1
|
Clark JA, Douglas JF. Do Specific Ion Effects on Collective Relaxation Arise from Perturbation of Hydrogen-Bonding Network Structure? J Phys Chem B 2024; 128:6362-6375. [PMID: 38912895 PMCID: PMC11229691 DOI: 10.1021/acs.jpcb.4c02638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/25/2024]
Abstract
The change in the transport properties (i.e., water diffusivity, shear viscosity, etc.) when adding salts to water has been used to classify ions as either being chaotropic or kosmotropic, a terminology based on the presumption that this phenomenon arises from respective breakdown or enhancement of the hydrogen-bonding network structure. Recent quasi-elastic neutron scattering measurements of the collective structural relaxation time, τC, in aqueous salt solutions were interpreted as confirming this proposed origin of ion effects on the dynamics of water. However, we find similar changes in τC in the same salt solutions based on molecular dynamics (MD) simulations using a coarse-grained water model in which no hydrogen bonding exists, challenging this conventional interpretation of mobility change resulting from the addition of salts to water. A thorough understanding of specific ion effects should be useful in diverse material manufacturing and biomedical applications, where these effects are prevalent, but poorly understood.
Collapse
Affiliation(s)
- Jennifer A. Clark
- Materials Science and Engineering
Division, Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Jack F. Douglas
- Materials Science and Engineering
Division, Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
2
|
Gabriel JP, Horstmann R, Tress M. Local and global expansivity in water. J Chem Phys 2024; 160:234502. [PMID: 38884401 DOI: 10.1063/5.0203924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/30/2024] [Indexed: 06/18/2024] Open
Abstract
The supra-molecular structure of a liquid is strongly connected to its dynamics, which in turn control macroscopic properties such as viscosity. Consequently, detailed knowledge about how this structure changes with temperature is essential to understand the thermal evolution of the dynamics ranging from the liquid to the glass. Here, we combine infrared spectroscopy (IR) measurements of the hydrogen (H) bond stretching vibration of water with molecular dynamics simulations and employ a quantitative analysis to extract the inter-molecular H-bond length in a wide temperature range of the liquid. The extracted expansivity of this H-bond differs strongly from that of the average nearest neighbor distance of oxygen atoms obtained through a common conversion of mass density. However, both properties can be connected through a simple model based on a random loose packing of spheres with a variable coordination number, which demonstrates the relevance of supra-molecular arrangement. Furthermore, the exclusion of the expansivity of the inter-molecular H-bonds reveals that the most compact molecular arrangement is formed in the range of ∼316-331K (i.e., above the density maximum) close to the temperature of several pressure-related anomalies, which indicates a characteristic point in the supra-molecular arrangement. These results confirm our earlier approach to deduce inter-molecular H-bond lengths via IR in polyalcohols [Gabriel et al. J. Chem. Phys. 154, 024503 (2021)] quantitatively and open a new alley to investigate the role of inter-molecular expansion as a precursor of molecular fluctuations on a bond-specific level.
Collapse
Affiliation(s)
- Jan Philipp Gabriel
- Institute of Materials Physics in Space, German Aerospace Center, 51170 Köln, Germany
| | - Robin Horstmann
- Institute for Condensed Matter Physics, Technical University Darmstadt, 64289 Darmstadt, Germany
| | - Martin Tress
- Peter Debye Institute for Soft Matter Research, Leipzig University, 04103 Leipzig, Germany
| |
Collapse
|
3
|
Novak N, Liang X, Kontogeorgis GM. Prediction of water anomalous properties by introducing the two-state theory in SAFT. J Chem Phys 2024; 160:104505. [PMID: 38465683 DOI: 10.1063/5.0186752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/14/2024] [Indexed: 03/12/2024] Open
Abstract
Water is one of the most abundant substances on earth, but it is still not entirely understood. It shows unusual behavior, and its properties present characteristic extrema unlike any other fluid. This unusual behavior has been linked to the two-state theory of water, which proposes that water forms different clusters, one with a high density and one with a low density, which may even form two distinct phases at low temperatures. Models incorporating the two-state theory manage to capture the unusual extrema of water, unlike traditional equations of state, which fail. In this work, we have derived the framework to incorporate the two-state theory of water into the Statistical-Associating-Fluid-Theory (SAFT). More specifically, we have assumed that water is an ideal solution of high density water molecules and low density water molecules that are in chemical equilibrium. Using this assumption, we have generalized the association term SAFT to allow for the simultaneous existence of the two water types, which have the same physical parameters but different association properties. We have incorporated the newly derived association term in the context of the Perturbed Chain-SAFT (PC-SAFT). The new model is referred to as PC-SAFT-Two-State (PC-SAFT-TS). Using PC-SAFT-TS, we have succeeded in predicting the characteristic extrema of water, such as its density and speed of sound maximum, etc., without loss of accuracy compared to the original PC-SAFT. This new framework is readily extended to mixtures, and PC-SAFT-TS manages to capture the solubility minimum of hydrocarbons in water in a straightforward manner.
Collapse
Affiliation(s)
- Nefeli Novak
- Center for Energy Resources Engineering, Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| | - Xiaodong Liang
- Center for Energy Resources Engineering, Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| | - Georgios M Kontogeorgis
- Center for Energy Resources Engineering, Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| |
Collapse
|
4
|
Ortiz-Rivero E, Orozco-Barrera S, Chatterjee H, González-Gómez CD, Caro C, García-Martín ML, González PH, Rica RA, Gámez F. Light-to-Heat Conversion of Optically Trapped Hot Brownian Particles. ACS NANO 2023; 17:24961-24971. [PMID: 38048481 PMCID: PMC10754033 DOI: 10.1021/acsnano.3c07086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 12/06/2023]
Abstract
Anisotropic hybrid nanostructures stand out as promising therapeutic agents in photothermal conversion-based treatments. Accordingly, understanding local heat generation mediated by light-to-heat conversion of absorbing multicomponent nanoparticles at the single-particle level has forthwith become a subject of broad and current interest. Nonetheless, evaluating reliable temperature profiles around a single trapped nanoparticle is challenging from all of the experimental, computational, and fundamental viewpoints. Committed to filling this gap, the heat generation of an anisotropic hybrid nanostructure is explored by means of two different experimental approaches from which the local temperature is measured in a direct or indirect way, all in the context of hot Brownian motion theory. The results were compared with analytical results supported by the numerical computation of the wavelength-dependent absorption efficiencies in the discrete dipole approximation for scattering calculations, which has been extended to inhomogeneous nanostructures. Overall, we provide a consistent and comprehensive view of the heat generation in optical traps of highly absorbing particles from the viewpoint of the hot Brownian motion theory.
Collapse
Affiliation(s)
- Elisa Ortiz-Rivero
- Nanomaterials
for Bioimaging Group, Departamento de Física de Materiales,
& Instituto de materiales Nicolás Cabrera & Institute
for Advanced Research in Chemical Sciences,, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Sergio Orozco-Barrera
- Universidad
de Granada, Nanoparticles Trapping
Laboratory, Research Unit Modeling Nature (MNat) and Department of
Applied Physics, 18071 Granada, Spain
| | - Hirak Chatterjee
- Universidad
de Granada, Nanoparticles Trapping
Laboratory, Research Unit Modeling Nature (MNat) and Department of
Applied Physics, 18071 Granada, Spain
| | - Carlos D. González-Gómez
- Universidad
de Granada, Nanoparticles Trapping
Laboratory, Research Unit Modeling Nature (MNat) and Department of
Applied Physics, 18071 Granada, Spain
- Universidad
de Málaga, Department of Applied
Physics II, 29071 Málaga, Spain
| | - Carlos Caro
- Biomedical
Magnetic Resonance Laboratory-BMRL, Andalusian Public Foundation Progress
and Health-FPS, 41092 Sevilla, Spain
- Biomedical
Research Institute of Málaga and Nanomedicine Platform (IBIMA-BIONAND
Platform), University of Málaga, C/Severo Ochoa 35, 29590 Málaga, Spain
| | - María-Luisa García-Martín
- Biomedical
Magnetic Resonance Laboratory-BMRL, Andalusian Public Foundation Progress
and Health-FPS, 41092 Sevilla, Spain
- Biomedical
Research Institute of Málaga and Nanomedicine Platform (IBIMA-BIONAND
Platform), University of Málaga, C/Severo Ochoa 35, 29590 Málaga, Spain
- Biomedical
Research Networking Center in Bioengineering, Biomaterials & Nanomedicine
(CIBER-BBN), 28029 Madrid, Spain
| | - Patricia Haro González
- Nanomaterials
for Bioimaging Group, Departamento de Física de Materiales,
& Instituto de materiales Nicolás Cabrera & Institute
for Advanced Research in Chemical Sciences,, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Raúl A. Rica
- Universidad
de Granada, Nanoparticles Trapping
Laboratory, Research Unit Modeling Nature (MNat) and Department of
Applied Physics, 18071 Granada, Spain
| | - Francisco Gámez
- Department
of Physical Chemistry, Universidad Complutense
de Madrid, 28040 Madrid, Spain
| |
Collapse
|
5
|
Simões M, Steudel A, Santos APR. Liquid Water: A Single Approach to Its Two Continuous Phase Transitions. J Phys Chem B 2023; 127:955-960. [PMID: 36688909 DOI: 10.1021/acs.jpcb.2c07213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In this paper, we show that both continuous phase transitions of liquid water, the liquid-gas and the liquid-liquid, can be articulated within a single thermodynamic analytical formalism. This result follows from a combination of the two-liquid model (TLM), recently confirmed for water, with the idea of a thermal-dependent excluded volume, ve, concept introduced by van der Waals, in his famous state equation. Starting from the fundamentals of thermodynamics, it will be shown that the TLM naturally leads to the idea of an extensive thermal-dependent ve that acts as a parameter of the sample thermodynamic potentials. This procedure effectively separates the thermodynamics of the system into two parts: the first concerns the clusters' thermodynamics, taken as wandering particles, and the second concerns the thermal behavior of its internal structure (geometry and number of particles). From this result, we demonstrate that the condition of mechanical instability leads to not one but two critical points, each happening in one of the above-described parts of the system.
Collapse
Affiliation(s)
- M Simões
- Departamento de Física, Universidade Estadual de Londrina, Campus Universitário, 86051-990Londrina, PR, Brazil
| | - A Steudel
- Departamento de Física, Universidade Estadual de Londrina, Campus Universitário, 86051-990Londrina, PR, Brazil
| | - A P R Santos
- Departamento de Física, Universidade Estadual de Londrina, Campus Universitário, 86051-990Londrina, PR, Brazil
| |
Collapse
|
6
|
The Hydrophobic Effect Studied by Using Interacting Colloidal Suspensions. Int J Mol Sci 2023; 24:ijms24032003. [PMID: 36768326 PMCID: PMC9916416 DOI: 10.3390/ijms24032003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Interactions between nanoparticles (NPs) determine their self-organization and dynamic processes. In these systems, a quantitative description of the interparticle forces is complicated by the presence of the hydrophobic effect (HE), treatable only qualitatively, and due to the competition between the hydrophobic and hydrophilic forces. Recently, instead, a sort of crossover of HE from hydrophilic to hydrophobic has been experimentally observed on a local scale, by increasing the temperature, in pure confined water and studying the occurrence of this crossover in different water-methanol solutions. Starting from these results, we then considered the idea of studying this process in different nanoparticle solutions. By using photon correlation spectroscopy (PCS) experiments on dendrimer with OH terminal groups (dissolved in water and methanol, respectively), we show the existence of this hydrophobic-hydrophilic crossover with a well defined temperature and nanoparticle volume fraction dependence. In this frame, we have used the mode coupling theory extended model to evaluate the measured time-dependent density correlation functions (ISFs). In this context we will, therefore, show how the measured spectra are strongly dependent on the specificity of the interactions between the particles in solution. The observed transition demonstrates that just the HE, depending sensitively on the system thermodynamics, determines the hydrophobic and hydrophilic interaction properties of the studied nanostructures surface.
Collapse
|
7
|
Simões M, Steudel A, Yamaguti K, Cobo R, Santos A, Amaral R. An analytical approach to the anomalous specific heat of water. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Wang J, Zheng Y, Zhang H, Ye H. Machine learning-generated TIP4P-BGWT model for liquid and supercooled water. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Berkowicz S, Perakis F. Exploring the validity of the Stokes-Einstein relation in supercooled water using nanomolecular probes. Phys Chem Chem Phys 2021; 23:25490-25499. [PMID: 34494639 DOI: 10.1039/d1cp02866a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The breakdown of Stokes-Einstein relation in liquid water is one of the many anomalies that take place upon cooling and indicates the decoupling of diffusion and viscosity. It is hypothesized that these anomalies manifest due to the appearance of nanometer-scale spatial fluctuations, which become increasingly pronounced in the supercooled regime. Here, we explore the validity of the Stokes-Einstein relation in supercooled water using nanomolecular probes. We capture the diffusive dynamics of the probes using dynamic light scattering and target dynamics at different length scales by varying the probe size, from ≈100 nm silica spheres to molecular-sized polyhydroxylated fullerenes (≈1 nm). We find that all the studied probes, independent of size, display similar diffusive dynamics with an Arrhenius activation energy of ≈23 kJ mol-1. Analysis of the diffusion coefficient further indicates that the probes, independent of their size, experience similar dynamic environment, which coincides with the macroscopic viscosity, while single water molecules effectively experience a comparatively lower viscosity. Finally, we conclude that our results indicate that the Stokes-Einstein relation is preserved for diffusion of probes in supercooled water T ≥ 260 K with size as small as ≈1 nm.
Collapse
Affiliation(s)
- Sharon Berkowicz
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden.
| | - Fivos Perakis
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden.
| |
Collapse
|
10
|
Liquid phase PVTx properties of {water (1) + 1,3-dimethylurea (2)} mixtures at temperatures from 278.15 to 323.15 K and pressures to 100 MPa. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Corsaro C, Fazio E. From Critical Point to Critical Point: The Two-States Model Describes Liquid Water Self-Diffusion from 623 to 126 K. Molecules 2021; 26:molecules26195899. [PMID: 34641442 PMCID: PMC8512083 DOI: 10.3390/molecules26195899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/23/2021] [Accepted: 09/26/2021] [Indexed: 12/02/2022] Open
Abstract
Liquid’s behaviour, when close to critical points, is of extreme importance both for fundamental research and industrial applications. A detailed knowledge of the structural–dynamical correlations in their proximity is still today a target to reach. Liquid water anomalies are ascribed to the presence of a second liquid–liquid critical point, which seems to be located in the very deep supercooled regime, even below 200 K and at pressure around 2 kbar. In this work, the thermal behaviour of the self-diffusion coefficient for liquid water is analyzed, in terms of a two-states model, for the first time in a very wide thermal region (126 K < T < 623 K), including those of the two critical points. Further, the corresponding configurational entropy and isobaric-specific heat have been evaluated within the same interval. The two liquid states correspond to high and low-density water local structures that play a primary role on water dynamical behavior over 500 K.
Collapse
|
12
|
Hydrophilic and Hydrophobic Effects on the Structure and Themodynamic Properties of Confined Water: Water in Solutions. Int J Mol Sci 2021; 22:ijms22147547. [PMID: 34299171 PMCID: PMC8304151 DOI: 10.3390/ijms22147547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/26/2021] [Accepted: 07/07/2021] [Indexed: 11/17/2022] Open
Abstract
NMR spectroscopy is used in the temperature range 180–350 K to study the local order and transport properties of pure liquid water (bulk and confined) and its solutions with glycerol and methanol at different molar fractions. We focused our interest on the hydrophobic effects (HE), i.e., the competition between hydrophilic and hydrophobic interactions. Nowadays, compared to hydrophilicity, little is known about hydrophobicity. Therefore, the main purpose of this study is to gain new information about hydrophobicity. As the liquid water properties are dominated by polymorphism (two coexisting liquid phases of high and low density) due to hydrogen bond interactions (HB), creating (especially in the supercooled regime) the tetrahedral networking, we focused our interest to the HE of these structures. We measured the relaxation times (T1 and T2) and the self-diffusion (DS). From these times, we took advantage of the NMR property to follow the behaviors of each molecular component (the hydrophilic and hydrophobic groups) separately. In contrast, DS is studied in terms of the Adam–Gibbs model by obtaining the configurational entropy (Sconf) and the specific heat contributions (CP,conf). We find that, for the HE, all of the studied quantities behave differently. For water–glycerol, the HB interaction is dominant for all conditions; water–methanol, two different T-regions above and below 265 K are observable, dominated by hydrophobicity and hydrophilicity, respectively. Below this temperature, where the LDL phase and the HB network develops and grows, with the times and CP,conf change behaviors leading to maxima and minima. Above it, the HB becomes weak and less stable, the HDL dominates, and hydrophobicity determines the solution.
Collapse
|
13
|
Ekiert M, Karbowniczek J, Stachewicz U, Mlyniec A. The effect of multiple freeze-thaw cycles on the viscoelastic properties and microstructure of bovine superficial digital flexor tendon. J Mech Behav Biomed Mater 2021; 120:104582. [PMID: 34090220 DOI: 10.1016/j.jmbbm.2021.104582] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 04/15/2021] [Accepted: 05/08/2021] [Indexed: 11/19/2022]
Abstract
The most common injuries of the human musculoskeletal system are related to soft tissue structures such as tendons or ligaments. To repair torn structures, surgical intervention and application of a biological or synthetic graft may be required. A typical procedure for the processing, storage, and distribution of soft tissue grafts involves at least two freezing/thawing (F/T) cycles. Even though repeated F/T cycles decrease the mechanical performance and change the structure of tendons, it is unclear whether there exists a maximum number of F/T cycles above which tendons should not be approved for use as a tissue allograft. To fill this research gap, we present an ex vivo study on the effects of repetitive F/T cycles on the biomechanical stability of bovine superficial digital flexor tendon tissue. Using mechanical testing supported with scanning electron microscopy imaging, we show that multiple F/T cycles affect the viscoelastic and structural properties of tissue by significantly reducing its tensile modulus after the 3rd or 4th F/T cycle (depending on the strain range), stress drop during relaxation after the 8th F/T cycle (regardless the strain values), mechanical hysteresis after the 10th F/T cycle, and by causing a significant decrease in collagen fibril diameter. Our results provide a deeper insight into understanding the mechanisms responsible for tissue damage during multiple F/T cycles, and thus, may be useful for the future optimization of tissue storage protocols.
Collapse
Affiliation(s)
- Martyna Ekiert
- AGH University of Science and Technology, Faculty of Mechanics and Robotics, Krakow, Poland.
| | - Joanna Karbowniczek
- AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Krakow, Poland
| | - Urszula Stachewicz
- AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Krakow, Poland
| | - Andrzej Mlyniec
- AGH University of Science and Technology, Faculty of Mechanics and Robotics, Krakow, Poland
| |
Collapse
|
14
|
Escobedo S, Kong J, Lopez‐Zamora S, Lasa H. Synthetic naphtha recovery from water streams: Vapour‐liquid–liquid equilibrium (
VLLE
) studies in a dynamic
VL
‐cell unit with high intensity mixing. CAN J CHEM ENG 2021. [DOI: 10.1002/cjce.24120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Salvador Escobedo
- Faculty of Engineering, Chemical Reactor Engineering Centre (CREC) Western University London Ontario Canada
| | - Jeonghoon Kong
- Faculty of Engineering, Chemical Reactor Engineering Centre (CREC) Western University London Ontario Canada
| | - Sandra Lopez‐Zamora
- Faculty of Engineering, Chemical Reactor Engineering Centre (CREC) Western University London Ontario Canada
| | - Hugo Lasa
- Faculty of Engineering, Chemical Reactor Engineering Centre (CREC) Western University London Ontario Canada
| |
Collapse
|
15
|
Ye HF, Wang J, Zheng YG, Zhang HW, Chen Z. Machine learning for reparameterization of four-site water models: TIP4P-BG and TIP4P-BGT. Phys Chem Chem Phys 2021; 23:10164-10173. [PMID: 33951125 DOI: 10.1039/d0cp05831a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Parameterizing an effective water model is a challenging issue because of the difficulty in maintaining a comprehensive balance among the diverse physical properties of water with a limited number of parameters. The advancement in machine learning provides a promising path to search for a reliable set of parameters. Based on the TIP4P water model, hence, about 6000 molecular dynamics (MD) simulations for pure water at 1 atm and in the range of 273-373 K are conducted here as the training data. The back-propagation (BP) neural network is then utilized to construct an efficient mapping between the model parameters and four crucial physical properties of water, including the density, vaporization enthalpy, self-diffusion coefficient and viscosity. Without additional time-consuming MD simulations, this mapping operation could result in sufficient and accurate data for high-population genetic algorithm (GA) to optimize the model parameters as much as possible. Based on the proposed parameterizing strategy, TIP4P-BG (a conventional four-site water model) and TIP4P-BGT (an advanced model with temperature-dependent parameters) are established. Both the water models exhibit excellent performance with a reasonable balance among the four crucial physical properties. The relevant mean absolute percentage errors are 3.53% and 3.08%, respectively. Further calculations on the temperature of maximum density, isothermal compressibility, thermal expansion coefficient, radial distribution function and surface tension are also performed and the resulting values are in good agreement with the experimental values. Through this water modeling example, the potential of the proposed data-driven machine learning procedure has been demonstrated for parameterizing a MD-based material model.
Collapse
Affiliation(s)
- Hong-Fei Ye
- International Research Center for Computational Mechanics, State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Faculty of Vehicle Engineering and Mechanics, Dalian University of Technology, Dalian 116024, P. R. China.
| | | | | | | | | |
Collapse
|
16
|
Jasiok B, Chorążewski M, Postnikov EB, Millot C. Liquid dibromomethane under pressure: a computational study. Phys Chem Chem Phys 2021; 23:2964-2971. [PMID: 33480934 DOI: 10.1039/d0cp06458k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molecular dynamics simulations have been performed on liquid dibromomethane at thermodynamic states corresponding to temperature in the range 268-328 K and pressure varying from 1 bar to 3000 bar. The interaction model is a simple effective two-body pair potential with atom-atom Coulomb and Lennard-Jones interactions and molecules are rigid. Thermodynamic properties have been studied, including the isobaric thermal expansion coefficient, the isothermal compressibility, the heat capacities and the speed of sound. The simulation results exhibit a crossing of the isotherms of the isobaric thermal expansion coefficient at about 800 bar in very good agreement with the prediction of an isothermal fluctuation equation of state predicting such a crossing in the pressure range 650-900 bar, though experimental results up to 1000 bar do not find any crossing.
Collapse
Affiliation(s)
- Bernadeta Jasiok
- Institute of Chemistry, University of Silesia in Katowice, Szkolna 9, 40-006 Katowice, Poland.
| | - Mirosław Chorążewski
- Institute of Chemistry, University of Silesia in Katowice, Szkolna 9, 40-006 Katowice, Poland.
| | - Eugene B Postnikov
- Department of Theoretical Physics, Kursk State University, Radishcheva St., 33, 305000 Kursk, Russia
| | - Claude Millot
- Université de Lorraine, CNRS, LPCT, F-54000 Nancy, France, Boulevard des Aiguillettes, BP 70239, 54506 Vandoeuvre lès Nancy Cedex, France.
| |
Collapse
|
17
|
Salehli F, Aydin AO, Chovan D, Kopyl S, Bystrov V, Thompson D, Tofail SA, Kholkin A. Nanoconfined water governs polarization‐related properties of self‐assembled peptide nanotubes. NANO SELECT 2021. [DOI: 10.1002/nano.202000220] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Ferid Salehli
- Department of Physical Engineering Istanbul Technical University Maslak Istanbul Turkey
| | - Abuzer O. Aydin
- Department of Physical Engineering Istanbul Technical University Maslak Istanbul Turkey
| | - Drahomir Chovan
- Department of Physics & Bernal Institute University of Limerick Limerick Ireland
| | - Svitlana Kopyl
- Department of Physics & CICECO – Aveiro Institute of Materials University of Aveiro Aveiro Portugal
| | - Vladimir Bystrov
- Institute of Mathematical Problems of Biology Keldysh Institute of Applied Mathematics, RAS Pushchino Moscow region Russia
| | - Damien Thompson
- Department of Physics & Bernal Institute University of Limerick Limerick Ireland
| | - Syed A.M. Tofail
- Department of Physics & Bernal Institute University of Limerick Limerick Ireland
| | - Andrei Kholkin
- Department of Physics & CICECO – Aveiro Institute of Materials University of Aveiro Aveiro Portugal
| |
Collapse
|
18
|
Some Aspects of the Liquid Water Thermodynamic Behavior: From The Stable to the Deep Supercooled Regime. Int J Mol Sci 2020; 21:ijms21197269. [PMID: 33019640 PMCID: PMC7582456 DOI: 10.3390/ijms21197269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 12/02/2022] Open
Abstract
Liquid water is considered to be a peculiar example of glass forming materials because of the possibility of giving rise to amorphous phases with different densities and of the thermodynamic anomalies that characterize its supercooled liquid phase. In the present work, literature data on the density of bulk liquid water are analyzed in a wide temperature-pressure range, also including the glass phases. A careful data analysis, which was performed on different density isobars, made in terms of thermodynamic response functions, like the thermal expansion αP and the specific heat differences CP−CV, proves, exclusively from the experimental data, the thermodynamic consistence of the liquid-liquid transition hypothesis. The study confirms that supercooled bulk water is a mixture of two liquid “phases”, namely the high density (HDL) and the low density (LDL) liquids that characterize different regions of the water phase diagram. Furthermore, the CP−CV isobars behaviors clearly support the existence of both a liquid–liquid transition and of a liquid–liquid critical point.
Collapse
|
19
|
Jaegers NR, Wang Y, Hu JZ. Thermal perturbation of NMR properties in small polar and non-polar molecules. Sci Rep 2020; 10:6097. [PMID: 32269270 PMCID: PMC7142158 DOI: 10.1038/s41598-020-63174-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 02/06/2020] [Indexed: 11/09/2022] Open
Abstract
Water is an important constituent in an abundant number of chemical systems; however, its presence complicates the analysis of in situ1H MAS NMR investigations due to water’s ease of solidification and vaporization, the large changes in mobility, affinity for hydrogen bonding interactions, etc., that are reflected by dramatic changes in temperature-dependent chemical shielding. To understand the evolution of the signatures of water and other small molecules in complex environments, this work explores the thermally-perturbed NMR properties of water in detail by in situ MAS NMR over a wide temperature range. Our results substantially extend the previously published temperature-dependent 1H and 17O chemical shifts, linewidths, and spin-lattice relaxation times over a much wider range of temperatures and with significantly enhanced thermal resolution. The following major results are obtained: Hydrogen bonding is clearly shown to weaken at elevated temperatures in both 1H and 17O spectra, reflected by an increase in chemical shielding. At low temperatures, transient tetrahedral domains of H-bonding networks are evidenced and the observation of the transition between solid ice and liquid is made with quantitative considerations to the phase change. The 1H chemical shift properties in other small polar and non-polar molecules have also been described over a range of temperatures, showing the dramatic effect hydrogen bonding perturbation on polar species. Gas phase species are observed and chemical exchange between gas and liquid phases is shown to play an important role on the observed NMR shifts. The results disclosed herein lay the foundation for a clear interpretation of complex systems during the increasingly popular in situ NMR characterization at elevated temperatures and pressures for studying chemical systems.
Collapse
Affiliation(s)
- Nicholas R Jaegers
- Institute for Integrated Catalysis and Earth and Biological Science Directorate, Pacific Northwest National Laboratory, Richland, Washington, 99354, United States.,Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington, 99163, United States
| | - Yong Wang
- Institute for Integrated Catalysis and Earth and Biological Science Directorate, Pacific Northwest National Laboratory, Richland, Washington, 99354, United States. .,Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington, 99163, United States.
| | - Jian Zhi Hu
- Institute for Integrated Catalysis and Earth and Biological Science Directorate, Pacific Northwest National Laboratory, Richland, Washington, 99354, United States.
| |
Collapse
|
20
|
The Proton Density of States in Confined Water (H 2O). Int J Mol Sci 2019; 20:ijms20215373. [PMID: 31671726 PMCID: PMC6861890 DOI: 10.3390/ijms20215373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/17/2019] [Accepted: 10/24/2019] [Indexed: 12/05/2022] Open
Abstract
The hydrogen density of states (DOS) in confined water has been probed by inelastic neutron scattering spectra in a wide range of its P–T phase diagram. The liquid–liquid transition and the dynamical crossover from the fragile (super-Arrhenius) to strong (Arrhenius) glass forming behavior have been studied, by taking into account the system polymorphism in both the liquid and amorphous solid phases. The interest is focused in the low energy region of the DOS (E<10 meV) and the data are discussed in terms of the energy landscape (local minima of the potential energy) approach. In this latest research, we consider a unit scale energy (EC) linked to the water local order governed by the hydrogen bonding (HB). All the measured spectra, scaled according to such energy, evidence a universal power law behavior with different exponents (γ) in the strong and fragile glass forming regions, respectively. In the first case, the DOS data obey the Debye squared-frequency law, whereas, in the second one, we obtain a value predicted in terms of the mode-coupling theory (MCT) (γ≃1.6).
Collapse
|
21
|
Mausbach P, May HO, Ruppeiner G. Thermodynamic metric geometry of the two-state ST2 model for supercooled water. J Chem Phys 2019. [DOI: 10.1063/1.5101075] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
22
|
Mallamace F, Corsaro C, Mallamace D, Fazio E, Chen SH. Some considerations on the water polymorphism and the liquid-liquid transition by the density behavior in the liquid phase. J Chem Phys 2019; 151:044504. [PMID: 31370513 DOI: 10.1063/1.5095687] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The bulk liquid water density data (ρ) are studied in a very large temperature pressure range including also the glass phases. A thorough analysis of their isobars, together with the suggestions of recent thermodynamical studies, gives evidence of two crossovers at T* and P* above which the hydrogen bond interaction is unable to arrange the tetrahedral network that is at the basis of the liquid polymorphism giving rise to the low density liquid (LDL). The curvatures of these isobars, as a function of T, are completely different: concave below P* (where maxima are) and convex above. In both the cases, a continuity between liquid and glass is observed with P* as the border of the density evolution toward the two different polymorphic glasses (low and high density amorphous). The experimental data of the densities of these two glasses also show a markedly different pressure dependence. Here, on the basis of these observations in bulk water and by considering a recent study on the growth of the LDL phase, by decreasing temperature, we discuss the water liquid-liquid transition and evaluate the isothermal compressibility inside the deep supercooled regime. Such a quantity shows an additional maximum that is pressure dependent that under ambient conditions agrees with a recent X-ray experiment. In particular, the present analysis suggests the presence of a liquid-liquid critical point located at about 180 MPa and 197 K.
Collapse
Affiliation(s)
- Francesco Mallamace
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Carmelo Corsaro
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra (MIFT), Università di Messina I-98166, Messina, Italy
| | - Domenico Mallamace
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra (MIFT), Università di Messina I-98166, Messina, Italy
| | - Enza Fazio
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra (MIFT), Università di Messina I-98166, Messina, Italy
| | - Sow-Hsin Chen
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
23
|
Cerdeiriña CA, Troncoso J, González-Salgado D, Debenedetti PG, Stanley HE. Water’s two-critical-point scenario in the Ising paradigm. J Chem Phys 2019; 150:244509. [DOI: 10.1063/1.5096890] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Claudio A. Cerdeiriña
- Departamento de Física Aplicada, Universidad de Vigo—Campus del Agua, Ourense 32004, Spain
| | - Jacobo Troncoso
- Departamento de Física Aplicada, Universidad de Vigo—Campus del Agua, Ourense 32004, Spain
| | - Diego González-Salgado
- Departamento de Física Aplicada, Universidad de Vigo—Campus del Agua, Ourense 32004, Spain
| | - Pablo G. Debenedetti
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - H. Eugene Stanley
- Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215, USA
| |
Collapse
|
24
|
Corsaro C, Fazio E, Mallamace D. The Stokes-Einstein relation in water/methanol solutions. J Chem Phys 2019; 150:234506. [DOI: 10.1063/1.5096760] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- C. Corsaro
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università di Messina, Viale F. Stagno d’ Alcontres, 31, 98166 Messina, Italy
| | - E. Fazio
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università di Messina, Viale F. Stagno d’ Alcontres, 31, 98166 Messina, Italy
| | - D. Mallamace
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università di Messina, Viale F. Stagno d’ Alcontres, 31, 98166 Messina, Italy
| |
Collapse
|
25
|
Foglia F, Hazael R, Meersman F, Wilding MC, Sakai VG, Rogers S, Bove LE, Koza MM, Moulin M, Haertlein M, Forsyth VT, McMillan PF. In Vivo Water Dynamics in Shewanella oneidensis Bacteria at High Pressure. Sci Rep 2019; 9:8716. [PMID: 31213614 PMCID: PMC6581952 DOI: 10.1038/s41598-019-44704-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/15/2019] [Indexed: 11/10/2022] Open
Abstract
Following observations of survival of microbes and other life forms in deep subsurface environments it is necessary to understand their biological functioning under high pressure conditions. Key aspects of biochemical reactions and transport processes within cells are determined by the intracellular water dynamics. We studied water diffusion and rotational relaxation in live Shewanella oneidensis bacteria at pressures up to 500 MPa using quasi-elastic neutron scattering (QENS). The intracellular diffusion exhibits a significantly greater slowdown (by −10–30%) and an increase in rotational relaxation times (+10–40%) compared with water dynamics in the aqueous solutions used to resuspend the bacterial samples. Those results indicate both a pressure-induced viscosity increase and slowdown in ionic/macromolecular transport properties within the cells affecting the rates of metabolic and other biological processes. Our new data support emerging models for intracellular organisation with nanoscale water channels threading between macromolecular regions within a dynamically organized structure rather than a homogenous gel-like cytoplasm.
Collapse
Affiliation(s)
- Fabrizia Foglia
- Chemistry Department, Christopher Ingold Laboratories, University College London, 20 Gordon Street, London, WC1H 0AJ, UK.
| | - Rachael Hazael
- Survivability and Advanced Materials group, Centre for Defence Engineering, Cranfield University at the Defence Academy of the UK, Shrivenham, SN6 8LA, UK
| | - Filip Meersman
- Chemistry Department, Christopher Ingold Laboratories, University College London, 20 Gordon Street, London, WC1H 0AJ, UK.,Biomolecular & Analytical Mass Spectrometry, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, B-2020, Antwerp, Belgium
| | - Martin C Wilding
- Materials Engineering, Sheffield Hallam University, Howard Street, Sheffield, S1 1WB, UK
| | | | - Sarah Rogers
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Chilton, OX11 0QX, UK
| | - Livia E Bove
- Dipartimento di Fisica, Università di Roma "La Sapienza", 00185, Roma, Italy.,Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, CNRS UMR 7590, Université Pierre et Marie Curie, F-75252, Paris, France
| | - Michael Marek Koza
- Institut Laue Langevin, 6 Rue Jules Horowitz, BP 156, 38042, Grenoble, Cedex, France
| | - Martine Moulin
- Life Sciences Group, Carl-Ivar Brändén Building, Institut Laue-Langevin, 71 avenue des Martyrs, 38042, Grenoble, cedex 9, France
| | - Michael Haertlein
- Life Sciences Group, Carl-Ivar Brändén Building, Institut Laue-Langevin, 71 avenue des Martyrs, 38042, Grenoble, cedex 9, France
| | - V Trevor Forsyth
- Life Sciences Group, Carl-Ivar Brändén Building, Institut Laue-Langevin, 71 avenue des Martyrs, 38042, Grenoble, cedex 9, France.,Faculty of Natural Sciences/ISTM, Keele University, Staffordshire, ST5 5BG, UK
| | - Paul F McMillan
- Chemistry Department, Christopher Ingold Laboratories, University College London, 20 Gordon Street, London, WC1H 0AJ, UK.
| |
Collapse
|
26
|
|
27
|
Zhao CL, Zhao DX, Bei CC, Meng XN, Li S, Yang ZZ. Seven-Site Effective Pair Potential for Simulating Liquid Water. J Phys Chem B 2019; 123:4594-4603. [DOI: 10.1021/acs.jpcb.9b03149] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Chong-Li Zhao
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People’s Republic of China
| | - Dong-Xia Zhao
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People’s Republic of China
| | - Cui-Cui Bei
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People’s Republic of China
| | - Xiang-Na Meng
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People’s Republic of China
| | - Shenmin Li
- College of Environmental and Chemical Engineering, Dalian University, Dalian 116622, People’s Republic of China
| | - Zhong-Zhi Yang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People’s Republic of China
| |
Collapse
|
28
|
Imoto S, Marx D. Pressure response of the THz spectrum of bulk liquid water revealed by intermolecular instantaneous normal mode analysis. J Chem Phys 2019; 150:084502. [PMID: 30823759 DOI: 10.1063/1.5080381] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The radial distribution functions of liquid water are known to change significantly their shape upon hydrostatic compression from ambient conditions deep into the kbar pressure regime. It has been shown that despite their eye-catching changes, the fundamental locally tetrahedral fourfold H-bonding pattern that characterizes ambient water is preserved up to about 10 kbar (1 GPa), which is the stability limit of liquid water at 300 K. The observed increase in coordination number comes from pushing water molecules into the first coordination sphere without establishing an H-bond, resulting in roughly two such additional interstitial molecules at 10 kbar. THz spectroscopy has been firmly established as a powerful experimental technique to analyze H-bonding in aqueous solutions given that it directly probes the far-infrared lineshape and thus the prominent H-bond network mode around 180 cm-1. We, therefore, set out to assess pressure effects on the THz response of liquid water at 10 kbar in comparison to the 1 bar (0.1 MPa) reference, both at 300 K, with the aim to trace back the related lineshape changes to the structural level. To this end, we employ the instantaneous normal mode approximation to rigorously separate the H-bonding peak from the large background arising from the pronounced librational tail. By exactly decomposing the total molecular dynamics into hindered translations, hindered rotations, and intramolecular vibrations, we find that the H-bonding peak arises from translation-translation and translation-rotation correlations, which are successively decomposed down to the level of distinct local H-bond environments. Our utmost detailed analysis based on molecular pair classifications unveils that H-bonded double-donor water pairs contribute most to the THz response around 180 cm-1, whereas interstitial waters are negligible. Moreover, short double-donor H-bonds have their peak maximum significantly shifted toward higher frequencies with respect to such long H-bonds. In conjunction with an increasing relative population of these short H-bonds versus the long ones (while the population of other water pair classes is essentially pressure insensitive), this explains not only the blue-shift of the H-bonding peak by about 20-30 cm-1 in total from 1 bar to 10 kbar but also the filling of the shallow local minimum of the THz lineshape located in between the network peak and the red-wing of the librational band at 1 bar. Based on the changing populations as a function of pressure, we are also able to roughly estimate the pressure-dependence of the H-bond network mode and find that its pressure response and thus the blue-shifting are most pronounced at low kbar pressures.
Collapse
Affiliation(s)
- Sho Imoto
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Dominik Marx
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| |
Collapse
|
29
|
Mallamace D, Fazio E, Mallamace F, Corsaro C. The Role of Hydrogen Bonding in the Folding/Unfolding Process of Hydrated Lysozyme: A Review of Recent NMR and FTIR Results. Int J Mol Sci 2018; 19:ijms19123825. [PMID: 30513664 PMCID: PMC6321052 DOI: 10.3390/ijms19123825] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/23/2018] [Accepted: 11/24/2018] [Indexed: 02/07/2023] Open
Abstract
The biological activity of proteins depends on their three-dimensional structure, known as the native state. The main force driving the correct folding mechanism is the hydrophobic effect and when this folding kinetics is altered, aggregation phenomena intervene causing the occurrence of illnesses such as Alzheimer and Parkinson’s diseases. The other important effect is performed by water molecules and by their ability to form a complex network of hydrogen bonds whose dynamics influence the mobility of protein amino acids. In this work, we review the recent results obtained by means of spectroscopic techniques, such as Fourier Transform Infrared (FTIR) and Nuclear Magnetic Resonance (NMR) spectroscopies, on hydrated lysozyme. In particular, we explore the Energy Landscape from the thermal region of configurational stability up to that of the irreversible denaturation. The importance of the coupling between the solute and the solvent will be highlighted as well as the different behaviors of hydrophilic and hydrophobic moieties of protein amino acid residues.
Collapse
Affiliation(s)
- Domenico Mallamace
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra (MIFT), Università di Messina, 98166 Messina, Italy.
| | - Enza Fazio
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra (MIFT), Università di Messina, 98166 Messina, Italy.
| | - Francesco Mallamace
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA.
- Istituto dei Sistemi Complessi (ISC)-CNR, 00185 Rome, Italy.
| | - Carmelo Corsaro
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra (MIFT), Università di Messina, 98166 Messina, Italy.
| |
Collapse
|
30
|
Tsimpanogiannis IN, Moultos OA, Franco LFM, Spera MBDM, Erdős M, Economou IG. Self-diffusion coefficient of bulk and confined water: a critical review of classical molecular simulation studies. MOLECULAR SIMULATION 2018. [DOI: 10.1080/08927022.2018.1511903] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Ioannis N. Tsimpanogiannis
- Environmental Research Laboratory, National Center for Scientific Research “Demokritos”, Aghia Paraskevi Attikis, Greece
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research “Demokritos”, Aghia Paraskevi Attikis, Greece
| | - Othonas A. Moultos
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, The Netherlands
| | - Luís F. M. Franco
- School of Chemical Engineering, University of Campinas, Campinas, Brazil
| | | | - Máté Erdős
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, The Netherlands
| | - Ioannis G. Economou
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research “Demokritos”, Aghia Paraskevi Attikis, Greece
- Chemical Engineering Program, Texas A&M University at Qatar, Doha, Qatar
| |
Collapse
|
31
|
Sippola H, Taskinen P. Activity of Supercooled Water on the Ice Curve and Other Thermodynamic Properties of Liquid Water up to the Boiling Point at Standard Pressure. JOURNAL OF CHEMICAL AND ENGINEERING DATA 2018; 63:2986-2998. [PMID: 30258249 PMCID: PMC6150672 DOI: 10.1021/acs.jced.8b00251] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/11/2018] [Indexed: 06/01/2023]
Abstract
A simple model for thermodynamic properties of water from subzero temperatures up to 373 K was derived at ambient pressure. The heat capacity of supercooled water was assessed as lambda transition. The obtained properties for supercooled water such as heat capacity, vapor pressure, density and thermal expansion are in excellent agreement with literature data. Activity of water on ice curve, independent of used electrolyte and Debye-Hückel constant applied in modeling, is also calculated. Thus, the ice curve activity of supercooled water can be used as a universal basis for thermodynamic modeling of aqueous solutions, precipitating hydrated and anhydrous solids. A simple model for heat capacity, density and thermal expansion of ice are also derived from 170 K up to melting point.
Collapse
|
32
|
Mallamace F, Corsaro C, Longo S, Chen SH, Mallamace D. The evaluation of the hydrophilic-hydrophobic interactions and their effect in water-methanol solutions: A study in terms of the thermodynamic state functions in the frame of the transition state theory. Colloids Surf B Biointerfaces 2018; 168:193-200. [PMID: 29352638 DOI: 10.1016/j.colsurfb.2018.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/01/2017] [Accepted: 01/06/2018] [Indexed: 11/29/2022]
Abstract
Aqueous solutions of amphiphilic molecules are characterized by the competition between hydrophilic and hydrophobic interactions. These interactions have a different energetic dependence with the temperature. Whereas hydrophilic interactions have been well characterized, a complete theory for the hydrophobic ones is still lacking as well as the comprehension of the effect that the solvent exerts on the solute and vice versa. In this paper from the measured relaxation time, we evaluated the thermodynamic state functions of water-methanol solutions in the frame of the transition state theory. In particular we study the behavior of the Gibbs free energy, enthalpy and entropy of water, methanol and some of their solutions as a function of both temperature and water molar fraction. Our results indicate that the temperature of about 280 K represents a crossover between two regions dominated by hydrophobicity (high T) and hydrophilicity (low T).
Collapse
Affiliation(s)
- Francesco Mallamace
- MIFT Department, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy; Institute for Chemical and Physical Processes IPCF-CNR of Messina, Viale F. Stagno d'Alcontres 37, 98158 Messina, Italy; NSE Department, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Carmelo Corsaro
- MIFT Department, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy; Institute for Chemical and Physical Processes IPCF-CNR of Messina, Viale F. Stagno d'Alcontres 37, 98158 Messina, Italy
| | - Sveva Longo
- MIFT Department, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Sow-Hsin Chen
- NSE Department, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Domenico Mallamace
- MIFT Department, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy.
| |
Collapse
|
33
|
Egorov GI, Makarov DM. Effect of high pressure and temperature on the volume properties of the liquid-phase mixture of {water (1) + formamide (2)}. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.01.072] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
34
|
Petrova E, Liopo A, Oraevsky AA, Ermilov SA. Temperature-dependent optoacoustic response and transient through zero Grüneisen parameter in optically contrasted media. PHOTOACOUSTICS 2017; 7:36-46. [PMID: 28725558 PMCID: PMC5501891 DOI: 10.1016/j.pacs.2017.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 06/11/2017] [Accepted: 06/21/2017] [Indexed: 05/10/2023]
Abstract
Non-invasive optoacoustic mapping of temperature in tissues with low blood content can be enabled by administering external contrast agents. Some important clinical applications of such approach include temperature mapping during thermal therapies in a prostate or a mammary gland. However, the technique would require a calibration that establishes functional relationship between the measured normalized optoacoustic response and local tissue temperature. In this work, we investigate how a key calibration parameter - the temperature of zero optoacoustic response (T0 ) - behaves in different environments simulating biological tissues augmented with either dissolved or particulate (nanoparticles) contrast agents. The observed behavior of T0 in ionic and molecular solutions suggests that in-vivo temperature mapping is feasible for contrast agents of this type, but requires knowledge of local concentrations. Oppositely, particulate contrast agents (plasmonic or carbon nanoparticles) demonstrated concentration-independent thermal behavior of optoacoustic response with T0 defined by the thermoelastic properties of the local environment.
Collapse
Key Words
- GNR, Gold nanorods
- MRI, Magnetic resonance imaging
- NIR, Near-infrared
- NP, Nanoparticles
- OA, Optoacoustic
- Optical contrast agents
- Optoacoustic imaging
- Photoacoustic
- ROI, Region of interest
- SNR, Signal-to-noise ratio
- SOS, Speed of sound
- Temperature monitoring
- ThOR, Thermal (temperature-dependent) optoacoustic response
- USI, Ultrasound imaging
Collapse
|
35
|
Egorov GI, Makarov DM. Effect of high pressure and temperature on volumetric properties of {water (1) + ethylenediamine (2)} mixtures. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.03.095] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
36
|
Labrador-Páez L, Jovanović DJ, Marqués MI, Smits K, Dolić SD, Jaque F, Stanley HE, Dramićanin MD, García-Solé J, Haro-González P, Jaque D. Unveiling Molecular Changes in Water by Small Luminescent Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1700968. [PMID: 28605131 DOI: 10.1002/smll.201700968] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 04/21/2017] [Indexed: 06/07/2023]
Abstract
Nowadays a large variety of applications are based on solid nanoparticles dispersed in liquids-so called nanofluids. The interaction between the fluid and the nanoparticles plays a decisive role in the physical properties of the nanofluid. A novel approach based on the nonradiative energy transfer between two small luminescent nanocrystals (GdVO4 :Nd3+ and GdVO4 :Yb3+ ) dispersed in water is used in this work to investigate how temperature affects both the processes of interaction between nanoparticles and the effect of the fluid on the nanoparticles. From a systematic analysis of the effect of temperature on the GdVO4 :Nd3+ → GdVO4 :Yb3+ interparticle energy transfer, it can be concluded that a dramatic increase in the energy transfer efficiency occurs for temperatures above 45 °C. This change is properly explained by taking into account a crossover existing in diverse water properties that occurs at about this temperature. The obtained results allow elucidation on the molecular arrangement of water molecules below and above this crossover temperature. In addition, it is observed that an energy transfer process is produced as a result of interparticle collisions that induce irreversible ion exchange between the interacting nanoparticles.
Collapse
Affiliation(s)
- Lucía Labrador-Páez
- Fluorescence Imaging Group, Departamento de Física de Materiales, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Dragana J Jovanović
- Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, 11001, Serbia
| | - Manuel I Marqués
- Departamento de Física de Materiales, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Condensed Matter Physics Center (IFIMAC) and Nicolás Cabrera Institute, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Krisjanis Smits
- Institute of Solid State Physics, University of Latvia, Riga, LV-1063, Latvia
| | - Slobodan D Dolić
- Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, 11001, Serbia
| | - Francisco Jaque
- Condensed Matter Physics Center (IFIMAC) and Nicolás Cabrera Institute, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Harry Eugene Stanley
- Center for Polymer Studies and Department of Physics, Boston University, MA, 02215, USA
| | - Miroslav D Dramićanin
- Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, 11001, Serbia
| | - José García-Solé
- Fluorescence Imaging Group, Departamento de Física de Materiales, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Patricia Haro-González
- Fluorescence Imaging Group, Departamento de Física de Materiales, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Daniel Jaque
- Fluorescence Imaging Group, Departamento de Física de Materiales, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| |
Collapse
|
37
|
Mallamace F, Corsaro C, Mallamace D, Vasi S, Stanley HE. NMR spectroscopy study of local correlations in water. J Chem Phys 2016; 145:214503. [DOI: 10.1063/1.4968589] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Francesco Mallamace
- Dipartimento MIFT, Sezione di Fisica, Università di Messina, I-98166 Messina, Italy
- Consiglio Nazionale delle Ricerche-IPCF Messina, I-98158 Messina, Italy
- Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215, USA
| | - Carmelo Corsaro
- Consiglio Nazionale delle Ricerche-IPCF Messina, I-98158 Messina, Italy
| | - Domenico Mallamace
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase - CSGI, Sesto Fiorentino, Firenze 50019, Italy
| | - Sebastiano Vasi
- Dipartimento MIFT, Sezione di Fisica, Università di Messina, I-98166 Messina, Italy
| | - H. Eugene Stanley
- Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215, USA
| |
Collapse
|
38
|
Mausbach P, Köster A, Rutkai G, Thol M, Vrabec J. Comparative study of the Grüneisen parameter for 28 pure fluids. J Chem Phys 2016; 144:244505. [DOI: 10.1063/1.4954282] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
39
|
Mallamace F, Corsaro C, Mallamace D, Vasi C, Vasi S, Stanley HE. Dynamical properties of water-methanol solutions. J Chem Phys 2016; 144:064506. [PMID: 26874496 DOI: 10.1063/1.4941414] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We study the relaxation times tα in the water-methanol system. We examine new data and data from the literature in the large temperature range 163 < T < 335 K obtained using different experimental techniques and focus on how tα affects the hydrogen bond structure of the system and the hydrophobicity of the alcohol methyl group. We examine the relaxation times at a fixed temperature as a function of the water molar fraction XW and observe two opposite behaviors in their curvature when the system moves from high to low T regimes. This behavior differs from that of an ideal solution in that it has excess values located at different molar fractions (XW = 0.5 for high T and 0.75 in the deep supercooled regime). We analyze the data and find that above a crossover temperature T ∼ 223 K, hydrophobicity plays a significant role and below it the water tetrahedral network dominates. This temperature is coincident with the fragile-to-strong dynamical crossover observed in confined water and supports the liquid-liquid phase transition hypothesis. At the same time, the reported data suggest that this crossover temperature (identified as the Widom line temperature) also depends on the alcohol concentration.
Collapse
Affiliation(s)
- Francesco Mallamace
- Dipartimento MIFT, Sezione di Fisica, Università di Messina, I-98166 Messina, Italy
| | - Carmelo Corsaro
- Dipartimento MIFT, Sezione di Fisica, Università di Messina, I-98166 Messina, Italy
| | - Domenico Mallamace
- Consorzio per lo Sviluppo dei Sistemi a Grande Interfase, Unità di Catania, I-95125 Catania, Italy
| | - Cirino Vasi
- Consiglio Nazionale delle Ricerche-IPCF Messina, I-98158 Messina, Italy
| | - Sebastiano Vasi
- Dipartimento MIFT, Sezione di Fisica, Università di Messina, I-98166 Messina, Italy
| | - H Eugene Stanley
- Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215, USA
| |
Collapse
|
40
|
Zemánková K, Troncoso J, Cerdeiriña CA, Romaní L, Anisimov MA. Hydrophobicity and thermodynamic response for aqueous solutions of amphiphiles. Chem Phys 2016. [DOI: 10.1016/j.chemphys.2016.02.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
41
|
Demontis P, Gulín-González J, Masia M, Sant M, Suffritti GB. The interplay between dynamic heterogeneities and structure of bulk liquid water: A molecular dynamics simulation study. J Chem Phys 2016; 142:244507. [PMID: 26133441 DOI: 10.1063/1.4922930] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In order to study the interplay between dynamical heterogeneities and structural properties of bulk liquid water in the temperature range 130-350 K, thus including the supercooled regime, we use the explicit trend of the distribution functions of some molecular properties, namely, the rotational relaxation constants, the atomic mean-square displacements, the relaxation of the cross correlation functions between the linear and squared displacements of H and O atoms of each molecule, the tetrahedral order parameter q and, finally, the number of nearest neighbors (NNs) and of hydrogen bonds (HBs) per molecule. Two different potentials are considered: TIP4P-Ew and a model developed in this laboratory for the study of nanoconfined water. The results are similar for the dynamical properties, but are markedly different for the structural characteristics. In particular, for temperatures higher than that of the dynamic crossover between "fragile" (at higher temperatures) and "strong" (at lower temperatures) liquid behaviors detected around 207 K, the rotational relaxation of supercooled water appears to be remarkably homogeneous. However, the structural parameters (number of NNs and of HBs, as well as q) do not show homogeneous distributions, and these distributions are different for the two water models. Another dynamic crossover between "fragile" (at lower temperatures) and "strong" (at higher temperatures) liquid behaviors, corresponding to the one found experimentally at T(∗) ∼ 315 ± 5 K, was spotted at T(∗) ∼ 283 K and T(∗) ∼ 276 K for the TIP4P-Ew and the model developed in this laboratory, respectively. It was detected from the trend of Arrhenius plots of dynamic quantities and from the onset of a further heterogeneity in the rotational relaxation. To our best knowledge, it is the first time that this dynamical crossover is detected in computer simulations of bulk water. On the basis of the simulation results, the possible mechanisms of the two crossovers at molecular level are discussed.
Collapse
Affiliation(s)
- Pierfranco Demontis
- Dipartimento di Chimica e Farmacia, Università degli studi di Sassari, Sassari, Italy
| | - Jorge Gulín-González
- Grupo de Matemática y Física Computacionales, Universidad de las Ciencias Informáticas (UCI), Carretera a San Antonio de los Baños, Km 21/2, La Lisa, La Habana, Cuba
| | - Marco Masia
- Dipartimento di Chimica e Farmacia, Università degli studi di Sassari, Sassari, Italy
| | - Marco Sant
- Dipartimento di Chimica e Farmacia, Università degli studi di Sassari, Sassari, Italy
| | - Giuseppe B Suffritti
- Dipartimento di Chimica e Farmacia, Università degli studi di Sassari, Sassari, Italy
| |
Collapse
|
42
|
Abstract
We use (1)H NMR to probe the energy landscape in the protein folding and unfolding process. Using the scheme ⇄ reversible unfolded (intermediate) → irreversible unfolded (denatured) state, we study the thermal denaturation of hydrated lysozyme that occurs when the temperature is increased. Using thermal cycles in the range 295 < T < 365 K and following different trajectories along the protein energy surface, we observe that the hydrophilic (the amide NH) and hydrophobic (methyl CH3 and methine CH) peptide groups evolve and exhibit different behaviors. We also discuss the role of water and hydrogen bonding in the protein configurational stability.
Collapse
|
43
|
Wu E, Garde S. Understanding n-Octane Behavior near Graphene with Scaled Solvent-Solute Attractions. J Phys Chem B 2016; 120:2033-42. [PMID: 26716462 DOI: 10.1021/acs.jpcb.5b10262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We employ molecular dynamics simulations of n-octane near a layered graphene surface to study the related phenomena of solvation, density fluctuations, wettability, and structure and dynamics of n-octane molecules in the inhomogeneous interfacial environment. That solvation in bulk n-octane displays a lengthscale-dependent crossover similar to that of hydrophobic solvation in water is known. Here we show that, near an extended graphene interface having attractive interactions with n-octane, lengthscale-dependent solvation is similar to that in the bulk and displays a small to large crossover. However, as the n-octane-graphene interactions are reduced to make the surface increasingly solvophobic, the crossover behavior is modulated and essentially absent near the most solvophobic surfaces, similar to that in water near hydrophobic interfaces. We show that the macroscopic measure of wettability, namely, the contact angle, characterizes n-octane-graphene coupling over a limited range of attractions. In contrast, molecular measures such as the free energy of cavity formation or the local compressibility in the interfacial region provide an effective measure of this coupling over a broader range of attractions. Finally, as n-octane-graphene attractions are increased, the n-octane liquid displays a wetting transition and corresponding change from sigmoidal to layered density profile. Analysis of the local structure shows that n-octane molecules prefer approximately linear conformations and surface-parallel orientations near the graphene surface, and their translational dynamics slow down with increasing n-octane-graphene attractions. Our study highlights molecular scale behavior of n-octane molecules that is relevant to understanding nanoparticle-solvent coupling in composite materials with enhanced mechanical or thermal properties.
Collapse
Affiliation(s)
- Eugene Wu
- Howard P. Isermann Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, and Center for Materials, Devices, and Integrated Systems, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | - Shekhar Garde
- Howard P. Isermann Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, and Center for Materials, Devices, and Integrated Systems, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| |
Collapse
|
44
|
Mallamace F, Corsaro C, Mallamace D, Vasi C, Vasi S, Stanley HE. Some Considerations on Confined Water: The Thermal Behavior of Transport Properties in Water-Glycerol and Water-Methanol Mixtures. ACTA ACUST UNITED AC 2016. [DOI: 10.1557/adv.2016.53] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
45
|
Mallamace F, Corsaro C, Mallamace D, Vasi S, Vasi C, Stanley HE. Some considerations on the transport properties of water-glycerol suspensions. J Chem Phys 2016; 144:014501. [PMID: 26747809 DOI: 10.1063/1.4939087] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We study the self-diffusion coefficient and viscosity of a water-glycerol mixture for several glycerol molar fractions as a function of temperature well inside the metastable supercooled regime. We perform NMR experiments and verify that the system has at different concentration a fragile-to-strong crossover accompanied by the violation of the Stokes-Einstein relation. We observe that the crossover temperature depends on the water amount. Studying the fractional representation of the Stokes-Einstein relation, we find that in these systems dynamical arrest does not exhibit criticality and the transport parameters have a universal behavior.
Collapse
Affiliation(s)
- Francesco Mallamace
- Department of Physics, Center for Polymer Studies, Boston University, Boston, Massachusetts 02215, USA
| | - Carmelo Corsaro
- Dipartimento MIFT, Sezione di Fisica, Università di Messina, I-98166 Messina, Italy
| | - Domenico Mallamace
- Dipartimento di Scienze dell'Ambiente, della Sicurezza, del Territorio, degli Alimenti della Salute, Università di Messina Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Sebastiano Vasi
- Dipartimento MIFT, Sezione di Fisica, Università di Messina, I-98166 Messina, Italy
| | - Cirino Vasi
- Consiglio Nazionale delle Ricerche-IPCF Messina, I-98158 Messina, Italy
| | - H Eugene Stanley
- Department of Physics, Center for Polymer Studies, Boston University, Boston, Massachusetts 02215, USA
| |
Collapse
|
46
|
Munaó G, Saija F. Density and structural anomalies in soft-repulsive dimeric fluids. Phys Chem Chem Phys 2016; 18:9484-9. [DOI: 10.1039/c6cp00191b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We performed a simulation study of the fluid structure of dimeric particles interacting via a core-softened potential and shed light on their anomalous behaviours upon varying both geometrical and interaction parameters.
Collapse
Affiliation(s)
- Gianmarco Munaó
- Dipartimento di Scienza Matematiche e Informatiche
- Scienze Fisiche e Scienze della Terra
- Universitá degli Studi di Messina
- 98158 Messina
- Italy
| | | |
Collapse
|
47
|
Skinner LB, Benmore CJ, Neuefeind JC, Parise JB. The structure of water around the compressibility minimum. J Chem Phys 2015; 141:214507. [PMID: 25481152 DOI: 10.1063/1.4902412] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Here we present diffraction data that yield the oxygen-oxygen pair distribution function, g(OO)(r) over the range 254.2-365.9 K. The running O-O coordination number, which represents the integral of the pair distribution function as a function of radial distance, is found to exhibit an isosbestic point at 3.30(5) Å. The probability of finding an oxygen atom surrounding another oxygen at this distance is therefore shown to be independent of temperature and corresponds to an O-O coordination number of 4.3(2). Moreover, the experimental data also show a continuous transition associated with the second peak position in g(OO)(r) concomitant with the compressibility minimum at 319 K.
Collapse
Affiliation(s)
- L B Skinner
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - C J Benmore
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - J C Neuefeind
- Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37922, USA
| | - J B Parise
- Mineral Physics Institute, Stony Brook University, Stony Brook, New York, New York 11794-2100, USA
| |
Collapse
|
48
|
Mallamace F, Corsaro C, Mallamace D, Vasi S, Vasi C, Stanley HE, Chen SH. Some thermodynamical aspects of protein hydration water. J Chem Phys 2015; 142:215103. [DOI: 10.1063/1.4921897] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Francesco Mallamace
- Dipartimento di Fisica e Scienze della Terra, Università di Messina and CNISM, I-98168 Messina, Italy
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215, USA
| | - Carmelo Corsaro
- Dipartimento di Fisica e Scienze della Terra, Università di Messina and CNISM, I-98168 Messina, Italy
- CNR-IPCF, Viale F. Stagno D’Alcontres 37, I-98158 Messina, Italy
| | | | - Sebastiano Vasi
- Dipartimento di Fisica e Scienze della Terra, Università di Messina and CNISM, I-98168 Messina, Italy
| | - Cirino Vasi
- CNR-IPCF, Viale F. Stagno D’Alcontres 37, I-98158 Messina, Italy
| | - H. Eugene Stanley
- Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215, USA
| | - Sow-Hsin Chen
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
49
|
Mallamace F, Corsaro C, Mallamace D, Vasi S, Vasi C, Stanley HE. Thermodynamic properties of bulk and confined water. J Chem Phys 2015; 141:18C504. [PMID: 25399169 DOI: 10.1063/1.4895548] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The thermodynamic response functions of water display anomalous behaviors. We study these anomalous behaviors in bulk and confined water. We use nuclear magnetic resonance (NMR) to examine the configurational specific heat and the transport parameters in both the thermal stable and the metastable supercooled phases. The data we obtain suggest that there is a behavior common to both phases: that the dynamics of water exhibit two singular temperatures belonging to the supercooled and the stable phase, respectively. One is the dynamic fragile-to-strong crossover temperature (T(L) ≃ 225 K). The second, T* ∼ 315 ± 5 K, is a special locus of the isothermal compressibility K(T)(T, P) and the thermal expansion coefficient α(P)(T, P) in the P-T plane. In the case of water confined inside a protein, we observe that these two temperatures mark, respectively, the onset of protein flexibility from its low temperature glass state (T(L)) and the onset of the unfolding process (T*).
Collapse
Affiliation(s)
- Francesco Mallamace
- Dipartimento di Fisica e Scienza della Terra Università di Messina and CNISM, I-98168 Messina, Italy
| | - Carmelo Corsaro
- Dipartimento di Fisica e Scienza della Terra Università di Messina and CNISM, I-98168 Messina, Italy
| | - Domenico Mallamace
- Dipartimento di Scienze dell'Ambiente, della Sicurezza, del Territorio, degli Alimenti e della Salute, Università di Messina, I-98166 Messina, Italy
| | | | | | - H Eugene Stanley
- Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215, USA
| |
Collapse
|
50
|
Mallamace F, Corsaro C, Mallamace D, Vasic C, Stanley HE. The thermodynamical response functions and the origin of the anomalous behavior of liquid water. Faraday Discuss 2015; 167:95-108. [PMID: 24640487 DOI: 10.1039/c3fd00073g] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The density maximum of water dominates the thermodynamics of the system under ambient conditions, is strongly P-dependent, and disappears at a crossover pressure P(cross) approximately 1.8 kbar. We study this variable across a wide area of the T-P phase diagram. We consider old and new data of both the isothermal compressibility K(T)(T, P), the pressure constant specific heat C(P)(T) and the coefficient of thermal expansion alpha(P) (T, P). We observe that K(T)(T) shows a minimum at T* approximately 315 +/- 5 K for all of the studied pressures, whereas, at the same temperature, C(P)(T) has the minimal variation as a function of P in the interval 1 bar-4 kbar. We find the behavior of alpha(P) also to be surprising: all the alpha(P)(T) curves measured at different P cross at T*. The experimental data show a "singular and universal expansivity point" at T* approximately 315 K and alpha(P)(T*) = 0.44 10(-3) K(-1). Unlike other water singularities, we find this temperature to be thermodynamically consistent in the relationship connecting the three response functions. By considering also the P-T behavior of the self-diffusion coefficient D(S) and of the NMR proton chemical shift delta we have the information that at T* the water local order points out, with decreasing T, the crossover from a normal fluid to the anomalous and complex liquid characterized by the many anomalies.
Collapse
|