1
|
Sidekli O, Oketch J, Fair S, Meade KG, Hollox EJ. β-Defensin gene copy number variation in cattle. ROYAL SOCIETY OPEN SCIENCE 2024; 11:241154. [PMID: 39479249 PMCID: PMC11521603 DOI: 10.1098/rsos.241154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 11/02/2024]
Abstract
β-Defensins are peptides with antimicrobial roles, characterized by a conserved tertiary structure. Beyond antimicrobial functions, they exhibit diverse roles in both the immune response and fertility, including involvement in sperm maturation and function. Copy number variation (CNV) of β-defensin genes is extensive across mammals, including cattle, with possible implications for reproductive traits and disease resistance. In this study, we comprehensively catalogue 55 β-defensin genes in cattle. By constructing a phylogenetic tree to identify human orthologues and lineage-specific expansions, we identify 1 : 1 human orthologues for 35 bovine β-defensins. We also discover extensive β-defensin gene CNV across breeds, with DEFB103, in particular, showing extensive multi-allelic CNV. By comparing β-defensin expression levels in testis from calves and adult bulls, we find that 14 β-defensins, including DEFB103, increase in expression during sexual maturation. Analysis of β-defensin gene expression levels in the caput of adult bull epididymis, and β-defensin gene copy number, in 94 matched samples shows expression levels of four β-defensins are correlated with genomic copy numbers, including DEFB103. We therefore demonstrate extensive CNV in bovine β-defensin genes, in particular DEFB103, with potential functional consequences for fertility.
Collapse
Affiliation(s)
- Ozge Sidekli
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - John Oketch
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Sean Fair
- Department of Biological Sciences, Bernal Institute, Faculty of Science and Engineering, University of Limerick, Limerick, Ireland
| | - Kieran G. Meade
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Edward J. Hollox
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| |
Collapse
|
2
|
Morio KA, Sternowski RH, Brogden KA. Induction of Endogenous Antimicrobial Peptides to Prevent or Treat Oral Infection and Inflammation. Antibiotics (Basel) 2023; 12:antibiotics12020361. [PMID: 36830272 PMCID: PMC9952314 DOI: 10.3390/antibiotics12020361] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023] Open
Abstract
Antibiotics are often used to treat oral infections. Unfortunately, excessive antibiotic use can adversely alter oral microbiomes and promote the development of antibiotic-resistant microorganisms, which can be difficult to treat. An alternate approach could be to induce the local transcription and expression of endogenous oral antimicrobial peptides (AMPs). To assess the feasibility and benefits of this approach, we conducted literature searches to identify (i) the AMPs expressed in the oral cavity; (ii) the methods used to induce endogenous AMP expression; and (iii) the roles that expressed AMPs may have in regulating oral inflammation, immunity, healing, and pain. Search results identified human neutrophil peptides (HNP), human beta defensins (HBD), and cathelicidin AMP (CAMP) gene product LL-37 as prominent AMPs expressed by oral cells and tissues. HNP, HBD, and LL-37 expression can be induced by micronutrients (trace elements, elements, and vitamins), nutrients, macronutrients (mono-, di-, and polysaccharides, amino acids, pyropeptides, proteins, and fatty acids), proinflammatory agonists, thyroid hormones, and exposure to ultraviolet (UV) irradiation, red light, or near infrared radiation (NIR). Localized AMP expression can help reduce infection, inflammation, and pain and help oral tissues heal. The use of a specific inducer depends upon the overall objective. Inducing the expression of AMPs through beneficial foods would be suitable for long-term health protection. Additionally, the specialized metabolites or concentrated extracts that are utilized as dosage forms would maintain the oral and intestinal microbiome composition and control oral and intestinal infections. Inducing AMP expression using irradiation methodologies would be applicable to a specific oral treatment area in addition to controlling local infections while regulating inflammatory and healing processes.
Collapse
Affiliation(s)
| | | | - Kim A. Brogden
- College of Dentistry, The University of Iowa, Iowa City, IA 52242, USA
- Correspondence:
| |
Collapse
|
3
|
Zhang K, Lian S, Shen X, Zhao X, Zhao W, Li C. Recombinant porcine beta defensin 2 alleviates inflammatory responses induced by Escherichia coli in IPEC-J2 cells. Int J Biol Macromol 2022; 208:890-900. [PMID: 35364205 DOI: 10.1016/j.ijbiomac.2022.03.178] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 03/19/2022] [Accepted: 03/25/2022] [Indexed: 01/02/2023]
Abstract
pBD2 is one of the porcine beta defensins with broad antimicrobial activity, and plays an important role in immune regulation. However, the activities and mechanisms of pBD2 regulating host resistance to Escherichia coli infection are unclear. In this study, the immunomodulatory activity and mechanisms of recombinant pBD2 against Escherichia coli infection were explored in IPEC-J2 cells. Recombinant pBD2 had no obvious effect on the growth of cells below 80 μg/mL, however, it reduced the number of E. coli adhering to cells. Furthermore, pBD2 restored the abnormal expression of ZO-1 and occludin in cells challenged with E. coli. pBD2 treatment also reduced cell apoptosis and decreased the expression of the apoptosis-related genes Cox-2 and Caspase-3, and decreased the expression of the pro-inflammatory IL-6, IL-8, IL-1α and TNF-α, and Cxcl2 and Ccl20. pBD2 also reduced the expression of TAK1, and inhibited the phosphorylation of NF-κB p65 following E. coli infection. In addition, pBD2 was localized in the cytoplasm. Collectively, pBD2 appeared to penetrate cells and alleviate inflammatory responses via the TAK1-NF-κB signaling pathway. Our results revealed the immunomodulatory activity of recombinant pBD2 against E. coli and provided insights into the molecular mechanisms that protected cells from E. coli infection.
Collapse
Affiliation(s)
- Kun Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 460045, Henan, People's Republic of China
| | - Shaoqiang Lian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 460045, Henan, People's Republic of China
| | - Xiaoyang Shen
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 460045, Henan, People's Republic of China
| | - Xinhao Zhao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 460045, Henan, People's Republic of China
| | - Weidong Zhao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 460045, Henan, People's Republic of China
| | - Chunli Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 460045, Henan, People's Republic of China.
| |
Collapse
|
4
|
Gomez Hernandez MP, Bates AM, Starman EE, Lanzel EA, Comnick C, Xie XJ, Brogden KA. HBD3 Induces PD-L1 Expression on Head and Neck Squamous Cell Carcinoma Cell Lines. Antibiotics (Basel) 2019; 8:antibiotics8040161. [PMID: 31554151 PMCID: PMC6963492 DOI: 10.3390/antibiotics8040161] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/13/2019] [Accepted: 09/19/2019] [Indexed: 12/21/2022] Open
Abstract
Human β-defensin 3 (HBD3) is an antimicrobial peptide up-regulated in the oral tissues of individuals with head and neck squamous cell carcinomas (HNSCC) and oral squamous cell carcinomas (SCC) and present in high concentrations in their saliva. In this study, we determined if HBD3 contributes to HNSCC pathogenesis by inducing programmed death-ligand 1 (PD-L1) expression on HNSCC cell lines. For this, SCC cell lines SCC4, SCC15, SCC19, SCC25, and SCC99 (5.0 × 104 viable cells) were used. Cells were incubated with IFNγ (0.6 µM) and HBD3 (0.2, 2.0, or 20.0 µM) for 24 h. Cells alone served as controls. Cells were then treated with anti-human APC-CD274 (PD-L1) and Live/Dead Fixable Green Dead Cell Stain. Cells treated with an isotype antibody and cells alone served as controls. All cell suspensions were analyzed in a LSR II Violet Flow Cytometer. Cytometric data was analyzed using FlowJo software. Treatment with IFNγ (0.6 µM) increased the number of cells expressing PD-L1 (p < 0.05) with respect to controls. Treatment with HBD3 (20.0 µM) also increased the number of cells expressing PD-L1 (p < 0.05) with respect to controls. However, treatment with IFNγ (0.6 µM) was not significantly different from treatment with HBD3 (20.0 µM) and the numbers of cells expressing PD-L1 were similar (p = 1). Thus, HBD3 increases the number of cells expressing PD-L1. This is a novel concept, but the role HBD3 contributes to HNSCC pathogenesis by inducing PD-L1 expression in tumors will have to be determined.
Collapse
Affiliation(s)
- Maria Paula Gomez Hernandez
- Iowa Institute for Oral Health Research, College of Dentistry, University of Iowa, Iowa City, IA 52242, USA.
| | - Amber M Bates
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Emily E Starman
- Iowa Institute for Oral Health Research, College of Dentistry, University of Iowa, Iowa City, IA 52242, USA.
| | - Emily A Lanzel
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA 52242, USA.
| | - Carissa Comnick
- Division of Biostatistics and Computational Biology, College of Dentistry, University of Iowa, Iowa City, IA 52242, USA.
| | - Xian Jin Xie
- Division of Biostatistics and Computational Biology, College of Dentistry, University of Iowa, Iowa City, IA 52242, USA.
| | - Kim A Brogden
- Iowa Institute for Oral Health Research, College of Dentistry, University of Iowa, Iowa City, IA 52242, USA.
- Department of Periodontics, College of Dentistry, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
5
|
Fischer CL, Bates AM, Lanzel EA, Guthmiller JM, Johnson GK, Singh NK, Kumar A, Vidva R, Abbasi T, Vali S, Xie XJ, Zeng E, Brogden KA. Computational Models Accurately Predict Multi-Cell Biomarker Profiles in Inflammation and Cancer. Sci Rep 2019; 9:10877. [PMID: 31350446 PMCID: PMC6659691 DOI: 10.1038/s41598-019-47381-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 07/15/2019] [Indexed: 01/28/2023] Open
Abstract
Individual computational models of single myeloid, lymphoid, epithelial, and cancer cells were created and combined into multi-cell computational models and used to predict the collective chemokine, cytokine, and cellular biomarker profiles often seen in inflamed or cancerous tissues. Predicted chemokine and cytokine output profiles from multi-cell computational models of gingival epithelial keratinocytes (GE KER), dendritic cells (DC), and helper T lymphocytes (HTL) exposed to lipopolysaccharide (LPS) or synthetic triacylated lipopeptide (Pam3CSK4) as well as multi-cell computational models of multiple myeloma (MM) and DC were validated using the observed chemokine and cytokine responses from the same cell type combinations grown in laboratory multi-cell cultures with accuracy. Predicted and observed chemokine and cytokine responses of GE KER + DC + HTL exposed to LPS and Pam3CSK4 matched 75% (15/20, p = 0.02069) and 80% (16/20, P = 0.005909), respectively. Multi-cell computational models became ‘personalized’ when cell line-specific genomic data were included into simulations, again validated with the same cell lines grown in laboratory multi-cell cultures. Here, predicted and observed chemokine and cytokine responses of MM cells lines MM.1S and U266B1 matched 75% (3/4) and MM.1S and U266B1 inhibition of DC marker expression in co-culture matched 100% (6/6). Multi-cell computational models have the potential to identify approaches altering the predicted disease-associated output profiles, particularly as high throughput screening tools for anti-inflammatory or immuno-oncology treatments of inflamed multi-cellular tissues and the tumor microenvironment.
Collapse
Affiliation(s)
- Carol L Fischer
- Department of Biology, Waldorf University, Forest City, IA, 50436, USA
| | - Amber M Bates
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Emily A Lanzel
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, 52242, USA
| | - Janet M Guthmiller
- College of Dentistry, University of Nebraska Medical Center, Lincoln, NE, 68583, USA
| | - Georgia K Johnson
- Department of Periodontics, College of Dentistry, University of Iowa, Iowa City, IA, 52242, USA
| | - Neeraj Kumar Singh
- Cellworks Group Inc., San Jose, CA, 95110, USA.,Cellworks Research India Pvt. Ltd (Wholly owned subsidiary of Cellworks Group Inc.), Bangalore, India
| | - Ansu Kumar
- Cellworks Group Inc., San Jose, CA, 95110, USA.,Cellworks Research India Pvt. Ltd (Wholly owned subsidiary of Cellworks Group Inc.), Bangalore, India
| | - Robinson Vidva
- Cellworks Group Inc., San Jose, CA, 95110, USA.,Cellworks Research India Pvt. Ltd (Wholly owned subsidiary of Cellworks Group Inc.), Bangalore, India
| | - Taher Abbasi
- Cellworks Group Inc., San Jose, CA, 95110, USA.,Cellworks Research India Pvt. Ltd (Wholly owned subsidiary of Cellworks Group Inc.), Bangalore, India
| | - Shireen Vali
- Cellworks Group Inc., San Jose, CA, 95110, USA.,Cellworks Research India Pvt. Ltd (Wholly owned subsidiary of Cellworks Group Inc.), Bangalore, India
| | - Xian Jin Xie
- Division of Biostatistics and Computational Biology, College of Dentistry, University of Iowa, Iowa City, IA, 52242, USA
| | - Erliang Zeng
- Division of Biostatistics and Computational Biology, College of Dentistry, University of Iowa, Iowa City, IA, 52242, USA
| | - Kim A Brogden
- Department of Periodontics, College of Dentistry, University of Iowa, Iowa City, IA, 52242, USA. .,Iowa Institute for Oral Health Research, College of Dentistry, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
6
|
Bates AM, Fischer CL, Abhyankar VP, Johnson GK, Guthmiller JM, Progulske-Fox A, Brogden KA. Matrix Metalloproteinase Response of Dendritic Cell, Gingival Epithelial Keratinocyte, and T-Cell Transwell Co-Cultures Treated with Porphyromonas gingivalis Hemagglutinin-B. Int J Mol Sci 2018; 19:ijms19123923. [PMID: 30544510 PMCID: PMC6321455 DOI: 10.3390/ijms19123923] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 11/30/2018] [Accepted: 12/04/2018] [Indexed: 12/27/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are enzymes involved in periodontal tissue destruction. Hemagglutinin B (HagB) from the periodontal pathogen Porphyromonas gingivalis induces an elevated MMP response in dendritic cells, but responses from cultures of single-cell types do not reflect the local tissue environment. The objective of this study was to measure HagB-induced MMP responses in a transwell co-culture system containing dendritic cells, gingival epithelial (GE) keratinocytes, and CD4+ T-cells. Transwell co-cultures were assembled and treated with or without HagB. Immunoassays were used to determine production of MMP1, MMP7, MMP9, and MMP12 in response to HagB up to 64 h. Control responses were subtracted from HagB-induced responses. A two-way fixed effect ANOVA was fit to log-transformed concentrations and pairwise group comparisons were conducted (p < 0.05). At 64 h, dendritic cells produced elevated MMP1 and MMP9 responses, which were attenuated in the 3-cell co-culture (p < 0.05). There were also significant differences in MMP7 and MMP12 production between single-cell cultures and co-cultures. These results support the need to use multiple cell types in culture models to evaluate a more representative response to proinflammatory agonists. This three-cell transwell co-culture model may help us better understand the inflammatory process in periodontal disease and test novel therapeutic approaches.
Collapse
Affiliation(s)
- Amber M Bates
- Iowa Institute for Oral Health Research, College of Dentistry, The University of Iowa, Iowa City, IA 52242, USA.
| | - Carol L Fischer
- Department of Biology, Waldorf University, Forest City, IA 50436, USA.
| | - Vrushali P Abhyankar
- Department of Periodontology, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN 38103, USA.
| | - Georgia K Johnson
- Department of Periodontics, College of Dentistry, The University of Iowa, Iowa City, IA 52242, USA.
| | - Janet M Guthmiller
- College of Dentistry, University of Nebraska Medical Center, Lincoln, NE 68583, USA.
| | - Ann Progulske-Fox
- Center for Molecular Microbiology and Department of Oral Biology, University of Florida, Gainesville, FL 32603, USA.
| | - Kim A Brogden
- Iowa Institute for Oral Health Research, College of Dentistry, The University of Iowa, Iowa City, IA 52242, USA.
- Department of Periodontics, College of Dentistry, The University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
7
|
Bates AM, Gomez Hernandez MP, Lanzel EA, Qian F, Brogden KA. Matrix metalloproteinase (MMP) and immunosuppressive biomarker profiles of seven head and neck squamous cell carcinoma (HNSCC) cell lines. Transl Cancer Res 2018; 7:533-542. [PMID: 30221145 PMCID: PMC6135085 DOI: 10.21037/tcr.2018.05.09] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Biomarkers like programmed death ligand-1 (PDL1) have become a focal point for immunotherapeutic checkpoint inhibition in head and neck squamous cell carcinoma (HNSCC). However, it's only part of the total immunosuppressive biomarker profile of HNSCC cells. Matrix metalloproteinases (MMPs) are enzymes that break down the basement membrane allowing cancer cells to metastasize and play an important role in the tumor microenvironment. MMPs can also activate certain cytokines, growth factors, and chemokines post-translationally. The objective of this study was to determine MMP and biomarker profiles of seven different HNSCC cell lines. METHODS Authenticated cell lines were grown in minimal media at 1×106 viable cells/mL and incubated at 37 °C. After 24 hrs supernatants were collected, and adhering cells were lysed. Multiplex immunoassays were used to determine MMP1, MMP7, MMP9, IL-6, VEGFA, IL-1α, TNF-α, GM-CSF, IL-1RA, and IL-8 concentrations in supernatants. ELISAs were used to determine PDL1, CD47, FASL, and IDO concentrations in cell lysates. A one-way ANOVA was fit to examine log-transformed concentrations of biomarkers between seven HNSCC cell lines, and pairwise group comparisons were conducted using post- hoc Tukey's honest significance test (α=0.05). RESULTS Significant differences (P<0.05) in MMP and biomarker concentrations were found between the seven HNSCC cell lines. For example, MMP9 was highest in SCC25 and UM-SCC99, MMP7 was highest in SCC25 and UM-SCC19, and MMP1 was highest in SCC25. CONCLUSIONS These results suggest different patients' HNSCC cells can express distinct profiles of select biomarkers and MMPs, which could be due to metastatic stage of the cancer, primary tumor site, type of tissue the tumor originated from, or genomic differences between patients. MMP and biomarker expression profiles should be considered when choosing cell lines for future studies. The results support the reason for personalized medicine and the need to further investigate how it can be used to treat HNSCC.
Collapse
Affiliation(s)
- Amber M. Bates
- Iowa Institute for Oral Health Research, College of Dentistry, University of Iowa, Iowa City, IA 52242, USA
| | | | - Emily A. Lanzel
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA 52242, USA
| | - Fang Qian
- Iowa Institute for Oral Health Research, College of Dentistry, University of Iowa, Iowa City, IA 52242, USA
- Division of Biostatistics and Research Design, College of Dentistry, University of Iowa, Iowa City, IA 52242, USA
| | - Kim A. Brogden
- Iowa Institute for Oral Health Research, College of Dentistry, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
8
|
Raina M, Bates AM, Fischer CL, Progulske-Fox A, Abbasi T, Vali S, Brogden KA. Human beta defensin 3 alters matrix metalloproteinase production in human dendritic cells exposed to Porphyromonas gingivalis hemagglutinin B. J Periodontol 2018; 89:361-369. [PMID: 29543996 DOI: 10.1002/jper.17-0366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/16/2017] [Accepted: 09/25/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND Matrix metalloproteinases (MMPs) are zinc- or calcium-dependent proteinases involved in normal maintenance of extracellular matrix. When elevated, they contribute to the tissue destruction seen in periodontal disease. Recently, we found that human beta defensin 3 (HBD3), a cationic antimicrobial peptide, alters chemokine and proinflammatory cytokine responses in human myeloid dendritic cells exposed to Porphyromonas gingivalis hemagglutinin B (HagB). In this study, the hypotheses that HagB induces MMP production in dendritic cells and that HBD3 mixed with HagB prior to treatment alters HagB-induced MMP profiles were tested. METHODS Dendritic cells were exposed to 0.2 μM HagB alone and HagB + HBD3 (0.2 or 2.0 μM) mixtures. After 16 hours, concentrations of MMPs in cell culture media were determined with commercial multiplex fluorescent bead-based immunoassays. An integrated cell network was used to identify potential HagB-induced signaling pathways in dendritic cells leading to the production of MMPs. RESULTS 0.2 μM HagB induced MMP1, -2, -7, -9, and -12 responses in dendritic cells. 0.2 μM HBD3 enhanced the HagB-induced MMP7 response (P < 0.05) and 2.0 μM HBD3 attenuated HagB-induced MMP1, -7, and -9 responses (P < 0.05). The MMP12 response was not affected. In the predicted network, MMPs are produced via activation of multiple pathways. Signals converge to activate numerous transcription factors, which transcribe different MMPs. CONCLUSION HagB was an MMP stimulus and HBD3 was found to decrease HagB-induced MMP1, -7, and -9 responses in dendritic cells at 16 hours, an observation that suggests HBD3 can alter microbial antigen-induced production of MMPs.
Collapse
Affiliation(s)
- Monica Raina
- Department of Periodontics, College of Dentistry, The University of Iowa, Iowa City, IA
| | - Amber M Bates
- Iowa Institute for Oral Health Research, College of Dentistry, The University of Iowa, Iowa City, IA
| | | | - Ann Progulske-Fox
- Center for Molecular Microbiology and Department of Oral Biology, University of Florida, Gainesville, FL
| | | | | | - Kim A Brogden
- Department of Periodontics, College of Dentistry, The University of Iowa, Iowa City, IA.,Iowa Institute for Oral Health Research, College of Dentistry, The University of Iowa, Iowa City, IA
| |
Collapse
|
9
|
Phan TK, Lay FT, Hulett MD. Importance of phosphoinositide binding by human β-defensin 3 for Akt-dependent cytokine induction. Immunol Cell Biol 2017; 96:54-67. [PMID: 29359392 DOI: 10.1111/imcb.1017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 09/15/2017] [Accepted: 09/15/2017] [Indexed: 12/11/2022]
Abstract
Host defense peptides (HDPs) are well-characterized for their antimicrobial activities but also variously display potent immunomodulatory effects. Human β-defensin 3 (HBD-3) belongs to a well-known HDP family known as defensins and is able to induce leukocyte chemotactic recruitment, leukocyte activation/maturation, proinflammatory cytokine release, and co-stimulatory marker expression. HBD-3-stimulated cytokine induction is NF-κB-dependent and was initially suggested to act via G protein-coupled C-C chemokine receptor phospholipase C (PLC) and/or Toll-like receptor signaling. Subsequent pharmacological inhibition, however, revealed that NF-κB activation by HBD-3 is receptor-independent and instead involves the phosphoinositide 3-kinase (PI3K)-protein kinase B (Akt) pathway, the mechanism of which remains undetermined. Recently, we have shown that HBD-3 can enter mammalian cells and bind to inner membrane phosphoinositide 4,5-bisphosphate [PI(4,5)P2], an important second lipid messenger of PLC and PI3K-Akt pathways. In this study, we report that the interaction of HBD-3 with PI(4,5)P2 is important for PI3K-Akt-NF-κΒ-mediated induction of tumor necrosis factor and interleukin-6. These data provide insights into the mechanism of immunomodulation by HBD-3, and more generally, highlight the complex multifaceted signaling roles of HDPs in innate defense. Furthermore, it is suggested that the proposed mode of action may be conserved in other HDPs.
Collapse
Affiliation(s)
- Thanh Kha Phan
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Fung T Lay
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Mark D Hulett
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| |
Collapse
|
10
|
Li L, Bian T, Lyu J, Cui D, Lei L, Yan F. Human β-defensin-3 alleviates the progression of atherosclerosis accelerated by Porphyromonas gingivalis lipopolysaccharide. Int Immunopharmacol 2016; 38:204-13. [DOI: 10.1016/j.intimp.2016.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 06/01/2016] [Accepted: 06/02/2016] [Indexed: 12/22/2022]
|
11
|
Giamarellos-Bourboulis EJ, Platzer M, Karagiannidis I, Kanni T, Nikolakis G, Ulrich J, Bellutti M, Gollnick H, Bauer M, Zouboulis CC, Huse K. High Copy Numbers of β-Defensin Cluster on 8p23.1, Confer Genetic Susceptibility, and Modulate the Physical Course of Hidradenitis Suppurativa/Acne Inversa. J Invest Dermatol 2016; 136:1592-1598. [PMID: 27164300 DOI: 10.1016/j.jid.2016.04.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 03/29/2016] [Accepted: 04/11/2016] [Indexed: 10/21/2022]
Abstract
Hidradenitis suppurativa/acne inversa (HS) has a multifactorial pathogenesis, with many patients reporting positive family history. Nine β-defensin genes (among them DEFB4 and DEFB103, encoding for proinflammatory mediators human β-defensin-2 and human β-defensin-3, respectively) exist as a cluster (DEFB) affected by copy number (CN). We hypothesized that CNs are greater in patients with HS and that they are linked to genetic susceptibility. CNs of DEFB were studied in two independent patient cohorts: 163 patients from Greece and 98 from Germany. CNs were greater in patients than control subjects in both studied cohorts. Carriage of more than six CNs was associated with a 7.53 odds ratio for HS in the Greek cohort and a 5.76 odds ratio for HS in the German cohort. The common odds ratio after meta-analysis was 6.72 (P < 0.0001). However, presence of fewer than six copies was linked with disease onset at an earlier age (P = 0.048), less frequent presentation of permanent purulence of the affected skin lesions (P = 0.036), and fewer skin localizations (P = 0.042). A robust genetic trait for susceptibility to HS is provided, and this is confirmed in two independent cohorts. Susceptibility arises from carriage of more than six DEFB copies, which interferes directly with the HS phenotype.
Collapse
Affiliation(s)
- Evangelos J Giamarellos-Bourboulis
- Fourth Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Greece; Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany.
| | - Matthias Platzer
- Genome Analysis, Leibniz Institute on Aging-Fritz Lipmann Institute, Jena, Germany
| | - Ioannis Karagiannidis
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Dessau, Germany
| | - Theodora Kanni
- Fourth Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Greece
| | - Georgios Nikolakis
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Dessau, Germany
| | - Jens Ulrich
- Department of Dermatology and Allergology, Harzklinikum Dorothea Christiane Erxleben, Quedlinburg, Germany
| | - Michael Bellutti
- Department of Dermatology and Venereology, Otto-von-Guericke-University, Magdeburg, Germany
| | - Harald Gollnick
- Department of Dermatology and Venereology, Otto-von-Guericke-University, Magdeburg, Germany
| | - Michael Bauer
- Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Christos C Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Dessau, Germany
| | - Klaus Huse
- Genome Analysis, Leibniz Institute on Aging-Fritz Lipmann Institute, Jena, Germany
| |
Collapse
|
12
|
Leelakanok N, Fischer CL, Bates AM, Guthmiller JM, Johnson GK, Salem AK, Brogden KA, Brogden NK. Cytotoxicity of HBD3 for dendritic cells, normal human epidermal keratinocytes, hTERT keratinocytes, and primary oral gingival epithelial keratinocytes in cell culture conditions. Toxicol Lett 2015; 239:90-6. [PMID: 26367466 DOI: 10.1016/j.toxlet.2015.09.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 08/25/2015] [Accepted: 09/09/2015] [Indexed: 01/19/2023]
Abstract
Human β-defensin 3 (HBD3) is a prominent host defense peptide. In our recent work, we observed that HBD3 modulates pro-inflammatory agonist-induced chemokine and cytokine responses in human myeloid dendritic cells (DCs), often at 20.0 μM concentrations. Since HBD3 can be cytotoxic in some circumstances, it is necessary to assess its cytotoxicity for DCs, normal human epidermal keratinocytes (NHEKs), human telomerase reverse transcriptase (hTERT) keratinocytes, and primary oral gingival epithelial (GE) keratinocytes in different cell culture conditions. Cells, in serum free media with resazurin and in complete media with 10% fetal bovine serum and resazurin, were incubated with 5, 10, 20, and 40 μM HBD3. Cytotoxicity was determined by measuring metabolic conversion of resazurin to resorufin. The lethal dose 50 (LD50, mean μM±Std Err) values were determined from the median fluorescent intensities of test concentrations compared to live and killed cell controls. The LD50 value range of HBD3 was 18.2-35.9 μM in serum-free media for DCs, NHEKs, hTERT keratinocytes, and GE keratinocytes, and >40.0 μM in complete media. Thus, HBD3 was cytotoxic at higher concentrations, which must be considered in future studies of HBD3-modulated chemokine and cytokine responses in vitro.
Collapse
Affiliation(s)
- Nattawut Leelakanok
- Division of Pharmaceutics and Translational Therapeutics, Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, IA 52242, USA.
| | - Carol L Fischer
- Dows Institute for Dental Research, College of Dentistry, The University of Iowa, Iowa City, IA 52242, USA.
| | - Amber M Bates
- Dows Institute for Dental Research, College of Dentistry, The University of Iowa, Iowa City, IA 52242, USA.
| | - Janet M Guthmiller
- College of Dentistry, The University of Nebraska Medical Center, Lincoln, NE 68583, USA.
| | - Georgia K Johnson
- Department of Periodontics, College of Dentistry, The University of Iowa, Iowa City, IA 52242, USA.
| | - Aliasger K Salem
- Division of Pharmaceutics and Translational Therapeutics, Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, IA 52242, USA.
| | - Kim A Brogden
- Dows Institute for Dental Research, College of Dentistry, The University of Iowa, Iowa City, IA 52242, USA; Department of Periodontics, College of Dentistry, The University of Iowa, Iowa City, IA 52242, USA.
| | - Nicole K Brogden
- Division of Pharmaceutics and Translational Therapeutics, Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
13
|
Mirabzadeh-Ardakani A, Solie J, Gonzalez-Cano P, Schmutz SM, Griebel PJ. Tissue- and age-dependent expression of the bovine DEFB103 gene and protein. Cell Tissue Res 2015; 363:479-90. [PMID: 26299200 DOI: 10.1007/s00441-015-2258-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 07/13/2015] [Indexed: 12/20/2022]
Abstract
Beta-defensin 103 (DEFB103) shares little homology with 8 other members of the bovine beta-defensin family and in other species DEFB103 protein has diverse functions, including antimicrobial activity, a chemoattractant for dendritic cells, enhancing epithelial wound repair and regulating hair colour. Expression of the bovine DEFB103 gene was surveyed in 27 tissues and transcript was most abundant in tissues with stratified squamous epithelium. Oral cavity epithelial tissues and nictitating membrane consistently expressed high levels of DEFB103 gene transcript. An age-dependent decrease (P < 0.05) in DEFB103 gene expression was only observed for buccal epithelium when comparing healthy 10- to 14-day-old and 10- to 12-month-old calves. A bovine herpesvirus-1 respiratory infection did, however, significantly (P < 0.05) up-regulate DEFB103 gene expression in the buccal epithelium of 6- to 8-month-old calves. Finally, DEFB103 transcript was low in lymph nodes draining the skin and at the limit of detection in other internal organs such as lung, intestine and kidney. Affinity-purified rabbit antisera to bovine DEFB103 was used to identify cells expressing DEFB103 protein within tissues with stratified squamous epitheliums. DEFB103 protein was most abundant in basal epithelial cells and was present in these cells prior to birth. Beta-defensins have been identified as regulators of dendritic cell (DC) chemokine responses and we observed a close association between DCs and epithelial cells expressing DEFB103 in both the fetus and newborn calf. In conclusion, bovine DEFB103 gene expression is most abundant in stratified squamous epithelium with DEFB103 protein localised to basal epithelial cells. These observations are consistent with proposed roles for DEFB103 in DC recruitment and repair of stratified squamous epithelium.
Collapse
Affiliation(s)
- Ali Mirabzadeh-Ardakani
- Department of Animal and Poultry Science, University of Saskatchewan, 51 Campus Dr., Saskatoon, SK, S7N 5A8, Canada.
| | - Jay Solie
- Vaccine and Infectious Disease Organization/InterVac, University of Saskatchewan, Saskatoon, SK, S7N 5E3, Canada
| | - Patricia Gonzalez-Cano
- Vaccine and Infectious Disease Organization/InterVac, University of Saskatchewan, Saskatoon, SK, S7N 5E3, Canada
| | - Sheila M Schmutz
- Department of Animal and Poultry Science, University of Saskatchewan, 51 Campus Dr., Saskatoon, SK, S7N 5A8, Canada
| | - Philip J Griebel
- Vaccine and Infectious Disease Organization/InterVac, University of Saskatchewan, Saskatoon, SK, S7N 5E3, Canada
- School of Public Health, University of Saskatchewan, Saskatoon, SK, S7N 5E3, Canada
| |
Collapse
|
14
|
Cai G, Xia Q, Fan D, Li X, Ding N, Hu Y, Yang X, Liu L, Xin L, Wang L, Xu S, Xu J, Zou Y, Ding C, Pan F. Association between DEFB103 gene copy number variation and ankylosing spondylitis: a case-control study. ACTA ACUST UNITED AC 2015. [PMID: 26224324 DOI: 10.1111/tan.12630] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In this brief communication, we investigate the role of DEFB103 gene copy number variation (CNV) in ankylosing spondylitis (AS) susceptibility. A total of 807 Chinese individuals including 406 AS patients and 401 controls were enrolled. The DEFB103 copy number was measured by two sets of probes to obtain a stable result in a custom-by-design Multiplex AccuCopy(™) kit (Genesky Biotechnologies Inc., Shanghai, China) based on a multiplex fluorescence competitive polymerase chain reaction (PCR) principle. The copy number of DEFB103 ranged from 2 to 6 in both AS patients and controls. Mann-Whitney U test and chi-squared test were performed to analyze the difference of DEFB103 copy number between AS patients and controls while no statistical difference has been found. We considered the copy number of DEFB103 gene may not associate with susceptibility to AS.
Collapse
Affiliation(s)
- G Cai
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Q Xia
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - D Fan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - X Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - N Ding
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Y Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - X Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - L Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - L Xin
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - L Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - S Xu
- Department of Rheumatism and Immunity, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - J Xu
- Department of Rheumatism and Immunity, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Y Zou
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - C Ding
- Department of Rheumatism and Immunity, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - F Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.,Department of Rheumatism and Immunity, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| |
Collapse
|
15
|
Pingle SC, Sultana Z, Pastorino S, Jiang P, Mukthavaram R, Chao Y, Bharati IS, Nomura N, Makale M, Abbasi T, Kapoor S, Kumar A, Usmani S, Agrawal A, Vali S, Kesari S. In silico modeling predicts drug sensitivity of patient-derived cancer cells. J Transl Med 2014; 12:128. [PMID: 24884660 PMCID: PMC4030016 DOI: 10.1186/1479-5876-12-128] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 04/23/2014] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Glioblastoma (GBM) is an aggressive disease associated with poor survival. It is essential to account for the complexity of GBM biology to improve diagnostic and therapeutic strategies. This complexity is best represented by the increasing amounts of profiling ("omics") data available due to advances in biotechnology. The challenge of integrating these vast genomic and proteomic data can be addressed by a comprehensive systems modeling approach. METHODS Here, we present an in silico model, where we simulate GBM tumor cells using genomic profiling data. We use this in silico tumor model to predict responses of cancer cells to targeted drugs. Initially, we probed the results from a recent hypothesis-independent, empirical study by Garnett and co-workers that analyzed the sensitivity of hundreds of profiled cancer cell lines to 130 different anticancer agents. We then used the tumor model to predict sensitivity of patient-derived GBM cell lines to different targeted therapeutic agents. RESULTS Among the drug-mutation associations reported in the Garnett study, our in silico model accurately predicted ~85% of the associations. While testing the model in a prospective manner using simulations of patient-derived GBM cell lines, we compared our simulation predictions with experimental data using the same cells in vitro. This analysis yielded a ~75% agreement of in silico drug sensitivity with in vitro experimental findings. CONCLUSIONS These results demonstrate a strong predictability of our simulation approach using the in silico tumor model presented here. Our ultimate goal is to use this model to stratify patients for clinical trials. By accurately predicting responses of cancer cells to targeted agents a priori, this in silico tumor model provides an innovative approach to personalizing therapy and promises to improve clinical management of cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Santosh Kesari
- Translational Neuro-Oncology Laboratories, Moores Cancer Center, UC San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
16
|
Dietrich DE, Martin AD, Brogden KA. Human β-defensin HBD3 binds to immobilized Bla g2 from the German cockroach (Blattella germanica). Peptides 2014; 53:265-9. [PMID: 24495736 PMCID: PMC3992933 DOI: 10.1016/j.peptides.2014.01.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 01/21/2014] [Accepted: 01/21/2014] [Indexed: 01/28/2023]
Abstract
Human β-defensin 3 (HBD3) is a small, well-characterized peptide in mucosal secretions with broad antimicrobial activities and diverse innate immune functions. Among these functions is the ability of HBD3 to bind to antigens. In this study, we hypothesize that HBD3 binds to the allergen Bla g2 from the German cockroach (Blattella germanica). The ability of HBD1 (used as a control β-defensin) and HBD3 to bind to Bla g2 and human serum albumin (HSA, used as a control ligand) was assessed using the SensíQ Pioneer surface plasmon resonance (SPR) spectroscopy biosensor system. HBD1 was observed to bind weakly to Bla g2, while HBD3 demonstrated a stronger affinity for the allergen. HBD3 was assessed under two buffer conditions using 0.15 M and 0.3 M NaCl to control the electrostatic attraction of the peptide to the chip surface. The apparent K(D) of HBD3 binding Bla g2 was 5.9±2.1 μM and for binding HSA was 4.2±0.7 μM, respectively. Thus, HBD3, found in mucosal secretions has the ability to bind to allergens like Bla g2 possibly by electrostatic interaction, and may alter the ability of Bla g2 to induce localized allergic and/or inflammatory mucosal responses.
Collapse
Affiliation(s)
- Deborah E Dietrich
- Dows Institute for Dental Research, College of Dentistry, The University of Iowa, Iowa City, IA 52242, USA
| | - Aaron D Martin
- SensíQ Technologies Inc., 800 Research Parkway, Suite 100, Oklahoma City, OK 73104, USA
| | - Kim A Brogden
- Dows Institute for Dental Research, College of Dentistry, The University of Iowa, Iowa City, IA 52242, USA; Department of Periodontics and Dows Institute for Dental Research, N423 DSB, College of Dentistry, The University of Iowa, 801 Newton Road, Iowa City, IA 52242, USA.
| |
Collapse
|
17
|
Histatin 5 binds to Porphyromonas gingivalis hemagglutinin B (HagB) and alters HagB-induced chemokine responses. Sci Rep 2014; 4:3904. [PMID: 24473528 PMCID: PMC3912440 DOI: 10.1038/srep03904] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 01/13/2014] [Indexed: 12/21/2022] Open
Abstract
Histatins are human salivary gland peptides with anti-microbial and anti-inflammatory activities. In this study, we hypothesized that histatin 5 binds to Porphyromonas gingivalis hemagglutinin B (HagB) and attenuates HagB-induced chemokine responses in human myeloid dendritic cells. Histatin 5 bound to immobilized HagB in a surface plasmon resonance (SPR) spectroscopy-based biosensor system. SPR spectroscopy kinetic and equilibrium analyses, protein microarray studies, and I-TASSER structural modeling studies all demonstrated two histatin 5 binding sites on HagB. One site had a stronger affinity with a KD1 of 1.9 μM and one site had a weaker affinity with a KD2 of 60.0 μM. Binding has biological implications and predictive modeling studies and exposure of dendritic cells both demonstrated that 20.0 μM histatin 5 attenuated (p < 0.05) 0.02 μM HagB-induced CCL3/MIP-1α, CCL4/MIP-1β, and TNFα responses. Thus histatin 5 is capable of attenuating chemokine responses, which may help control oral inflammation.
Collapse
|
18
|
Brogden KA, Johnson GK, Vincent SD, Abbasi T, Vali S. Oral inflammation, a role for antimicrobial peptide modulation of cytokine and chemokine responses. Expert Rev Anti Infect Ther 2014; 11:1097-113. [DOI: 10.1586/14787210.2013.836059] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Wertz PW. Current understanding of skin biology pertinent to skin penetration: skin biochemistry. Skin Pharmacol Physiol 2013; 26:217-26. [PMID: 23921108 DOI: 10.1159/000351949] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 04/08/2013] [Indexed: 11/19/2022]
Abstract
The purpose of this review is to summarize some of the biochemical or chemical findings that have contributed most significantly to our current understanding of the permeability barrier of the skin. This literature survey covers the period from the 1970s up to the present. This seems appropriate since earlier progress was comprehensively covered in a 1978 review by Bob Scheuplein entitled 'Permeability of the skin: a review of major concepts' and in the earlier review by Scheuplein and Blank entitled 'Permeability of the skin'. Both of these review articles are still being cited, and the earlier one has been cited more than 800 times. Overlap with material covered in these earlier publications will be minimized. The overall significance of findings from some of the most recent years may not yet be determined. The emphasis will be placed on the determination of the composition and structures of the epidermal lipids, especially those of the stratum corneum, key enzymes in the biosynthesis of these lipids and some of the physical chemical properties of these lipids as revealed by X-ray diffraction, infrared spectroscopy and other physical methods.
Collapse
Affiliation(s)
- P W Wertz
- Dows Institute, University of Iowa, Iowa City,IA 52242, USA.
| |
Collapse
|
20
|
Almine JF, Wise SG, Hiob M, Singh NK, Tiwari KK, Vali S, Abbasi T, Weiss AS. Elastin sequences trigger transient proinflammatory responses by human dermal fibroblasts. FASEB J 2013; 27:3455-65. [PMID: 23671273 DOI: 10.1096/fj.13-231787] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Following penetrating injury of the skin, a highly orchestrated and overlapping sequence of events helps to facilitate wound resolution. Inflammation is a hallmark that is initiated early, but the reciprocal relationship between cells and matrix molecules that triggers and maintains inflammation is poorly appreciated. Elastin is enriched in the deep dermis of skin. We propose that deep tissue injury encompasses elastin damage, yielding solubilized elastin that triggers inflammation. As dermal fibroblasts dominate the deep dermis, this means that a direct interaction between elastin sequences and fibroblasts would reveal a proinflammatory signature. Tropoelastin was used as a surrogate for elastin sequences. Tropoelastin triggered fibroblast expression of the metalloelastase MMP-12, which is normally expressed by macrophages. MMP-12 expression increased 1056 ± 286-fold by 6 h and persisted for 24 h. Chemokine expression was more transient, as chemokine C-X-C motif ligand 8 (CXCL8), CXCL1, and CXCL5 transcripts increased 11.8 ± 2.6-, 10.2 ± 0.4-, and 8593 ± 996-fold, respectively, by 6-12 h and then decreased. Through the use of specific inhibitors and protein truncation, we found that transduction of the tropoelastin signal was mediated by the fibroblast elastin binding protein (EBP). In silico modeling using a predictive computational fibroblast model confirmed the up-regulation, and simulations revealed PKA as a key part of the signaling circuit. We tested this prediction with 1 μM PKA inhibitor H-89 and found that 2 h of exposure correspondingly reduced expression of MMP-12 (63.9±12.3%) and all chemokine markers, consistent with the levels seen with EBP inhibition, and validated PKA as a novel node and druggable target to ameliorate the proinflammatory state. A separate trigger that utilized C-terminal RKRK of tropoelastin reduced marker expression to 65.0-76.5% and suggests the parallel involvement of integrin αVβ3. We propose that the solubilization of elastin as a result of dermal damage leads to rapid chemokine up-regulation by fibroblasts that is quenched when exposed elastin is removed by MMP-12.
Collapse
Affiliation(s)
- Jessica F Almine
- School of Molecular Bioscience, University of Sydney, NSW 2006, Australia
| | | | | | | | | | | | | | | |
Collapse
|