó, Benedi A, Vela L, Anel A, Naval J, Marzo I. Study of the Bcl-2 Interactome by BiFC Reveals Differences in the Activation Mechanism of Bax and Bak. Cells 2023; 12:cells12050800. [PMID: 36899936 PMCID: PMC10000386 DOI: 10.3390/cells12050800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Evasion of apoptosis is one of the hallmarks of cancer cells. Proteins of the Bcl-2 family are key regulators of the intrinsic pathway of apoptosis, and alterations in some of these proteins are frequently found in cancer cells. Permeabilization of the outer mitochondrial membrane, regulated by pro- and antiapoptotic members of the Bcl-2 family of proteins, is essential for the release of apoptogenic factors leading to caspase activation, cell dismantlement, and death. Mitochondrial permeabilization depends on the formation of oligomers of the effector proteins Bax and Bak after an activation event mediated by BH3-only proteins and regulated by antiapoptotic members of the Bcl-2 family. In the present work, we have studied interactions between different members of the Bcl-2 family in living cells via the BiFC technique. Despite the limitations of this technique, present data suggest that native proteins of the Bcl-2 family acting inside living cells establish a complex network of interactions, which would fit nicely into "mixed" models recently proposed by others. Furthermore, our results point to differences in the regulation of Bax and Bak activation by proteins of the antiapoptotic and BH3-only subfamilies. We have also applied the BiFC technique to explore the different molecular models proposed for Bax and Bak oligomerization. Bax and Bak's mutants lacking the BH3 domain were still able to associate and give BiFC signals, suggesting the existence of alternative surfaces of interaction between two Bax or Bak molecules. These results agree with the widely accepted symmetric model for the dimerization of these proteins and also suggest that other regions, different from the α6 helix, could be involved in the oligomerization of BH3-in groove dimers.
Collapse
|
2
|
Flores‐Romero H, Hohorst L, John M, Albert M, King LE, Beckmann L, Szabo T, Hertlein V, Luo X, Villunger A, Frenzel LP, Kashkar H, Garcia‐Saez AJ. BCL-2-family protein tBID can act as a BAX-like effector of apoptosis. EMBO J 2022; 41:e108690. [PMID: 34931711 PMCID: PMC8762556 DOI: 10.15252/embj.2021108690] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 11/14/2021] [Accepted: 11/22/2021] [Indexed: 12/26/2022] Open
Abstract
During apoptosis, the BCL-2-family protein tBID promotes mitochondrial permeabilization by activating BAX and BAK and by blocking anti-apoptotic BCL-2 members. Here, we report that tBID can also mediate mitochondrial permeabilization by itself, resulting in release of cytochrome c and mitochondrial DNA, caspase activation and apoptosis even in absence of BAX and BAK. This previously unrecognized activity of tBID depends on helix 6, homologous to the pore-forming regions of BAX and BAK, and can be blocked by pro-survival BCL-2 proteins. Importantly, tBID-mediated mitochondrial permeabilization independent of BAX and BAK is physiologically relevant for SMAC release in the immune response against Shigella infection. Furthermore, it can be exploited to kill leukaemia cells with acquired venetoclax resistance due to lack of active BAX and BAK. Our findings define tBID as an effector of mitochondrial permeabilization in apoptosis and provide a new paradigm for BCL-2 proteins, with implications for anti-bacterial immunity and cancer therapy.
Collapse
Affiliation(s)
- Hector Flores‐Romero
- Institute for GeneticsUniversity of CologneCologneGermany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
- Interfaculty Institute of BiochemistryEberhard‐Karls‐Universität TübingenTübingenGermany
| | - Lisa Hohorst
- Institute for GeneticsUniversity of CologneCologneGermany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
| | - Malina John
- Interfaculty Institute of BiochemistryEberhard‐Karls‐Universität TübingenTübingenGermany
| | - Marie‐Christine Albert
- Institute for Molecular Immunology, and Center for Molecular Medicine Cologne (CMMC)Faculty of MedicineUniversity Hospital of CologneUniversity of CologneCologneGermany
| | - Louise E King
- Institute for GeneticsUniversity of CologneCologneGermany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
| | - Laura Beckmann
- Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
- Department I of Internal MedicineUniversity Hospital of CologneCologneGermany
- Center of Integrated Oncology ABCDUniversity Hospital of CologneCologneGermany
| | - Tamas Szabo
- Division of Developmental ImmunologyBiocenterMedical University of InnsbruckInnsbruckAustria
| | - Vanessa Hertlein
- Interfaculty Institute of BiochemistryEberhard‐Karls‐Universität TübingenTübingenGermany
- Present address:
Children Cancer Research Institute (CCRI)ViennaAustria
| | - Xu Luo
- Eppley Institute for Research in Cancer and Allied DiseasesFred & Pamela Buffett Cancer CenterUniversity of Nebraska Medical CenterOmahaMEUSA
- Department of Pathology and MicrobiologyUniversity of Nebraska Medical CenterOmahaNEUSA
| | - Andreas Villunger
- Division of Developmental ImmunologyBiocenterMedical University of InnsbruckInnsbruckAustria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
- Ludwig Boltzmann Institute for Rare and Undiagnosed DiseasesViennaAustria
| | - Lukas P Frenzel
- Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
- Department I of Internal MedicineUniversity Hospital of CologneCologneGermany
- Center of Integrated Oncology ABCDUniversity Hospital of CologneCologneGermany
| | - Hamid Kashkar
- Institute for Molecular Immunology, and Center for Molecular Medicine Cologne (CMMC)Faculty of MedicineUniversity Hospital of CologneUniversity of CologneCologneGermany
| | - Ana J Garcia‐Saez
- Institute for GeneticsUniversity of CologneCologneGermany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
- Interfaculty Institute of BiochemistryEberhard‐Karls‐Universität TübingenTübingenGermany
| |
Collapse
|
3
|
Schroeder B, Vander Steen T, Espinoza I, Venkatapoorna CMK, Hu Z, Silva FM, Regan K, Cuyàs E, Meng XW, Verdura S, Arbusà A, Schneider PA, Flatten KS, Kemble G, Montero J, Kaufmann SH, Menendez JA, Lupu R. Fatty acid synthase (FASN) regulates the mitochondrial priming of cancer cells. Cell Death Dis 2021; 12:977. [PMID: 34675185 PMCID: PMC8531299 DOI: 10.1038/s41419-021-04262-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 09/12/2021] [Accepted: 09/24/2021] [Indexed: 12/24/2022]
Abstract
Inhibitors of the lipogenic enzyme fatty acid synthase (FASN) have attracted much attention in the last decade as potential targeted cancer therapies. However, little is known about the molecular determinants of cancer cell sensitivity to FASN inhibitors (FASNis), which is a major roadblock to their therapeutic application. Here, we find that pharmacological starvation of endogenously produced FAs is a previously unrecognized metabolic stress that heightens mitochondrial apoptotic priming and favors cell death induction by BH3 mimetic inhibitors. Evaluation of the death decision circuits controlled by the BCL-2 family of proteins revealed that FASN inhibition is accompanied by the upregulation of the pro-death BH3-only proteins BIM, PUMA, and NOXA. Cell death triggered by FASN inhibition, which causally involves a palmitate/NADPH-related redox imbalance, is markedly diminished by concurrent loss of BIM or PUMA, suggesting that FASN activity controls cancer cell survival by fine-tuning the BH3 only proteins-dependent mitochondrial threshold for apoptosis. FASN inhibition results in a heightened mitochondrial apoptosis priming, shifting cells toward a primed-for-death state "addicted" to the anti-apoptotic protein BCL-2. Accordingly, co-administration of a FASNi synergistically augments the apoptosis-inducing activity of the dual BCL-XL/BCL-2 inhibitor ABT-263 (navitoclax) and the BCL-2 specific BH3-mimetic ABT-199 (venetoclax). FASN inhibition, however, fails to sensitize breast cancer cells to MCL-1- and BCL-XL-selective inhibitors such as S63845 and A1331852. A human breast cancer xenograft model evidenced that oral administration of the only clinically available FASNi drastically sensitizes FASN-addicted breast tumors to ineffective single-agents navitoclax and venetoclax in vivo. In summary, a novel FASN-driven facet of the mitochondrial priming mechanistically links the redox-buffering mechanism of FASN activity to the intrinsic apoptotic threshold in breast cancer cells. Combining next-generation FASNis with BCL-2-specific BH3 mimetics that directly activate the apoptotic machinery might generate more potent and longer-lasting antitumor responses in a clinical setting.
Collapse
Affiliation(s)
- Barbara Schroeder
- Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA.,Mayo Clinic Cancer Center, Rochester, MN, 55905, USA.,Helmholtz Pioneer Campus, Heimholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstraße 1 D-85764 Neuherberg, Munich, Germany
| | - Travis Vander Steen
- Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Ingrid Espinoza
- Department of Preventive Medicine, John D. Bower School of Population Health, University of Mississippi Medical Center, Jackson, MS, 39216, USA.,Cancer Institute, School of Medicine, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Chandra M Kurapaty Venkatapoorna
- Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA.,Department of Nutrition, Dietetics, and Hospital Management, Auburn University, Auburn, AL, 36849, USA
| | - Zeng Hu
- Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA.,Radiation Oncology Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - Fernando Martín Silva
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
| | - Kevin Regan
- Department of Experimental Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Elisabet Cuyàs
- Girona Biomedical Research Institute, 17190, Salt, Girona, Spain.,Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism & Cancer Group, Catalan Institute of Oncology, 17007, Girona, Spain
| | - X Wei Meng
- Deparment of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Sara Verdura
- Girona Biomedical Research Institute, 17190, Salt, Girona, Spain.,Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism & Cancer Group, Catalan Institute of Oncology, 17007, Girona, Spain
| | - Aina Arbusà
- Girona Biomedical Research Institute, 17190, Salt, Girona, Spain.,Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism & Cancer Group, Catalan Institute of Oncology, 17007, Girona, Spain
| | | | - Karen S Flatten
- Deparment of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - George Kemble
- Sagimet Biosciences (formerly 3-V Biosciences), San Mateo, CA, 94402, USA
| | - Joan Montero
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
| | - Scott H Kaufmann
- Mayo Clinic Cancer Center, Rochester, MN, 55905, USA.,Deparment of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Javier A Menendez
- Department of Experimental Pathology, Mayo Clinic, Rochester, MN, 55905, USA. .,Girona Biomedical Research Institute, 17190, Salt, Girona, Spain.
| | - Ruth Lupu
- Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA. .,Mayo Clinic Cancer Center, Rochester, MN, 55905, USA. .,Department of Biochemistry and Molecular Biology Laboratory, Mayo Clinic Laboratory, Rochester, MN, 55905, USA.
| |
Collapse
|
4
|
Diethelm-Varela B. Using NMR Spectroscopy in the Fragment-Based Drug Discovery of Small-Molecule Anticancer Targeted Therapies. ChemMedChem 2020; 16:725-742. [PMID: 33236493 DOI: 10.1002/cmdc.202000756] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/21/2020] [Indexed: 12/19/2022]
Abstract
Against the challenge of providing personalized cancer care, the development of targeted therapies stands as a promising approach. The discovery of these agents can benefit from fragment-based drug discovery (FBDD) methods that help guide ligand design and provide key structural information on the targets of interest. In particular, nuclear magnetic resonance spectroscopy is a promising biophysical tool in fragment discovery due to its detection capabilities and versatility. This review provides an overview of FBDD, describes the basis of NMR-based fragment screening, summarizes some exciting technical advances reported over the past decades, and closes with a discussion of selected case studies where this technique has been used as part of drug discovery campaigns to produce lead compounds towards the design of anti-cancer targeted therapies.
Collapse
Affiliation(s)
- Benjamin Diethelm-Varela
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn St., Baltimore, MD 21201, USA
| |
Collapse
|
5
|
Moldoveanu T, Czabotar PE. BAX, BAK, and BOK: A Coming of Age for the BCL-2 Family Effector Proteins. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a036319. [PMID: 31570337 DOI: 10.1101/cshperspect.a036319] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The BCL-2 family of proteins control a key checkpoint in apoptosis, that of mitochondrial outer membrane permeabilization or, simply, mitochondrial poration. The family consists of three subgroups: BH3-only initiators that respond to apoptotic stimuli; antiapoptotic guardians that protect against cell death; and the membrane permeabilizing effectors BAX, BAK, and BOK. On activation, effector proteins are converted from inert monomers into membrane permeabilizing oligomers. For many years, this process has been poorly understood at the molecular level, but a number of recent advances have provided important insights. We review the regulation of these effectors, their activation, subsequent conformational changes, and the ensuing oligomerization events that enable mitochondrial poration, which initiates apoptosis through release of key signaling factors such as cytochrome c We highlight the mysteries that remain in understanding these important proteins in an endeavor to provide a comprehensive picture of where the field currently sits and where it is moving toward.
Collapse
Affiliation(s)
- Tudor Moldoveanu
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA.,Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis Tennessee 38105, USA
| | - Peter E Czabotar
- Walter and Eliza Hall Institute of Medical Research, University of Melbourne, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
6
|
Tsai HL, Pang SY, Wang HC, Luo CW, Li QL, Chen TY, Fang SY, Wang JY, Pan MR. Impact of BMI1 expression on the apoptotic effect of paclitaxel in colorectal cancer. Am J Cancer Res 2019; 9:2544-2553. [PMID: 31815052 PMCID: PMC6895441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 10/21/2019] [Indexed: 06/10/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide. Despite advances in treatment, no treatment modality specific for the different CRC phenotypes has been developed. BMI1 has been previously reported to play an important role in the regulation of cancer stem cells and cell cycle in CRC. However, the role of BMI1 in individualized treatment for CRC is largely unknown. In this study, we found that the apoptotic effect of paclitaxel is more profound in BMI1-depleted cells. The apoptotic effect is exerted by promoting caspase-8-independent apoptotic pathways after combination with paclitaxel in BMI1 knockdown cells. This effect could be totally recovered by pretreatment with caspase inhibitor compared with caspase-8 inhibitor alone. It has been reported that the levels of MCL-1 play a role in regulating cell resistance to paclitaxel treatment. Our data indicated that the downregulation of MCL-1 through the activation of GSK3beta and JNK is driven by BMI1 depletion. Consistent with in vitro data, a synergic anti-growth effect of BMI1 depletion with paclitaxel treatment was shown in vivo. In conclusion, paclitaxel has a stronger suppressive effect on tumor growth and proliferation in CRC with low BMI1 expression. Thus, in CRC patients, paclitaxel could be specifically indicated for patients with low BMI1 expression.
Collapse
Affiliation(s)
- Hsiang-Lin Tsai
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical UniversityKaohsiung, Taiwan
- Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical UniversityKaohsiung, Taiwan
| | - Shin-Yu Pang
- College of Medicine, Kaohsiung Medical UniversityKaohsiung, Taiwan
| | - Hui-Ching Wang
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical UniversityKaohsiung, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical UniversityKaohsiung, Taiwan
| | - Chi-Wen Luo
- Division of Breast Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical UniversityKaohsiung, Taiwan
| | - Qiao-Lin Li
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical UniversityKaohsiung, Taiwan
| | - Tzu-Yi Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical UniversityKaohsiung, Taiwan
| | - Shao-Yu Fang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical UniversityKaohsiung, Taiwan
| | - Jaw-Yuan Wang
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical UniversityKaohsiung, Taiwan
- Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical UniversityKaohsiung, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical UniversityKaohsiung, Taiwan
| | - Mei-Ren Pan
- Drug Development and Value Creation Research Center, Kaohsiung Medical UniversityKaohsiung, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical UniversityKaohsiung, Taiwan
| |
Collapse
|
7
|
Anuradha, Patel S, Patle R, Parameswaran P, Jain A, Shard A. Design, computational studies, synthesis and biological evaluation of thiazole-based molecules as anticancer agents. Eur J Pharm Sci 2019; 134:20-30. [PMID: 30965082 DOI: 10.1016/j.ejps.2019.04.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 03/27/2019] [Accepted: 04/02/2019] [Indexed: 01/04/2023]
Abstract
BACKGROUND Abolition of cancer warrants effective treatment modalities directed towards specific pathways dysregulated in tumor proliferation and survival. The antiapoptotic Bcl-2 proteins are significantly altered in several tumor types which position them as striking targets for therapeutic intervention. Here we designed, computationally evaluated, synthesized, and biologically tested structurally optimized thiazole-based small molecules as anticancer agents. METHODS The virtually designed 200 molecules were subjected to rigorous docking and in silico ADME-Toxicity studies. Out of this, 23 skeletally diverse thiazole-based molecules which passed pan assay interference compounds (PAINS) filter and were synthetically feasible were synthesized in 3 steps using cheap and readily available reagents. The molecules were in vitro evaluated against Bcl-2-Jurkat, A-431 cancerous cell lines and ARPE-19 cell lines. Molecular Dynamics (MD) simulation studies were performed to analyse conformational changes induced by ligand 32 in Bcl-2. Flow cytometry analysis of compound 32 treated Bcl-2 cells was done to check apoptosis. RESULTS The molecules exhibited appreciable interactions with Bcl-2 and were having acceptable drug like properties as tested in silico. The multi step synthesis yielded 23 skeletally diverse thiazole-based molecules in up to 80% yield. The molecules simultaneously inhibited Bcl-2 Jurkat cells in vitro without causing detectable toxicity to normal cells (ARPE-19 cells). Among them molecules 32, 50, 53, 57 and 59 showed considerable activities against Bcl-2 Jurkat and A-431cell lines at concentrations ranging from 32-46 μM and 34-52 μM, respectively. The standard doxorubicin exhibited IC50 in Bcl-2 Jurkat and A-431cell lines at 45.87 μM and 42.37 μM, respectively. The molecule 32, almost equipotent in both the cell lines was subjected to molecular dynamics (MD) simulation with Bcl-2 protein (4IEH). It was shown that 32 interacted with protein majorly via hydrophobic interactions and few H-bonding interactions. Fluorescence-activated cell sorting (FACS) analysis established that molecule is dragging cancerous cells towards apoptosis. DISCUSSION AND CONCLUSION The chemical intuition was checked by computation coupled with biological results confirmed that thiazole-based hits have the potential to be developed downstream into potent and safer leads against antiapoptotic Bcl-2 cells.
Collapse
Affiliation(s)
- Anuradha
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Ahmedabad, Opposite Air Force Station, Gandhinagar, Gujarat, 382355, India
| | - Sagarkumar Patel
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Ahmedabad, Opposite Air Force Station, Gandhinagar, Gujarat, 382355, India
| | - Rajkumar Patle
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Ahmedabad, Opposite Air Force Station, Gandhinagar, Gujarat, 382355, India
| | - Preethi Parameswaran
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Ahmedabad, Opposite Air Force Station, Gandhinagar, Gujarat, 382355, India
| | - Alok Jain
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research Ahmedabad, Opposite Air Force Station, Gandhinagar, Gujarat 382355, India.
| | - Amit Shard
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Ahmedabad, Opposite Air Force Station, Gandhinagar, Gujarat, 382355, India.
| |
Collapse
|
8
|
Pham B, Lindsay RJ, Shen T. Effector-Binding-Directed Dimerization and Dynamic Communication between Allosteric Sites of Ribonucleotide Reductase. Biochemistry 2019; 58:697-705. [PMID: 30571104 DOI: 10.1021/acs.biochem.8b01131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Proteins forming dimers or larger complexes can be strongly influenced by their effector-binding status. We investigated how the effector-binding event is coupled with interface formation via computer simulations, and we quantified the correlation of two types of contact interactions: between the effector and its binding pocket and between protein monomers. This was achieved by connecting the protein dynamics at the monomeric level with the oligomer interface information. We applied this method to ribonucleotide reductase (RNR), an essential enzyme for de novo DNA synthesis. RNR contains two important allosteric sites, the s-site (specificity site) and the a-site (activity site), which bind different effectors. We studied these different binding states with atomistic simulation and used their coarse-grained contact information to analyze the protein dynamics. The results reveal that the effector-protein dynamics at the s-site and dimer interface formation are positively coupled. We further quantify the resonance level between these two events, which can be applied to other similar systems. At the a-site, different effector-binding states (ATP vs dATP) drastically alter the protein dynamics and affect the activity of the enzyme. On the basis of these results, we propose a new mechanism of how the a-site regulates enzyme activation.
Collapse
Affiliation(s)
- Bill Pham
- Department of Biochemistry & Cellular and Molecular Biology , University of Tennessee , Knoxville , Tennessee 37996 , United States
| | - Richard J Lindsay
- UT-ORNL Graduate School of Genome Science and Technology , Knoxville , Tennessee 37996 , United States
| | - Tongye Shen
- Department of Biochemistry & Cellular and Molecular Biology , University of Tennessee , Knoxville , Tennessee 37996 , United States
| |
Collapse
|
9
|
Abstract
Myeloid cell leukemia-1 (MCL-1), a member of antiapoptotic BCL-2 family proteins, is a key regulator of mitochondrial homeostasis. Frequent overexpression of MCL-1 in human primary and drug-resistant cancer cells makes it an attractive cancer therapeutic target. Significant progress has been made in the development of small-molecule MCL-1 inhibitors in recent years, and three MCL-1 selective inhibitors have advanced to clinical trials. This review briefly discusses recent advances in the development of small molecules targeting MCL-1 for cancer therapy.
Collapse
Affiliation(s)
- Weiguo Xiang
- Department of Internal Medicine, University of Michigan Medical School,
| | - Chao-Yie Yang
- Department of Internal Medicine, University of Michigan Medical School,
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA,
| | - Longchuan Bai
- Department of Internal Medicine, University of Michigan Medical School,
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA,
| |
Collapse
|
10
|
Topology of active, membrane-embedded Bax in the context of a toroidal pore. Cell Death Differ 2018; 25:1717-1731. [PMID: 30185826 DOI: 10.1038/s41418-018-0184-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/20/2018] [Accepted: 05/21/2018] [Indexed: 01/18/2023] Open
Abstract
Bax is a Bcl-2 protein critical for apoptosis induction. In healthy cells, Bax is mostly a monomeric, cytosolic protein, while upon apoptosis initiation it inserts into the outer mitochondrial membrane, oligomerizes, and forms pores that release proapoptotic factors like Cytochrome c into the cytosol. The structures of active Bax and its homolog Bak are only partially understood and the topology of the proteins with respect to the membrane bilayer is controversially described in the literature. Here, we systematically review and examine the protein-membrane, protein-water, and protein-protein contacts of the nine helices of active Bax and Bak, and add a new set of topology data obtained by fluorescence and EPR methods. We conclude based on the consistent part of the datasets that the core/dimerization domain of Bax (Bak) is water exposed with only helices 4 and 5 in membrane contact, whereas the piercing/latch domain is in peripheral membrane contact, with helix 9 being transmembrane. Among the available structural models, those considering the dimerization/core domain at the rim of a toroidal pore are the most plausible to describe the active state of the proteins, although the structural flexibility of the piercing/latch domain does not allow unambiguous discrimination between the existing models.
Collapse
|
11
|
Uren RT, Iyer S, Kluck RM. Pore formation by dimeric Bak and Bax: an unusual pore? Philos Trans R Soc Lond B Biol Sci 2018. [PMID: 28630157 DOI: 10.1098/rstb.2016.0218] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Apoptotic cell death via the mitochondrial pathway occurs in all vertebrate cells and requires the formation of pores in the mitochondrial outer membrane. Two Bcl-2 protein family members, Bak and Bax, form these pores during apoptosis, and how they do so has been investigated for the last two decades. Many of the conformation changes that occur during their transition to pore-forming proteins have now been delineated. Notably, biochemical, biophysical and structural studies indicate that symmetric homodimers are the basic unit of pore formation. Each dimer contains an extended hydrophobic surface that lies on the outer membrane, and is anchored at either end by a transmembrane domain. Membrane-remodelling events such as positive membrane curvature have been reported to accompany apoptotic pore formation, suggesting Bak and Bax form lipidic pores rather than proteinaceous pores. However, it remains unclear how symmetric dimers assemble to porate the membrane. Here, we review how clusters of dimers and their lipid-mediated interactions provide a molecular explanation for the heterogeneous assemblies of Bak and Bax observed during apoptosis.This article is part of the themed issue 'Membrane pores: from structure and assembly, to medicine and technology'.
Collapse
Affiliation(s)
- Rachel T Uren
- Molecular Genetics of Cancer Division, The Walter and Eliza Hall Institute of Medical Research, The University of Melbourne, 1G Royal Parade, Parkville, Victoria 3052, Australia.,Department of Medical Biology, The University of Melbourne, 1G Royal Parade, Parkville, Victoria 3052, Australia
| | - Sweta Iyer
- Molecular Genetics of Cancer Division, The Walter and Eliza Hall Institute of Medical Research, The University of Melbourne, 1G Royal Parade, Parkville, Victoria 3052, Australia.,Department of Medical Biology, The University of Melbourne, 1G Royal Parade, Parkville, Victoria 3052, Australia
| | - Ruth M Kluck
- Molecular Genetics of Cancer Division, The Walter and Eliza Hall Institute of Medical Research, The University of Melbourne, 1G Royal Parade, Parkville, Victoria 3052, Australia .,Department of Medical Biology, The University of Melbourne, 1G Royal Parade, Parkville, Victoria 3052, Australia
| |
Collapse
|
12
|
Kalkavan H, Green DR. MOMP, cell suicide as a BCL-2 family business. Cell Death Differ 2018; 25:46-55. [PMID: 29053143 PMCID: PMC5729535 DOI: 10.1038/cdd.2017.179] [Citation(s) in RCA: 457] [Impact Index Per Article: 65.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/13/2017] [Accepted: 09/18/2017] [Indexed: 12/11/2022] Open
Abstract
Apoptosis shapes development and differentiation, has a key role in tissue homeostasis, and is deregulated in cancer. In most cases, successful apoptosis is triggered by mitochondrial outer membrane permeabilization (MOMP), which defines the mitochondrial or intrinsic pathway and ultimately leads to caspase activation and protein substrate cleavage. The mitochondrial apoptotic pathway centered on MOMP is controlled by an intricate network of events that determine the balance of the cell fate choice between survival and death. Here we will review how MOMP proceeds and how the main effectors cytochrome c, a heme protein that has a crucial role in respiration, and second mitochondria-derived activator of caspase (SMAC), as well as other intermembrane space proteins, orchestrate caspase activation. Moreover, we discuss recent insights on the interplay of the upstream coordinators and initiators of MOMP, the BCL-2 family. This review highlights how our increasing knowledge on the regulation of critical checkpoints of apoptosis integrates with understanding of cancer development and has begun to translate into therapeutic clinical benefit.
Collapse
Affiliation(s)
- Halime Kalkavan
- Department of Immunology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Douglas R Green
- Department of Immunology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| |
Collapse
|
13
|
Mebratu YA, Leyva-Baca I, Wathelet MG, Lacey N, Chand HS, Choi AMK, Tesfaigzi Y. Bik reduces hyperplastic cells by increasing Bak and activating DAPk1 to juxtapose ER and mitochondria. Nat Commun 2017; 8:803. [PMID: 28986568 PMCID: PMC5630627 DOI: 10.1038/s41467-017-00975-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 08/09/2017] [Indexed: 01/08/2023] Open
Abstract
Bik reduces hyperplastic epithelial cells by releasing calcium from endoplasmic reticulum stores and causing apoptosis, but the detailed mechanisms are not known. Here we report that Bik dissociates the Bak/Bcl-2 complex to enrich for ER-associated Bak and interacts with the kinase domain of DAPk1 to form Bik-DAPk1-ERK1/2-Bak complex. Bik also disrupts the Bcl2-IP3R interaction to cause ER Ca2+ release. The ER-associated Bak interacts with the kinase and calmodulin domains of DAPk1 to increase the contact sites of ER and mitochondria, and facilitate ER Ca2+ uptake by mitochondria. Although the Bik BH3 helix was sufficient to enrich for ER-Bak and elicit ER Ca2+ release, Bik-induced mitochondrial Ca2+ uptake is blocked with reduced Bak levels. Further, the Bik-derived peptide reduces allergen- and cigarette smoke-induced mucous cell hyperplasia in mice and in differentiated primary human airway epithelial cultures. Therefore, Bik peptides may have therapeutic potential in airway diseases associated with chronic mucous hypersecretion.Bcl-2 interacting killer (Bik) decreases airway epithelial hyperplasia via apoptosis mediated by calcium release from the endoplasmic reticulum (ER), but the mechanism is unclear. Here the authors show that Bik promotes Bak enrichment at the ER to tether mitochondria for efficient calcium transfer.
Collapse
Affiliation(s)
- Yohannes A Mebratu
- COPD Program, Lovelace Respiratory Research Institute, Albuquerque, NM, 87108, USA
| | - Ivan Leyva-Baca
- COPD Program, Lovelace Respiratory Research Institute, Albuquerque, NM, 87108, USA
| | - Marc G Wathelet
- Infectious Diseases Program, Lovelace Respiratory Research Institute, Albuquerque, NM, 87108, USA
| | - Neal Lacey
- COPD Program, Lovelace Respiratory Research Institute, Albuquerque, NM, 87108, USA
| | - Hitendra S Chand
- COPD Program, Lovelace Respiratory Research Institute, Albuquerque, NM, 87108, USA
| | - Augustine M K Choi
- Department of Medicine, Weill Cornell Medical Center, New York, NY, 14850, USA
| | - Yohannes Tesfaigzi
- COPD Program, Lovelace Respiratory Research Institute, Albuquerque, NM, 87108, USA.
| |
Collapse
|
14
|
Peña‐Blanco A, García‐Sáez AJ. Bax, Bak and beyond — mitochondrial performance in apoptosis. FEBS J 2017; 285:416-431. [DOI: 10.1111/febs.14186] [Citation(s) in RCA: 340] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/12/2017] [Accepted: 07/26/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Aida Peña‐Blanco
- Interfaculty Institute of Biochemistry Tübingen University Germany
| | - Ana J. García‐Sáez
- Interfaculty Institute of Biochemistry Tübingen University Germany
- Max‐Planck Institute for Intelligent Systems Stuttgart Germany
| |
Collapse
|
15
|
Uren RT, O'Hely M, Iyer S, Bartolo R, Shi MX, Brouwer JM, Alsop AE, Dewson G, Kluck RM. Disordered clusters of Bak dimers rupture mitochondria during apoptosis. eLife 2017; 6. [PMID: 28182867 PMCID: PMC5302884 DOI: 10.7554/elife.19944] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 01/08/2017] [Indexed: 11/13/2022] Open
Abstract
During apoptosis, Bak and Bax undergo major conformational change and form symmetric dimers that coalesce to perforate the mitochondrial outer membrane via an unknown mechanism. We have employed cysteine labelling and linkage analysis to the full length of Bak in mitochondria. This comprehensive survey showed that in each Bak dimer the N-termini are fully solvent-exposed and mobile, the core is highly structured, and the C-termini are flexible but restrained by their contact with the membrane. Dimer-dimer interactions were more labile than the BH3:groove interaction within dimers, suggesting there is no extensive protein interface between dimers. In addition, linkage in the mobile Bak N-terminus (V61C) specifically quantified association between dimers, allowing mathematical simulations of dimer arrangement. Together, our data show that Bak dimers form disordered clusters to generate lipidic pores. These findings provide a molecular explanation for the observed structural heterogeneity of the apoptotic pore. DOI:http://dx.doi.org/10.7554/eLife.19944.001 A healthy organism must carefully remove unwanted, diseased or damaged cells. These unwanted cells can bring about their own death in a controlled process known as apoptosis. Maintaining an appropriate level of apoptosis is crucial to good health: excessive cell death can contribute to neurodegenerative disorders, whereas too little can result in cancer. All cells contain powerhouses called mitochondria, which produce energy. Mitochondria are the scene of a critical ‘point of no return’ in apoptosis. When a cell receives a death signal, a ‘killer’ protein known as Bak punches holes (or pores) in the membrane of the mitochondria. These pores allow toxic molecules to leak out from the mitochondria into the interior of the cell, where they trigger a series of events that dismantles the cell from the inside out. To create the pores, Bak undergoes extensive shape changes that allow the proteins to form dimers that then cluster and perforate the membrane. To investigate how Bak clusters assemble on the mitochondrial membrane, Uren et al. used cultured cells and biochemical techniques to show where the Bak dimers contacted each other before and after the pore formed; these findings were complemented with mathematical modelling. The results show that during apoptosis, Bak dimers contact each other at several different places (rather than at one or two places) to assemble into disorderly, ever-changing clusters. Based on these observations, Uren et al. suggest that the enlarging clusters stress the membrane and cause pores to form. The next step is to investigate whether physical forces that act within the mitochondrial membrane could drive the clustering of Bak proteins. This knowledge could ultimately enable us to learn how to manipulate apoptosis in cells, potentially as part of treatments for the diseases in which this cell death process occurs inappropriately. DOI:http://dx.doi.org/10.7554/eLife.19944.002
Collapse
Affiliation(s)
- Rachel T Uren
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Martin O'Hely
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Sweta Iyer
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Ray Bartolo
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Melissa X Shi
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Jason M Brouwer
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Amber E Alsop
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Grant Dewson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Ruth M Kluck
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
16
|
Shih O, Yeh YQ, Liao KF, Sung TC, Chiang YW, Jeng US. Oligomerization process of Bcl-2 associated X protein revealed from intermediate structures in solution. Phys Chem Chem Phys 2017; 19:7947-7954. [DOI: 10.1039/c6cp08820a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Linear oligomerization of ditopic BAX-dimers into tri-dimer helical units then into a rod-like structure, as revealed using integrated ESR/SAXS/MD analyses.
Collapse
Affiliation(s)
- Orion Shih
- National Synchrotron Radiation Research Center
- Hsinchu 30076
- Taiwan
| | - Yi-Qi Yeh
- National Synchrotron Radiation Research Center
- Hsinchu 30076
- Taiwan
| | - Kuei-Fen Liao
- National Synchrotron Radiation Research Center
- Hsinchu 30076
- Taiwan
| | - Tai-Ching Sung
- Department of Chemistry
- National Tsing Hua University
- Hsinchu 30013
- Taiwan
| | - Yun-Wei Chiang
- Department of Chemistry
- National Tsing Hua University
- Hsinchu 30013
- Taiwan
| | - U-Ser Jeng
- National Synchrotron Radiation Research Center
- Hsinchu 30076
- Taiwan
- Department of Chemical Engineering
- National Tsing Hua University
| |
Collapse
|
17
|
Espinoza-Fonseca LM, Kelekar A. High-resolution structural characterization of Noxa, an intrinsically disordered protein, by microsecond molecular dynamics simulations. MOLECULAR BIOSYSTEMS 2016; 11:1850-6. [PMID: 25855872 DOI: 10.1039/c5mb00170f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
High-resolution characterization of the structure and dynamics of intrinsically disordered proteins (IDPs) remains a challenging task. Consequently, a detailed understanding of the structural and functional features of IDPs remains limited, as very few full-length disordered proteins have been structurally characterized. We have performed microsecond-long molecular dynamics (MD) simulations of Noxa, the smallest member of the large Bcl-2 family of apoptosis regulating proteins, to characterize in atomic-level detail the structural features of a disordered protein. A 2.5 μs MD simulation starting from an unfolded state of the protein revealed the formation of a central antiparallel β-sheet structure flanked by two disordered segments at the N- and C-terminal ends. This topology is in reasonable agreement with protein disorder predictions and available experimental data. We show that this fold plays an essential role in the intracellular function and regulation of Noxa. We demonstrate that unbiased MD simulations in combination with a modern force field reveal structural and functional features of disordered proteins at atomic-level resolution.
Collapse
Affiliation(s)
- L Michel Espinoza-Fonseca
- Department of Biochemistry, Molecular Biology and Biophysics University of Minnesota, Minneapolis, MN 55455, USA.
| | | |
Collapse
|
18
|
Pang YP. Low-mass molecular dynamics simulation for configurational sampling enhancement: More evidence and theoretical explanation. Biochem Biophys Rep 2015; 4:126-133. [PMID: 29124195 PMCID: PMC5668912 DOI: 10.1016/j.bbrep.2015.08.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 07/30/2015] [Accepted: 08/31/2015] [Indexed: 11/28/2022] Open
Abstract
It has been reported recently that classical, isothermal-isobaric molecular dynamics (NTP MD) simulations at a time step of 1.00 fs of the standard-mass time (Δt=1.00 fssmt) and a temperature of ≤340 K using uniformly reduced atomic masses by tenfold offers better configurational sampling than standard-mass NTP MD simulations at the same time step. However, it has long been reported that atomic masses can also be increased to improve configurational sampling because higher atomic masses permit the use of a longer time step. It is worth investigating whether standard-mass NTP MD simulations at Δt=2.00 or 3.16 fssmt can offer better or comparable configurational sampling than low-mass NTP MD simulations at Δt=1.00 fssmt. This article reports folding simulations of two β-hairpins showing that the configurational sampling efficiency of NTP MD simulations using atomic masses uniformly reduced by tenfold at Δt=1.00 fssmt is statistically equivalent to and better than those using standard masses at Δt=3.16 and 2.00 fssmt, respectively. The results confirm that, relative to those using standard masses at routine Δt=2.00 fssmt, the low-mass NTP MD simulations at Δt=1.00 fssmt are a simple and generic technique to enhance configurational sampling at temperatures of ≤340 K.
Collapse
Affiliation(s)
- Yuan-Ping Pang
- Computer-Aided Molecular Design Laboratory, Mayo Clinic, Stabile 12-26, 200 First Street SW, Rochester, MN 55905, USA
| |
Collapse
|
19
|
Acasigua GA, Warner KA, Nör F, Helman J, Pearson AT, Fossati AC, Wang S, Nör JE. BH3-mimetic small molecule inhibits the growth and recurrence of adenoid cystic carcinoma. Oral Oncol 2015; 51:839-47. [PMID: 26121939 DOI: 10.1016/j.oraloncology.2015.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 06/12/2015] [Accepted: 06/13/2015] [Indexed: 11/20/2022]
Abstract
OBJECTIVES To evaluate the anti-tumor effect of BM-1197, a new potent and highly specific small molecule inhibitor of Bcl-2/Bcl-xL, in preclinical models of human adenoid cystic carcinoma (ACC). METHODS Low passage primary human adenoid cystic carcinoma cells (UM-HACC-2A,-2B,-5,-6) and patient-derived xenograft (PDX) models (UM-PDX-HACC) were developed from surgical specimens obtained from 4 patients. The effect of BM-1197 on cell viability and cell cycle were evaluated in vitro using this panel of low passage ACC cells. The effect of BM-1197 on tumor growth, recurrence and tumor cell apoptosis in vivo was evaluated with the PDX model of ACC (UM-PDX-HACC-5). RESULTS Exposure of low passage primary human ACC cells to BM-1197 mediated an IC50 of 0.92-2.82 μM. This correlated with an increase in the fraction of apoptotic cells (p<0.0001) and an increase in caspase-3 activity (p<0.0001), but no noticeable differences in cell cycle (p>0.05). In vivo, BM-1197 inhibited tumor growth (p=0.0256) and induced tumor cell apoptosis (p=0.0165) without causing significant systemic toxicities, as determined by mouse weight over time. Surprisingly, weekly BM-1197 decreased the incidence of tumor recurrence (p=0.0297), as determined by Kaplan-Meier analysis. CONCLUSION These data demonstrated that single agent BM-1197 induces apoptosis and inhibits tumor growth in preclinical models of adenoid cystic carcinoma. Notably, single agent BM-1197 inhibited tumor recurrence, which is considered a major clinical challenge in the clinical management of adenoid cystic carcinoma. Collectively, these results suggest that patients with adenoid cystic carcinoma might benefit from therapy with a BH3-mimetic small molecule.
Collapse
Affiliation(s)
- Gerson A Acasigua
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109-1078, United States; Department of Morphological Sciences, Federal University of Rio Grande do Sul, Brazil
| | - Kristy A Warner
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109-1078, United States
| | - Felipe Nör
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109-1078, United States; Department of Morphological Sciences, Federal University of Rio Grande do Sul, Brazil
| | - Joseph Helman
- Department of Oral and Maxillofacial Surgery, University of Michigan School of Dentistry, United States; Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, United States
| | - Alexander T Pearson
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109-1078, United States; Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, United States
| | - Anna C Fossati
- Department of Morphological Sciences, Federal University of Rio Grande do Sul, Brazil
| | - Shaomeng Wang
- Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, United States; Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, United States
| | - Jacques E Nör
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109-1078, United States; Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, United States; Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI, United States; Department of Otolaryngology, University of Michigan School of Medicine, Ann Arbor, MI, United States.
| |
Collapse
|
20
|
Correia C, Lee SH, Meng XW, Vincelette ND, Knorr KLB, Ding H, Nowakowski GS, Dai H, Kaufmann SH. Emerging understanding of Bcl-2 biology: Implications for neoplastic progression and treatment. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1658-71. [PMID: 25827952 DOI: 10.1016/j.bbamcr.2015.03.012] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/20/2015] [Accepted: 03/22/2015] [Indexed: 02/07/2023]
Abstract
Bcl-2, the founding member of a family of apoptotic regulators, was initially identified as the protein product of a gene that is translocated and overexpressed in greater than 85% of follicular lymphomas (FLs). Thirty years later we now understand that anti-apoptotic Bcl-2 family members modulate the intrinsic apoptotic pathway by binding and neutralizing the mitochondrial permeabilizers Bax and Bak as well as a variety of pro-apoptotic proteins, including the cellular stress sensors Bim, Bid, Puma, Bad, Bmf and Noxa. Despite extensive investigation of all of these proteins, important questions remain. For example, how Bax and Bak breach the outer mitochondrial membrane remains poorly understood. Likewise, how the functions of anti-apoptotic Bcl-2 family members such as eponymous Bcl-2 are affected by phosphorylation or cancer-associated mutations has been incompletely defined. Finally, whether Bcl-2 family members can be successfully targeted for therapeutic advantage is only now being investigated in the clinic. Here we review recent advances in understanding Bcl-2 family biology and biochemistry that begin to address these questions.
Collapse
Affiliation(s)
- Cristina Correia
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Sun-Hee Lee
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - X Wei Meng
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Nicole D Vincelette
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Katherine L B Knorr
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Husheng Ding
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Grzegorz S Nowakowski
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Haiming Dai
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA.
| | - Scott H Kaufmann
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA; Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
21
|
Pang YP. Use of 1-4 interaction scaling factors to control the conformational equilibrium between α-helix and β-strand. Biochem Biophys Res Commun 2014; 457:183-6. [PMID: 25543060 DOI: 10.1016/j.bbrc.2014.12.084] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 12/16/2014] [Indexed: 10/24/2022]
Abstract
1-4 interaction scaling factors are used in AMBER forcefields to reduce the exaggeration of short-range repulsion caused by the 6-12 Lennard-Jones potential and a nonpolarizable charge model and to obtain better agreements of small-molecule conformational energies with experimental data. However, the effects of these scaling factors on protein secondary structure conformations have not been investigated until now. This article reports the finding that the 1-4 interactions among the protein backbone atoms separated by three consecutive covalent bonds are more repulsive in the α-helix conformation than in two β-strand conformations. Therefore, the 1-4 interaction scaling factors of protein backbone torsions ϕ and ψ control the conformational equilibrium between α-helix and β-strand. Molecular dynamics simulations confirm that reducing the ϕ and ψ scaling factors readily converts the α-helix conformation of AcO-(AAQAA)3-NH2 to a β-strand conformation, and the reverse occurs when these scaling factors are increased. These results suggest that the ϕ and ψ scaling factors can be used to generate the α-helix or β-strand conformation in situ and to control the propensities of a forcefield for adopting secondary structure elements.
Collapse
Affiliation(s)
- Yuan-Ping Pang
- Computer-Aided Molecular Design Laboratory, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
22
|
Sainski AM, Dai H, Natesampillai S, Pang YP, Bren GD, Cummins NW, Correia C, Meng XW, Tarara JE, Ramirez-Alvarado M, Katzmann DJ, Ochsenbauer C, Kappes JC, Kaufmann SH, Badley AD. Casp8p41 generated by HIV protease kills CD4 T cells through direct Bak activation. ACTA ACUST UNITED AC 2014; 206:867-76. [PMID: 25246614 PMCID: PMC4178959 DOI: 10.1083/jcb.201405051] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
HIV protease converts procaspase 8 into Casp8p41, which binds and activates Bak to induce cell death in infected CD4 T cells. Previous studies have shown that human immunodeficiency virus (HIV) protease cleaves procaspase 8 to a fragment, termed Casp8p41, that lacks caspase activity but nonetheless contributes to T cell apoptosis. Herein, we show that Casp8p41 contains a domain that interacts with the BH3-binding groove of pro-apoptotic Bak to cause Bak oligomerization, Bak-mediated membrane permeabilization, and cell death. Levels of active Bak are higher in HIV-infected T cells that express Casp8p41. Conversely, targeted mutations in the Bak-interacting domain diminish Bak binding and Casp8p41-mediated cell death. Similar mutations in procaspase 8 impair the ability of HIV to kill infected T cells. These observations support a novel paradigm in which HIV converts a normal cellular constituent into a direct activator that functions like a BH3-only protein.
Collapse
Affiliation(s)
- Amy M Sainski
- Department of Molecular Pharmacology and Experiment Therapeutics, Division of Oncology Research, Division of Infectious Diseases, and Department of Medicine, University of Alabama, Birmingham, AL 35294 Department of Molecular Pharmacology and Experiment Therapeutics, Division of Oncology Research, Division of Infectious Diseases, and Department of Medicine, University of Alabama, Birmingham, AL 35294
| | - Haiming Dai
- Department of Molecular Pharmacology and Experiment Therapeutics, Division of Oncology Research, Division of Infectious Diseases, and Department of Medicine, University of Alabama, Birmingham, AL 35294
| | - Sekar Natesampillai
- Department of Molecular Pharmacology and Experiment Therapeutics, Division of Oncology Research, Division of Infectious Diseases, and Department of Medicine, University of Alabama, Birmingham, AL 35294
| | - Yuan-Ping Pang
- Department of Molecular Pharmacology and Experiment Therapeutics, Division of Oncology Research, Division of Infectious Diseases, and Department of Medicine, University of Alabama, Birmingham, AL 35294
| | - Gary D Bren
- Department of Molecular Pharmacology and Experiment Therapeutics, Division of Oncology Research, Division of Infectious Diseases, and Department of Medicine, University of Alabama, Birmingham, AL 35294
| | - Nathan W Cummins
- Department of Molecular Pharmacology and Experiment Therapeutics, Division of Oncology Research, Division of Infectious Diseases, and Department of Medicine, University of Alabama, Birmingham, AL 35294
| | - Cristina Correia
- Department of Molecular Pharmacology and Experiment Therapeutics, Division of Oncology Research, Division of Infectious Diseases, and Department of Medicine, University of Alabama, Birmingham, AL 35294
| | - X Wei Meng
- Department of Molecular Pharmacology and Experiment Therapeutics, Division of Oncology Research, Division of Infectious Diseases, and Department of Medicine, University of Alabama, Birmingham, AL 35294 Department of Molecular Pharmacology and Experiment Therapeutics, Division of Oncology Research, Division of Infectious Diseases, and Department of Medicine, University of Alabama, Birmingham, AL 35294
| | - James E Tarara
- Department of Biochemistry and Molecular Biology and Department of Molecular Medicine, Mayo Clinic, Rochester MN 55905
| | - Marina Ramirez-Alvarado
- Department of Biochemistry and Molecular Biology and Department of Molecular Medicine, Mayo Clinic, Rochester MN 55905
| | - David J Katzmann
- Department of Biochemistry and Molecular Biology and Department of Molecular Medicine, Mayo Clinic, Rochester MN 55905
| | - Christina Ochsenbauer
- Department of Molecular Pharmacology and Experiment Therapeutics, Division of Oncology Research, Division of Infectious Diseases, and Department of Medicine, University of Alabama, Birmingham, AL 35294
| | - John C Kappes
- Department of Molecular Pharmacology and Experiment Therapeutics, Division of Oncology Research, Division of Infectious Diseases, and Department of Medicine, University of Alabama, Birmingham, AL 35294
| | - Scott H Kaufmann
- Department of Molecular Pharmacology and Experiment Therapeutics, Division of Oncology Research, Division of Infectious Diseases, and Department of Medicine, University of Alabama, Birmingham, AL 35294 Department of Molecular Pharmacology and Experiment Therapeutics, Division of Oncology Research, Division of Infectious Diseases, and Department of Medicine, University of Alabama, Birmingham, AL 35294
| | - Andrew D Badley
- Department of Molecular Pharmacology and Experiment Therapeutics, Division of Oncology Research, Division of Infectious Diseases, and Department of Medicine, University of Alabama, Birmingham, AL 35294 Department of Biochemistry and Molecular Biology and Department of Molecular Medicine, Mayo Clinic, Rochester MN 55905
| |
Collapse
|
23
|
Chi X, Kale J, Leber B, Andrews DW. Regulating cell death at, on, and in membranes. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1843:2100-13. [PMID: 24927885 DOI: 10.1016/j.bbamcr.2014.06.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 05/29/2014] [Accepted: 06/03/2014] [Indexed: 11/17/2022]
Abstract
Bcl-2 family proteins are central regulators of apoptosis. Various family members are located in the cytoplasm, endoplasmic reticulum, and mitochondrial outer membrane in healthy cells. However during apoptosis most of the interactions between family members that determine the fate of the cell occur at the membranes of intracellular organelles. It has become evident that interactions with membranes play an active role in the regulation of Bcl-2 family protein interactions. Here we provide an overview of various models proposed to explain how the Bcl-2 family regulates apoptosis and discuss how membrane binding affects the structure and function of each of the three categories of Bcl-2 proteins (pro-apoptotic, pore-forming, and anti-apoptotic). We also examine how the Bcl-2 family regulates other aspects of mitochondrial and ER physiology relevant to cell death.
Collapse
Affiliation(s)
- Xiaoke Chi
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Justin Kale
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Brian Leber
- Department of Medicine, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - David W Andrews
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8N 3Z5, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada; Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
24
|
Low-mass molecular dynamics simulation: a simple and generic technique to enhance configurational sampling. Biochem Biophys Res Commun 2014; 452:588-92. [PMID: 25181342 DOI: 10.1016/j.bbrc.2014.08.119] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 08/22/2014] [Indexed: 11/24/2022]
Abstract
CLN025 is one of the smallest fast-folding proteins. Until now it has not been reported that CLN025 can autonomously fold to its native conformation in a classical, all-atom, and isothermal-isobaric molecular dynamics (MD) simulation. This article reports the autonomous and repeated folding of CLN025 from a fully extended backbone conformation to its native conformation in explicit solvent in multiple 500-ns MD simulations at 277K and 1atm with the first folding event occurring as early as 66.1ns. These simulations were accomplished by using AMBER forcefield derivatives with atomic masses reduced by 10-fold on Apple Mac Pros. By contrast, no folding event was observed when the simulations were repeated using the original AMBER forcefields of FF12SB and FF14SB. The results demonstrate that low-mass MD simulation is a simple and generic technique to enhance configurational sampling. This technique may propel autonomous folding of a wide range of miniature proteins in classical, all-atom, and isothermal-isobaric MD simulations performed on commodity computers-an important step forward in quantitative biology.
Collapse
|
25
|
Belmar J, Fesik SW. Small molecule Mcl-1 inhibitors for the treatment of cancer. Pharmacol Ther 2014; 145:76-84. [PMID: 25172548 DOI: 10.1016/j.pharmthera.2014.08.003] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 08/14/2014] [Indexed: 11/28/2022]
Abstract
The Bcl-2 family of proteins serves as primary regulators of apoptosis. Myeloid cell leukemia 1 (Mcl-1), a pro-survival member of the Bcl-2 family of proteins, is overexpressed and the Mcl-1 gene is amplified in many tumor types. Moreover, the overexpression of Mcl-1 is the cause of resistance to several chemotherapeutic agents. Thus, Mcl-1 is a promising cancer target. This review highlights the current progress on the discovery of small molecule Mcl-1 inhibitors.
Collapse
Affiliation(s)
- Johannes Belmar
- Department of Biochemistry, Vanderbilt University School of Medicine, 2215 Garland Avenue, 607 Light Hall, Nashville, TN 37232-0146, United States
| | - Stephen W Fesik
- Department of Biochemistry, Vanderbilt University School of Medicine, 2215 Garland Avenue, 607 Light Hall, Nashville, TN 37232-0146, United States.
| |
Collapse
|
26
|
Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol 2014; 15:49-63. [PMID: 24355989 DOI: 10.1038/nrm3722] [Citation(s) in RCA: 2323] [Impact Index Per Article: 211.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The BCL-2 protein family determines the commitment of cells to apoptosis, an ancient cell suicide programme that is essential for development, tissue homeostasis and immunity. Too little apoptosis can promote cancer and autoimmune diseases; too much apoptosis can augment ischaemic conditions and drive neurodegeneration. We discuss the biochemical, structural and genetic studies that have clarified how the interplay between members of the BCL-2 family on mitochondria sets the apoptotic threshold. These mechanistic insights into the functions of the BCL-2 family are illuminating the physiological control of apoptosis, the pathological consequences of its dysregulation and the promising search for novel cancer therapies that target the BCL-2 family.
Collapse
|
27
|
Dai H, Pang YP, Ramirez-Alvarado M, Kaufmann SH. Evaluation of the BH3-only protein Puma as a direct Bak activator. J Biol Chem 2013; 289:89-99. [PMID: 24265320 DOI: 10.1074/jbc.m113.505701] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interactions among Bcl-2 family proteins play critical roles in cellular life and death decisions. Previous studies have established the BH3-only proteins Bim, tBid, and Noxa as "direct activators" that are able to directly initiate the oligomerization and activation of Bak and/or Bax. Earlier studies of Puma have yielded equivocal results, with some concluding that it also acts as a direct activator and other studies suggesting that it acts solely as a sensitizer BH3-only protein. In the present study we examined the interaction of Puma BH3 domain or full-length protein with Bak by surface plasmon resonance, assessed Bak oligomerization status by cross-linking followed by immunoblotting, evaluated the ability of the Puma BH3 domain to induce Bak-mediated permeabilization of liposomes and mitochondria, and determined the effect of wild type and mutant Puma on cell viability in a variety of cellular contexts. Results of this analysis demonstrate high affinity (KD = 26 ± 5 nM) binding of the Puma BH3 domain to purified Bak ex vivo, leading to Bak homo-oligomerization and membrane permeabilization. Mutations in Puma that inhibit (L141E/M144E/L148E) or enhance (M144I/A145G) Puma BH3 binding to Bak also produce corresponding alterations in Bak oligomerization, Bak-mediated membrane permeabilization and, in a cellular context, Bak-mediated killing. Collectively, these results provide strong evidence that Puma, like Bim, Noxa, and tBid, is able to act as a direct Bak activator.
Collapse
|
28
|
Building blocks of the apoptotic pore: how Bax and Bak are activated and oligomerize during apoptosis. Cell Death Differ 2013; 21:196-205. [PMID: 24162660 DOI: 10.1038/cdd.2013.139] [Citation(s) in RCA: 308] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Revised: 09/03/2013] [Accepted: 09/03/2013] [Indexed: 12/18/2022] Open
Abstract
The central role of the Bcl-2 family in regulating apoptotic cell death was first identified in the 1980s. Since then, significant in-roads have been made in identifying the multiple members of this family, characterizing their form and function and understanding how their interactions determine whether a cell lives or dies. In this review we focus on the recent progress made in characterizing the proapoptotic Bcl-2 family members, Bax and Bak. This progress has resolved longstanding controversies, but has also challenged established theories in the apoptosis field. We will discuss different models of how these two proteins become activated and different 'modes' by which they are inhibited by other Bcl-2 family members. We will also discuss novel conformation changes leading to Bak and Bax oligomerization and speculate how these oligomers might permeabilize the mitochondrial outer membrane.
Collapse
|
29
|
Maity A, Yadav S, Verma CS, Ghosh Dastidar S. Dynamics of Bcl-xL in water and membrane: molecular simulations. PLoS One 2013; 8:e76837. [PMID: 24116174 PMCID: PMC3792877 DOI: 10.1371/journal.pone.0076837] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 08/28/2013] [Indexed: 11/18/2022] Open
Abstract
The Bcl2 family of proteins is capable of switching the apoptotic machinery by directly controlling the release of apoptotic factors from the mitochondrial outer membrane. They have 'pro' and 'anti'-apoptotic subgroups of proteins which antagonize each other's function; however a detailed atomistic understanding of their mechanisms based on the dynamical events, particularly in the membrane, is lacking. Using molecular dynamics simulations totaling 1.6µs we outline the major differences between the conformational dynamics in water and in membrane. Using implicit models of solvent and membrane, the simulated results reveal a picture that is in agreement with the 'hit-and run' concept which states that BH3-only peptides displace the tail (which acts as a pseudo substrate of the protein itself) from its binding pocket; this helps the membrane association of the protein after which the BH3 peptide becomes free. From simulations, Bcl-xL appears to be auto-inhibited by its C-terminal tail that embeds into and covers the hydrophobic binding pocket. However the tail is unable to energetically compete with BH3-peptides in water. In contrast, in the membrane, neither the tail nor the BH3-peptides are stable in the binding pocket and appear to be easily dissociated off as the pocket expands in response to the hydrophobic environment. This renders the binding pocket large and open, thus receptive to interactions with other protein partners. Principal components of the motions are dramatically different in the aqueous and in the membrane environments and provide clues regarding the conformational transitions that Bcl-xL undergoes in the membrane, in agreement with the biochemical data.
Collapse
Affiliation(s)
- Atanu Maity
- Bioinformatics Centre, Bose Institute, Kolkata, West Bengal, India
| | - Seema Yadav
- Bioinformatics Centre, Bose Institute, Kolkata, West Bengal, India
| | - Chandra S. Verma
- Bioinformatics Institute, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | | |
Collapse
|
30
|
Ma S, Hockings C, Anwari K, Kratina T, Fennell S, Lazarou M, Ryan MT, Kluck RM, Dewson G. Assembly of the Bak apoptotic pore: a critical role for the Bak protein α6 helix in the multimerization of homodimers during apoptosis. J Biol Chem 2013; 288:26027-26038. [PMID: 23893415 PMCID: PMC3764807 DOI: 10.1074/jbc.m113.490094] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 07/23/2013] [Indexed: 12/21/2022] Open
Abstract
Bak and Bax are the essential effectors of the intrinsic pathway of apoptosis. Following an apoptotic stimulus, both undergo significant changes in conformation that facilitates their self-association to form pores in the mitochondrial outer membrane. However, the molecular structures of Bak and Bax oligomeric pores remain elusive. To characterize how Bak forms pores during apoptosis, we investigated its oligomerization under native conditions using blue native PAGE. We report that, in a healthy cell, inactive Bak is either monomeric or in a large complex involving VDAC2. Following an apoptotic stimulus, activated Bak forms BH3:groove homodimers that represent the basic stable oligomeric unit. These dimers multimerize to higher-order oligomers via a labile interface independent of both the BH3 domain and groove. Linkage of the α6:α6 interface is sufficient to stabilize higher-order Bak oligomers on native PAGE, suggesting an important role in the Bak oligomeric pore. Mutagenesis of the α6 helix disrupted apoptotic function because a chimera of Bak with the α6 derived from Bcl-2 could be activated by truncated Bid (tBid) and could form BH3:groove homodimers but could not form high molecular weight oligomers or mediate cell death. An α6 peptide could block Bak function but did so upstream of dimerization, potentially implicating α6 as a site for activation by BH3-only proteins. Our examination of native Bak oligomers indicates that the Bak apoptotic pore forms by the multimerization of BH3:groove homodimers and reveals that Bak α6 is not only important for Bak oligomerization and function but may also be involved in how Bak is activated by BH3-only proteins.
Collapse
Affiliation(s)
- Stephen Ma
- From the Walter and Eliza Hall Institute of Medical Research, Melbourne 3052, Australia,; the Department of Medical Biology, University of Melbourne, Melbourne 3010, Australia
| | - Colin Hockings
- From the Walter and Eliza Hall Institute of Medical Research, Melbourne 3052, Australia,; the Department of Medical Biology, University of Melbourne, Melbourne 3010, Australia
| | - Khatira Anwari
- From the Walter and Eliza Hall Institute of Medical Research, Melbourne 3052, Australia
| | - Tobias Kratina
- From the Walter and Eliza Hall Institute of Medical Research, Melbourne 3052, Australia,; the Department of Medical Biology, University of Melbourne, Melbourne 3010, Australia
| | - Stephanie Fennell
- From the Walter and Eliza Hall Institute of Medical Research, Melbourne 3052, Australia,; the Department of Medical Biology, University of Melbourne, Melbourne 3010, Australia
| | - Michael Lazarou
- the Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, and
| | - Michael T Ryan
- the Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Australia
| | - Ruth M Kluck
- From the Walter and Eliza Hall Institute of Medical Research, Melbourne 3052, Australia,; the Department of Medical Biology, University of Melbourne, Melbourne 3010, Australia
| | - Grant Dewson
- From the Walter and Eliza Hall Institute of Medical Research, Melbourne 3052, Australia,; the Department of Medical Biology, University of Melbourne, Melbourne 3010, Australia,.
| |
Collapse
|
31
|
Czabotar PE, Westphal D, Dewson G, Ma S, Hockings C, Fairlie WD, Lee EF, Yao S, Robin AY, Smith BJ, Huang DCS, Kluck RM, Adams JM, Colman PM. Bax crystal structures reveal how BH3 domains activate Bax and nucleate its oligomerization to induce apoptosis. Cell 2013; 152:519-31. [PMID: 23374347 DOI: 10.1016/j.cell.2012.12.031] [Citation(s) in RCA: 450] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 10/11/2012] [Accepted: 12/10/2012] [Indexed: 02/06/2023]
Abstract
In stressed cells, apoptosis ensues when Bcl-2 family members Bax or Bak oligomerize and permeabilize the mitochondrial outer membrane. Certain BH3-only relatives can directly activate them to mediate this pivotal, poorly understood step. To clarify the conformational changes that induce Bax oligomerization, we determined crystal structures of BaxΔC21 treated with detergents and BH3 peptides. The peptides bound the Bax canonical surface groove but, unlike their complexes with prosurvival relatives, dissociated Bax into two domains. The structures define the sequence signature of activator BH3 domains and reveal how they can activate Bax via its groove by favoring release of its BH3 domain. Furthermore, Bax helices α2-α5 alone adopted a symmetric homodimer structure, supporting the proposal that two Bax molecules insert their BH3 domain into each other's surface groove to nucleate oligomerization. A planar lipophilic surface on this homodimer may engage the membrane. Our results thus define critical Bax transitions toward apoptosis.
Collapse
Affiliation(s)
- Peter E Czabotar
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3052, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Novel selective and irreversible mosquito acetylcholinesterase inhibitors for controlling malaria and other mosquito-borne diseases. Sci Rep 2013; 3:1068. [PMID: 23323211 PMCID: PMC3545233 DOI: 10.1038/srep01068] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 12/19/2012] [Indexed: 12/03/2022] Open
Abstract
We reported previously that insect acetylcholinesterases (AChEs) could be selectively and irreversibly inhibited by methanethiosulfonates presumably through conjugation to an insect-specific cysteine in these enzymes. However, no direct proof for the conjugation has been published to date, and doubts remain about whether such cysteine-targeting inhibitors have desirable kinetic properties for insecticide use. Here we report mass spectrometric proof of the conjugation and new chemicals that irreversibly inhibited African malaria mosquito AChE with bimolecular inhibition rate constants (kinact/KI) of 3,604–458,597 M−1sec−1 but spared human AChE. In comparison, the insecticide paraoxon irreversibly inhibited mosquito and human AChEs with kinact/KI values of 1,915 and 1,507 M−1sec−1, respectively, under the same assay conditions. These results further support our hypothesis that the insect-specific AChE cysteine is a unique and unexplored target to develop new insecticides with reduced insecticide resistance and low toxicity to mammals, fish, and birds for the control of mosquito-borne diseases.
Collapse
|
33
|
Vela L, Gonzalo O, Naval J, Marzo I. Direct interaction of Bax and Bak proteins with Bcl-2 homology domain 3 (BH3)-only proteins in living cells revealed by fluorescence complementation. J Biol Chem 2013; 288:4935-46. [PMID: 23283967 DOI: 10.1074/jbc.m112.422204] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The key event in the mitochondrial pathway of apoptosis is the activation of Bax and Bak by BH3-only proteins through a molecular mechanism that is still a matter of debate. Here we studied interactions among anti- and proapoptotic proteins of the Bcl-2 family in living cells by using bimolecular fluorescence complementation analysis. Our results indicate that the antiapoptotic proteins Mcl-1 and Bcl-x(L) bind preferably to the BH3-only proteins Bim, PUMA, and Noxa but can also bind to Bak and Bax. We also found a direct interaction between Bim, PUMA, or Noxa with either Bax or Bak during apoptosis induction. In HeLa cells, interaction of Bim with Bax occurs in cytosol, and then Bim-Bax complexes translocate to mitochondria. Complexes of either PUMA or Noxa with Bax or Bak were always detected at mitochondria. Overexpression of Bcl-x(L) or Mcl-1 delayed Bim/Bax translocation to mitochondria. These results reveal the ability of main BH3-only proteins to directly activate Bax and Bak in living cells and suggest that a complex network of interactions regulate the function of Bcl-2 family members during apoptosis.
Collapse
Affiliation(s)
- Laura Vela
- Department of Biochemistry, Facultad de Ciencias, Universidad de Zaragoza, 5009 Zaragoza, Spain
| | | | | | | |
Collapse
|
34
|
Kim MS, Machida Y, Vashisht AA, Wohlschlegel JA, Pang YP, Machida YJ. Regulation of error-prone translesion synthesis by Spartan/C1orf124. Nucleic Acids Res 2012; 41:1661-8. [PMID: 23254330 PMCID: PMC3561950 DOI: 10.1093/nar/gks1267] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Translesion synthesis (TLS) employs low fidelity polymerases to replicate past damaged DNA in a potentially error-prone process. Regulatory mechanisms that prevent TLS-associated mutagenesis are unknown; however, our recent studies suggest that the PCNA-binding protein Spartan plays a role in suppression of damage-induced mutagenesis. Here, we show that Spartan negatively regulates error-prone TLS that is dependent on POLD3, the accessory subunit of the replicative DNA polymerase Pol δ. We demonstrate that the putative zinc metalloprotease domain SprT in Spartan directly interacts with POLD3 and contributes to suppression of damage-induced mutagenesis. Depletion of Spartan induces complex formation of POLD3 with Rev1 and the error-prone TLS polymerase Pol ζ, and elevates mutagenesis that relies on POLD3, Rev1 and Pol ζ. These results suggest that Spartan negatively regulates POLD3 function in Rev1/Pol ζ-dependent TLS, revealing a previously unrecognized regulatory step in error-prone TLS.
Collapse
Affiliation(s)
- Myoung Shin Kim
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | |
Collapse
|