1
|
Morrissey A, Shi J, James DQ, Mahony S. Accurate allocation of multimapped reads enables regulatory element analysis at repeats. Genome Res 2024; 34:937-951. [PMID: 38986578 PMCID: PMC11293539 DOI: 10.1101/gr.278638.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 06/14/2024] [Indexed: 07/12/2024]
Abstract
Transposable elements (TEs) and other repetitive regions have been shown to contain gene regulatory elements, including transcription factor binding sites. However, regulatory elements harbored by repeats have proven difficult to characterize using short-read sequencing assays such as ChIP-seq or ATAC-seq. Most regulatory genomics analysis pipelines discard "multimapped" reads that align equally well to multiple genomic locations. Because multimapped reads arise predominantly from repeats, current analysis pipelines fail to detect a substantial portion of regulatory events that occur in repetitive regions. To address this shortcoming, we developed Allo, a new approach to allocate multimapped reads in an efficient, accurate, and user-friendly manner. Allo combines probabilistic mapping of multimapped reads with a convolutional neural network that recognizes the read distribution features of potential peaks, offering enhanced accuracy in multimapping read assignment. Allo also provides read-level output in the form of a corrected alignment file, making it compatible with existing regulatory genomics analysis pipelines and downstream peak-finders. In a demonstration application on CTCF ChIP-seq data, we show that Allo results in the discovery of thousands of new CTCF peaks. Many of these peaks contain the expected cognate motif and/or serve as TAD boundaries. We additionally apply Allo to a diverse collection of ENCODE ChIP-seq data sets, resulting in multiple previously unidentified interactions between transcription factors and repetitive element families. Finally, we show that Allo may be particularly beneficial in identifying ChIP-seq peaks at centromeres, near segmentally duplicated genes, and in younger TEs, enabling new regulatory analyses in these regions.
Collapse
Affiliation(s)
- Alexis Morrissey
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Jeffrey Shi
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Daniela Q James
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Shaun Mahony
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
2
|
Wang J, Eulgem T. Growth deficiency and enhanced basal immunity in Arabidopsis thaliana mutants of EDM2, EDM3 and IBM2 are genetically interlinked. PLoS One 2024; 19:e0291705. [PMID: 38329997 PMCID: PMC10852260 DOI: 10.1371/journal.pone.0291705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/14/2024] [Indexed: 02/10/2024] Open
Abstract
Mutants of the Arabidopsis thaliana genes, EDM2 (Enhanced Downy Mildew 2), EDM3 (Enhanced Downy Mildew 3) and IBM2 (Increase in Bonsai Methylation 2) are known to show defects in a diverse set of defense and developmental processes. For example, they jointly exhibit enhanced levels of basal defense and stunted growth. Here we show that these two phenotypes are functionally connected by their dependency on the salicylic acid biosynthesis gene SID2 and the basal defense regulatory gene PAD4. Stunted growth of edm2, edm3 and ibm2 plants is a consequence of up-regulated basal defense. Constitutively enhanced activity of reactive oxygen species-generating peroxidases, we observed in these mutants, appears also to contribute to both, their enhanced basal defense and their growth retardation phenotypes. Furthermore, we found the histone H3 demethylase gene IBM1, a direct regulatory target of EDM2, EDM3 and IBM2, to be at least partially required for the basal defense and growth-related effects observed in these mutants. We recently reported that EDM2, EDM3 and IBM2 coordinate basal immunity with the timing of the floral transition by gradually reducing the extent of this defense mechanism prior to flowering. Together with these observations, data presented here show that at least some of the diverse phenotypic effects in edm2, edm3 and ibm2 mutants are genetically interlinked and functionally connected. Our new results show that repression of basal immunity by EDM2, EDM3 and IBM2 limits negative impact on growth and development.
Collapse
Affiliation(s)
- Jianqiang Wang
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, Riverside, California, United States of America
| | - Thomas Eulgem
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, Riverside, California, United States of America
| |
Collapse
|
3
|
Wang J, Eulgem T. The Arabidopsis RRM domain proteins EDM3 and IBM2 coordinate the floral transition and basal immune responses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:128-143. [PMID: 37347678 DOI: 10.1111/tpj.16364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/12/2023] [Indexed: 06/24/2023]
Abstract
The transition from vegetative to reproductive development (floral transition) is a costly process in annual plants requiring increased investments in metabolic resources. The Arabidopsis thaliana (Arabidopsis) PHD finger protein EDM2 and RRM domain proteins EDM3 and IBM2 are known to form chromatin-associated complexes controlling transcript processing. We are reporting that distinct splice isoforms of EDM3 and IBM2 cooperate in the coordination of the floral transition with basal immune responses. These cooperating splice isoforms, termed EDM3L and IBM2L, control the intensity of basal immunity and, via a separate pathway, the timing of the floral transition. During the developmental phase prior to the floral transition expression of EDM3L and IBM2L strongly and gradually increases, while these isoforms simultaneously down-regulate expression of the floral suppressor gene FLC and promote the transition to reproductive growth. At the same time these accumulating EDM3 and IBM2 splice isoforms gradually suppress basal immunity against the virulent Noco2 isolate of the pathogenic oomycete Hyaloperonospora arabidopsidis and down-regulate expression of a set of defense-associated genes and immune receptor genes. We are providing clear evidence for a functional link between the floral transition and basal immunity in the annual plant Arabidopsis. Coordination of these two biological processes, which compete for metabolic resources, is likely critical for plant survival and reproductive success.
Collapse
Affiliation(s)
- Jianqiang Wang
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, California, USA
| | - Thomas Eulgem
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, California, USA
| |
Collapse
|
4
|
Berthelier J, Furci L, Asai S, Sadykova M, Shimazaki T, Shirasu K, Saze H. Long-read direct RNA sequencing reveals epigenetic regulation of chimeric gene-transposon transcripts in Arabidopsis thaliana. Nat Commun 2023; 14:3248. [PMID: 37277361 DOI: 10.1038/s41467-023-38954-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 05/21/2023] [Indexed: 06/07/2023] Open
Abstract
Transposable elements (TEs) are accumulated in both intergenic and intragenic regions in plant genomes. Intragenic TEs often act as regulatory elements of associated genes and are also co-transcribed with genes, generating chimeric TE-gene transcripts. Despite the potential impact on mRNA regulation and gene function, the prevalence and transcriptional regulation of TE-gene transcripts are poorly understood. By long-read direct RNA sequencing and a dedicated bioinformatics pipeline, ParasiTE, we investigated the transcription and RNA processing of TE-gene transcripts in Arabidopsis thaliana. We identified a global production of TE-gene transcripts in thousands of A. thaliana gene loci, with TE sequences often being associated with alternative transcription start sites or transcription termination sites. The epigenetic state of intragenic TEs affects RNAPII elongation and usage of alternative poly(A) signals within TE sequences, regulating alternative TE-gene isoform production. Co-transcription and inclusion of TE-derived sequences into gene transcripts impact regulation of RNA stability and environmental responses of some loci. Our study provides insights into TE-gene interactions that contributes to mRNA regulation, transcriptome diversity, and environmental responses in plants.
Collapse
Grants
- JP20H02995 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP22H00364 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP20H05909 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP20H05913 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
Collapse
Affiliation(s)
- Jérémy Berthelier
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan.
| | - Leonardo Furci
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan
| | - Shuta Asai
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Munissa Sadykova
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan
| | - Tomoe Shimazaki
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan
| | - Ken Shirasu
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Hidetoshi Saze
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan.
| |
Collapse
|
5
|
Adachi H, Sakai T, Harant A, Pai H, Honda K, Toghani A, Claeys J, Duggan C, Bozkurt TO, Wu CH, Kamoun S. An atypical NLR protein modulates the NRC immune receptor network in Nicotiana benthamiana. PLoS Genet 2023; 19:e1010500. [PMID: 36656829 PMCID: PMC9851556 DOI: 10.1371/journal.pgen.1010500] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 10/27/2022] [Indexed: 01/20/2023] Open
Abstract
The NRC immune receptor network has evolved in asterid plants from a pair of linked genes into a genetically dispersed and phylogenetically structured network of sensor and helper NLR (nucleotide-binding domain and leucine-rich repeat-containing) proteins. In some species, such as the model plant Nicotiana benthamiana and other Solanaceae, the NRC (NLR-REQUIRED FOR CELL DEATH) network forms up to half of the NLRome, and NRCs are scattered throughout the genome in gene clusters of varying complexities. Here, we describe NRCX, an atypical member of the NRC family that lacks canonical features of these NLR helper proteins, such as a functional N-terminal MADA motif and the capacity to trigger autoimmunity. In contrast to other NRCs, systemic gene silencing of NRCX in N. benthamiana markedly impairs plant growth resulting in a dwarf phenotype. Remarkably, dwarfism of NRCX silenced plants is partially dependent on NRCX paralogs NRC2 and NRC3, but not NRC4. Despite its negative impact on plant growth when silenced systemically, spot gene silencing of NRCX in mature N. benthamiana leaves doesn't result in visible cell death phenotypes. However, alteration of NRCX expression modulates the hypersensitive response mediated by NRC2 and NRC3 in a manner consistent with a negative role for NRCX in the NRC network. We conclude that NRCX is an atypical member of the NRC network that has evolved to contribute to the homeostasis of this genetically unlinked NLR network.
Collapse
Affiliation(s)
- Hiroaki Adachi
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
- Laboratory of Crop Evolution, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- JST-PRESTO, Saitama, Japan
| | - Toshiyuki Sakai
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
- Laboratory of Crop Evolution, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Adeline Harant
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Hsuan Pai
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Kodai Honda
- Laboratory of Crop Evolution, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - AmirAli Toghani
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Jules Claeys
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Cian Duggan
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Tolga O. Bozkurt
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Chih-hang Wu
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
6
|
Ma K, Han J, Zhang Z, Li H, Zhao Y, Zhu Q, Xie Y, Liu YG, Chen L. OsEDM2L mediates m 6 A of EAT1 transcript for proper alternative splicing and polyadenylation regulating rice tapetal degradation. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1982-1994. [PMID: 34449974 DOI: 10.1111/jipb.13167] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
N6 -methyladenosine (m6 A) modification affects the post-transcriptional regulation of eukaryotic gene expression, but the underlying mechanisms and their effects in plants remain largely unknown. Here, we report that the N6 -adenine methyltransferase-like domain-containing protein ENHANCED DOWNY MILDEW 2-LIKE (OsEDM2L) is essential for rice (Oryza sativa L.) anther development. The osedm2l knockout mutant showed delayed tapetal programmed cell death (PCD) and defective pollen development. OsEDM2L interacts with the transcription factors basic helix-loop-helix 142 and TAPETUM DEGENERATION RETARDATION to regulate the expression of ETERNAL TAPETUM 1 (EAT1), a positive regulator of tapetal PCD. Mutation of OsEDM2L altered the transcriptomic m6 A landscape, and caused a distinct m6 A modification of the EAT1 transcript leading to dysregulation of its alternative splicing and polyadenylation, followed by suppression of the EAT1 target genes OsAP25 and OsAP37 for tapetal PCD. Therefore, OsEDM2L is indispensable for proper messenger RNA m6 A modification in rice anther development.
Collapse
Affiliation(s)
- Kun Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Jingluan Han
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Zixu Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Heying Li
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yanchang Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Qinlong Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Yongyao Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Yao-Guang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Letian Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| |
Collapse
|
7
|
Sethi L, Deb D, Khadanga B, Dey N. Synthetic promoters from blueberry red ringspot virus (BRRV). PLANTA 2021; 253:121. [PMID: 33993348 DOI: 10.1007/s00425-021-03624-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
MAIN CONCLUSION We analyzed the synthetic full-length transcript promoter of Blueberry red ringspot virus (BRRV) and developed two chimeric promoters (MBR3 and FBR3). Transcriptional activities of these chimeric promoters were found equivalent to that of the CaMV35S2 promoter. Chimeric promoters driven plant-derived PaDef protein showed high antimicrobial activities against several pathogens. Blueberry red ringspot virus (BRRV) is a pararetrovirus under the genus, Soymovirus belongs to the Caulimoviridae family. We have made a synthetic version of the BRRV-Flt promoter and analyzed its activity in detail. A 372 bp promoter fragment BR3 (- 212 to + 160) showed the strongest transcriptional activity compared with other fragments in both transient and transgenic assays; its activity was found near equivalent to that of the CaMV35S promoter. We constructed two chimeric promoters; MBR3 and FBR3 by fusing the UASs (Upstream activation sequences) of Mirabilis mosaic virus (MUAS; - 297 to - 38; 335 bp) and Figwort mosaic virus (FUAS; - 249 to - 54; 303 bp) respectively to the core promoter domain of BR3 (BR3; - 212 to + 160; 372 bp). The activities of MBR3 and FBR3 promoters were found equivalent to that of the activity of the CaMV35S2 promoter and approximately 4.0 (four) times stronger than that of the CaMV35S promoter. Histochemical and fluorometric GUS assays confirmed the above observation. The transcriptional efficacies of these recombinant promoters were tested by evaluating the antibacterial and antifungal activities of recombinant plant-derived antimicrobial peptide Persea americana var. drymifolia defensin (PaDef) driven under these promoters. Bioassays showed promising antifungal activities of the plant made PaDef against Alternaria alternata and antibacterial property against Gram-positive (S. aureus and R. fascians) and Gram-negative bacteria (E. coli and P. aeruginosa). Based upon the above results, MBR3 and FBR3 could be useful promoters for plant genetic engineering and can become useful substitutes for the widely used CaMV35S2 promoter in plant biology.
Collapse
Affiliation(s)
- Lini Sethi
- Division of Plant and Microbial Biotechnology, Institute of Life Sciences, NALCO Nagar Road, NALCO Square, Chandrasekharpur, Bhubaneswar, Odisha, 751023, India
| | - Debasish Deb
- Division of Plant and Microbial Biotechnology, Institute of Life Sciences, NALCO Nagar Road, NALCO Square, Chandrasekharpur, Bhubaneswar, Odisha, 751023, India
| | - Badrinath Khadanga
- Division of Plant and Microbial Biotechnology, Institute of Life Sciences, NALCO Nagar Road, NALCO Square, Chandrasekharpur, Bhubaneswar, Odisha, 751023, India
| | - Nrisingha Dey
- Division of Plant and Microbial Biotechnology, Institute of Life Sciences, NALCO Nagar Road, NALCO Square, Chandrasekharpur, Bhubaneswar, Odisha, 751023, India.
| |
Collapse
|
8
|
Zhang YZ, Lin J, Ren Z, Chen CX, Miki D, Xie SS, Zhang J, Chang YN, Jiang J, Yan J, Li QQ, Zhu JK, Duan CG. Genome-wide distribution and functions of the AAE complex in epigenetic regulation in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:707-722. [PMID: 33438356 DOI: 10.1111/jipb.13068] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
Heterochromatin is widespread in eukaryotic genomes and has diverse impacts depending on its genomic context. Previous studies have shown that a protein complex, the ASI1-AIPP1-EDM2 (AAE) complex, participates in polyadenylation regulation of several intronic heterochromatin-containing genes. However, the genome-wide functions of AAE are still unknown. Here, we show that the ASI1 and EDM2 mostly target the common genomic regions on a genome-wide level and preferentially interacts with genetic heterochromatin. Polyadenylation (poly(A) sequencing reveals that AAE complex has a substantial influence on poly(A) site usage of heterochromatin-containing genes, including not only intronic heterochromatin-containing genes but also the genes showing overlap with heterochromatin. Intriguingly, AAE is also involved in the alternative splicing regulation of a number of heterochromatin-overlapping genes, such as the disease resistance gene RPP4. We provided evidence that genic heterochromatin is indispensable for the recruitment of AAE in polyadenylation and splicing regulation. In addition to conferring RNA processing regulation at genic heterochromatin-containing genes, AAE also targets some transposable elements (TEs) outside of genes (including TEs sandwiched by genes and island TEs) for epigenetic silencing. Our results reveal new functions of AAE in RNA processing and epigenetic silencing, and thus represent important advances in epigenetic regulation.
Collapse
Affiliation(s)
- Yi-Zhe Zhang
- Shanghai Center for Plant Stress Biology and CAS Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Juncheng Lin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Zhizhong Ren
- Shanghai Center for Plant Stress Biology and CAS Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Chun-Xiang Chen
- Shanghai Center for Plant Stress Biology and CAS Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Daisuke Miki
- Shanghai Center for Plant Stress Biology and CAS Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Si-Si Xie
- Shanghai Center for Plant Stress Biology and CAS Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Zhang
- Shanghai Center for Plant Stress Biology and CAS Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ya-Nan Chang
- Shanghai Center for Plant Stress Biology and CAS Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Jiang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Jun Yan
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Qingshun Q Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, 91766, USA
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology and CAS Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, 47907, USA
| | - Cheng-Guo Duan
- Shanghai Center for Plant Stress Biology and CAS Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| |
Collapse
|
9
|
Lai Y, Lu XM, Daron J, Pan S, Wang J, Wang W, Tsuchiya T, Holub E, McDowell JM, Slotkin RK, Le Roch KG, Eulgem T. The Arabidopsis PHD-finger protein EDM2 has multiple roles in balancing NLR immune receptor gene expression. PLoS Genet 2020; 16:e1008993. [PMID: 32925902 PMCID: PMC7529245 DOI: 10.1371/journal.pgen.1008993] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/01/2020] [Accepted: 07/14/2020] [Indexed: 12/19/2022] Open
Abstract
Plant NLR-type receptors serve as sensitive triggers of host immunity. Their expression has to be well-balanced, due to their interference with various cellular processes and dose-dependency of their defense-inducing activity. A genetic “arms race” with fast-evolving pathogenic microbes requires plants to constantly innovate their NLR repertoires. We previously showed that insertion of the COPIA-R7 retrotransposon into RPP7 co-opted the epigenetic transposon silencing signal H3K9me2 to a new function promoting expression of this Arabidopsis thaliana NLR gene. Recruitment of the histone binding protein EDM2 to COPIA-R7-associated H3K9me2 is required for optimal expression of RPP7. By profiling of genome-wide effects of EDM2, we now uncovered additional examples illustrating effects of transposons on NLR gene expression, strongly suggesting that these mobile elements can play critical roles in the rapid evolution of plant NLR genes by providing the “raw material” for gene expression mechanisms. We further found EDM2 to have a global role in NLR expression control. Besides serving as a positive regulator of RPP7 and a small number of other NLR genes, EDM2 acts as a suppressor of a multitude of additional NLR genes. We speculate that the dual functionality of EDM2 in NLR expression control arose from the need to compensate for fitness penalties caused by high expression of some NLR genes by suppression of others. Moreover, we are providing new insights into functional relationships of EDM2 with its interaction partner, the RNA binding protein EDM3/AIPP1, and its target gene IBM1, encoding an H3K9-demethylase. We previously found the Arabidopsis thaliana PHD-finger protein EDM2 to serve as a chromatin-associated factor controlling expression of the NLR-type immune receptor gene RPP7. EDM2 binds to the transposon-silencing signal H3K9me2 and affects levels of this epigenetic mark at various loci. By genome-wide profiling of transcript- and H3K9me2-levels we now found EDM2 to have a broader role in controlling NLR gene expression. In order to mitigate fitness costs caused by its promoting effects on RPP7 expression and that of several other NLR genes, EDM2 seems to suppress expression of many additional members of this gene family. This observation is in line with multiple reports demonstrating the need for balanced expression of NLRs, which can substantially reduce overall plant fitness, but need to be present at certain minimal levels to confer sufficient immune protection. Our previous results demonstrated that the influence of EDM2 on RPP7 expression was co-opted to this immune receptor gene by the insertion of an EDM2-controlled transposon. Here, we are providing additional examples for transposon-associated effects on NLR gene expression, suggesting that these mobile elements play an important role for NLR genes by equipping members of this rapidly evolving gene family with regulatory mechanisms needed for balanced expression.
Collapse
Affiliation(s)
- Yan Lai
- Center for Plant Cell Biology, Institute of Integrative Genome Biology, Department of Botany and Plan Sciences, University of California at Riverside, Riverside, CA, United States of America
- College of Life Sciences, Fujian Agricultural and Forestry University, Fuzhou, Fujian, China
| | - Xueqing Maggie Lu
- Center for Infectious Disease and Vector Research, Institute of Integrative Genome Biology, Department of Molecular, Cell and Systems Biology, University of California at Riverside, Riverside, CA, United States of America
| | - Josquin Daron
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - Songqin Pan
- Center for Plant Cell Biology, Institute of Integrative Genome Biology, Department of Botany and Plan Sciences, University of California at Riverside, Riverside, CA, United States of America
| | - Jianqiang Wang
- Center for Plant Cell Biology, Institute of Integrative Genome Biology, Department of Botany and Plan Sciences, University of California at Riverside, Riverside, CA, United States of America
| | - Wei Wang
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA, United States of America
| | - Tokuji Tsuchiya
- College of Bioresource Sciences, Nihon University, Kanagawa, Japan
| | - Eric Holub
- School of Life Sciences, University of Warwick, Wellesbourne campus, United Kingdom
| | - John M. McDowell
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA, United States of America
| | - R. Keith Slotkin
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
- Donald Danforth Plant Science Center, St. Louis, Missouri, United States of America
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Karine G. Le Roch
- Center for Infectious Disease and Vector Research, Institute of Integrative Genome Biology, Department of Molecular, Cell and Systems Biology, University of California at Riverside, Riverside, CA, United States of America
- * E-mail: (KGLR); (TE)
| | - Thomas Eulgem
- Center for Plant Cell Biology, Institute of Integrative Genome Biology, Department of Botany and Plan Sciences, University of California at Riverside, Riverside, CA, United States of America
- * E-mail: (KGLR); (TE)
| |
Collapse
|
10
|
Deremetz A, Le Roux C, Idir Y, Brousse C, Agorio A, Gy I, Parker JE, Bouché N. Antagonistic Actions of FPA and IBM2 Regulate Transcript Processing from Genes Containing Heterochromatin. PLANT PHYSIOLOGY 2019; 180:392-403. [PMID: 30814131 PMCID: PMC6501070 DOI: 10.1104/pp.18.01106] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 02/21/2019] [Indexed: 05/06/2023]
Abstract
Repressive epigenetic marks, such as DNA and histone methylation, are sometimes located within introns. In Arabidopsis (Arabidopsis thaliana), INCREASE IN BONSAI METHYLATION2 (IBM2), an RNA-binding protein containing a bromo-adjacent homology domain, is required to process functional transcript isoforms of genes carrying intronic heterochromatin. In a genetic screen for suppressors of the ibm2 mutation, we identified FPA, an RNA-binding protein that promotes use of proximal polyadenylation sites in genes targeted by IBM2, including IBM1 encoding an essential H3K9 histone demethylase and the disease resistance gene RECOGNITION OF PERONOSPORA PARASITICA7 Both IBM2 and FPA are involved in the processing of their common mRNA targets: Transcription of IBM2 target genes is restored when FPA is mutated in ibm2 and impaired in transgenic plants overexpressing FPA By contrast, transposons targeted by IBM2 and localized outside introns are not under this antagonistic control. The DNA methylation patterns of some genes and transposons are modified in fpa plants, including the large intron of IBM1, but these changes are rather limited and reversed when the mutant is complemented, indicating that FPA has a restricted role in mediating silencing. These data reveal a complex regulation by IBM2 and FPA pathways in processing mRNAs of genes bearing heterochromatic marks.
Collapse
Affiliation(s)
- Aurélie Deremetz
- Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, Institut National de la Recherche Agronomique, 78000 Versailles, France
- Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
| | - Clémentine Le Roux
- Max-Planck Institute for Plant Breeding Research, Department of Plant-Microbe Interactions, D-50829 Cologne, Germany
| | - Yassir Idir
- Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, Institut National de la Recherche Agronomique, 78000 Versailles, France
- Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
| | - Cécile Brousse
- Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, Institut National de la Recherche Agronomique, 78000 Versailles, France
| | - Astrid Agorio
- Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, Institut National de la Recherche Agronomique, 78000 Versailles, France
| | - Isabelle Gy
- Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, Institut National de la Recherche Agronomique, 78000 Versailles, France
| | - Jane E Parker
- Max-Planck Institute for Plant Breeding Research, Department of Plant-Microbe Interactions, D-50829 Cologne, Germany
| | - Nicolas Bouché
- Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, Institut National de la Recherche Agronomique, 78000 Versailles, France
| |
Collapse
|
11
|
Smith LM. Epigenetic Regulation of mRNA Polyadenylation Site Selection. PLANT PHYSIOLOGY 2019; 180:7-9. [PMID: 31053672 PMCID: PMC6501073 DOI: 10.1104/pp.19.00374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Affiliation(s)
- Lisa M Smith
- Department of Animal and Plant Sciences and The Plant Production and Protection (P3) Centre, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
12
|
Lai Y, Cuzick A, Lu XM, Wang J, Katiyar N, Tsuchiya T, Le Roch K, McDowell JM, Holub E, Eulgem T. The Arabidopsis RRM domain protein EDM3 mediates race-specific disease resistance by controlling H3K9me2-dependent alternative polyadenylation of RPP7 immune receptor transcripts. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:646-660. [PMID: 30407670 PMCID: PMC7138032 DOI: 10.1111/tpj.14148] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 09/27/2018] [Accepted: 10/26/2018] [Indexed: 05/18/2023]
Abstract
The NLR-receptor RPP7 mediates race-specific immunity in Arabidopsis. Previous screens for enhanced downy mildew (edm) mutants identified the co-chaperone SGT1b (EDM1) and the PHD-finger protein EDM2 as critical regulators of RPP7. Here, we describe a third edm mutant compromised in RPP7 immunity, edm3. EDM3 encodes a nuclear-localized protein featuring an RNA-recognition motif. Like EDM2, EDM3 promotes histone H3 lysine 9 dimethylation (H3K9me2) at RPP7. Global profiling of H3K9me2 showed EDM3 to affect this silencing mark at a large set of loci. Importantly, both EDM3 and EDM2 co-associate in vivo with H3K9me2-marked chromatin and transcripts at a critical proximal polyadenylation site of RPP7, where they suppress proximal transcript polyadeylation/termination. Our results highlight the complexity of plant NLR gene regulation, and establish a functional and physical link between a histone mark and NLR-transcript processing.
Collapse
Affiliation(s)
- Yan Lai
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute of Integrative Genome Biology, University of California at Riverside, Riverside, CA, 92521, USA
- College of Life Sciences, Fujian Agricultural and Forestry University, Fuzhou, Fujian, 350002, China
| | - Alayne Cuzick
- School of Life Sciences, University of Warwick, Wellesbourne Campus, Warwick, CV35 9EF, UK
- Biointeractions and Crop Protection, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - Xueqing M Lu
- Department of Molecular, Cell and Systems Biology, Center for Infectious Disease and Vector Research, Institute of Integrative Genome Biology, University of California at Riverside, Riverside, CA, 92521, USA
| | - Jianqiang Wang
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute of Integrative Genome Biology, University of California at Riverside, Riverside, CA, 92521, USA
| | - Neerja Katiyar
- Institute of Integrative Genome Biology, University of California at Riverside, Riverside, CA, 92521, USA
| | - Tokuji Tsuchiya
- College of Bioresource Sciences, Nihon University, Kanagawa, 252-0880, Japan
| | - Karine Le Roch
- Department of Molecular, Cell and Systems Biology, Center for Infectious Disease and Vector Research, Institute of Integrative Genome Biology, University of California at Riverside, Riverside, CA, 92521, USA
| | - John M McDowell
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA, 24060-0329, USA
| | - Eric Holub
- School of Life Sciences, University of Warwick, Wellesbourne Campus, Warwick, CV35 9EF, UK
| | - Thomas Eulgem
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute of Integrative Genome Biology, University of California at Riverside, Riverside, CA, 92521, USA
| |
Collapse
|
13
|
Tranchida-Lombardo V, Aiese Cigliano R, Anzar I, Landi S, Palombieri S, Colantuono C, Bostan H, Termolino P, Aversano R, Batelli G, Cammareri M, Carputo D, Chiusano ML, Conicella C, Consiglio F, D'Agostino N, De Palma M, Di Matteo A, Grandillo S, Sanseverino W, Tucci M, Grillo S. Whole-genome re-sequencing of two Italian tomato landraces reveals sequence variations in genes associated with stress tolerance, fruit quality and long shelf-life traits. DNA Res 2018; 25:149-160. [PMID: 29149280 PMCID: PMC5909465 DOI: 10.1093/dnares/dsx045] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/27/2017] [Indexed: 02/07/2023] Open
Abstract
Tomato is a high value crop and the primary model for fleshy fruit development and ripening. Breeding priorities include increased fruit quality, shelf life and tolerance to stresses. To contribute towards this goal, we re-sequenced the genomes of Corbarino (COR) and Lucariello (LUC) landraces, which both possess the traits of plant adaptation to water deficit, prolonged fruit shelf-life and good fruit quality. Through the newly developed pipeline Reconstructor, we generated the genome sequences of COR and LUC using datasets of 65.8 M and 56.4 M of 30-150 bp paired-end reads, respectively. New contigs including reads that could not be mapped to the tomato reference genome were assembled, and a total of 43, 054 and 44, 579 gene loci were annotated in COR and LUC. Both genomes showed novel regions with similarity to Solanum pimpinellifolium and Solanum pennellii. In addition to small deletions and insertions, 2, 000 and 1, 700 single nucleotide polymorphisms (SNPs) could exert potentially disruptive effects on 1, 371 and 1, 201 genes in COR and LUC, respectively. A detailed survey of the SNPs occurring in fruit quality, shelf life and stress tolerance related-genes identified several candidates of potential relevance. Variations in ethylene response components may concur in determining peculiar phenotypes of COR and LUC.
Collapse
Affiliation(s)
- Valentina Tranchida-Lombardo
- National Research Council of Italy Institute of Biosciences and Bioresources (CNR-IBBR), Via Università 133, 80055 Portici, Italy
| | | | - Irantzu Anzar
- Sequentia Biotech Calle Comte D'Urgel 240, 08036 Barcelona, Spain
| | - Simone Landi
- National Research Council of Italy Institute of Biosciences and Bioresources (CNR-IBBR), Via Università 133, 80055 Portici, Italy
| | - Samuela Palombieri
- National Research Council of Italy Institute of Biosciences and Bioresources (CNR-IBBR), Via Università 133, 80055 Portici, Italy
| | - Chiara Colantuono
- Department of Agricultural Sciences, University of Naples Federico II, Via Universita' 100, 80055 Portici, Italy
| | - Hamed Bostan
- Department of Agricultural Sciences, University of Naples Federico II, Via Universita' 100, 80055 Portici, Italy
| | - Pasquale Termolino
- National Research Council of Italy Institute of Biosciences and Bioresources (CNR-IBBR), Via Università 133, 80055 Portici, Italy
| | - Riccardo Aversano
- Department of Agricultural Sciences, University of Naples Federico II, Via Universita' 100, 80055 Portici, Italy
| | - Giorgia Batelli
- National Research Council of Italy Institute of Biosciences and Bioresources (CNR-IBBR), Via Università 133, 80055 Portici, Italy
| | - Maria Cammareri
- National Research Council of Italy Institute of Biosciences and Bioresources (CNR-IBBR), Via Università 133, 80055 Portici, Italy
| | - Domenico Carputo
- Department of Agricultural Sciences, University of Naples Federico II, Via Universita' 100, 80055 Portici, Italy
| | - Maria Luisa Chiusano
- Department of Agricultural Sciences, University of Naples Federico II, Via Universita' 100, 80055 Portici, Italy
| | - Clara Conicella
- National Research Council of Italy Institute of Biosciences and Bioresources (CNR-IBBR), Via Università 133, 80055 Portici, Italy
| | - Federica Consiglio
- National Research Council of Italy Institute of Biosciences and Bioresources (CNR-IBBR), Via Università 133, 80055 Portici, Italy
| | - Nunzio D'Agostino
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro Di Ricerca Orticultura e Florovivaismo (CREA-OF), Via Cavalleggeri, 25, 84098 Pontecagnano Faiano SA, Italy
| | - Monica De Palma
- National Research Council of Italy Institute of Biosciences and Bioresources (CNR-IBBR), Via Università 133, 80055 Portici, Italy
| | - Antonio Di Matteo
- Department of Agricultural Sciences, University of Naples Federico II, Via Universita' 100, 80055 Portici, Italy
| | - Silvana Grandillo
- National Research Council of Italy Institute of Biosciences and Bioresources (CNR-IBBR), Via Università 133, 80055 Portici, Italy
| | | | - Marina Tucci
- National Research Council of Italy Institute of Biosciences and Bioresources (CNR-IBBR), Via Università 133, 80055 Portici, Italy
| | - Stefania Grillo
- National Research Council of Italy Institute of Biosciences and Bioresources (CNR-IBBR), Via Università 133, 80055 Portici, Italy
| |
Collapse
|
14
|
Ay N, Janack B, Humbeck K. Epigenetic control of plant senescence and linked processes. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:3875-87. [PMID: 24683182 DOI: 10.1093/jxb/eru132] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Senescence processes are part of the plant developmental programme. They involve reprogramming of gene expression and are under the control of a complex regulatory network closely linked to other developmental and stress-responsive pathways. Recent evidence indicates that leaf senescence is regulated via epigenetic mechanisms. In the present review, the epigenetic control of plant senescence is discussed in the broader context of environment-sensitive plant development. The review outlines the concept of epigenetic control of interconnected regulatory pathways steering stress responses and plant development. Besides giving an overview of techniques used in the field, it summarizes recent findings on global alterations in chromatin structure, histone and DNA modifications, and ATP-dependent chromatin remodelling during plant senescence and linked processes.
Collapse
Affiliation(s)
- Nicole Ay
- Department of Plant Physiology, Institute of Biology, Martin-Luther University Halle-Wittenberg, Weinbergweg 10, D-06120 Halle, Germany
| | - Bianka Janack
- Department of Plant Physiology, Institute of Biology, Martin-Luther University Halle-Wittenberg, Weinbergweg 10, D-06120 Halle, Germany
| | - Klaus Humbeck
- Department of Plant Physiology, Institute of Biology, Martin-Luther University Halle-Wittenberg, Weinbergweg 10, D-06120 Halle, Germany
| |
Collapse
|
15
|
Bloomfield JA, Rose TJ, King GJ. Sustainable harvest: managing plasticity for resilient crops. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:517-33. [PMID: 24891039 PMCID: PMC4207195 DOI: 10.1111/pbi.12198] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 04/14/2014] [Indexed: 05/18/2023]
Abstract
Maintaining crop production to feed a growing world population is a major challenge for this period of rapid global climate change. No consistent conceptual or experimental framework for crop plants integrates information at the levels of genome regulation, metabolism, physiology and response to growing environment. An important role for plasticity in plants is assisting in homeostasis in response to variable environmental conditions. Here, we outline how plant plasticity is facilitated by epigenetic processes that modulate chromatin through dynamic changes in DNA methylation, histone variants, small RNAs and transposable elements. We present examples of plant plasticity in the context of epigenetic regulation of developmental phases and transitions and map these onto the key stages of crop establishment, growth, floral initiation, pollination, seed set and maturation of harvestable product. In particular, we consider how feedback loops of environmental signals and plant nutrition affect plant ontogeny. Recent advances in understanding epigenetic processes enable us to take a fresh look at the crosstalk between regulatory systems that confer plasticity in the context of crop development. We propose that these insights into genotype × environment (G × E) interaction should underpin development of new crop management strategies, both in terms of information-led agronomy and in recognizing the role of epigenetic variation in crop breeding.
Collapse
Affiliation(s)
- Justin A Bloomfield
- Southern Cross Plant Science, Southern Cross UniversityLismore, NSW, Australia
| | - Terry J Rose
- Southern Cross Plant Science, Southern Cross UniversityLismore, NSW, Australia
| | - Graham J King
- Southern Cross Plant Science, Southern Cross UniversityLismore, NSW, Australia
| |
Collapse
|
16
|
Mathieu O, Bouché N. Interplay between chromatin and RNA processing. CURRENT OPINION IN PLANT BIOLOGY 2014; 18:60-65. [PMID: 24631845 DOI: 10.1016/j.pbi.2014.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 12/16/2013] [Accepted: 02/12/2014] [Indexed: 06/03/2023]
Abstract
The processing of pre-mRNAs, including the selection of polyadenylation sites, is influenced by the surrounding chromatin context. We review here recent studies in Arabidopsis thaliana highlighting the intricate and reciprocal interplay between chromatin state and RNA processing. The studies have revealed that transcription can be influenced by the presence, in gene introns, of combination of epigenetic marks typical of heterochromatin. New factors binding to these marks have been identified and shown to play key roles in controlling the use of polyadenylation sites and processing of functional mRNAs. Concomitantly, several proteins of both the splicing and the polyadenylation machineries are also emerging as regulators of DNA methylation patterns and chromatin silencing.
Collapse
Affiliation(s)
- Olivier Mathieu
- Clermont Université, Université Blaise Pascal, GReD, BP 10448, F-63000 Clermont-Ferrand, France; CNRS, UMR 6293, GReD, F-63001 Clermont-Ferrand, France; INSERM, UMR 1103, GReD, F-63001 Clermont-Ferrand, France.
| | - Nicolas Bouché
- INRA, UMR 1318, Institut Jean-Pierre Bourgin, RD10, F-78000 Versailles, France; AgroParisTech, Institut Jean-Pierre Bourgin, RD10, F-78000 Versailles, France.
| |
Collapse
|
17
|
Tsuchiya T, Eulgem T. The PHD-finger module of the Arabidopsis thaliana defense regulator EDM2 can recognize triply modified histone H3 peptides. PLANT SIGNALING & BEHAVIOR 2014; 9:e29202. [PMID: 25763495 PMCID: PMC4203584 DOI: 10.4161/psb.29202] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 05/12/2014] [Indexed: 05/19/2023]
Abstract
Recently we reported that the Arabidopsis thaliana PHD-finger protein EDM2 (enhanced downy mildew 2) impacts disease resistance by affecting levels of di-methylated lysine 9 of histone H3 (H3K9me2) at an alternative polyadenylation site in the immune receptor gene RPP7. EDM2-dependent modulation of this post-translational histone modification (PHM) shifts the balance between full-length RPP7 transcripts and prematurely polyadenylated transcripts, which do not encode the RPP7 protein. Our previous work genetically linked, for the first time, PHMs to alternative polyadenylation and established EDM2 as a critical component mediating PHM-dependent polyadenylation control. However, how EDM2 is recruited to its genomic target sites and how it affects H3K9me2 levels is unknown. Here we show the PHD-finger module of EDM2 to recognize histone H3 bearing certain combinations of 3 distinct PHMs. Our results suggest that targeting of EDM2 to specific genomic regions is mediated by the histone-binding selectivity of its PHD-finger domain.
Collapse
Affiliation(s)
- Tokuji Tsuchiya
- Institute for Integrative Genome Biology; Center for Plant Cell Biology; Department of Botany and Plant Sciences; University of California at Riverside; Riverside, CA USA
- Currently at Shanghai Center for Plant Stress Biology; Shanghai Institutes for Biological Sciences; Chinese Academy of Sciences; Shanghai, PR China
| | - Thomas Eulgem
- Institute for Integrative Genome Biology; Center for Plant Cell Biology; Department of Botany and Plant Sciences; University of California at Riverside; Riverside, CA USA
- Correspondence to: Thomas Eulgem,
| |
Collapse
|
18
|
Arabidopsis EDM2 promotes IBM1 distal polyadenylation and regulates genome DNA methylation patterns. Proc Natl Acad Sci U S A 2013; 111:527-32. [PMID: 24248388 DOI: 10.1073/pnas.1320106110] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DNA methylation is important for the silencing of transposons and other repetitive elements in many higher eukaryotes. However, plant and mammalian genomes have evolved to contain repetitive elements near or inside their genes. How these genes are kept from being silenced by DNA methylation is not well understood. A forward genetics screen led to the identification of the putative chromatin regulator Enhanced Downy Mildew 2 (EDM2) as a cellular antisilencing factor and regulator of genome DNA methylation patterns. EDM2 contains a composite Plant Homeo Domain that recognizes both active and repressive histone methylation marks at the intronic repeat elements in genes such as the Histone 3 lysine 9 demethylase gene Increase in BONSAI Methylation 1 (IBM1) and is necessary for maintaining the expression of these genes by promoting mRNA distal polyadenylation. Because of its role in maintaining IBM1 expression, EDM2 is required for preventing CHG methylation in the bodies of thousands of genes. Our results thus increase the understanding of antisilencing, genome methylation patterns, and regulation of alternative RNA processing by intronic heterochromatin.
Collapse
|
19
|
Sakhon OS, Victor KA, Choy A, Tsuchiya T, Eulgem T, Pedra JHF. NSD1 mitigates caspase-1 activation by listeriolysin O in macrophages. PLoS One 2013; 8:e75911. [PMID: 24058709 PMCID: PMC3776765 DOI: 10.1371/journal.pone.0075911] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 08/18/2013] [Indexed: 12/14/2022] Open
Abstract
Mammals and plants share pathogen-sensing systems named nod-like receptors (NLRs). Some NLRs form the inflammasome, a protein scaffold that regulates the secretion of interleukin (IL)-1β and IL-18 by cleaving catalytically inactive substrates into mature cytokines. Here, we show an immune conservation between plant and mammalian NLRs and demonstrate that the murine nuclear receptor binding SET domain protein 1 (NSD1), a protein that bears similarity to the NLR regulator enhanced downy mildew 2 (EDM2) in Arabidopsis, diminishes caspase-1 activity during extracellular stimulation with Listeria monocytogenes listeriolysin O (LLO). EDM2 is known to regulate plant developmental processes, whereas NSD1 is associated with developmental disorders. We observed that NSD1 neither affects nuclear factor (NF)-κB signaling nor regulates NLRP3 inflammasome gene expression at the chromatin, transcriptional or translational level during LLO stimulation of macrophages. Silencing of Nsd1 followed by LLO stimulation led to increased caspase-1 activation, enhanced post-translational maturation of IL-1β and IL-18 and elevated pyroptosis, a form of cell death associated with inflammation. Furthermore, treatment of macrophages with LLOW492A, which lacks hemolytic activity due to a tryptophan to alanine substitution in the undecapeptide motif, indicates the importance of functional LLO for NSD1 regulation of the NLRP3 inflammasome. Taken together, our results indicate that NLR signaling in plants may be used for gene discovery in mammals.
Collapse
Affiliation(s)
- Olivia S. Sakhon
- Division of Biomedical Sciences, University of California Riverside, Riverside, California, United States of America
| | - Kaitlin A. Victor
- Institute for Integrative Genome Biology, Center for Disease Vector Research and Department of Entomology, University of California Riverside, Riverside, California, United States of America
| | - Anthony Choy
- Institute for Integrative Genome Biology, Center for Disease Vector Research and Department of Entomology, University of California Riverside, Riverside, California, United States of America
| | - Tokuji Tsuchiya
- Institute for Integrative Genome Biology, Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California Riverside, Riverside, California, United States of America
| | - Thomas Eulgem
- Institute for Integrative Genome Biology, Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California Riverside, Riverside, California, United States of America
| | - Joao H. F. Pedra
- Institute for Integrative Genome Biology, Center for Disease Vector Research and Department of Entomology, University of California Riverside, Riverside, California, United States of America
- * E-mail:
| |
Collapse
|
20
|
McDowell JM, Meyers BC. A transposable element is domesticated for service in the plant immune system. Proc Natl Acad Sci U S A 2013; 110:14821-2. [PMID: 23995444 PMCID: PMC3773748 DOI: 10.1073/pnas.1314089110] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- John M. McDowell
- Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, VA 24061; and
| | - Blake C. Meyers
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716
| |
Collapse
|
21
|
An alternative polyadenylation mechanism coopted to the Arabidopsis RPP7 gene through intronic retrotransposon domestication. Proc Natl Acad Sci U S A 2013; 110:E3535-43. [PMID: 23940361 DOI: 10.1073/pnas.1312545110] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transposable elements (TEs) can drive evolution by creating genetic and epigenetic variation. Although examples of adaptive TE insertions are accumulating, proof that epigenetic information carried by such "domesticated" TEs has been coopted to control host gene function is still limited. We show that COPIA-R7, a TE inserted into the Arabidopsis thaliana disease resistance gene RPP7 recruited the histone mark H3K9me2 to this locus. H3K9me2 levels at COPIA-R7 affect the choice between two alternative RPP7 polyadenylation sites in the pre-mRNA and, thereby, influence the critical balance between RPP7-coding and non-RPP7-coding transcript isoforms. Function of RPP7 is fully dependent on high levels of H3K9me2 at COPIA-R7. We present a direct in vivo demonstration for cooption of a TE-associated histone mark to the epigenetic control of pre-mRNA processing and establish a unique mechanism for regulation of plant immune surveillance gene expression. Our results functionally link a histone mark to alternative polyadenylation and the balance between distinct transcript isoforms from a single gene.
Collapse
|