1
|
Song A, Wang Y, Liu C, Yu J, Zhang Z, Lan L, Lin H, Zhao J, Li G. Replication-coupled inheritance of chromatin states. CELL INSIGHT 2024; 3:100195. [PMID: 39391004 PMCID: PMC11462216 DOI: 10.1016/j.cellin.2024.100195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 10/12/2024]
Abstract
During the development of eukaryote, faithful inheritance of chromatin states is central to the maintenance of cell fate. DNA replication poses a significant challenge for chromatin state inheritance because every nucleosome in the genome is disrupted as the replication fork passes. It has been found that many factors including DNA polymerases, histone chaperones, as well as, RNA Pol II and histone modifying enzymes coordinate spatially and temporally to maintain the epigenome during this progress. In this review, we provide a summary of the detailed mechanisms of replication-coupled nucleosome assembly and post-replication chromatin maturation, highlight the inheritance of chromatin states and epigenome during these processes, and discuss the future directions and challenges in this field.
Collapse
Affiliation(s)
- Aoqun Song
- New Cornerstone Science Laboratory, Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunting Wang
- New Cornerstone Science Laboratory, Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Cuifang Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing, 100101, China
| | - Juan Yu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zixu Zhang
- New Cornerstone Science Laboratory, Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liting Lan
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haiyan Lin
- New Cornerstone Science Laboratory, Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jicheng Zhao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Guohong Li
- New Cornerstone Science Laboratory, Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
3
|
Madamba EV, Berthet EB, Francis NJ. Inheritance of Histones H3 and H4 during DNA Replication In Vitro. Cell Rep 2018; 21:1361-1374. [PMID: 29091772 DOI: 10.1016/j.celrep.2017.10.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 09/24/2017] [Accepted: 10/06/2017] [Indexed: 01/08/2023] Open
Abstract
Nucleosomes are believed to carry epigenetic information through the cell cycle, including through DNA replication. It has been known for decades that parental histones are reassembled on newly replicated chromatin, but the mechanisms underlying histone inheritance and dispersal during DNA replication are not fully understood. We monitored the fate of histones H3 or H4 from a single nucleosome through DNA replication in two in vitro systems. In the SV40 system, histones assembled on a single nucleosome positioning sequence can be inherited by their own daughter DNA but are dispersed from their original location. In Xenopus laevis extracts, histones are dynamic, and nucleosomes are repositioned independent of and prior to DNA replication. Nevertheless, a high fraction of histones H3 and H4 that are inherited through DNA replication remains near its starting location. Thus, inheritance of histone proteins and their dispersal can be mechanistically uncoupled.
Collapse
Affiliation(s)
- Egbert Vincent Madamba
- Department of Molecular and Cellular Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | - Ellora Bellows Berthet
- Department of Molecular and Cellular Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | - Nicole Jane Francis
- Institut de recherches clinique de Montréal (IRCM) and Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, QC H2W 1R7 Canada.
| |
Collapse
|
6
|
Petruk S, Black KL, Kovermann SK, Brock HW, Mazo A. Stepwise histone modifications are mediated by multiple enzymes that rapidly associate with nascent DNA during replication. Nat Commun 2014; 4:2841. [PMID: 24276476 PMCID: PMC3874871 DOI: 10.1038/ncomms3841] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 10/29/2013] [Indexed: 11/10/2022] Open
Abstract
The mechanism of epigenetic inheritance following DNA replication may involve dissociation of chromosomal proteins from parental DNA and reassembly on daughter strands in a specific order. Here we investigated the behavior of different types of chromosomal proteins using newly developed methods that allow assessment of the assembly of proteins during DNA replication. Unexpectedly, most chromatin-modifying proteins tested, including methylases, demethylases, acetyltransferases and a deacetylase, are found in close proximity to PCNA or associate with short nascent DNA. Histone modifications occur in a temporal order following DNA replication, mediated by complex activities of different enzymes. In contrast, components of several major nucleosome remodeling complexes are dissociated from parental DNA, and are later recruited to nascent DNA following replication. Epigenetic inheritance of gene expression patterns may require many aspects of chromatin structure to remain in close proximity to the replication complex followed by re-assembly on nascent DNA shortly after replication.
Collapse
Affiliation(s)
- Svetlana Petruk
- Department of Biochemistry and Molecular Biology and Kimmel Cancer Center, Thomas Jefferson University, 1020 Locust Street, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | |
Collapse
|
7
|
Han SK, Wagner D. Role of chromatin in water stress responses in plants. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2785-99. [PMID: 24302754 PMCID: PMC4110454 DOI: 10.1093/jxb/ert403] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
As sessile organisms, plants are exposed to environmental stresses throughout their life. They have developed survival strategies such as developmental and morphological adaptations, as well as physiological responses, to protect themselves from adverse environments. In addition, stress sensing triggers large-scale transcriptional reprogramming directed at minimizing the deleterious effect of water stress on plant cells. Here, we review recent findings that reveal a role of chromatin in water stress responses. In addition, we discuss data in support of the idea that chromatin remodelling and modifying enzymes may be direct targets of stress signalling pathways. Modulation of chromatin regulator activity by these signaling pathways may be critical in minimizing potential trade-offs between growth and stress responses. Alterations in the chromatin organization and/or in the activity of chromatin remodelling and modifying enzymes may furthermore contribute to stress memory. Mechanistic insight into these phenomena derived from studies in model plant systems should allow future engineering of broadly drought-tolerant crop plants that do not incur unnecessary losses in yield or growth.
Collapse
Affiliation(s)
- Soon-Ki Han
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Doris Wagner
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
8
|
Kolybaba A, Classen AK. Sensing cellular states--signaling to chromatin pathways targeting Polycomb and Trithorax group function. Cell Tissue Res 2014; 356:477-93. [PMID: 24728925 DOI: 10.1007/s00441-014-1824-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Accepted: 01/22/2014] [Indexed: 02/06/2023]
Abstract
Cells respond to extra- and intra-cellular signals by dynamically changing their gene expression patterns. After termination of the original signal, new expression patterns are maintained by epigenetic DNA and histone modifications. This represents a powerful mechanism that enables long-term phenotypic adaptation to transient signals. Adaptation of epigenetic landscapes is important for mediating cellular differentiation during development and allows adjustment to altered environmental conditions throughout life. Work over the last decade has begun to elucidate the way that extra- and intra-cellular signals lead to changes in gene expression patterns by directly modulating the function of chromatin-associated proteins. Here, we review key signaling-to-chromatin pathways that are specifically thought to target Polycomb and Trithorax group complexes, a classic example of epigenetically acting gene silencers and activators important in development, stem cell differentiation and cancer. We discuss the influence that signals triggered by kinase cascades, metabolic fluctuations and cell-cycle dynamics have on the function of these protein complexes. Further investigation into these pathways will be important for understanding the mechanisms that maintain epigenetic stability and those that promote epigenetic plasticity.
Collapse
Affiliation(s)
- Addie Kolybaba
- Ludwig Maximilians University Munich, Faculty of Biology, Grosshaderner Strasse 2-4, 82152, Planegg-Martinsried, Germany
| | | |
Collapse
|
9
|
McElroy KA, Kang H, Kuroda MI. Are we there yet? Initial targeting of the Male-Specific Lethal and Polycomb group chromatin complexes in Drosophila. Open Biol 2014; 4:140006. [PMID: 24671948 PMCID: PMC3971409 DOI: 10.1098/rsob.140006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Chromatin-binding proteins must navigate the complex nuclear milieu to find their sites of action, and a constellation of protein factors and other properties are likely to influence targeting specificity. Despite considerable progress, the precise rules by which binding specificity is achieved have remained elusive. Here, we consider early targeting events for two groups of chromatin-binding complexes in Drosophila: the Male-Specific Lethal (MSL) and the Polycomb group (PcG) complexes. These two serve as models for understanding targeting, because they have been extensively studied and play vital roles in Drosophila, and their targets have been documented at high resolution. Furthermore, the proteins and biochemical properties of both complexes are largely conserved in multicellular organisms, including humans. While the MSL complex increases gene expression and PcG members repress genes, the two groups share many similarities such as the ability to modify their chromatin environment to create active or repressive domains, respectively. With legacies of in-depth genetic, biochemical and now genomic approaches, the MSL and PcG complexes will continue to provide tractable systems for understanding the recruitment of multiprotein chromatin complexes to their target loci.
Collapse
Affiliation(s)
- Kyle A McElroy
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | |
Collapse
|
10
|
Asymmetric distribution of histones during Drosophila male germline stem cell asymmetric divisions. Chromosome Res 2014; 21:255-69. [PMID: 23681658 DOI: 10.1007/s10577-013-9356-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
It has long been known that epigenetic changes are inheritable. However, except for DNA methylation, little is known about the molecular mechanisms of epigenetic inheritance. Many types of stem cells undergo asymmetric cell divisions to generate self-renewed stem cells and daughter cells committed for differentiation. Still, whether and how stem cells retain their epigenetic memory remain questions to be elucidated. During the asymmetric division of Drosophila male germline stem cell (GSC), our recent studies revealed that the preexisting histone 3 (H3) are selectively segregated to the GSC, whereas newly synthesized H3 deposited during DNA replication are enriched in the differentiating daughter cell. We propose a two-step model to explain this asymmetric histone distribution. First, prior to mitosis, preexisting histones and newly synthesized histones are differentially distributed at two sets of sister chromatids. Next, during mitosis, the set of sister chromatids that mainly consist of preexisting histones are segregated to GSCs, while the other set of sister chromatids enriched with newly synthesized histones are partitioned to the daughter cell committed for differentiation. In this review, we apply current knowledge about epigenetic inheritance and asymmetric cell division to inform our discussion of potential molecular mechanisms and the cellular basis underlying this asymmetric histone distribution pattern. We will also discuss whether this phenomenon contributes to the maintenance of stem cell identity and resetting chromatin structure in the other daughter cell for differentiation.
Collapse
|