1
|
Mohammad IL, Giannotti MI, Fourgous E, Boublik Y, Fernández A, Le Roux AL, Sirvent A, Taulés M, Roche S, Pons M. Lipid-driven Src self-association modulates its transformation capacity. Life Sci Alliance 2025; 8:e202403019. [PMID: 40081987 PMCID: PMC11909415 DOI: 10.26508/lsa.202403019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 02/28/2025] [Accepted: 02/28/2025] [Indexed: 03/16/2025] Open
Abstract
Src tyrosine kinase regulates cell growth and adhesion through membrane signaling, and its deregulation is associated with cancer. Although active Src is anchored to the plasma membrane, the role of membrane lipids in its regulation remains unclear. Here, we report that Src self-associates via a lysine cluster in its SH4 region, a process mediated by lipids in human cells and in vitro. Mutation of the lysine cluster to arginine alters Src self-association and modulates its transforming function in human cells. Lipid-anchored micron-sized condensates of full-length Src form in supported homogeneous lipid bilayers (i.e., independently of lipid phase separation). Condensates also arise from the purified Src N-terminal regulatory element, which includes the myristoylated SH4 domain, the intrinsically disordered Unique domain, and the globular SH3 domain. However, the isolated SH4 domain alone forms small protein-lipid clusters rather than micron-sized condensates. Our findings reveal lipid-mediated kinase self-association as an additional regulatory mechanism for Src. This mechanism may also apply to other membrane-associated signaling proteins containing similar lysine clusters in their unstructured regions.
Collapse
Affiliation(s)
- Irrem-Laareb Mohammad
- https://ror.org/021018s57 Biomolecular NMR Laboratory, Department of Inorganic and Organic Chemistry, Universitat de Barcelona (UB), Barcelona, Spain
| | - Marina I Giannotti
- https://ror.org/056h71x09 Nanoprobes and Nanoswitches Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- https://ror.org/021018s57 Materials Science and Physical Chemistry Department, IQTCUB, Universitat de Barcelona (UB), Barcelona, Spain
| | - Elise Fourgous
- CNRS UMR5237, University of Montpellier, CRBM, Montpellier, France
- Equipe Labellisée Ligue Contre le Cancer, CRBM, University of Montpellier, CNRS, Montpellier, France
| | - Yvan Boublik
- CNRS UMR5237, University of Montpellier, CRBM, Montpellier, France
- Equipe Labellisée Ligue Contre le Cancer, CRBM, University of Montpellier, CNRS, Montpellier, France
| | - Alejandro Fernández
- https://ror.org/021018s57 Biomolecular NMR Laboratory, Department of Inorganic and Organic Chemistry, Universitat de Barcelona (UB), Barcelona, Spain
| | - Anabel-Lise Le Roux
- https://ror.org/056h71x09 Nanoprobes and Nanoswitches Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Audrey Sirvent
- CNRS UMR5237, University of Montpellier, CRBM, Montpellier, France
- Equipe Labellisée Ligue Contre le Cancer, CRBM, University of Montpellier, CNRS, Montpellier, France
| | - Marta Taulés
- https://ror.org/021018s57 Centres Científics i Tecnològics (CCiTUB), Universitat de Barcelona (UB), Barcelona, Spain
| | - Serge Roche
- CNRS UMR5237, University of Montpellier, CRBM, Montpellier, France
- Equipe Labellisée Ligue Contre le Cancer, CRBM, University of Montpellier, CNRS, Montpellier, France
| | - Miquel Pons
- https://ror.org/021018s57 Biomolecular NMR Laboratory, Department of Inorganic and Organic Chemistry, Universitat de Barcelona (UB), Barcelona, Spain
| |
Collapse
|
2
|
Vieira MFM, Hernandez G, Zhong Q, Arbesú M, Veloso T, Gomes T, Martins ML, Monteiro H, Frazão C, Frankel G, Zanzoni A, Cordeiro TN. The pathogen-encoded signalling receptor Tir exploits host-like intrinsic disorder for infection. Commun Biol 2024; 7:179. [PMID: 38351154 PMCID: PMC10864410 DOI: 10.1038/s42003-024-05856-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/26/2024] [Indexed: 02/16/2024] Open
Abstract
The translocated intimin receptor (Tir) is an essential type III secretion system (T3SS) effector of attaching and effacing pathogens contributing to the global foodborne disease burden. Tir acts as a cell-surface receptor in host cells, rewiring intracellular processes by targeting multiple host proteins. We investigated the molecular basis for Tir's binding diversity in signalling, finding that Tir is a disordered protein with host-like binding motifs. Unexpectedly, also are several other T3SS effectors. By an integrative approach, we reveal that Tir dimerises via an antiparallel OB-fold within a highly disordered N-terminal cytosolic domain. Also, it has a long disordered C-terminal cytosolic domain partially structured at host-like motifs that bind lipids. Membrane affinity depends on lipid composition and phosphorylation, highlighting a previously unrecognised host interaction impacting Tir-induced actin polymerisation and cell death. Furthermore, multi-site tyrosine phosphorylation enables Tir to engage host SH2 domains in a multivalent fuzzy complex, consistent with Tir's scaffolding role and binding promiscuity. Our findings provide insights into the intracellular Tir domains, highlighting the ability of T3SS effectors to exploit host-like protein disorder as a strategy for host evasion.
Collapse
Affiliation(s)
- Marta F M Vieira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| | - Guillem Hernandez
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| | - Qiyun Zhong
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, UK
| | - Miguel Arbesú
- Department of NMR-supported Structural Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
- InstaDeep Ltd, 5 Merchant Square, London, UK
| | - Tiago Veloso
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| | - Tiago Gomes
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| | - Maria L Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| | - Hugo Monteiro
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| | - Carlos Frazão
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| | - Gad Frankel
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, UK
| | - Andreas Zanzoni
- Aix-Marseille Université, Inserm, TAGC, UMR_S1090, Marseille, France
| | - Tiago N Cordeiro
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal.
| |
Collapse
|
3
|
Lin DYW, Kueffer LE, Juneja P, Wales TE, Engen JR, Andreotti AH. Conformational heterogeneity of the BTK PHTH domain drives multiple regulatory states. eLife 2024; 12:RP89489. [PMID: 38189455 PMCID: PMC10945472 DOI: 10.7554/elife.89489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024] Open
Abstract
Full-length Bruton's tyrosine kinase (BTK) has been refractory to structural analysis. The nearest full-length structure of BTK to date consists of the autoinhibited SH3-SH2-kinase core. Precisely how the BTK N-terminal domains (the Pleckstrin homology/Tec homology [PHTH] domain and proline-rich regions [PRR] contain linker) contribute to BTK regulation remains unclear. We have produced crystals of full-length BTK for the first time but despite efforts to stabilize the autoinhibited state, the diffraction data still reveal only the SH3-SH2-kinase core with no electron density visible for the PHTH-PRR segment. Cryo-electron microscopy (cryoEM) data of full-length BTK, on the other hand, provide the first view of the PHTH domain within full-length BTK. CryoEM reconstructions support conformational heterogeneity in the PHTH-PRR region wherein the globular PHTH domain adopts a range of states arrayed around the autoinhibited SH3-SH2-kinase core. On the way to activation, disassembly of the SH3-SH2-kinase core opens a new autoinhibitory site on the kinase domain for PHTH domain binding that is ultimately released upon interaction of PHTH with phosphatidylinositol (3,4,5)-trisphosphate. Membrane-induced dimerization activates BTK and we present here a crystal structure of an activation loop swapped BTK kinase domain dimer that likely represents the conformational state leading to trans-autophosphorylation. Together, these data provide the first structural elucidation of full-length BTK and allow a deeper understanding of allosteric control over the BTK kinase domain during distinct stages of activation.
Collapse
Affiliation(s)
- David Yin-wei Lin
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State UniversityAmesUnited States
| | - Lauren E Kueffer
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State UniversityAmesUnited States
| | - Puneet Juneja
- Cryo-EM Facility, Office of Biotechnology, Iowa State UniversityAmesUnited States
| | - Thomas E Wales
- Department of Chemistry and Chemical Biology, Northeastern UniversityBostonUnited States
| | - John R Engen
- Department of Chemistry and Chemical Biology, Northeastern UniversityBostonUnited States
| | - Amy H Andreotti
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State UniversityAmesUnited States
| |
Collapse
|
4
|
Raji L, Tetteh A, Amin ARMR. Role of c-Src in Carcinogenesis and Drug Resistance. Cancers (Basel) 2023; 16:32. [PMID: 38201459 PMCID: PMC10778207 DOI: 10.3390/cancers16010032] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
The aberrant transformation of normal cells into cancer cells, known as carcinogenesis, is a complex process involving numerous genetic and molecular alterations in response to innate and environmental stimuli. The Src family kinases (SFK) are key components of signaling pathways implicated in carcinogenesis, with c-Src and its oncogenic counterpart v-Src often playing a significant role. The discovery of c-Src represents a compelling narrative highlighting groundbreaking discoveries and valuable insights into the molecular mechanisms underlying carcinogenesis. Upon oncogenic activation, c-Src activates multiple downstream signaling pathways, including the PI3K-AKT pathway, the Ras-MAPK pathway, the JAK-STAT3 pathway, and the FAK/Paxillin pathway, which are important for cell proliferation, survival, migration, invasion, metastasis, and drug resistance. In this review, we delve into the discovery of c-Src and v-Src, the structure of c-Src, and the molecular mechanisms that activate c-Src. We also focus on the various signaling pathways that c-Src employs to promote oncogenesis and resistance to chemotherapy drugs as well as molecularly targeted agents.
Collapse
Affiliation(s)
| | | | - A. R. M. Ruhul Amin
- Department of Pharmaceutical Sciences, Marshall University School of Pharmacy, Huntington, WV 25755, USA; (L.R.); (A.T.)
| |
Collapse
|
5
|
Lin DYW, Kueffer LE, Juneja P, Wales TE, Engen JR, Andreotti AH. Conformational heterogeneity of the BTK PHTH domain drives multiple regulatory states. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.02.543453. [PMID: 37786675 PMCID: PMC10541622 DOI: 10.1101/2023.06.02.543453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Full-length BTK has been refractory to structural analysis. The nearest full-length structure of BTK to date consists of the autoinhibited SH3-SH2-kinase core. Precisely how the BTK N-terminal domains (the Pleckstrin homology/Tec homology (PHTH) domain and proline-rich regions (PRR) contain linker) contribute to BTK regulation remains unclear. We have produced crystals of full-length BTK for the first time but despite efforts to stabilize the autoinhibited state, the diffraction data still reveals only the SH3-SH2-kinase core with no electron density visible for the PHTH-PRR segment. CryoEM data of full-length BTK, on the other hand, provide the first view of the PHTH domain within full-length BTK. CryoEM reconstructions support conformational heterogeneity in the PHTH-PRR region wherein the globular PHTH domain adopts a range of states arrayed around the autoinhibited SH3-SH2-kinase core. On the way to activation, disassembly of the SH3-SH2-kinase core opens a new autoinhibitory site on the kinase domain for PHTH domain binding that is ultimately released upon interaction of PHTH with PIP3. Membrane-induced dimerizationactivates BTK and we present here a crystal structure of an activation loop swapped BTK kinase domain dimer that likely represents the conformational state leading to transautophosphorylation. Together, these data provide the first structural elucidation of full-length BTK and allow a deeper understanding of allosteric control over the BTK kinase domain during distinct stages of activation.
Collapse
|
6
|
Villalobo A. Ca 2+ Signaling and Src Functions in Tumor Cells. Biomolecules 2023; 13:1739. [PMID: 38136610 PMCID: PMC10741856 DOI: 10.3390/biom13121739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/16/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Signaling by calcium ion (Ca2+) plays a prominent role in cell physiology, and these mechanisms are frequently altered in tumor cells. In this review, we consider the interplay of Ca2+ signaling and the functions of the proto-oncogene non-receptor tyrosine kinase c-Src in tumor cells, and the viral oncogenic variant v-Src in transformed cells. Also, other members of the Src-family kinases are considered in this context. The role of Ca2+ in the cell is frequently mediated by Ca2+-binding proteins, where the Ca2+-sensor protein calmodulin (CaM) plays a prominent, essential role in many cellular signaling pathways. Thus, we cover the available information on the role and direct interaction of CaM with c-Src and v-Src in cancerous cells, the phosphorylation of CaM by v-Src/c-Src, and the actions of different CaM-regulated Ser/Thr-protein kinases and the CaM-dependent phosphatase calcineurin on v-Src/c-Src. Finally, we mention some clinical implications of these systems to identify mechanisms that could be targeted for the therapeutic treatment of human cancers.
Collapse
Affiliation(s)
- Antonio Villalobo
- Cancer and Human Molecular Genetics Area-Oto-Neurosurgery Research Group, University Hospital La Paz Research Institute (IdiPAZ), Paseo de la Castellana 261, E-28046 Madrid, Spain
| |
Collapse
|
7
|
Backe SJ, Votra SD, Stokes MP, Sebestyén E, Castelli M, Torielli L, Colombo G, Woodford MR, Mollapour M, Bourboulia D. PhosY-secretome profiling combined with kinase-substrate interaction screening defines active c-Src-driven extracellular signaling. Cell Rep 2023; 42:112539. [PMID: 37243593 PMCID: PMC10569185 DOI: 10.1016/j.celrep.2023.112539] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 04/07/2023] [Accepted: 05/03/2023] [Indexed: 05/29/2023] Open
Abstract
c-Src tyrosine kinase is a renowned key intracellular signaling molecule and a potential target for cancer therapy. Secreted c-Src is a recent observation, but how it contributes to extracellular phosphorylation remains elusive. Using a series of domain deletion mutants, we show that the N-proximal region of c-Src is essential for its secretion. The tissue inhibitor of metalloproteinases 2 (TIMP2) is an extracellular substrate of c-Src. Limited proteolysis-coupled mass spectrometry and mutagenesis studies verify that the Src homology 3 (SH3) domain of c-Src and the P31VHP34 motif of TIMP2 are critical for their interaction. Comparative phosphoproteomic analyses identify an enrichment of PxxP motifs in phosY-containing secretomes from c-Src-expressing cells with cancer-promoting roles. Inhibition of extracellular c-Src using custom SH3-targeting antibodies disrupt kinase-substrate complexes and inhibit cancer cell proliferation. These findings point toward an intricate role for c-Src in generating phosphosecretomes, which will likely influence cell-cell communication, particularly in c-Src-overexpressing cancers.
Collapse
Affiliation(s)
- Sarah J Backe
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - SarahBeth D Votra
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | | | | | - Matteo Castelli
- Dipartimento di Chimica, Università di Pavia, 27100 Pavia, Italy
| | - Luca Torielli
- Dipartimento di Chimica, Università di Pavia, 27100 Pavia, Italy
| | - Giorgio Colombo
- Dipartimento di Chimica, Università di Pavia, 27100 Pavia, Italy
| | - Mark R Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Dimitra Bourboulia
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA.
| |
Collapse
|
8
|
Lang A, Fernández A, Diaz-Lobo M, Vilanova M, Cárdenas F, Gairí M, Pons M. Modulation of Functional Phosphorylation Sites by Basic Residues in the Unique Domain of c-Src. Molecules 2023; 28:4686. [PMID: 37375241 DOI: 10.3390/molecules28124686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/07/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
In contrast to the well-studied canonical regulatory mechanisms, the way by which the recently discovered Src N-terminal regulatory element (SNRE) modulates Src activity is not yet well understood. Phosphorylation of serine and threonine residues modulates the charge distribution along the disordered region of the SNRE and may affect a fuzzy complex with the SH3 domain that is believed to act as an information transduction element. The pre-existing positively charged sites can interact with the newly introduced phosphate groups by modulating their acidity, introducing local conformational restrictions, or by coupling various phosphosites into a functional unit. In this paper, we use pH-dependent NMR measurements combined with single point mutations to identify the interactions of basic residues with physiologically important phosphorylated residues and to characterize the effect of these interactions in neighbor residues, thus providing insight into the electrostatic network in the isolated disordered regions and in the entire SNRE. From a methodological point of view, the linear relationships observed between the mutation-induced pKa changes of the phosphate groups of phosphoserine and phosphothreonine and the pH-induced chemical shifts of the NH groups of these residues provide a very convenient alternative to identify interacting phosphate groups without the need to introduce point mutations on specific basic residues.
Collapse
Affiliation(s)
- Andras Lang
- BioNMR Laboratory, Departament de Química Inorgànica i Orgànica, Universitat de Barcelona (UB), Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Alejandro Fernández
- BioNMR Laboratory, Departament de Química Inorgànica i Orgànica, Universitat de Barcelona (UB), Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Mireia Diaz-Lobo
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Mar Vilanova
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Francisco Cárdenas
- Centres Científics i Tecnològics de la Universitat de Barcelona (CCiTUB), Universitat de Barcelona (UB), Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Margarida Gairí
- Centres Científics i Tecnològics de la Universitat de Barcelona (CCiTUB), Universitat de Barcelona (UB), Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Miquel Pons
- BioNMR Laboratory, Departament de Química Inorgànica i Orgànica, Universitat de Barcelona (UB), Baldiri Reixac 10-12, 08028 Barcelona, Spain
| |
Collapse
|
9
|
Chau AK, Bracken K, Bai L, Pham D, Good L, Maillard RA. Conformational changes in Protein Kinase A along its activation cycle are rooted in the folding energetics of cyclic-nucleotide binding domains. J Biol Chem 2023:104790. [PMID: 37150322 DOI: 10.1016/j.jbc.2023.104790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/09/2023] Open
Abstract
Cyclic-nucleotide binding (CNB) domains are structurally and evolutionarily conserved signaling modules that regulate proteins with diverse folds and functions. Despite a wealth of structural information, the mechanisms by which CNB domains couple cyclic-nucleotide binding to conformational changes involved in signal transduction remain unknown. Here we combined single-molecule and computational approaches to investigate the conformation and folding energetics of the two CNB domains of the regulatory subunit of protein kinase A (PKA). We found that the CNB domains exhibit different conformational and folding signatures in the apo state, when bound to cAMP, or when bound to the PKA catalytic subunit, underscoring their ability to adapt to different binding partners. Moreover, we show while the two CNB domains have near-identical structures, their thermodynamic coupling signatures are divergent, leading to distinct cAMP responses and differential mutational effects. Specifically, we demonstrate the mutation W260A exerts local and allosteric effects that impact multiple steps of the PKA activation cycle. Taken together, these results highlight the complex interplay between folding energetics, conformational dynamics, and thermodynamic signatures that underlies structurally conserved signaling modules in response to ligand binding and mutational effects.
Collapse
Affiliation(s)
- Amy K Chau
- Department of Chemistry, Georgetown University, Washington, DC 20057, USA
| | - Katherine Bracken
- Department of Chemistry, Georgetown University, Washington, DC 20057, USA
| | - Lihui Bai
- Department of Chemistry, Georgetown University, Washington, DC 20057, USA
| | - Dominic Pham
- Department of Chemistry, Georgetown University, Washington, DC 20057, USA
| | - Lydia Good
- Department of Chemistry, Georgetown University, Washington, DC 20057, USA
| | - Rodrigo A Maillard
- Department of Chemistry, Georgetown University, Washington, DC 20057, USA.
| |
Collapse
|
10
|
Gurumoorthy V, Shrestha UR, Zhang Q, Pingali SV, Boder ET, Urban VS, Smith JC, Petridis L, O'Neill H. Disordered Domain Shifts the Conformational Ensemble of the Folded Regulatory Domain of the Multidomain Oncoprotein c-Src. Biomacromolecules 2023; 24:714-723. [PMID: 36692364 DOI: 10.1021/acs.biomac.2c01158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
c-Src kinase is a multidomain non-receptor tyrosine kinase that aberrantly phosphorylates several signaling proteins in cancers. Although the structural properties of the regulatory domains (SH3-SH2) and the catalytic kinase domain have been extensively characterized, there is less knowledge about the N-terminal disordered region (SH4UD) and its interactions with the other c-Src domains. Here, we used domain-selective isotopic labeling combined with the small-angle neutron scattering contrast matching technique to study SH4UD interactions with SH3-SH2. Our results show that in the presence of SH4UD, the radius of gyration (Rg) of SH3-SH2 increases, indicating that it has a more extended conformation. Hamiltonian replica exchange molecular dynamics simulations provide a detailed molecular description of the structural changes in SH4UD-SH3-SH2 and show that the regulatory loops of SH3 undergo significant conformational changes in the presence of SH4UD, while SH2 remains largely unchanged. Overall, this study highlights how a disordered region can drive a folded region of a multidomain protein to become flexible, which may be important for allosteric interactions with binding partners. This may help in the design of therapeutic interventions that target the regulatory domains of this important family of kinases.
Collapse
Affiliation(s)
- Viswanathan Gurumoorthy
- UT/ORNL Graduate School of Genome and Science Technology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Utsab R Shrestha
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Qiu Zhang
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Sai Venkatesh Pingali
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Eric T Boder
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Volker S Urban
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Jeremy C Smith
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Loukas Petridis
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Hugh O'Neill
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
11
|
Crystal Structure of the SH3 Domain of ASAP1 in Complex with the Proline Rich Motif (PRM) of MICAL1 Reveals a Unique SH3/PRM Interaction Mode. Int J Mol Sci 2023; 24:ijms24021414. [PMID: 36674928 PMCID: PMC9865144 DOI: 10.3390/ijms24021414] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 01/13/2023] Open
Abstract
SH3 domains are common protein binding modules. The target sequence of SH3 domains is usually a proline-rich motif (PRM) containing a minimal "PxxP" sequence. The mechanism of how different SH3 domains specifically choose their targets from vast PxxP-containing sequences is still not very clear, as many reported SH3/PRM interactions are weak and promiscuous. Here, we identified the binding of the SH3 domain of ASAP1 to the PRM of MICAL1 with a sub-μM binding affinity, and determined the crystal structure of ASAP1-SH3 and MICAL1-PRM complex. Our structural and biochemical analyses revealed that the target-binding pocket of ASAP1-SH3 contains two negatively charged patches to recognize the "xPx + Px+" sequence in MICAL1-PRM and consequently strengthen the interaction, differing from the typical SH3/PRM interaction. This unique PRM-binding pocket is also found in the SH3 domains of GTPase Regulator associated with focal adhesion kinase (GRAF) and Src kinase associated phosphoprotein 1 (SKAP1), which we named SH3AGS. In addition, we searched the Swiss-Prot database and found ~130 proteins with the SH3AGS-binding PRM in silico. Finally, gene ontology analysis suggests that the strong interaction between the SH3AGS-containing proteins and their targets may play roles in actin cytoskeleton regulation and vesicle trafficking.
Collapse
|
12
|
Min JK, Park HS, Lee YB, Kim JG, Kim JI, Park JB. Cross-Talk between Wnt Signaling and Src Tyrosine Kinase. Biomedicines 2022; 10:biomedicines10051112. [PMID: 35625853 PMCID: PMC9138253 DOI: 10.3390/biomedicines10051112] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 12/17/2022] Open
Abstract
Src, a non-receptor tyrosine kinase, was first discovered as a prototype oncogene and has been shown to critical for cancer progression for a variety of tissues. Src activity is regulated by a number of post-translational modifications in response to various stimuli. Phosphorylations of Src Tyr419 (human; 416 in chicken) and Src Tyr530 (human; 527 in chicken) have been known to be critical for activation and inactivation of Src, respectively. Wnt signaling regulates a variety of cellular functions including for development and cell proliferation, and has a role in certain diseases such as cancer. Wnt signaling is carried out through two pathways: β-catenin-dependent canonical and β-catenin-independent non-canonical pathways as Wnt ligands bind to their receptors, Frizzled, LRP5/6, and ROR1/2. In addition, many signaling components including Axin, APC, Damm, Dishevelled, JNK kinase and Rho GTPases contribute to these canonical and non-canonical Wnt pathways. However, the communication between Wnt signaling and Src tyrosine kinase has not been well reviewed as Src regulates Wnt signaling through LRP6 tyrosine phosphorylation. GSK-3β phosphorylated by Wnt also regulates Src activity. As Wnt signaling and Src mutually regulate each other, it is noted that aberrant regulation of these components give rise to various diseases including typically cancer, and as such, merit a closer look.
Collapse
Affiliation(s)
- Jung Ki Min
- Department of Biochemistry, Hallym University College of Medicine, Chuncheon 25242, Korea; (J.K.M.); (Y.-B.L.); (J.-G.K.)
- Institute of Cell Differentiation and Aging, Hallym University College of Medicine, Chuncheon 24252, Korea
| | - Hwee-Seon Park
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea; (H.-S.P.); (J.-I.K.)
- Genomic Medicine Institute, Medical Research Center, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Yoon-Beom Lee
- Department of Biochemistry, Hallym University College of Medicine, Chuncheon 25242, Korea; (J.K.M.); (Y.-B.L.); (J.-G.K.)
- Institute of Cell Differentiation and Aging, Hallym University College of Medicine, Chuncheon 24252, Korea
| | - Jae-Gyu Kim
- Department of Biochemistry, Hallym University College of Medicine, Chuncheon 25242, Korea; (J.K.M.); (Y.-B.L.); (J.-G.K.)
- Institute of Cell Differentiation and Aging, Hallym University College of Medicine, Chuncheon 24252, Korea
| | - Jong-Il Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea; (H.-S.P.); (J.-I.K.)
- Genomic Medicine Institute, Medical Research Center, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Jae-Bong Park
- Department of Biochemistry, Hallym University College of Medicine, Chuncheon 25242, Korea; (J.K.M.); (Y.-B.L.); (J.-G.K.)
- Institute of Cell Differentiation and Aging, Hallym University College of Medicine, Chuncheon 24252, Korea
- Correspondence: ; Tel.: +82-33-248-2542; Fax: +82-33-244-8425
| |
Collapse
|
13
|
Kato G. Regulatory Roles of the N-Terminal Intrinsically Disordered Region of Modular Src. Int J Mol Sci 2022; 23:2241. [PMID: 35216357 PMCID: PMC8874404 DOI: 10.3390/ijms23042241] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/15/2022] [Accepted: 02/15/2022] [Indexed: 11/17/2022] Open
Abstract
Src, the prototype of Src family kinases (SFKs), is a modular protein consisting of SH4 (SH4) and unique (UD) domains in an N-terminal intrinsically disordered region (IDR), and SH3, SH2, and kinase (KD) folded domains conserved among SFKs. Src functions as a pleiotropic signaling hub in proliferating and post-mitotic cells, and it is related to cancer and neurological diseases. However, its regulatory mechanism is unclear because the existing canonical model is derived from crystallographic analyses of folded constructs lacking the IDR. This work reviews nuclear magnetic resonance analyses of partially structured lipid-binding segments in the flexible UD and the fuzzy intramolecular complex (FIMC) comprising IDR and SH3 domains, which interacts with lipid membranes and proteins. Furthermore, recently determined IDR-related Src characteristics are discussed, including dimerization, SH4/KD intramolecular fastener bundling of folded domains, and the sorting of adhesive structures. Finally, the modulatory roles of IDR phosphorylation in Src activities involving the FIMC are explored. The new regulatory roles of IDRs are integrated with the canonical model to elucidate the functions of full-length Src. This review presents new aspects of Src regulation, and provides a future direction for studies on the structure and function of Src, and their implications for pathological processes.
Collapse
Affiliation(s)
- Goro Kato
- Laboratory of Biological Chemistry, Center for Medical Education and Sciences, University of Yamanashi, 1110 Shimokato, Chuo 409-3898, Yamanashi, Japan
| |
Collapse
|
14
|
Aponte E, Lafitte M, Sirvent A, Simon V, Barbery M, Fourgous E, Boublik Y, Maffei M, Armand F, Hamelin R, Pannequin J, Fort P, Pons M, Roche S. Regulation of Src tumor activity by its N-terminal intrinsically disordered region. Oncogene 2022; 41:960-970. [PMID: 34999732 PMCID: PMC8837538 DOI: 10.1038/s41388-021-02092-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 10/14/2021] [Accepted: 10/21/2021] [Indexed: 11/09/2022]
Abstract
The membrane-anchored Src tyrosine kinase is involved in numerous pathways and its deregulation is involved in human cancer. Our knowledge on Src regulation relies on crystallography, which revealed intramolecular interactions to control active Src conformations. However, Src contains a N-terminal intrinsically disordered unique domain (UD) whose function remains unclear. Using NMR, we reported that UD forms an intramolecular fuzzy complex involving a conserved region with lipid-binding capacity named Unique Lipid-Binding Region (ULBR), which could modulate Src membrane anchoring. Here we show that the ULBR is essential for Src's oncogenic capacity. ULBR inactive mutations inhibited Src transforming activity in NIH3T3 cells and in human colon cancer cells. It also reduced Src-induced tumor development in nude mice. An intact ULBR was required for MAPK signaling without affecting Src kinase activity nor sub-cellular localization. Phospho-proteomic analyses revealed that, while not impacting on the global tyrosine phospho-proteome in colon cancer cells, this region modulates phosphorylation of specific membrane-localized tyrosine kinases needed for Src oncogenic signaling, including EPHA2 and Fyn. Collectively, this study reveals an important role of this intrinsically disordered region in malignant cell transformation and suggests a novel layer of Src regulation by this unique region via membrane substrate phosphorylation.
Collapse
Affiliation(s)
- Emilie Aponte
- CRBM, CNRS, Univ. Montpellier, F-34000, Montpellier, France
- Equipe labellisée Ligue Contre le Cancer, CRBM, CNRS, Univ. Montpellier, F-34000, Montpellier, France
| | - Marie Lafitte
- CRBM, CNRS, Univ. Montpellier, F-34000, Montpellier, France
- Equipe labellisée Ligue Contre le Cancer, CRBM, CNRS, Univ. Montpellier, F-34000, Montpellier, France
| | - Audrey Sirvent
- CRBM, CNRS, Univ. Montpellier, F-34000, Montpellier, France
- Equipe labellisée Ligue Contre le Cancer, CRBM, CNRS, Univ. Montpellier, F-34000, Montpellier, France
| | - Valérie Simon
- CRBM, CNRS, Univ. Montpellier, F-34000, Montpellier, France
- Equipe labellisée Ligue Contre le Cancer, CRBM, CNRS, Univ. Montpellier, F-34000, Montpellier, France
| | - Maud Barbery
- CRBM, CNRS, Univ. Montpellier, F-34000, Montpellier, France
- Equipe labellisée Ligue Contre le Cancer, CRBM, CNRS, Univ. Montpellier, F-34000, Montpellier, France
| | - Elise Fourgous
- CRBM, CNRS, Univ. Montpellier, F-34000, Montpellier, France
- Equipe labellisée Ligue Contre le Cancer, CRBM, CNRS, Univ. Montpellier, F-34000, Montpellier, France
| | - Yvan Boublik
- CRBM, CNRS, Univ. Montpellier, F-34000, Montpellier, France
- Equipe labellisée Ligue Contre le Cancer, CRBM, CNRS, Univ. Montpellier, F-34000, Montpellier, France
| | - Mariano Maffei
- Biomolecular NMR laboratory, Department of Inorganic and Organic Chemistry, University of Barcelona, Baldiri Reixac 10-12, 08028, Barcelona, Spain
- Evvivax srl-Via di Castel Romano, 100 - 00128, Rome, Italy
| | - Florence Armand
- Proteomics Core Facility, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Romain Hamelin
- Proteomics Core Facility, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | | | - Philippe Fort
- CRBM, CNRS, Univ. Montpellier, F-34000, Montpellier, France
| | - Miquel Pons
- Biomolecular NMR laboratory, Department of Inorganic and Organic Chemistry, University of Barcelona, Baldiri Reixac 10-12, 08028, Barcelona, Spain.
| | - Serge Roche
- CRBM, CNRS, Univ. Montpellier, F-34000, Montpellier, France.
- Equipe labellisée Ligue Contre le Cancer, CRBM, CNRS, Univ. Montpellier, F-34000, Montpellier, France.
- IGF, CNRS, Univ. Montpellier, F-34000, Montpellier, France.
| |
Collapse
|
15
|
Sakane F, Hoshino F, Ebina M, Sakai H, Takahashi D. The Roles of Diacylglycerol Kinase α in Cancer Cell Proliferation and Apoptosis. Cancers (Basel) 2021; 13:cancers13205190. [PMID: 34680338 PMCID: PMC8534027 DOI: 10.3390/cancers13205190] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/14/2021] [Accepted: 10/14/2021] [Indexed: 02/02/2023] Open
Abstract
Simple Summary Diacylglycerol (DG) kinase (DGK) phosphorylates DG to generate phosphatidic acid (PA). DGKα is highly expressed in several refractory cancer cells, including melanoma, hepatocellular carcinoma, and glioblastoma cells, attenuates apoptosis, and promotes proliferation. In cancer cells, PA produced by DGKα plays an important role in proliferation/antiapoptosis. In addition to cancer cells, DGKα is highly abundant in T cells and induces a nonresponsive state (anergy), representing the main mechanism by which advanced cancers avoid immune action. In T cells, DGKα induces anergy through DG consumption. Therefore, a DGKα-specific inhibitor is expected to be a dual effective anticancer treatment that inhibits cancer cell proliferation and simultaneously activates T cell function. Moreover, the inhibition of DGKα synergistically enhances the anticancer effects of programmed cell death-1/programmed cell death ligand 1 blockade. Taken together, DGKα inhibition provides a promising new treatment strategy for refractory cancers. Abstract Diacylglycerol (DG) kinase (DGK) phosphorylates DG to generate phosphatidic acid (PA). The α isozyme is activated by Ca2+ through its EF-hand motifs and tyrosine phosphorylation. DGKα is highly expressed in several refractory cancer cells including melanoma, hepatocellular carcinoma, and glioblastoma cells. In melanoma cells, DGKα is an antiapoptotic factor that activates nuclear factor-κB (NF-κB) through the atypical protein kinase C (PKC) ζ-mediated phosphorylation of NF-κB. DGKα acts as an enhancer of proliferative activity through the Raf–MEK–ERK pathway and consequently exacerbates hepatocellular carcinoma progression. In glioblastoma and melanoma cells, DGKα attenuates apoptosis by enhancing the phosphodiesterase (PDE)-4A1–mammalian target of the rapamycin pathway. As PA activates PKCζ, Raf, and PDE, it is likely that PA generated by DGKα plays an important role in the proliferation/antiapoptosis of cancer cells. In addition to cancer cells, DGKα is highly abundant in T cells and induces a nonresponsive state (anergy), which represents the main mechanism by which advanced cancers escape immune action. In T cells, DGKα attenuates the activity of Ras-guanyl nucleotide-releasing protein, which is activated by DG and avoids anergy through DG consumption. Therefore, a DGKα-specific inhibitor is expected to be a dual effective anticancer treatment that inhibits cancer cell proliferation and simultaneously enhances T cell functions. Moreover, the inhibition of DGKα synergistically enhances the anticancer effects of programmed cell death-1/programmed cell death ligand 1 blockade. Taken together, DGKα inhibition provides a promising new treatment strategy for refractory cancers.
Collapse
Affiliation(s)
- Fumio Sakane
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba 263-8522, Japan; (F.H.); (M.E.)
- Correspondence: ; Tel.: +81-43-290-3695
| | - Fumi Hoshino
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba 263-8522, Japan; (F.H.); (M.E.)
| | - Masayuki Ebina
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba 263-8522, Japan; (F.H.); (M.E.)
| | - Hiromichi Sakai
- Department of Biosignaling and Radioisotope Experiment, Interdisciplinary Center for Science Research, Organization for Research and Academic Information, Shimane University, Izumo 693-8501, Japan;
| | - Daisuke Takahashi
- Department of Pharmaceutical Health Care and Sciences, Kyushu University, Fukuoka 812-8582, Japan;
| |
Collapse
|
16
|
Bianco PR. The mechanism of action of the SSB interactome reveals it is the first OB-fold family of genome guardians in prokaryotes. Protein Sci 2021; 30:1757-1775. [PMID: 34089559 PMCID: PMC8376408 DOI: 10.1002/pro.4140] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 12/28/2022]
Abstract
The single-stranded DNA binding protein (SSB) is essential to all aspects of DNA metabolism in bacteria. This protein performs two distinct, but closely intertwined and indispensable functions in the cell. SSB binds to single-stranded DNA (ssDNA) and at least 20 partner proteins resulting in their regulation. These partners comprise a family of genome guardians known as the SSB interactome. Essential to interactome regulation is the linker/OB-fold network of interactions. This network of interactions forms when one or more PXXP motifs in the linker of SSB bind to an OB-fold in a partner, with interactome members involved in competitive binding between the linker and ssDNA to their OB-fold. Consequently, when linker-binding occurs to an OB-fold in an interactome partner, proteins are loaded onto the DNA. When linker/OB-fold interactions occur between SSB tetramers, cooperative ssDNA-binding results, producing a multi-tetrameric complex that rapidly protects the ssDNA. Within this SSB-ssDNA complex, there is an extensive and dynamic network of linker/OB-fold interactions that involves multiple tetramers bound contiguously along the ssDNA lattice. The dynamic behavior of these tetramers which includes binding mode changes, sliding as well as DNA wrapping/unwrapping events, are likely coupled to the formation and disruption of linker/OB-fold interactions. This behavior is essential to facilitating downstream DNA processing events. As OB-folds are critical to the essence of the linker/OB-fold network of interactions, and they are found in multiple interactome partners, the SSB interactome is classified as the first family of prokaryotic, oligosaccharide/oligonucleotide binding fold (OB-fold) genome guardians.
Collapse
MESH Headings
- Amino Acid Motifs
- Bacterial Proteins/chemistry
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Binding, Competitive
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Bacterial/metabolism
- DNA, Single-Stranded/chemistry
- DNA, Single-Stranded/genetics
- DNA, Single-Stranded/metabolism
- DNA-Binding Proteins/chemistry
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Escherichia coli/chemistry
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Gene Expression Regulation, Bacterial
- Gene Regulatory Networks
- Genome, Bacterial
- Klebsiella pneumoniae/chemistry
- Klebsiella pneumoniae/genetics
- Klebsiella pneumoniae/metabolism
- Models, Molecular
- Oligonucleotides/chemistry
- Oligonucleotides/metabolism
- Oligosaccharides/chemistry
- Oligosaccharides/metabolism
- Protein Binding
- Protein Conformation
- Protein Interaction Mapping
- Protein Multimerization
Collapse
Affiliation(s)
- Piero R. Bianco
- Department of Pharmaceutical Sciences, College of PharmacyUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| |
Collapse
|
17
|
Intrinsically disordered proteins and membranes: a marriage of convenience for cell signalling? Biochem Soc Trans 2021; 48:2669-2689. [PMID: 33155649 PMCID: PMC7752083 DOI: 10.1042/bst20200467] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/05/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023]
Abstract
The structure-function paradigm has guided investigations into the molecules involved in cellular signalling for decades. The peripheries of this paradigm, however, start to unravel when considering the co-operation between proteins and the membrane in signalling processes. Intrinsically disordered regions hold distinct advantages over folded domains in terms of their binding promiscuity, sensitivity to their particular environment and their ease of modulation through post-translational modifications. Low sequence complexity and bias towards charged residues are also favourable for the multivalent electrostatic interactions that occur at the surfaces of lipid bilayers. This review looks at the principles behind the successful marriage between protein disorder and membranes in addition to the role of this partnership in modifying and regulating signalling in cellular processes. The HVR (hypervariable region) of small GTPases is highlighted as a well-studied example of the nuanced role a short intrinsically disordered region can play in the fine-tuning of signalling pathways.
Collapse
|
18
|
Ortiz MA, Mikhailova T, Li X, Porter BA, Bah A, Kotula L. Src family kinases, adaptor proteins and the actin cytoskeleton in epithelial-to-mesenchymal transition. Cell Commun Signal 2021; 19:67. [PMID: 34193161 PMCID: PMC8247114 DOI: 10.1186/s12964-021-00750-x] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/14/2021] [Indexed: 12/20/2022] Open
Abstract
Over a century of scientific inquiry since the discovery of v-SRC but still no final judgement on SRC function. However, a significant body of work has defined Src family kinases as key players in tumor progression, invasion and metastasis in human cancer. With the ever-growing evidence supporting the role of epithelial-mesenchymal transition (EMT) in invasion and metastasis, so does our understanding of the role SFKs play in mediating these processes. Here we describe some key mechanisms through which Src family kinases play critical role in epithelial homeostasis and how their function is essential for the propagation of invasive signals. Video abstract.
Collapse
Affiliation(s)
- Maria A. Ortiz
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, USA
- Department of Urology, SUNY Upstate Medical University, Syracuse, USA
| | - Tatiana Mikhailova
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, USA
| | - Xiang Li
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, USA
- Department of Urology, SUNY Upstate Medical University, Syracuse, USA
| | - Baylee A. Porter
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, USA
- Department of Urology, SUNY Upstate Medical University, Syracuse, USA
| | - Alaji Bah
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, USA
| | - Leszek Kotula
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, USA
- Department of Urology, SUNY Upstate Medical University, Syracuse, USA
| |
Collapse
|
19
|
Clerc I, Sagar A, Barducci A, Sibille N, Bernadó P, Cortés J. The diversity of molecular interactions involving intrinsically disordered proteins: A molecular modeling perspective. Comput Struct Biotechnol J 2021; 19:3817-3828. [PMID: 34285781 PMCID: PMC8273358 DOI: 10.1016/j.csbj.2021.06.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 01/15/2023] Open
Abstract
Intrinsically Disordered Proteins and Regions (IDPs/IDRs) are key components of a multitude of biological processes. Conformational malleability enables IDPs/IDRs to perform very specialized functions that cannot be accomplished by globular proteins. The functional role for most of these proteins is related to the recognition of other biomolecules to regulate biological processes or as a part of signaling pathways. Depending on the extent of disorder, the number of interacting sites and the type of partner, very different architectures for the resulting assemblies are possible. More recently, molecular condensates with liquid-like properties composed of multiple copies of IDPs and nucleic acids have been proven to regulate key processes in eukaryotic cells. The structural and kinetic details of disordered biomolecular complexes are difficult to unveil experimentally due to their inherent conformational heterogeneity. Computational approaches, alone or in combination with experimental data, have emerged as unavoidable tools to understand the functional mechanisms of this elusive type of assemblies. The level of description used, all-atom or coarse-grained, strongly depends on the size of the molecular systems and on the timescale of the investigated mechanism. In this mini-review, we describe the most relevant architectures found for molecular interactions involving IDPs/IDRs and the computational strategies applied for their investigation.
Collapse
Affiliation(s)
- Ilinka Clerc
- LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
| | - Amin Sagar
- Centre de Biochimie Structurale, INSERM, CNRS, Université de Montpellier, France
| | - Alessandro Barducci
- Centre de Biochimie Structurale, INSERM, CNRS, Université de Montpellier, France
| | - Nathalie Sibille
- Centre de Biochimie Structurale, INSERM, CNRS, Université de Montpellier, France
| | - Pau Bernadó
- Centre de Biochimie Structurale, INSERM, CNRS, Université de Montpellier, France
| | - Juan Cortés
- LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
| |
Collapse
|
20
|
Novel Roles of SH2 and SH3 Domains in Lipid Binding. Cells 2021; 10:cells10051191. [PMID: 34068055 PMCID: PMC8152464 DOI: 10.3390/cells10051191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 01/07/2023] Open
Abstract
Signal transduction, the ability of cells to perceive information from the surroundings and alter behavior in response, is an essential property of life. Studies on tyrosine kinase action fundamentally changed our concept of cellular regulation. The induced assembly of subcellular hubs via the recognition of local protein or lipid modifications by modular protein interactions is now a central paradigm in signaling. Such molecular interactions are mediated by specific protein interaction domains. The first such domain identified was the SH2 domain, which was postulated to be a reader capable of finding and binding protein partners displaying phosphorylated tyrosine side chains. The SH3 domain was found to be involved in the formation of stable protein sub-complexes by constitutively attaching to proline-rich surfaces on its binding partners. The SH2 and SH3 domains have thus served as the prototypes for a diverse collection of interaction domains that recognize not only proteins but also lipids, nucleic acids, and small molecules. It has also been found that particular SH2 and SH3 domains themselves might also bind to and rely on lipids to modulate complex assembly. Some lipid-binding properties of SH2 and SH3 domains are reviewed here.
Collapse
|
21
|
Shrestha UR, Smith JC, Petridis L. Full structural ensembles of intrinsically disordered proteins from unbiased molecular dynamics simulations. Commun Biol 2021; 4:243. [PMID: 33623120 PMCID: PMC7902620 DOI: 10.1038/s42003-021-01759-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 01/07/2021] [Indexed: 12/13/2022] Open
Abstract
Molecular dynamics (MD) simulation is widely used to complement ensemble-averaged experiments of intrinsically disordered proteins (IDPs). However, MD often suffers from limitations of inaccuracy. Here, we show that enhancing the sampling using Hamiltonian replica-exchange MD (HREMD) led to unbiased and accurate ensembles, reproducing small-angle scattering and NMR chemical shift experiments, for three IDPs of varying sequence properties using two recently optimized force fields, indicating the general applicability of HREMD for IDPs. We further demonstrate that, unlike HREMD, standard MD can reproduce experimental NMR chemical shifts, but not small-angle scattering data, suggesting chemical shifts are insufficient for testing the validity of IDP ensembles. Surprisingly, we reveal that despite differences in their sequence, the inter-chain statistics of all three IDPs are similar for short contour lengths (< 10 residues). The results suggest that the major hurdle of generating an accurate unbiased ensemble for IDPs has now been largely overcome.
Collapse
Affiliation(s)
- Utsab R Shrestha
- Oak Ridge National Laboratory, Biosciences Division, UT/ORNL Center for Molecular Biophysics, Oak Ridge, TN, USA
| | - Jeremy C Smith
- Oak Ridge National Laboratory, Biosciences Division, UT/ORNL Center for Molecular Biophysics, Oak Ridge, TN, USA
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA
| | - Loukas Petridis
- Oak Ridge National Laboratory, Biosciences Division, UT/ORNL Center for Molecular Biophysics, Oak Ridge, TN, USA.
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA.
| |
Collapse
|
22
|
Csizmadia G, Erdős G, Tordai H, Padányi R, Tosatto S, Dosztányi Z, Hegedűs T. The MemMoRF database for recognizing disordered protein regions interacting with cellular membranes. Nucleic Acids Res 2021; 49:D355-D360. [PMID: 33119751 PMCID: PMC7778998 DOI: 10.1093/nar/gkaa954] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/25/2020] [Accepted: 10/28/2020] [Indexed: 12/19/2022] Open
Abstract
Protein and lipid membrane interactions play fundamental roles in a large number of cellular processes (e.g. signalling, vesicle trafficking, or viral invasion). A growing number of examples indicate that such interactions can also rely on intrinsically disordered protein regions (IDRs), which can form specific reversible interactions not only with proteins but also with lipids. We named IDRs involved in such membrane lipid-induced disorder-to-order transition as MemMoRFs, in an analogy to IDRs exhibiting disorder-to-order transition upon interaction with protein partners termed Molecular Recognition Features (MoRFs). Currently, both the experimental detection and computational characterization of MemMoRFs are challenging, and information about these regions are scattered in the literature. To facilitate the related investigations we generated a comprehensive database of experimentally validated MemMoRFs based on manual curation of literature and structural data. To characterize the dynamics of MemMoRFs, secondary structure propensity and flexibility calculated from nuclear magnetic resonance chemical shifts were incorporated into the database. These data were supplemented by inclusion of sentences from papers, functional data and disease-related information. The MemMoRF database can be accessed via a user-friendly interface at https://memmorf.hegelab.org, potentially providing a central resource for the characterization of disordered regions in transmembrane and membrane-associated proteins.
Collapse
Affiliation(s)
- Georgina Csizmadia
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest 1094, Hungary
| | - Gábor Erdős
- MTA-ELTE Lendület Bioinformatics Research Group, Department of Biochemistry, Eötvös Loránd University, Budapest 1117, Hungary
| | - Hedvig Tordai
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest 1094, Hungary
| | - Rita Padányi
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest 1094, Hungary
| | - Silvio Tosatto
- Department of Biomedical Sciences, University of Padua, Padua 35131, Italy
| | - Zsuzsanna Dosztányi
- MTA-ELTE Lendület Bioinformatics Research Group, Department of Biochemistry, Eötvös Loránd University, Budapest 1117, Hungary
| | - Tamás Hegedűs
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest 1094, Hungary
| |
Collapse
|
23
|
Kerjouan A, Boyault C, Oddou C, Hiriart-Bryant E, Grichine A, Kraut A, Pezet M, Balland M, Faurobert E, Bonnet I, Coute Y, Fourcade B, Albiges-Rizo C, Destaing O. Control of SRC molecular dynamics encodes distinct cytoskeletal responses by specifying signaling pathway usage. J Cell Sci 2021; 134:237349. [PMID: 33495358 DOI: 10.1242/jcs.254599] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 11/13/2020] [Indexed: 01/23/2023] Open
Abstract
Upon activation by different transmembrane receptors, the same signaling protein can induce distinct cellular responses. A way to decipher the mechanisms of such pleiotropic signaling activity is to directly manipulate the decision-making activity that supports the selection between distinct cellular responses. We developed an optogenetic probe (optoSRC) to control SRC signaling, an example of a pleiotropic signaling node, and we demonstrated its ability to generate different acto-adhesive structures (lamellipodia or invadosomes) upon distinct spatio-temporal control of SRC kinase activity. The occurrence of each acto-adhesive structure was simply dictated by the dynamics of optoSRC nanoclusters in adhesive sites, which were dependent on the SH3 and Unique domains of the protein. The different decision-making events regulated by optoSRC dynamics induced distinct downstream signaling pathways, which we characterized using time-resolved proteomic and network analyses. Collectively, by manipulating the molecular mobility of SRC kinase activity, these experiments reveal the pleiotropy-encoding mechanism of SRC signaling.
Collapse
Affiliation(s)
- Adèle Kerjouan
- Institute for Advanced Biosciences, Centre de Recherche Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, 38706 La Tronche, France
| | - Cyril Boyault
- Institute for Advanced Biosciences, Centre de Recherche Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, 38706 La Tronche, France
| | - Christiane Oddou
- Institute for Advanced Biosciences, Centre de Recherche Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, 38706 La Tronche, France
| | - Edwige Hiriart-Bryant
- Institute for Advanced Biosciences, Centre de Recherche Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, 38706 La Tronche, France
| | - Alexei Grichine
- Institute for Advanced Biosciences, Centre de Recherche Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, 38706 La Tronche, France
| | | | - Mylène Pezet
- Institute for Advanced Biosciences, Centre de Recherche Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, 38706 La Tronche, France
| | - Martial Balland
- Laboratoire Interdisciplinaire de Physique (Liphy), Université Grenoble Alpes, CNRS, 38000, 38402 Saint-Martin-d'Héres, France
| | - Eva Faurobert
- Institute for Advanced Biosciences, Centre de Recherche Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, 38706 La Tronche, France
| | - Isabelle Bonnet
- Laboratoire Physico-Chimie Curie, Institut Curie, PSL Research University, Sorbonne University, UMR 168, 75005 Paris, France
| | - Yohann Coute
- Laboratoire EDYP, BIG-BGE, CEA, 38054 Grenoble, France
| | - Bertrand Fourcade
- Laboratoire Interdisciplinaire de Physique (Liphy), Université Grenoble Alpes, CNRS, 38000, 38402 Saint-Martin-d'Héres, France
| | - Corinne Albiges-Rizo
- Institute for Advanced Biosciences, Centre de Recherche Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, 38706 La Tronche, France
| | - Olivier Destaing
- Institute for Advanced Biosciences, Centre de Recherche Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, 38706 La Tronche, France
| |
Collapse
|
24
|
Solution NMR Structure of the SH3 Domain of Human Caskin1 Validates the Lack of a Typical Peptide Binding Groove and Supports a Role in Lipid Mediator Binding. Cells 2021; 10:cells10010173. [PMID: 33467043 PMCID: PMC7830187 DOI: 10.3390/cells10010173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/10/2021] [Accepted: 01/13/2021] [Indexed: 12/15/2022] Open
Abstract
SH3 domains constitute an important class of protein modules involved in a variety of cellular functions. They participate in protein-protein interactions via their canonical ligand binding interfaces composed of several evolutionarily conserved aromatic residues forming binding grooves for typical (PxxP) and atypical (PxxxPR, RxxK, RKxxY) binding motifs. The calcium/calmodulin-dependent serine protein kinase (CASK)-interacting protein 1, or Caskin1, a multidomain scaffold protein regulating the cortical actin filaments, is enriched in neural synapses in mammals. Based on its known interaction partners and knock-out animal studies, Caskin1 may play various roles in neural function and it is thought to participate in several pathological processes of the brain. Caskin1 has a single, atypical SH3 domain in which key aromatic residues are missing from the canonical binding groove. No protein interacting partner for this SH3 domain has been identified yet. Nevertheless, we have recently demonstrated the specific binding of this SH3 domain to the signaling lipid mediator lysophospatidic acid (LPA) in vitro. Here we report the solution NMR structure of the human Caskin1 SH3 domain and analyze its structural features in comparison with other SH3 domains exemplifying different strategies in target selectivity. The key differences revealed by our structural study show that the canonical binding groove found in typical SH3 domains accommodating proline-rich motifs is missing in Caskin1 SH3, most likely excluding a bona fide protein target for the domain. The LPA binding site is distinct from the altered protein binding groove. We conclude that the SH3 domain of Caskin1 might mediate the association of Caskin1 with membrane surfaces with locally elevated LPA content.
Collapse
|
25
|
A Non-Canonical Calmodulin Target Motif Comprising a Polybasic Region and Lipidated Terminal Residue Regulates Localization. Int J Mol Sci 2020; 21:ijms21082751. [PMID: 32326637 PMCID: PMC7216078 DOI: 10.3390/ijms21082751] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/10/2020] [Accepted: 04/13/2020] [Indexed: 12/12/2022] Open
Abstract
Calmodulin (CaM) is a Ca2+-sensor that regulates a wide variety of target proteins, many of which interact through short basic helical motifs bearing two hydrophobic ‘anchor’ residues. CaM comprises two globular lobes, each containing a pair of EF-hand Ca2+-binding motifs that form a Ca2+-induced hydrophobic pocket that binds an anchor residue. A central flexible linker allows CaM to accommodate diverse targets. Several reported CaM interactors lack these anchors but contain Lys/Arg-rich polybasic sequences adjacent to a lipidated N- or C-terminus. Ca2+-CaM binds the myristoylated N-terminus of CAP23/NAP22 with intimate interactions between the lipid and a surface comprised of the hydrophobic pockets of both lobes, while the basic residues make electrostatic interactions with the negatively charged surface of CaM. Ca2+-CaM binds farnesylcysteine, derived from the farnesylated polybasic C-terminus of KRAS4b, with the lipid inserted into the C-terminal lobe hydrophobic pocket. CaM sequestration of the KRAS4b farnesyl moiety disrupts KRAS4b membrane association and downstream signaling. Phosphorylation of basic regions of N-/C-terminal lipidated CaM targets can reduce affinity for both CaM and the membrane. Since both N-terminal myristoylated and C-terminal prenylated proteins use a Singly Lipidated Polybasic Terminus (SLIPT) for CaM binding, we propose these polybasic lipopeptide elements comprise a non-canonical CaM-binding motif.
Collapse
|
26
|
Pond MP, Eells R, Treece BW, Heinrich F, Lösche M, Roux B. Membrane Anchoring of Hck Kinase via the Intrinsically Disordered SH4-U and Length Scale Associated with Subcellular Localization. J Mol Biol 2019; 432:2985-2997. [PMID: 31877324 DOI: 10.1016/j.jmb.2019.11.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 12/21/2022]
Abstract
Src family kinases (SFKs) are a group of nonreceptor tyrosine kinases that are characterized by their involvement in critical signal transduction pathways. SFKs are often found attached to membranes, but little is known about the conformation of the protein in this environment. Here, solution nuclear magnetic resonance (NMR), neutron reflectometry (NR), and molecular dynamics (MD) simulations were employed to study the membrane interactions of the intrinsically disordered SH4 and Unique domains of the Src family kinase Hck. Through development of a procedure to combine the information from the different techniques, we were able produce a first-of-its-kind atomically detailed structural ensemble of a membrane-bound intrinsically disordered protein. Evaluation of the model demonstrated its consistency with previous work and provided insight into how SFK Unique domains act to differentiate the family members from one another. Fortuitously, the position of the ensemble on the membrane allowed the model to be combined with configurations of the multidomain Hck kinase previously determined from small-angle solution X-ray scattering to produce full-length models of membrane-anchored Hck. The resulting models allowed us to estimate that the kinase active site is positioned about 65 ± 35 Å away from the membrane surface, offering the first estimations of the length scale associated with the concept of SFK subcellular localization.
Collapse
Affiliation(s)
- Matthew P Pond
- Department of Biochemistry and Molecular Biology, Gordon Center for Integrative Science, University of Chicago, Chicago, IL, 60637, USA
| | - Rebecca Eells
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Bradley W Treece
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Frank Heinrich
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA, 15213, USA; Center for Neutron Research, NIST, Gaithersburg, MD, 20899, USA
| | - Mathias Lösche
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA, 15213, USA; Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA; Center for Neutron Research, NIST, Gaithersburg, MD, 20899, USA
| | - Benoît Roux
- Department of Biochemistry and Molecular Biology, Gordon Center for Integrative Science, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
27
|
Zhao T, Liu Y, Wang Z, He R, Xiang Zhang J, Xu F, Lei M, Deci MB, Nguyen J, Bianco PR. Super-resolution imaging reveals changes in Escherichia coli SSB localization in response to DNA damage. Genes Cells 2019; 24:814-826. [PMID: 31638317 DOI: 10.1111/gtc.12729] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 01/11/2023]
Abstract
The E. coli single-stranded DNA-binding protein (SSB) is essential to viability. It plays key roles in DNA metabolism where it binds to nascent single strands of DNA and to target proteins known as the SSB interactome. There are >2,000 tetramers of SSB per cell with 100-150 associated with the genome at any one time, either at DNA replication forks or at sites of repair. The remaining 1,900 tetramers could constantly diffuse throughout the cytosol or be associated with the inner membrane as observed for other DNA metabolic enzymes. To visualize SSB localization and to ascertain potential spatiotemporal changes in response to DNA damage, SSB-GFP chimeras were visualized using a novel, super-resolution microscope optimized for the study of prokaryotic cells. In the absence of DNA damage, SSB localizes to a small number of foci and the excess protein is associated with the inner membrane where it binds to the major phospholipids. Within five minutes following DNA damage, the vast majority of SSB disengages from the membrane and is found almost exclusively in the cell interior. Here, it is observed in a large number of foci, in discreet structures or, in diffuse form spread over the genome, thereby enabling repair events.
Collapse
Affiliation(s)
- Tianyu Zhao
- Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, State Key Laboratory of Transient Optics and Photonics, Xi'an, China
| | - Yan Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zilin Wang
- Center for Single Molecule Biophysics and, Department of Microbiology and Immunology, University at Buffalo, Buffalo, NY, USA
| | - Rongyan He
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jia Xiang Zhang
- Center for Single Molecule Biophysics and, Department of Microbiology and Immunology, University at Buffalo, Buffalo, NY, USA
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ming Lei
- Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, State Key Laboratory of Transient Optics and Photonics, Xi'an, China
| | - Michael B Deci
- Department of Pharmaceutical Sciences, School of Pharmacy, University at Buffalo, Buffalo, NY, USA
| | - Juliane Nguyen
- Department of Pharmaceutical Sciences, School of Pharmacy, University at Buffalo, Buffalo, NY, USA
| | - Piero R Bianco
- Center for Single Molecule Biophysics and, Department of Microbiology and Immunology, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
28
|
Generation of the configurational ensemble of an intrinsically disordered protein from unbiased molecular dynamics simulation. Proc Natl Acad Sci U S A 2019; 116:20446-20452. [PMID: 31548393 DOI: 10.1073/pnas.1907251116] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) are abundant in eukaryotic proteomes, play a major role in cell signaling, and are associated with human diseases. To understand IDP function it is critical to determine their configurational ensemble, i.e., the collection of 3-dimensional structures they adopt, and this remains an immense challenge in structural biology. Attempts to determine this ensemble computationally have been hitherto hampered by the necessity of reweighting molecular dynamics (MD) results or biasing simulation in order to match ensemble-averaged experimental observables, operations that reduce the precision of the generated model because different structural ensembles may yield the same experimental observable. Here, by employing enhanced sampling MD we reproduce the experimental small-angle neutron and X-ray scattering profiles and the NMR chemical shifts of the disordered N terminal (SH4UD) of c-Src kinase without reweighting or constraining the simulations. The unbiased simulation results reveal a weakly funneled and rugged free energy landscape of SH4UD, which gives rise to a heterogeneous ensemble of structures that cannot be described by simple polymer theory. SH4UD adopts transient helices, which are found away from known phosphorylation sites and could play a key role in the stabilization of structural regions necessary for phosphorylation. Our findings indicate that adequately sampled molecular simulations can be performed to provide accurate physical models of flexible biosystems, thus rationalizing their biological function.
Collapse
|
29
|
Demerdash O, Shrestha UR, Petridis L, Smith JC, Mitchell JC, Ramanathan A. Using Small-Angle Scattering Data and Parametric Machine Learning to Optimize Force Field Parameters for Intrinsically Disordered Proteins. Front Mol Biosci 2019; 6:64. [PMID: 31475155 PMCID: PMC6705226 DOI: 10.3389/fmolb.2019.00064] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/16/2019] [Indexed: 12/26/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) and proteins with intrinsically disordered regions (IDRs) play important roles in many aspects of normal cell physiology, such as signal transduction and transcription, as well as pathological states, including Alzheimer's, Parkinson's, and Huntington's disease. Unlike their globular counterparts that are defined by a few structures and free energy minima, IDP/IDR comprise a large ensemble of rapidly interconverting structures and a corresponding free energy landscape characterized by multiple minima. This aspect has precluded the use of structural biological techniques, such as X-ray crystallography and nuclear magnetic resonance (NMR) for resolving their structures. Instead, low-resolution techniques, such as small-angle X-ray or neutron scattering (SAXS/SANS), have become a mainstay in characterizing coarse features of the ensemble of structures. These are typically complemented with NMR data if possible or computational techniques, such as atomistic molecular dynamics, to further resolve the underlying ensemble of structures. However, over the past 10–15 years, it has become evident that the classical, pairwise-additive force fields that have enjoyed a high degree of success for globular proteins have been somewhat limited in modeling IDP/IDR structures that agree with experiment. There has thus been a significant effort to rehabilitate these models to obtain better agreement with experiment, typically done by optimizing parameters in a piecewise fashion. In this work, we take a different approach by optimizing a set of force field parameters simultaneously, using machine learning to adapt force field parameters to experimental SAXS scattering profiles. We demonstrate our approach in modeling three biologically IDP ensembles based on experimental SAXS profiles and show that our optimization approach significantly improve force field parameters that generate ensembles in better agreement with experiment.
Collapse
Affiliation(s)
- Omar Demerdash
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States.,University of Tennessee/Oak Ridge National Laboratory Center for Molecular Biophysics, Oak Ridge, TN, United States
| | - Utsab R Shrestha
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States.,University of Tennessee/Oak Ridge National Laboratory Center for Molecular Biophysics, Oak Ridge, TN, United States
| | - Loukas Petridis
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States.,University of Tennessee/Oak Ridge National Laboratory Center for Molecular Biophysics, Oak Ridge, TN, United States
| | - Jeremy C Smith
- University of Tennessee/Oak Ridge National Laboratory Center for Molecular Biophysics, Oak Ridge, TN, United States.,Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, United States
| | - Julie C Mitchell
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States.,University of Tennessee/Oak Ridge National Laboratory Center for Molecular Biophysics, Oak Ridge, TN, United States
| | - Arvind Ramanathan
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States.,Data Science and Learning Division, Argonne National Laboratory, Lemont, IL, United States
| |
Collapse
|
30
|
Cai ML, Wang MY, Zhang CH, Wang JX, Liu H, He HW, Zhao WL, Xia GM, Shao RG. Role of co- and post-translational modifications of SFKs in their kinase activation. J Drug Target 2019; 28:23-32. [PMID: 31094236 DOI: 10.1080/1061186x.2019.1616297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Src family kinases (SFKs) are non-receptor tyrosine kinases and are involved in various cellular functions (proliferation, differentiation, migration, survival and invasion) by regulating downstream pathways. Considerable evidence suggests that co- and post-translational modifications are highly related to the activation of SFKs and their downstream signals. How SFKs are activated and how their subsequent cascades were regulated has been reviewed in previous reports. However, the contribution of co- and post-translational modification to SFKs activation has not been fully elucidated. This review focuses on the effect of these modifications on SFKs activity according to structural and biochemical studies and uncovers the significance of co-and post-translational modifications in the regulation of SFKs activity.
Collapse
Affiliation(s)
- Mei-Lian Cai
- China Academy of Medical Sciences, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Meng-Yan Wang
- China Academy of Medical Sciences, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Cong-Hui Zhang
- China Academy of Medical Sciences, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jun-Xia Wang
- China Academy of Medical Sciences, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Hong Liu
- China Academy of Medical Sciences, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Hong-Wei He
- China Academy of Medical Sciences, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Wu-Li Zhao
- China Academy of Medical Sciences, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Gui-Ming Xia
- China Academy of Medical Sciences, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Rong-Guang Shao
- China Academy of Medical Sciences, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
31
|
Gerth F, Jäpel M, Sticht J, Kuropka B, Schmitt XJ, Driller JH, Loll B, Wahl MC, Pagel K, Haucke V, Freund C. Exon Inclusion Modulates Conformational Plasticity and Autoinhibition of the Intersectin 1 SH3A Domain. Structure 2019; 27:977-987.e5. [DOI: 10.1016/j.str.2019.03.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 01/21/2019] [Accepted: 03/25/2019] [Indexed: 11/16/2022]
|
32
|
Mohammad IL, Mateos B, Pons M. The disordered boundary of the cell: emerging properties of membrane-bound intrinsically disordered proteins. Biomol Concepts 2019; 10:25-36. [DOI: 10.1515/bmc-2019-0003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 01/28/2019] [Indexed: 12/12/2022] Open
Abstract
AbstractWe define the disordered boundary of the cell (DBC) as the system formed by membrane tethered intrinsically disordered protein regions, dynamically coupled to the underlying membrane.The emerging properties of the DBC makes it a global system of study, which cannot be understood from the individual properties of their components. Similarly, the properties of lipid bilayers cannot be understood from just the sum of the properties of individual lipid molecules.The highly anisotropic confined environment, restricting the position and orientation of interacting sites, is affecting the properties of individual disordered proteins. In fact, the collective effect caused by high concentrations of disordered proteins extend beyond the sum of individual effects.Examples of emerging properties of the DBC include enhanced protein-protein interactions, protein-driven phase separations, Z-compartmentalization, and protein modulated electrostatics.
Collapse
Affiliation(s)
- Irrem-Laareb Mohammad
- BioNMR Laboratory, Inorganic and Organic Chemistry Department, University of Barcelona, Baldiri Reixac 10-12, 08028Barcelona, Spain
| | - Borja Mateos
- Max F. Perutz Laboratories, Department of Computational and Structural Biology, University of Vienna, Campus Vienna Biocenter 5, 1030Vienna, Austria
| | - Miquel Pons
- BioNMR Laboratory, Inorganic and Organic Chemistry Department, University of Barcelona, Baldiri Reixac 10-12, 08028Barcelona, Spain
| |
Collapse
|
33
|
Xiao X, Yang Y, Mao B, Cheng CY, Ni Y. Emerging role for SRC family kinases in junction dynamics during spermatogenesis. Reproduction 2019; 157:R85-R94. [PMID: 30608903 PMCID: PMC6602873 DOI: 10.1530/rep-18-0440] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/03/2019] [Indexed: 12/22/2022]
Abstract
SRC family kinases (SFKs) are known regulators of multiple cellular events, including cell movement, differentiation, proliferation, survival and apoptosis. SFKs are expressed virtually by all mammalian cells. They are non-receptor protein kinases that phosphorylate a variety of cellular proteins on tyrosine, leading to the activation of protein targets in response to environmental stimuli. Among SFKs, SRC, YES and FYN are the ubiquitously expressed and best studied members. In fact, SRC, the prototypical SFK, was the first tyrosine kinase identified in mammalian cells. Studies have shown that SFKs are regulators of cell junctions, and function in endocytosis and membrane trafficking to regulate junction restructuring events. Herein, we briefly summarize the recent findings in the field regarding the role of SFKs in the testis in regulating spermatogenesis, particularly in Sertoli-Sertoli and Sertoli-germ cell adhesion. While it is almost 50 years since the identification of the oncogene v-Src encoded by Rous sarcoma transforming virus, the understanding of SFK involvement during spermatogenesis in the testis remains far behind that in other epithelia and tissues. The goal of this review is to bridge this gap.
Collapse
Affiliation(s)
- Xiang Xiao
- Department of Reproductive Physiology, Zhejiang Academy of Medical Sciences, Hangzhou 310013, Zhejiang, China
| | - Yue Yang
- Department of Reproductive Physiology, Zhejiang Academy of Medical Sciences, Hangzhou 310013, Zhejiang, China
| | - Baiping Mao
- The Mary M. Woldford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, United States
| | - C. Yan Cheng
- The Mary M. Woldford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, United States
| | - Ya Ni
- Department of Reproductive Physiology, Zhejiang Academy of Medical Sciences, Hangzhou 310013, Zhejiang, China
| |
Collapse
|
34
|
Le Roux AL, Mohammad IL, Mateos B, Arbesú M, Gairí M, Khan FA, Teixeira JMC, Pons M. A Myristoyl-Binding Site in the SH3 Domain Modulates c-Src Membrane Anchoring. iScience 2019; 12:194-203. [PMID: 30690395 PMCID: PMC6354742 DOI: 10.1016/j.isci.2019.01.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/04/2018] [Accepted: 01/04/2019] [Indexed: 12/25/2022] Open
Abstract
The c-Src oncogene is anchored to the cytoplasmic membrane through its N-terminal myristoylated SH4 domain. This domain is part of an intramolecular fuzzy complex with the SH3 and Unique domains. Here we show that the N-terminal myristoyl group binds to the SH3 domain in the proximity of the RT loop, when Src is not anchored to a lipid membrane. Residues in the so-called Unique Lipid Binding Region modulate this interaction. In the presence of lipids, the myristoyl group is released from the SH3 domain and inserts into the lipid membrane. The fuzzy complex with the SH4 and Unique domains is retained in the membrane-bound form, placing the SH3 domain close to the membrane surface and restricting its orientation. The apparent affinity of myristoylated proteins containing the SH4, Unique, and SH3 domains is modulated by these intramolecular interactions, suggesting a mechanism linking c-Src activation and membrane anchoring.
Collapse
Affiliation(s)
- Anabel-Lise Le Roux
- BioNMR Laboratory, Inorganic and Organic Chemistry Department, Universitat de Barcelona, Baldiri Reixac, 10-12, 08028 Barcelona, Spain
| | - Irrem-Laareb Mohammad
- BioNMR Laboratory, Inorganic and Organic Chemistry Department, Universitat de Barcelona, Baldiri Reixac, 10-12, 08028 Barcelona, Spain
| | - Borja Mateos
- BioNMR Laboratory, Inorganic and Organic Chemistry Department, Universitat de Barcelona, Baldiri Reixac, 10-12, 08028 Barcelona, Spain
| | - Miguel Arbesú
- BioNMR Laboratory, Inorganic and Organic Chemistry Department, Universitat de Barcelona, Baldiri Reixac, 10-12, 08028 Barcelona, Spain
| | - Margarida Gairí
- NMR Facility, Scientific and Technological Centers, Universitat de Barcelona, Baldiri Reixac, 10-12, 08028 Barcelona, Spain
| | - Farman Ali Khan
- BioNMR Laboratory, Inorganic and Organic Chemistry Department, Universitat de Barcelona, Baldiri Reixac, 10-12, 08028 Barcelona, Spain; Department of Biochemistry, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - João M C Teixeira
- BioNMR Laboratory, Inorganic and Organic Chemistry Department, Universitat de Barcelona, Baldiri Reixac, 10-12, 08028 Barcelona, Spain
| | - Miquel Pons
- BioNMR Laboratory, Inorganic and Organic Chemistry Department, Universitat de Barcelona, Baldiri Reixac, 10-12, 08028 Barcelona, Spain.
| |
Collapse
|
35
|
Erlendsson S, Thorsen TS, Vauquelin G, Ammendrup-Johnsen I, Wirth V, Martinez KL, Teilum K, Gether U, Madsen KL. Mechanisms of PDZ domain scaffold assembly illuminated by use of supported cell membrane sheets. eLife 2019; 8:39180. [PMID: 30605082 PMCID: PMC6345565 DOI: 10.7554/elife.39180] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 01/02/2019] [Indexed: 01/07/2023] Open
Abstract
PDZ domain scaffold proteins are molecular modules orchestrating cellular signalling in space and time. Here, we investigate assembly of PDZ scaffolds using supported cell membrane sheets, a unique experimental setup enabling direct access to the intracellular face of the cell membrane. Our data demonstrate how multivalent protein-protein and protein-lipid interactions provide critical avidity for the strong binding between the PDZ domain scaffold proteins, PICK1 and PSD-95, and their cognate transmembrane binding partners. The kinetics of the binding were remarkably slow and binding strength two-three orders of magnitude higher than the intrinsic affinity for the isolated PDZ interaction. Interestingly, discrete changes in the intrinsic PICK1 PDZ affinity did not affect overall binding strength but instead revealed dual scaffold modes for PICK1. Our data supported by simulations suggest that intrinsic PDZ domain affinities are finely tuned and encode specific cellular responses, enabling multiplexed cellular functions of PDZ scaffolds. Inside a cell, many different signals carry information that is essential for the cell to remain healthy and perform its role in the body. It is, therefore, very important that the signals are sent to the right places at the right times. Scaffold proteins play an essential role in organizing these signals by bringing specific proteins and other molecules into close contact at particular times and locations within the cell. Defects in scaffolding proteins can lead to cancer, psychiatric disorders and other diseases, so these proteins represent potential new targets for medicinal drugs. Many scaffolding proteins assemble groups of proteins on the surface of the membrane that surrounds the cell. Previous studies have shown that scaffolding proteins are able to bind to several other proteins as well as the membrane itself at the same time. However, the precise way in which scaffolding proteins assemble such groups is not clear because it is technically challenging to study this process in living cells. To overcome this challenge, Erlendsson, Thorsen et al. used a new experimental setup known as supported cell membrane sheets – which provides direct access to the side of the cell membrane that usually faces into the cell – to study two scaffolding proteins known as PICK1 and PSD-95. The experiments show that PICK1 and PSD-95 bind to their partner proteins up to 100 times more strongly than previously observed using other approaches. This is due to the scaffolding proteins binding more strongly to both their partners and the membrane. Unexpectedly, the experiments show that the shape and physical characteristics of the partner protein have no effect on the increase in the strength of the binding. Further experiments suggest that altering the ability of the PDZ domain of PICK1 to bind to partner proteins changes the mode of action of the PICK1 protein so that it can activate different responses in the cell. Together these findings imply that the ability of scaffolding proteins to bind to their partner proteins is finely tuned to encode specific responses in cells in different situations – a hypothesis that Erlendsson, Thorsen et al. are planning to test in intact cells.
Collapse
Affiliation(s)
- Simon Erlendsson
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, Denmark.,Structural Biology and NMR Laboratory, Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Thor Seneca Thorsen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Georges Vauquelin
- Molecular and Biochemical Pharmacology, Department of Biotechnology, Free University Brussels (VUB), Brussels, Belgium
| | - Ina Ammendrup-Johnsen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Volker Wirth
- Bionanotechnology and Nanomedicine Laboratory, Department of Chemistry, Nano-science Center, University of Copenhagen, Copenhagen, Denmark
| | - Karen L Martinez
- Bionanotechnology and Nanomedicine Laboratory, Department of Chemistry, Nano-science Center, University of Copenhagen, Copenhagen, Denmark
| | - Kaare Teilum
- Structural Biology and NMR Laboratory, Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Ulrik Gether
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Kenneth Lindegaard Madsen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
36
|
Merida I, Arranz-Nicolás J, Torres-Ayuso P, Ávila-Flores A. Diacylglycerol Kinase Malfunction in Human Disease and the Search for Specific Inhibitors. Handb Exp Pharmacol 2019; 259:133-162. [PMID: 31227890 DOI: 10.1007/164_2019_221] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The diacylglycerol kinases (DGKs) are master regulator kinases that control the switch from diacylglycerol (DAG) to phosphatidic acid (PA), two lipids with important structural and signaling properties. Mammalian DGKs distribute into five subfamilies that regulate local availability of DAG and PA pools in a tissue- and subcellular-restricted manner. Pharmacological manipulation of DGK activity holds great promise, given the critical contribution of specific DGK subtypes to the control of membrane structure, signaling complexes, and cell-cell communication. The latest advances in the DGK field have unveiled the differential contribution of selected isoforms to human disease. Defects in the expression/activity of individual DGK isoforms contribute substantially to cognitive impairment, mental disorders, insulin resistance, and vascular pathologies. Abnormal DGK overexpression, on the other hand, confers the acquisition of malignant traits including invasion, chemotherapy resistance, and inhibition of immune attack on tumors. Translation of these findings into therapeutic approaches will require development of methods to pharmacologically modulate DGK functions. In particular, inhibitors that target the DGKα isoform hold particular promise in the fight against cancer, on their own or in combination with immune-targeting therapies.
Collapse
Affiliation(s)
- Isabel Merida
- Department of Immunology and Oncology, National Center of Biotechnology (CNB-CSIC), Madrid, Spain.
| | - Javier Arranz-Nicolás
- Department of Immunology and Oncology, National Center of Biotechnology (CNB-CSIC), Madrid, Spain
| | - Pedro Torres-Ayuso
- Laboratory of Cell and Developmental Signaling, National Cancer Institute (NCI-NIH), Frederick, MD, USA
| | - Antonia Ávila-Flores
- Department of Immunology and Oncology, National Center of Biotechnology (CNB-CSIC), Madrid, Spain
| |
Collapse
|
37
|
Intrinsic disorder in the regulatory N-terminal domain of diacylglycerol acyltransferase 1 from Brassica napus. Sci Rep 2018; 8:16665. [PMID: 30420764 PMCID: PMC6232145 DOI: 10.1038/s41598-018-34339-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 10/12/2018] [Indexed: 12/17/2022] Open
Abstract
Proteins with multifunctional regulatory domains often demonstrate structural plasticity or protein disorder, allowing the binding of multiple regulatory factors and post-translational modifications. While the importance of protein disorder is clear, it also poses a challenge for in vitro characterization. Here, we report protein intrinsic disorder in a plant molecular system, which despite its prevalence is less studied. We present a detailed biophysical characterization of the entire cytoplasmic N-terminal domain of Brassica napus diacylglycerol acyltransferase, (DGAT1), which includes an inhibitory module and allosteric binding sites. Our results demonstrate that the monomeric N-terminal domain can be stabilized for biophysical characterization and is largely intrinsically disordered in solution. This domain interacts with allosteric modulators of DGAT1, CoA and oleoyl-CoA, at micromolar concentrations. While solution scattering studies indicate conformational heterogeneity in the N-terminal domain of DGAT1, there is a small gain of secondary structure induced by ligand binding.
Collapse
|
38
|
Dandoulaki M, Petsalaki E, Sumpton D, Zanivan S, Zachos G. Src activation by Chk1 promotes actin patch formation and prevents chromatin bridge breakage in cytokinesis. J Cell Biol 2018; 217:3071-3089. [PMID: 29954829 PMCID: PMC6122982 DOI: 10.1083/jcb.201802102] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 04/16/2018] [Accepted: 06/03/2018] [Indexed: 12/23/2022] Open
Abstract
In cytokinesis with chromatin bridges, cells delay abscission and retain actin patches at the intercellular canal to prevent chromosome breakage. In this study, we show that inhibition of Src, a protein-tyrosine kinase that regulates actin dynamics, or Chk1 kinase correlates with chromatin breakage and impaired formation of actin patches but not with abscission in the presence of chromatin bridges. Chk1 is required for optimal localization and complete activation of Src. Furthermore, Chk1 phosphorylates human Src at serine 51, and phosphorylated Src localizes to actin patches, the cell membrane, or the nucleus. Nonphosphorylatable mutation of S51 to alanine reduces Src catalytic activity and impairs formation of actin patches, whereas expression of a phosphomimicking Src-S51D protein rescues actin patches and prevents chromatin breakage in Chk1-deficient cells. We propose that Chk1 phosphorylates Src-S51 to fully induce Src kinase activity and that phosphorylated Src promotes formation of actin patches and stabilizes chromatin bridges. These results identify proteins that regulate formation of actin patches in cytokinesis.
Collapse
Affiliation(s)
| | - Eleni Petsalaki
- Department of Biology, University of Crete, Heraklion, Greece
| | - David Sumpton
- Cancer Research UK Beatson Institute, Glasgow, Scotland, UK
| | - Sara Zanivan
- Cancer Research UK Beatson Institute, Glasgow, Scotland, UK
- Institute of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, Scotland, UK
| | - George Zachos
- Department of Biology, University of Crete, Heraklion, Greece
| |
Collapse
|
39
|
Zhou J, Zhao S, Dunker AK. Intrinsically Disordered Proteins Link Alternative Splicing and Post-translational Modifications to Complex Cell Signaling and Regulation. J Mol Biol 2018; 430:2342-2359. [DOI: 10.1016/j.jmb.2018.03.028] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 03/25/2018] [Accepted: 03/27/2018] [Indexed: 10/24/2022]
|
40
|
Tsutsui Y, Hays FA. A Link Between Alzheimer's and Type II Diabetes Mellitus? Ca +2 -Mediated Signal Control and Protein Localization. Bioessays 2018; 40:e1700219. [PMID: 29694668 PMCID: PMC6166406 DOI: 10.1002/bies.201700219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 03/16/2018] [Indexed: 01/28/2023]
Abstract
We propose protein localization dependent signal activation (PLDSA) as a model to describe pre-existing protein partitioning between the cytosol, and membrane surface, as a means to modulate signal activation, specificity, and robustness. We apply PLDSA to explain possible molecular links between type II diabetes mellitus (T2DM) and Alzheimer's disease (AD) by describing Ca+2 -mediated interactions between the Src non-receptor tyrosine kinase and p52Shc adaptor protein. We suggest that these interactions may serve as a contributing factor to disease development and progression. In particular, we propose that signaling response is regulated, in part, by Ca+2 -mediated partitioning of lipid-bound and soluble forms of Src and p52shc. Thus, protein-protein interactions that drive signaling in response to extracellular ligand binding are also mediated by partitioning of signaling proteins between membrane-bound and soluble populations. We propose that PLDSA effects may explain, in part, the evolutionary basis of promiscuous protein interaction domains and their importance in cellular function.
Collapse
Affiliation(s)
- Yuko Tsutsui
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| | - Franklin A. Hays
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, United States
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, United States
| |
Collapse
|
41
|
Arbesú M, Iruela G, Fuentes H, Teixeira JMC, Pons M. Intramolecular Fuzzy Interactions Involving Intrinsically Disordered Domains. Front Mol Biosci 2018; 5:39. [PMID: 29761107 PMCID: PMC5936776 DOI: 10.3389/fmolb.2018.00039] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/03/2018] [Indexed: 01/16/2023] Open
Abstract
Structural disorder is an essential ingredient for function in many proteins and protein complexes. Fuzzy complexes describe the many instances where disorder is maintained as a critical element of protein interactions. In this minireview we discuss how intramolecular fuzzy interactions function in signaling complexes. Focussing on the Src family of kinases, we argue that the intrinsically disordered domains that are unique for each of the family members and display a clear fingerprint of long range interactions in Src, might have critical roles as functional sensor or effectors and mediate allosteric communication via fuzzy interactions.
Collapse
Affiliation(s)
- Miguel Arbesú
- BioNMR Laboratory, Inorganic and Organic Chemistry Department, University of Barcelona, Barcelona, Spain
| | - Guillermo Iruela
- BioNMR Laboratory, Inorganic and Organic Chemistry Department, University of Barcelona, Barcelona, Spain
| | - Héctor Fuentes
- BioNMR Laboratory, Inorganic and Organic Chemistry Department, University of Barcelona, Barcelona, Spain
| | - João M C Teixeira
- BioNMR Laboratory, Inorganic and Organic Chemistry Department, University of Barcelona, Barcelona, Spain
| | - Miquel Pons
- BioNMR Laboratory, Inorganic and Organic Chemistry Department, University of Barcelona, Barcelona, Spain
| |
Collapse
|
42
|
Ren L, Li C, Wang Y, Teng Y, Sun H, Xing B, Yang X, Jiang Y, He F. In Vivo Phosphoproteome Analysis Reveals Kinome Reprogramming in Hepatocellular Carcinoma. Mol Cell Proteomics 2018; 17:1067-1083. [PMID: 29472430 DOI: 10.1074/mcp.ra117.000421] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 02/10/2018] [Indexed: 12/19/2022] Open
Abstract
Aberrant kinases contribute to cancer survival and proliferation. Here, we quantitatively characterized phosphoproteomic changes in an HBx-transgenic mouse model of hepatocellular carcinoma (HCC) using high-resolution mass spectrometry, profiled 22,539 phosphorylation sites on 5431 proteins. Using a strategy to interpret kinase- substrate relations in HCC and to uncover predominant kinases in tumors, our results, revealed elevated kinase activities of Src family kinases (SFKs), PKCs, MAPKs, and ROCK2 in HCC, representatives of which were further validated in cell models and clinical HBV-positive HCC samples. Inhibitor combinations targeting Src and PKCs or ROCK2 both synergized significantly to inhibit cell growth. In addition, we demonstrated that phosphorylation at Src Ser17 directly affects its kinase activity. Our phosphoproteome data facilitated the construction of a detailed molecular landscape in HCC and should serve as a resource for the cancer community. Our strategy is generally applicable to targeted therapeutics, also highlights potential mechanisms of kinase regulation.
Collapse
Affiliation(s)
- Liangliang Ren
- From the ‡State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Chaoying Li
- From the ‡State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Youliang Wang
- §State Key Laboratory of Proteomics, Genetic Laboratory of Development and Diseases, Institute of Biotechnology, Beijing 100071, China
| | - Yan Teng
- §State Key Laboratory of Proteomics, Genetic Laboratory of Development and Diseases, Institute of Biotechnology, Beijing 100071, China
| | - Huichuan Sun
- ¶Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Baocai Xing
- ‖Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Hepatopancreatobiliary Surgery Department I, Peking University; Cancer Hospital & Institute, Beijing 100042, China
| | - Xiao Yang
- §State Key Laboratory of Proteomics, Genetic Laboratory of Development and Diseases, Institute of Biotechnology, Beijing 100071, China
| | - Ying Jiang
- From the ‡State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China;
| | - Fuchu He
- From the ‡State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China;
| |
Collapse
|
43
|
Ivetic A. A head-to-tail view of L-selectin and its impact on neutrophil behaviour. Cell Tissue Res 2018; 371:437-453. [PMID: 29353325 PMCID: PMC5820395 DOI: 10.1007/s00441-017-2774-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 12/05/2017] [Indexed: 01/04/2023]
Abstract
L-selectin is a type I transmembrane cell adhesion molecule expressed on most circulating leukocytes, including neutrophils. Engagement of L-selectin with endothelial-derived ligands initiates neutrophil tethering and rolling behaviour along luminal walls of post-capillary venules, constituting the first step of the multi-step adhesion cascade. There is a large body of evidence to suggest that signalling downstream of L-selectin can influence neutrophil behaviour: adhesion, migration and priming. This review will cover aspects of L-selectin form and function and introduce the “triad of L-selectin regulation”, highlighting the inextricable links between adhesion, signalling and ectodomain shedding and also highlighting the cytosolic proteins that interconnect them. Recent advances in how L-selectin impacts priming, transendothelial migration (TEM) and cell polarity will also be discussed.
Collapse
Affiliation(s)
- Aleksandar Ivetic
- BHF Centre for Research Excellence, School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, James Black Centre 125, Coldharbour Lane, London, SE5 9NU, UK.
| |
Collapse
|
44
|
A Ser75-to-Asp phospho-mimicking mutation in Src accelerates ageing-related loss of retinal ganglion cells in mice. Sci Rep 2017; 7:16779. [PMID: 29196663 PMCID: PMC5711949 DOI: 10.1038/s41598-017-16872-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 11/18/2017] [Indexed: 11/08/2022] Open
Abstract
Src knockout mice show no detectable abnormalities in central nervous system (CNS) post-mitotic neurons, likely reflecting functional compensation by other Src family kinases. Cdk1- or Cdk5-dependent Ser75 phosphorylation in the amino-terminal Unique domain of Src, which shares no homology with other Src family kinases, regulates the stability of active Src. To clarify the roles of Src Ser75 phosphorylation in CNS neurons, we established two types of mutant mice with mutations in Src: phospho-mimicking Ser75Asp (SD) and non-phosphorylatable Ser75Ala (SA). In ageing SD/SD mice, retinal ganglion cell (RGC) number in whole retinas was significantly lower than that in young SD/SD mice in the absence of inflammation and elevated intraocular pressure, resembling the pathogenesis of progressive optic neuropathy. By contrast, SA/SA mice and wild-type (WT) mice exhibited no age-related RGC loss. The age-related retinal RGC number reduction was greater in the peripheral rather than the mid-peripheral region of the retina in SD/SD mice. Furthermore, Rho-associated kinase activity in whole retinas of ageing SD/SD mice was significantly higher than that in young SD/SD mice. These results suggest that Src regulates RGC survival during ageing in a manner that depends on Ser75 phosphorylation.
Collapse
|
45
|
Arbesú M, Maffei M, Cordeiro TN, Teixeira JMC, Pérez Y, Bernadó P, Roche S, Pons M. The Unique Domain Forms a Fuzzy Intramolecular Complex in Src Family Kinases. Structure 2017; 25:630-640.e4. [PMID: 28319009 DOI: 10.1016/j.str.2017.02.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/04/2017] [Accepted: 02/23/2017] [Indexed: 11/18/2022]
Abstract
The N-terminal regulatory region of c-Src including the SH4, Unique, and SH3 domains adopts a compact, yet highly dynamic, structure that can be described as an intramolecular fuzzy complex. Most of the long-range interactions within the Unique domain are also observed in constructs lacking the structured SH3, indicating a considerable degree of preorganization of the disordered Unique domain. Here we report that members of the Src family of kinases (SFK) share well-conserved sequence features involving aromatic residues in their Unique domains. This observation contrasts with the supposed lack of sequence homology implied by the name of these domains and suggests that the other members of SFK also have a regulatory region involving their Unique domains. We argue that the Unique domain of each SFK is sensitive to specific input signals, encoded by each specific sequence, but the entire family shares a common mechanism for connecting the disordered and structured domains.
Collapse
Affiliation(s)
- Miguel Arbesú
- BioNMR Laboratory, Inorganic and Organic Chemistry Department, Universitat de Barcelona, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Mariano Maffei
- BioNMR Laboratory, Inorganic and Organic Chemistry Department, Universitat de Barcelona, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Tiago N Cordeiro
- Centre de Biochimie Structurale, INSERM U1054, CNRS UMR 5048, Université Montpellier 1 and 2, 34092 Montpellier, France; Instituto de Tecnologia Química e Biológica António Xavier, ITQB NOVA, Avenida da República, 2780-157 Oeiras, Portugal
| | - João M C Teixeira
- BioNMR Laboratory, Inorganic and Organic Chemistry Department, Universitat de Barcelona, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Yolanda Pérez
- BioNMR Laboratory, Inorganic and Organic Chemistry Department, Universitat de Barcelona, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Pau Bernadó
- Centre de Biochimie Structurale, INSERM U1054, CNRS UMR 5048, Université Montpellier 1 and 2, 34092 Montpellier, France
| | - Serge Roche
- CNRS UMR5237, University of Montpellier, CRBM, 1919 route de Mende, 34000 Montpellier, France
| | - Miquel Pons
- BioNMR Laboratory, Inorganic and Organic Chemistry Department, Universitat de Barcelona, Baldiri Reixac 10-12, 08028 Barcelona, Spain.
| |
Collapse
|
46
|
Lin A, Hu Q, Li C, Xing Z, Ma G, Wang C, Li J, Ye Y, Yao J, Liang K, Wang S, Park PK, Marks JR, Zhou Y, Zhou J, Hung MC, Liang H, Hu Z, Shen H, Hawke DH, Han L, Zhou Y, Lin C, Yang L. The LINK-A lncRNA interacts with PtdIns(3,4,5)P 3 to hyperactivate AKT and confer resistance to AKT inhibitors. Nat Cell Biol 2017; 19:238-251. [PMID: 28218907 PMCID: PMC5332298 DOI: 10.1038/ncb3473] [Citation(s) in RCA: 197] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 01/12/2017] [Indexed: 12/13/2022]
Abstract
Phosphatidylinositol-3,4,5-trisphosphate (PIP3) mediates signaling pathways as a second messenger in response to extracellular signals. Although primordial functions of phospholipids and RNAs have been hypothesized in the “RNA world”, physiological RNA-phospholipid interactions and their involvement in essential cellular processes has remained a mystery. We explicate the contribution of lipid-binding long non-coding RNAs (lncRNAs) in cancer cells. Among them, Long Intergenic Noncoding RNA for Kinase Activation (LINK-A) directly interacts with AKT pleckstrin homology domain and PIP3 at the single nucleotide level, facilitating AKT-PIP3 interaction and consequent enzymatic activation. LINK-A-dependent AKT hyperactivation leads to tumorigenesis and resistance to AKT inhibitors. Genomic deletions of the LINK-A PIP3-binding motif dramatically sensitized breast cancer cells to AKT inhibitors. Furthermore, meta-analysis showed the correlation between LINK-A expression and incidence of a SNP (rs12095274: A>G), AKT phosphorylation status, and poor outcomes for breast and lung cancer patients. PIP3-binding lncRNA modulates AKT activation with broad clinical implications.
Collapse
Affiliation(s)
- Aifu Lin
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Qingsong Hu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Chunlai Li
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Zhen Xing
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Guolin Ma
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas 77030, USA
| | - Cheng Wang
- Department of Epidemiology and Biostatistics and Ministry of Education (MOE) Key Lab for Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jun Li
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Department of System Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Yin Ye
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Jun Yao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Ke Liang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Shouyu Wang
- Department of Molecular Cell Biology and Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Peter K Park
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Jeffrey R Marks
- Department of Surgery, Division of Surgical Science, Duke University, School of Medicine, Durham, North Carolina 27710, USA
| | - Yan Zhou
- Department of Oncology, Yixing People's Hospital, Yixing 214200, China
| | - Jianwei Zhou
- Department of Molecular Cell Biology and Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,The Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Graduate Institute of Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung 404, Taiwan
| | - Han Liang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Department of System Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Zhibin Hu
- Department of Epidemiology and Biostatistics and Ministry of Education (MOE) Key Lab for Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Hongbing Shen
- Department of Epidemiology and Biostatistics and Ministry of Education (MOE) Key Lab for Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - David H Hawke
- Department of System Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Leng Han
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, Texas 77030, USA
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas 77030, USA
| | - Chunru Lin
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,The Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Liuqing Yang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,The Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
47
|
The SH3 domain of Caskin1 binds to lysophosphatidic acid suggesting a direct role for the lipid in intracellular signaling. Cell Signal 2017; 32:66-75. [PMID: 28104445 DOI: 10.1016/j.cellsig.2017.01.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/15/2016] [Accepted: 01/14/2017] [Indexed: 01/11/2023]
Abstract
Src homology 3 or SH3 domains constitute one of the most common protein domains in signal transduction, generally characterized by their binding to proline-rich sequences on interacting signaling proteins. Caskin1, a scaffold protein regulating cortical actin filaments, enriched in neural synapses in mammals, has an atypical SH3 domain. Key aromatic residues necessary for ligand binding that are present in canonical SH3 domains are missing from Caskin1 SH3. In concordance, proline-rich interacting partner could not be identified yet. Based on previous reports that several SH3 domains are able to bind phospholipids, we sought for lipid interacting partners of the SH3 domain of human Caskin1. We investigated the signaling-born lysophospholipid mediators, such as lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) as potential binding partners for this SH3 domain. These lipid mediators as first messengers activate G protein-coupled receptors. They also exert several G protein-coupled receptor-independent functions but their intracellular target proteins are mostly unknown. Here we provide evidence that the SH3 domain of human Caskin1 selectively binds to LPA in vitro. The binding strength and stoichiometry depend on the association-state of the lipid, with nanomolar affinity to LPA-containing membraneous surfaces. The amino acids involved in the interaction are located in a β-strand structure and are distinct from those corresponding to the canonical proline-rich ligand-binding groove in the SH3 domain of Src kinase. Our results suggest that the SH3 domain of human Caskin1 is a lipid-binding domain rather than a proline-rich motif interacting domain.
Collapse
|
48
|
Mérida I, Torres-Ayuso P, Ávila-Flores A, Arranz-Nicolás J, Andrada E, Tello-Lafoz M, Liébana R, Arcos R. Diacylglycerol kinases in cancer. Adv Biol Regul 2017; 63:22-31. [PMID: 27697466 DOI: 10.1016/j.jbior.2016.09.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 09/20/2016] [Accepted: 09/20/2016] [Indexed: 05/27/2023]
Abstract
Diacylglycerol kinases (DGK) are a family of enzymes that catalyze the transformation of diacylglycerol into phosphatidic acid. In T lymphocytes, DGKα and ζ limit the activation of the PLCγ/Ras/ERK axis, providing a critical checkpoint to inhibit T cell responses. Upregulation of these isoforms limits Ras activation, leading to hypo-responsive, anergic states similar to those caused by tumors. Recent studies have identified DGKα upregulation in tumor lymphocyte infiltrates, and cells from DGKα and ζ deficient mice show enhanced antitumor activity, suggesting that limitation of DAG based signals by DGK is used by tumors to evade immune attack. DGKα expression is low or even absent in other healthy cells like melanocytes, hepatocytes or neurons. Expression of this isoform, nevertheless is upregulated in melanoma, hepatocarcinoma and glioblastoma where DGKα contributes to the acquisition of tumor metastatic traits. A model thus emerges where tumor milieu fosters DGKα expression in tumors as well as in tumor infiltrating lymphocytes with opposite consequences. Here we review the mechanisms and targets that facilitate tumor "addiction" to DGKα, and discuss its relevance in the more advanced forms of cancer for tumor immune evasion. A better knowledge of this function offers a new perspective in the search of novel approaches to prevent inhibition of immune attack in cancer. Part of the failure in clinical progress may be attributed to the complexity of the tumor/T lymphocyte interaction. As they develop, tumors use a number of mechanisms to drive endogenous, tumor reactive T cells to a general state of hyporesponsiveness or anergy. A better knowledge of the molecular mechanisms that tumors use to trigger T cell anergic states will greatly help in the advance of immunotherapy research.
Collapse
Affiliation(s)
- Isabel Mérida
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), E-28049, Madrid, Spain.
| | - Pedro Torres-Ayuso
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), E-28049, Madrid, Spain
| | - Antonia Ávila-Flores
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), E-28049, Madrid, Spain
| | - Javier Arranz-Nicolás
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), E-28049, Madrid, Spain
| | - Elena Andrada
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), E-28049, Madrid, Spain
| | - María Tello-Lafoz
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), E-28049, Madrid, Spain
| | - Rosa Liébana
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), E-28049, Madrid, Spain
| | - Raquel Arcos
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), E-28049, Madrid, Spain
| |
Collapse
|
49
|
Anguita E, Villalobo A. Src-family tyrosine kinases and the Ca 2+ signal. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:915-932. [PMID: 27818271 DOI: 10.1016/j.bbamcr.2016.10.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/25/2016] [Accepted: 10/30/2016] [Indexed: 01/08/2023]
Abstract
In this review, we shall describe the rich crosstalk between non-receptor Src-family kinases (SFKs) and the Ca2+ transient generated in activated cells by a variety of extracellular and intracellular stimuli, resulting in diverse signaling events. The exchange of information between SFKs and Ca2+ is reciprocal, as it flows in both directions. These kinases are main actors in pathways leading to the generation of the Ca2+ signal, and reciprocally, the Ca2+ signal modulates SFKs activity and functions. We will cover how SFKs participate in the generation of the cytosolic Ca2+ rise upon activation of a series of receptors and the mechanism of clearance of this Ca2+ signal. The role of SFKs modulating Ca2+-translocating channels participating in these events will be amply discussed. Finally, the role of the Ca2+ sensor protein calmodulin on the activity of c-Src, and potentially on other SFKs, will be outlined as well. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.
Collapse
Affiliation(s)
- Estefanía Anguita
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, c/ Arturo Duperier 4, E-28029 Madrid, Spain
| | - Antonio Villalobo
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, c/ Arturo Duperier 4, E-28029 Madrid, Spain.
| |
Collapse
|
50
|
Wei G, Xi W, Nussinov R, Ma B. Protein Ensembles: How Does Nature Harness Thermodynamic Fluctuations for Life? The Diverse Functional Roles of Conformational Ensembles in the Cell. Chem Rev 2016; 116:6516-51. [PMID: 26807783 PMCID: PMC6407618 DOI: 10.1021/acs.chemrev.5b00562] [Citation(s) in RCA: 291] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
All soluble proteins populate conformational ensembles that together constitute the native state. Their fluctuations in water are intrinsic thermodynamic phenomena, and the distributions of the states on the energy landscape are determined by statistical thermodynamics; however, they are optimized to perform their biological functions. In this review we briefly describe advances in free energy landscape studies of protein conformational ensembles. Experimental (nuclear magnetic resonance, small-angle X-ray scattering, single-molecule spectroscopy, and cryo-electron microscopy) and computational (replica-exchange molecular dynamics, metadynamics, and Markov state models) approaches have made great progress in recent years. These address the challenging characterization of the highly flexible and heterogeneous protein ensembles. We focus on structural aspects of protein conformational distributions, from collective motions of single- and multi-domain proteins, intrinsically disordered proteins, to multiprotein complexes. Importantly, we highlight recent studies that illustrate functional adjustment of protein conformational ensembles in the crowded cellular environment. We center on the role of the ensemble in recognition of small- and macro-molecules (protein and RNA/DNA) and emphasize emerging concepts of protein dynamics in enzyme catalysis. Overall, protein ensembles link fundamental physicochemical principles and protein behavior and the cellular network and its regulation.
Collapse
Affiliation(s)
- Guanghong Wei
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (MOE), and Department of Physics, Fudan University, Shanghai, P. R. China
| | - Wenhui Xi
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (MOE), and Department of Physics, Fudan University, Shanghai, P. R. China
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702, USA
- Sackler Inst. of Molecular Medicine Department of Human Genetics and Molecular Medicine Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702, USA
| |
Collapse
|