1
|
Ahmed AOA, Nkhoma SC, Zaman S, Rashid S, Bradford R, Stedman TT, Molestina RE. In vitro antimalarial susceptibility profile of Plasmodium falciparum isolates in the BEI Resources repository. Antimicrob Agents Chemother 2024; 68:e0118923. [PMID: 39269188 PMCID: PMC11459958 DOI: 10.1128/aac.01189-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
BEI Resources, a National Institute of Allergy and Infectious Diseases-funded program managed by the American Type Culture Collection, serves researchers worldwide through the provision of a centralized repository for the acquisition, production, characterization, preservation, storage, and distribution of standardized biological resources targeting National Institutes of Health priority pathogens including bacteria, viruses, pathogenic fungi, and parasitic protozoa. These reference materials are critical for the development of diagnostics, vaccines, and therapeutics and are available to qualified registered investigators and institutions worldwide. Bioresources within BEI include well-characterized malaria isolates as part of the Malaria Research and Reference Reagent Resource Center (MR4). These isolates are critical for screening antimalarial compounds, conducting drug resistance studies, and for resistance surveillance and management. In our efforts to enhance the characterization of MR4 P. falciparum isolates, we measured antimalarial susceptibility of >100 isolates against a panel of standard antimalarial compounds. Our results provide valuable information to assist current and prospective users of the BEI Resources repository in making data-driven requests of isolates to meet their research needs.
Collapse
Affiliation(s)
- Amel O. A. Ahmed
- BEI Resources, Manassas, Virginia, USA
- ATCC, Manassas, Virginia, USA
| | | | - Sharmeen Zaman
- BEI Resources, Manassas, Virginia, USA
- ATCC, Manassas, Virginia, USA
| | - Sujatha Rashid
- BEI Resources, Manassas, Virginia, USA
- ATCC, Manassas, Virginia, USA
| | - Rebecca Bradford
- BEI Resources, Manassas, Virginia, USA
- ATCC, Manassas, Virginia, USA
| | | | | |
Collapse
|
2
|
Hua QQ, Lin XJ, Xiang SP, Jiang LY, Cai JH, Sun JM, Tan F, Mou YN. Two small-molecule inhibitors of Toxoplasma gondii proliferation in vitro. Front Cell Infect Microbiol 2023; 13:1145824. [PMID: 37077525 PMCID: PMC10106592 DOI: 10.3389/fcimb.2023.1145824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
Background Toxoplasmosis caused by Toxoplasma gondii is a globally distributed zoonosis. Most infections appear asymptomatic in immunocompetent individuals, but toxoplasmosis can be fatal in fetuses and immunocompromised adults. There is an urgent need to research and develop effective and low-toxicity anti-T. gondii drugs because of some defects in current clinical anti-T. gondii drugs, such as limited efficacy, serious side effects and drug resistance. Methods In this study, 152 autophagy related compounds were evaluated as anti-T. gondii drugs. The activity of β-galactosidase assay based on luminescence was used to determine the inhibitory effect on parasite growth. At the same time, MTS assay was used to further detect the effects of compounds with over 60% inhibition rate on host cell viability. The invasion, intracellular proliferation, egress and gliding abilities of T. gondii were tested to assess the inhibitory effect of the chosen drugs on the distinct steps of the T. gondii lysis cycle. Results The results showed that a total of 38 compounds inhibited parasite growth by more than 60%. After excluding the compounds affecting host cell activity, CGI-1746 and JH-II-127 were considered for drug reuse and further characterized. Both CGI-1746 and JH-II-127 inhibited tachyzoite growth by 60%, with IC50 values of 14.58 ± 1.52 and 5.88 ± 0.23 μM, respectively. TD50 values were 154.20 ± 20.15 and 76.39 ± 14.32 μM, respectively. Further research found that these two compounds significantly inhibited the intracellular proliferation of tachyzoites. Summarize the results, we demonstrated that CGI-1746 inhibited the invasion, egress and especially the gliding abilities of parasites, which is essential for the successful invasion of host cells, while JH-II-127 did not affect the invasion and gliding ability, but seriously damaged the morphology of mitochondria which may be related to the damage of mitochondrial electron transport chain. Discussion Taken together, these findings suggest that both CGI-1746 and JH-II-127 could be potentially repurposed as anti-T. gondii drugs, lays the groundwork for future therapeutic strategies.
Collapse
Affiliation(s)
- Qian-qian Hua
- Department of Clinical Laboratory, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Xue-jing Lin
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shi-peng Xiang
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Li-ya Jiang
- Department of Clinical Laboratory, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Jin-hao Cai
- Department of Clinical Laboratory, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Jian-min Sun
- Department of Clinical Laboratory, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Feng Tan
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ya-ni Mou
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
3
|
Targeting Artemisinin-Resistant Malaria by Repurposing the Anti-Hepatitis C Virus Drug Alisporivir. Antimicrob Agents Chemother 2022; 66:e0039222. [PMID: 36374050 PMCID: PMC9765015 DOI: 10.1128/aac.00392-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The emergence of Plasmodium falciparum resistance raises an urgent need to find new antimalarial drugs. Here, we report the rational repurposing of the anti-hepatitis C virus drug, alisporivir, a nonimmunosuppressive analog of cyclosporin A, against artemisinin-resistant strains of P. falciparum. In silico docking studies and molecular dynamic simulation predicted strong interaction of alisporivir with PfCyclophilin 19B, confirmed through biophysical assays with a Kd value of 354.3 nM. Alisporivir showed potent antimalarial activity against chloroquine-resistant (PfRKL-9 with resistance index [Ri] 2.14 ± 0.23) and artemisinin-resistant (PfKelch13R539T with Ri 1.15 ± 0.04) parasites. The Ri is defined as the ratio between the IC50 values of the resistant line to that of the sensitive line. To further investigate the mechanism involved, we analyzed the expression level of PfCyclophilin 19B in artemisinin-resistant P. falciparum (PfKelch13R539T). Semiquantitative real-time transcript, Western blot, and immunofluorescence analyses confirmed the overexpression of PfCyclophilin 19B in PfKelch13R539T. A 50% inhibitory concentration in the nanomolar range, together with the targeting of PfCyclophilin 19B, suggests that alisporivir can be used in combination with artemisinin. Since artemisinin resistance slows the clearance of ring-stage parasites, we performed a ring survival assay on artemisinin-resistant strain PfKelch13R539T and found significant decrease in parasite survival with alisporivir. Alisporivir was found to act synergistically with dihydroartemisinin and increase its efficacy. Furthermore, alisporivir exhibited antimalarial activity in vivo. Altogether, with the rational target-based Repurposing of alisporivir against malaria, our results support the hypothesis that targeting resistance mechanisms is a viable approach toward dealing with drug-resistant parasite.
Collapse
|
4
|
Lei ZN, Wu ZX, Dong S, Yang DH, Zhang L, Ke Z, Zou C, Chen ZS. Chloroquine and hydroxychloroquine in the treatment of malaria and repurposing in treating COVID-19. Pharmacol Ther 2020; 216:107672. [PMID: 32910933 PMCID: PMC7476892 DOI: 10.1016/j.pharmthera.2020.107672] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 12/14/2022]
Abstract
Chloroquine (CQ) and Hydroxychloroquine (HCQ) have been commonly used for the treatment and prevention of malaria, and the treatment of autoimmune diseases for several decades. As their new mechanisms of actions are identified in recent years, CQ and HCQ have wider therapeutic applications, one of which is to treat viral infectious diseases. Since the pandemic of the coronavirus disease 2019 (COVID-19), CQ and HCQ have been subjected to a number of in vitro and in vivo tests, and their therapeutic prospects for COVID-19 have been proposed. In this article, the applications and mechanisms of action of CQ and HCQ in their conventional fields of anti-malaria and anti-rheumatism, as well as their repurposing prospects in anti-virus are reviewed. The current trials and future potential of CQ and HCQ in combating COVID-19 are discussed.
Collapse
Affiliation(s)
- Zi-Ning Lei
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| | - Zhuo-Xun Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| | - Shaowei Dong
- Key Laboratory of medical electrophysiology of education ministry, School of Pharmacy, Southwest Medical University, China; Shenzhen Public Service Platform on Tumor Precision Medicine and Molecular Diagnosis, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China
| | - Dong-Hua Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| | - Litu Zhang
- Department of Research, Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Zunfu Ke
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China.
| | - Chang Zou
- Key Laboratory of medical electrophysiology of education ministry, School of Pharmacy, Southwest Medical University, China; Shenzhen Public Service Platform on Tumor Precision Medicine and Molecular Diagnosis, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China.
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| |
Collapse
|
5
|
Madhav H, Hoda N. An insight into the recent development of the clinical candidates for the treatment of malaria and their target proteins. Eur J Med Chem 2020; 210:112955. [PMID: 33131885 DOI: 10.1016/j.ejmech.2020.112955] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/08/2020] [Accepted: 10/19/2020] [Indexed: 01/18/2023]
Abstract
Malaria is an endemic disease, prevalent in tropical and subtropical regions which cost half of million deaths annually. The eradication of malaria is one of the global health priority nevertheless, current therapeutic efforts seem to be insufficient due to the emergence of drug resistance towards most of the available drugs, even first-line treatment ACT, unavailability of the vaccine, and lack of drugs with a new mechanism of action. Intensification of antimalarial research in recent years has resulted into the development of single dose multistage therapeutic agents which has advantage of overcoming the antimalarial drug resistance. The present review explored the current progress in the development of new promising antimalarials against prominent target proteins that have the potential to be a clinical candidate. Here, we also reviewed different aspects of drug resistance and highlighted new drug candidates that are currently in a clinical trial or clinical development, along with a few other molecules with excellent antimalarial activity overs ACTs. The summarized scientific value of previous approaches and structural features of antimalarials related to the activity are highlighted that will be helpful for the development of next-generation antimalarials.
Collapse
Affiliation(s)
- Hari Madhav
- Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia Islamia (A Central University), New Delhi, 110025, India.
| | - Nasimul Hoda
- Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia Islamia (A Central University), New Delhi, 110025, India.
| |
Collapse
|
6
|
Reiling SJ, Rohrbach P. Uptake of a fluorescently tagged chloroquine analogue is reduced in CQ-resistant compared to CQ-sensitive Plasmodium falciparum parasites. Malar J 2019; 18:342. [PMID: 31590674 PMCID: PMC6781371 DOI: 10.1186/s12936-019-2980-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/28/2019] [Indexed: 11/11/2022] Open
Abstract
Background Chloroquine (CQ) was the drug of choice for decades in the treatment of falciparum malaria until resistance emerged. CQ is suggested to accumulate in the parasite’s digestive vacuole (DV), where it unfolds its anti-malarial properties. Discrepancies of CQ accumulation in CQ-sensitive (CQS) and CQ-resistant (CQR) strains are thought to play a significant role in drug susceptibility. Analysis of CQ transport and intracellular localization using a fluorescently tagged CQ analogue could provide much needed information to distinguish susceptible from resistant parasite strains. The fluorescently tagged CQ analogue LynxTag-CQ™GREEN (CQGREEN) is commercially available and was assessed for its suitability. Methods IC50 values were determined for both CQ and CQGREEN in two CQS and two CQR Plasmodium falciparum strains. Buffer solutions with varying pH were used to determine pH-dependent localization of CQGREEN in infected red blood cells. Before CQS or CQR parasites were exposed to different pH buffers, they were pre-loaded with varying concentrations of CQGREEN for up to 7 h. Intracellular accumulation was analysed using live cell confocal microscopy. CQGREEN uptake rates were determined for the cytosol and DV in the presence and absence of verapamil. Results In CQS strains, twofold higher IC50 values were determined for the CQGREEN analogue compared to CQ. No significant differences in IC50 values were observed in CQR strains. Addition of verapamil reversed drug resistance of CQR strains to both CQ and CQGREEN. Live cell imaging revealed that CQGREEN fluorescence was mainly seen in the cytosol of most parasites, independent of the concentration used. Incubation periods of up to 7 h did not influence intracellular localization of CQGREEN. Nevertheless, CQGREEN uptake rates in CQR strains were reduced by 50% compared to CQS strains. Conclusion Although fluorescence of CQGREEN was mainly seen in the cytosol of parasites, IC50 assays showed comparable efficacy of CQGREEN and CQ in parasite killing of CQS and CQR strains. Reduced uptake rates of CQGREEN in CQR strains compared to CQS strains indicate parasite-specific responses to CQGREEN exposure. The data contains valuable information when CQGREEN is used as an analogue for CQ.
Collapse
Affiliation(s)
- Sarah J Reiling
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, Montreal, QC, H9X-3V9, Canada
| | - Petra Rohrbach
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, Montreal, QC, H9X-3V9, Canada.
| |
Collapse
|
7
|
Pasupureddy R, Atul, Seshadri S, Pande V, Dixit R, Pandey KC. Current scenario and future strategies to fight artemisinin resistance. Parasitol Res 2019; 118:29-42. [PMID: 30478733 DOI: 10.1007/s00436-018-6126-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 10/19/2018] [Indexed: 02/05/2023]
Abstract
Despite several setbacks in the fight against malaria such as insecticide and drug resistance as well as low efficacy of available vaccines, considerable success in reducing malaria burden has been achieved in the past decade. Artemisinins (ARTs and their combination therapies, ACTs), the current frontline drugs against uncomplicated malaria, rapidly kill plasmodial parasites and are non-toxic at short exposures. Though the exact mode of action remains unclear, the endoperoxide bridge, indispensable for ART activity, is thought to react with heme released from hemoglobin hydrolysis and generate free radicals that alkylate multiple protein targets, thereby disrupting proteostasis pathways. However, rapid development of ART resistance in recent years with no potential alternatives on the horizon threaten the elimination efforts. The Greater Mekong Subregion in South-East Asia continues to churn out mutants resistant to multiple ACTs and detected in increasingly expanding geographies. Extensive research on ART-resistant strains have identified a potential candidate Kelch13, crucial for mediating ART resistance. Parasites with mutations in the propeller domains of Plasmodium falciparum Kelch13 protein were shown to have enhanced phosphatidylinositol 3-kinase levels that were concomitant with delayed parasite clearance. Current research focused on understanding the mechanism of Kelch13-mediated ART resistance could provide better insights into Plasmodium resistome. This review covers the current proposed mechanisms of ART activity, resistance strategies adopted by the parasite in response to ACTs and possible future approaches to mitigate the spread of resistance from South-East Asia.
Collapse
Affiliation(s)
- Rahul Pasupureddy
- National Institute of Malaria Research, Dwarka Sector 8, New Delhi, 110077, India
- Institute of Science, Nirma University, SG Highway, Ahmedabad, Gujarat, 382481, India
| | - Atul
- National Institute of Malaria Research, Dwarka Sector 8, New Delhi, 110077, India
- Department of Biotechnology, Kumaun University, Nainital, Uttarakhand, 263001, India
| | - Sriram Seshadri
- Institute of Science, Nirma University, SG Highway, Ahmedabad, Gujarat, 382481, India
| | - Veena Pande
- Department of Biotechnology, Kumaun University, Nainital, Uttarakhand, 263001, India
| | - Rajnikant Dixit
- National Institute of Malaria Research, Dwarka Sector 8, New Delhi, 110077, India
| | - Kailash C Pandey
- National Institute of Malaria Research, Dwarka Sector 8, New Delhi, 110077, India.
- Department of Biochemistry, Indian Council of Medical Research, National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, 462001, India.
| |
Collapse
|
8
|
Nie YM, Liang S, Yu WD, Yuan H, Yan J. Microwave-Assisted Preparation and Characterization of a Polyoxometalate-Based Inorganic 2D Framework Anode for Enhancing Lithium-Ion Battery Performance. Chem Asian J 2018; 13:1199-1205. [DOI: 10.1002/asia.201800070] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Yan-Mei Nie
- School of Chemistry and Chemical Engineering; Central South University; Changsha 410083 P. R. China
| | - Shuang Liang
- School of Chemistry and Chemical Engineering; Central South University; Changsha 410083 P. R. China
| | - Wei-Dong Yu
- School of Chemistry and Chemical Engineering; Central South University; Changsha 410083 P. R. China
| | - Hao Yuan
- School of Chemistry and Chemical Engineering; Central South University; Changsha 410083 P. R. China
| | - Jun Yan
- School of Chemistry and Chemical Engineering; Central South University; Changsha 410083 P. R. China
- Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources; Central South University; Changsha P. R. China
| |
Collapse
|
9
|
Kumar M, Singh K, Ngwane AH, Hamzabegovic F, Abate G, Baker B, Wiid I, Hoft DF, Ruminski P, Chibale K. Reversed isoniazids: Design, synthesis and evaluation against Mycobacterium tuberculosis. Bioorg Med Chem 2017; 26:833-844. [PMID: 29373270 DOI: 10.1016/j.bmc.2017.12.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 12/20/2017] [Accepted: 12/28/2017] [Indexed: 12/01/2022]
Abstract
Novel reversed isoniazid (RINH) agents were synthesized by covalently linking isoniazid with various efflux pump inhibitor (EPI) cores and their structural motifs. These RINH agents were then evaluated for anti-mycobacterial activity against sensitive, isoniazid mono-resistant and MDR clinical isolates of M. tuberculosis and a selected number of compounds were also tested ex vivo for intracellular activity as well as in the ethidium bromide (EB) assay for efflux pump inhibition efficacy. The potency of some compounds against various strains of M. tuberculosis (4a-c, 7 and 8; H37Rv-MIC99 ≤1.25 µM, R5401-MIC99 ≤2.5 µM, X_61-MIC99 ≤5 µM) demonstrated the potential of the reversed anti-TB agent strategy towards the development of novel anti-mycobacterial agents to address the rapidly growing issue of resistance. Further, macrophage activity with >90% inhibition by 1a-c and 3b (MIC90 ≤13.42 µM) and inhibition of EB efflux demonstrated by these compounds are encouraging.
Collapse
Affiliation(s)
- Malkeet Kumar
- Department of Chemistry, University of Cape Town, Rondebosch, 7701, South Africa
| | - Kawaljit Singh
- Department of Chemistry, University of Cape Town, Rondebosch, 7701, South Africa
| | - Andile H Ngwane
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for TB Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, P.O. Box 241, Cape Town 8000, South Africa
| | - Fahreta Hamzabegovic
- Department of Internal Medicine, Division of Infectious Diseases, Allergy and Immunology, Saint Louis University, 1100 S. Grand Blvd, 63104 MO, USA
| | - Getahun Abate
- Department of Internal Medicine, Division of Infectious Diseases, Allergy and Immunology, Saint Louis University, 1100 S. Grand Blvd, 63104 MO, USA
| | - Bienyameen Baker
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for TB Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, P.O. Box 241, Cape Town 8000, South Africa
| | - Ian Wiid
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for TB Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, P.O. Box 241, Cape Town 8000, South Africa
| | - Daniel F Hoft
- Department of Internal Medicine, Division of Infectious Diseases, Allergy and Immunology, Saint Louis University, 1100 S. Grand Blvd, 63104 MO, USA; Department of Molecular Biology, Saint Louis University, 1100 S. Grand Blvd, 63104 MO, USA
| | - Peter Ruminski
- Centre for World Health and Medicine, Saint Louis University, 1100 S. Grand Blvd, 63104 MO, USA
| | - Kelly Chibale
- Department of Chemistry, University of Cape Town, Rondebosch, 7701, South Africa; Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, 7701, South Africa; South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry, University of Cape Town, Rondebosch, 7701, South Africa.
| |
Collapse
|
10
|
Plasmodium falciparum and Plasmodium vivax Demonstrate Contrasting Chloroquine Resistance Reversal Phenotypes. Antimicrob Agents Chemother 2017; 61:AAC.00355-17. [PMID: 28533239 PMCID: PMC5527611 DOI: 10.1128/aac.00355-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 05/08/2017] [Indexed: 01/12/2023] Open
Abstract
High-grade chloroquine (CQ) resistance has emerged in both Plasmodium falciparum and P. vivax The aim of the present study was to investigate the phenotypic differences of CQ resistance in both of these species and the ability of known CQ resistance reversal agents (CQRRAs) to alter CQ susceptibility. Between April 2015 and April 2016, the potential of verapamil (VP), mibefradil (MF), L703,606 (L7), and primaquine (PQ) to reverse CQ resistance was assessed in 46 P. falciparum and 34 P. vivax clinical isolates in Papua, Indonesia, where CQ resistance is present in both species, using a modified schizont maturation assay. In P. falciparum, CQ 50% inhibitory concentrations (IC50s) were reduced when CQ was combined with VP (1.4-fold), MF (1.2-fold), L7 (4.2-fold), or PQ (1.8-fold). The degree of CQ resistance reversal in P. falciparum was highly correlated with CQ susceptibility for all CQRRAs (R2 = 0.951, 0.852, 0.962, and 0.901 for VP, MF, L7, and PQ, respectively), in line with observations in P. falciparum laboratory strains. In contrast, no reduction in the CQ IC50s was observed with any of the CQRRAs in P. vivax, even in those isolates with high chloroquine IC50s. The differential effect of CQRRAs in P. falciparum and P. vivax suggests significant differences in CQ kinetics and, potentially, the likely mechanism of CQ resistance between these two species.
Collapse
|
11
|
Jida M, Sanchez CP, Urgin K, Ehrhardt K, Mounien S, Geyer A, Elhabiri M, Lanzer M, Davioud-Charvet E. A Redox-Active Fluorescent pH Indicator for Detecting Plasmodium falciparum Strains with Reduced Responsiveness to Quinoline Antimalarial Drugs. ACS Infect Dis 2017; 3:119-131. [PMID: 28183182 DOI: 10.1021/acsinfecdis.5b00141] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mutational changes in the Plasmodium falciparum chloroquine resistance transporter (PfCRT) have been associated with differential responses to a wide spectrum of biologically active compounds including current and former quinoline and quinoline-like antimalarial drugs. PfCRT confers altered drug responsiveness by acting as a transport system, expelling drugs from the parasite's digestive vacuole where these drugs exert, at least part of, their antiplasmodial activity. To preserve the efficacy of these invaluable drugs, novel functional tools are required for epidemiological surveys of parasite strains carrying mutant PfCRT variants and for drug development programs aimed at inhibiting or circumventing the action of PfCRT. Here we report the synthesis and characterization of a pH-sensitive fluorescent chloroquine analogue consisting of 7-chloro-N-{2-[(propan-2-yl)amino]ethyl}quinolin-4-amine functionalized with the fluorochrome 7-nitrobenzofurazan (NBD) (henceforth termed Fluo-CQ). In the parasite, Fluo-CQ accumulates in the digestive vacuole, giving rise to a strong fluorescence signal but only in parasites carrying the wild type PfCRT. In parasites carrying the mutant PfCRT, Fluo-CQ does not accumulate. The differential handling of the fluorescent probe, combined with live cell imaging, provides a diagnostic tool for quick detection of those P. falciparum strains that carry a PfCRT variant associated with altered responsiveness to quinoline and quinoline-like antimalarial drugs. In contrast to the accumulation studies, chloroquine (CQ)-resistant parasites were observed cross-resistant to Fluo-CQ when the chemical probe was tested in various CQ-sensitive and -resistant parasite strains. NBD derivatives were found to act as redox cyclers of two essential targets, using a coupled assay based on methemoglobin and the NADPH-dependent glutathione reductase (GRs) from P. falciparum. This redox activity is proposed to contribute to the dual action of Fluo-CQ on redox equilibrium and methemoglobin reduction via PfCRT-mediated drug efflux in the cytosol and then continuous redox-dependent shuttling between food vacuole and cytosol. Taking into account these physicochemical characteristics, a model was proposed to explain Fluo-CQ antimalarial effects involving the contribution of PfCRT-mediated transport, methemoglobin reduction, hematin binding, and NBD reduction activity catalyzed by PfGR in CQ-resistant versus CQ-sensitive parasites. Therefore, introduction of NBD fluorophore in drugs is not inert and should be taken into account in drug transport and imaging studies.
Collapse
Affiliation(s)
- Mouhamad Jida
- UMR 7509 Centre National de la Recherche Scientifique and University of Strasbourg, European School of Chemistry, Polymers and Materials (ECPM), 25 rue Becquerel, F-67087 Strasbourg, France
| | - Cecilia P. Sanchez
- Zentrum
für Infektiologie, Parasitologie, Universität Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Karène Urgin
- UMR 7509 Centre National de la Recherche Scientifique and University of Strasbourg, European School of Chemistry, Polymers and Materials (ECPM), 25 rue Becquerel, F-67087 Strasbourg, France
| | - Katharina Ehrhardt
- UMR 7509 Centre National de la Recherche Scientifique and University of Strasbourg, European School of Chemistry, Polymers and Materials (ECPM), 25 rue Becquerel, F-67087 Strasbourg, France
- Zentrum
für Infektiologie, Parasitologie, Universität Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Saravanan Mounien
- UMR 7509 Centre National de la Recherche Scientifique and University of Strasbourg, European School of Chemistry, Polymers and Materials (ECPM), 25 rue Becquerel, F-67087 Strasbourg, France
| | - Aurelia Geyer
- UMR 7509 Centre National de la Recherche Scientifique and University of Strasbourg, European School of Chemistry, Polymers and Materials (ECPM), 25 rue Becquerel, F-67087 Strasbourg, France
| | - Mourad Elhabiri
- UMR 7509 Centre National de la Recherche Scientifique and University of Strasbourg, European School of Chemistry, Polymers and Materials (ECPM), 25 rue Becquerel, F-67087 Strasbourg, France
| | - Michael Lanzer
- Zentrum
für Infektiologie, Parasitologie, Universität Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Elisabeth Davioud-Charvet
- UMR 7509 Centre National de la Recherche Scientifique and University of Strasbourg, European School of Chemistry, Polymers and Materials (ECPM), 25 rue Becquerel, F-67087 Strasbourg, France
| |
Collapse
|
12
|
Kumar M, Singh K, Naran K, Hamzabegovic F, Hoft DF, Warner DF, Ruminski P, Abate G, Chibale K. Design, Synthesis, and Evaluation of Novel Hybrid Efflux Pump Inhibitors for Use against Mycobacterium tuberculosis. ACS Infect Dis 2016; 2:714-725. [PMID: 27737555 DOI: 10.1021/acsinfecdis.6b00111] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Efflux pumps are considered a major potential contributor to the development of various forms of resistance in Mycobacterium tuberculosis leading to the emergence of multidrug-resistant tuberculosis (TB). Verapamil (VER) and tricyclic chemosensitizers such as the phenothiazines are known to possess efflux pump inhibition properties and have demonstrated significant efficacy in various TB disease models. Novel hybrid molecules based on fusion of the VER substructure with various tricyclic, as well as nontricyclic, chemosensitizer cores or their structural motifs are described. These hybrid compounds were evaluated in vitro and ex vivo individually for their intrinsic activity and in combination for their potentiating potential with the frontline anti-TB drugs, rifampin and isoniazid. In addition, efflux pump inhibition was assessed in an ethidium bromide assay. This study led to the identification of novel compounds, termed hybrid efflux pump inhibitors, with intrinsic antimycobacterial activities (MIC90 ≤ 3.17 μg/mL) and intracellular activity in macrophages at a low concentration (≤6.25 μg/mL).
Collapse
Affiliation(s)
- Malkeet Kumar
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Kawaljit Singh
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Krupa Naran
- MRC/NHLS/UCT Molecular
Mycobacteriology Research Unit, Department of Pathology, University of Cape Town, Rondebosch 7701, South Africa
| | - Fahreta Hamzabegovic
- Department of Internal Medicine, Division of Infectious
Diseases, Allergy and Immunology, Saint Louis University, 1100
South Grand Boulevard, St. Louis, Missouri 63104, United States
| | - Daniel F. Hoft
- Department of Internal Medicine, Division of Infectious
Diseases, Allergy and Immunology, Saint Louis University, 1100
South Grand Boulevard, St. Louis, Missouri 63104, United States
- Department of Molecular Biology, Saint Louis University, 1100 South Grand Boulevard, St. Louis, Missouri 63104, United States
| | - Digby F. Warner
- MRC/NHLS/UCT Molecular
Mycobacteriology Research Unit, Department of Pathology, University of Cape Town, Rondebosch 7701, South Africa
- Institute of Infectious Disease and Molecular
Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Peter Ruminski
- Centre for World Health and Medicine, Saint Louis University, 1100 South Grand Boulevard, St. Louis, Missouri 63104, United States
| | - Getahun Abate
- Department of Internal Medicine, Division of Infectious
Diseases, Allergy and Immunology, Saint Louis University, 1100
South Grand Boulevard, St. Louis, Missouri 63104, United States
| | - Kelly Chibale
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
- Institute of Infectious Disease and Molecular
Medicine, University of Cape Town, Rondebosch 7701, South Africa
- South African Medical Research Council
Drug Discovery and Development Research Unit, Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| |
Collapse
|
13
|
Overcoming chloroquine resistance in malaria: Design, synthesis and structure–activity relationships of novel chemoreversal agents. Eur J Med Chem 2016; 119:231-49. [DOI: 10.1016/j.ejmech.2016.04.058] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 04/20/2016] [Accepted: 04/22/2016] [Indexed: 12/15/2022]
|
14
|
Overcoming Chloroquine Resistance in Malaria: Design, Synthesis, and Structure-Activity Relationships of Novel Hybrid Compounds. Antimicrob Agents Chemother 2016; 60:3076-89. [PMID: 26953199 DOI: 10.1128/aac.02476-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 03/04/2016] [Indexed: 12/16/2022] Open
Abstract
Resistance to antimalarial therapies, including artemisinin, has emerged as a significant challenge. Reversal of acquired resistance can be achieved using agents that resensitize resistant parasites to a previously efficacious therapy. Building on our initial work describing novel chemoreversal agents (CRAs) that resensitize resistant parasites to chloroquine (CQ), we herein report new hybrid single agents as an innovative strategy in the battle against resistant malaria. Synthetically linking a CRA scaffold to chloroquine produces hybrid compounds with restored potency toward a range of resistant malaria parasites. A preferred compound, compound 35, showed broad activity and good potency against seven strains resistant to chloroquine and artemisinin. Assessment of aqueous solubility, membrane permeability, and in vitro toxicity in a hepatocyte line and a cardiomyocyte line indicates that compound 35 has a good therapeutic window and favorable drug-like properties. This study provides initial support for CQ-CRA hybrid compounds as a potential treatment for resistant malaria.
Collapse
|
15
|
ω-Tbo-IT1-New Inhibitor of Insect Calcium Channels Isolated from Spider Venom. Sci Rep 2015; 5:17232. [PMID: 26611444 PMCID: PMC4661699 DOI: 10.1038/srep17232] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/27/2015] [Indexed: 11/08/2022] Open
Abstract
Novel disulfide-containing polypeptide toxin was discovered in the venom of the Tibellus oblongus spider. We report on isolation, spatial structure determination and electrophysiological characterization of this 41-residue toxin, called ω-Tbo-IT1. It has an insect-toxic effect with LD50 19 μg/g in experiments on house fly Musca domestica larvae and with LD50 20 μg/g on juvenile Gromphadorhina portentosa cockroaches. Electrophysiological experiments revealed a reversible inhibition of evoked excitatory postsynaptic currents in blow fly Calliphora vicina neuromuscular junctions, while parameters of spontaneous ones were not affected. The inhibition was concentration dependent, with IC50 value 40 ± 10 nM and Hill coefficient 3.4 ± 0.3. The toxin did not affect frog neuromuscular junctions or glutamatergic and GABAergic transmission in rat brains. Ca(2+) currents in Calliphora vicina muscle were not inhibited, whereas in Periplaneta americana cockroach neurons at least one type of voltage gated Ca(2+) current was inhibited by ω-Tbo-IT1. Thus, the toxin apparently acts as an inhibitor of presynaptic insect Ca(2+) channels. Spatial structure analysis of the recombinant ω-Tbo-IT1 by NMR spectroscopy in aqueous solution revealed that the toxin comprises the conventional ICK fold containing an extended β-hairpin loop and short β-hairpin loop which are capable of making "scissors-like mutual motions".
Collapse
|
16
|
Baer CE, Rubin EJ, Sassetti CM. New insights into TB physiology suggest untapped therapeutic opportunities. Immunol Rev 2015; 264:327-43. [PMID: 25703570 DOI: 10.1111/imr.12267] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The current regimens used to treat tuberculosis are largely comprised of serendipitously discovered drugs that are combined based on clinical experience. Despite curing millions, these drug regimens are limited by the long course of therapy, the emergence of resistance, and the persistent tissue damage that remains after treatment. The last two decades have produced only a single new drug but have represented a renaissance in our understanding of the physiology of tuberculosis infection. The advent of mycobacterial genetics, sophisticated immunological methods, and imaging technologies have transformed our understanding of bacterial physiology as well as the contribution of the host response to disease outcome. Specific alterations in bacterial metabolism, heterogeneity in bacterial state, and drug penetration all limit the effectiveness of antimicrobial therapy. This review summarizes these new biological insights and discusses strategies to exploit them for the rational development of more effective therapeutics. Three general strategies are discussed. First, our emerging insight into bacterial physiology suggests new pathways that might be targeted to accelerate therapy. Second, we explore whether the concept of genetic synergy can be used to design effective combination therapies. Finally, we outline possible approaches to modulate the host response to accentuate antibiotic efficacy. These biology-driven strategies promise to produce more effective therapies.
Collapse
Affiliation(s)
- Christina E Baer
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | | | | |
Collapse
|
17
|
Characterization of the commercially-available fluorescent chloroquine-BODIPY conjugate, LynxTag-CQGREEN, as a marker for chloroquine resistance and uptake in a 96-well plate assay. PLoS One 2014; 9:e110800. [PMID: 25343249 PMCID: PMC4208776 DOI: 10.1371/journal.pone.0110800] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 09/18/2014] [Indexed: 11/24/2022] Open
Abstract
Chloroquine was a cheap, extremely effective drug against Plasmodium falciparum until resistance arose. One approach to reversing resistance is the inhibition of chloroquine efflux from its site of action, the parasite digestive vacuole. Chloroquine accumulation studies have traditionally relied on radiolabelled chloroquine, which poses several challenges. There is a need for development of a safe and biologically relevant substitute. We report here a commercially-available green fluorescent chloroquine-BODIPY conjugate, LynxTag-CQGREEN, as a proxy for chloroquine accumulation. This compound localized to the digestive vacuole of the parasite as observed under confocal microscopy, and inhibited growth of chloroquine-sensitive strain 3D7 more extensively than in the resistant strains 7G8 and K1. Microplate reader measurements indicated suppression of LynxTag-CQGREEN efflux after pretreatment of parasites with known reversal agents. Microsomes carrying either sensitive- or resistant-type PfCRT were assayed for uptake; resistant-type PfCRT exhibited increased accumulation of LynxTag-CQGREEN, which was suppressed by pretreatment with known chemosensitizers. Eight laboratory strains and twelve clinical isolates were sequenced for PfCRT and Pgh1 haplotypes previously reported to contribute to drug resistance, and pfmdr1 copy number and chloroquine IC50s were determined. These data were compared with LynxTag-CQGREEN uptake/fluorescence by multiple linear regression to identify genetic correlates of uptake. Uptake of the compound correlated with the logIC50 of chloroquine and, more weakly, a mutation in Pgh1, F1226Y.
Collapse
|
18
|
Eey STC, Lear MJ. Total Synthesis of (−)-Platensimycin by Advancing Oxocarbenium- and Iminium-Mediated Catalytic Methods. Chemistry 2014; 20:11556-73. [DOI: 10.1002/chem.201400131] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Indexed: 11/10/2022]
|
19
|
Ch'ng JH, Lee YQ, Gun SY, Chia WN, Chang ZW, Wong LK, Batty KT, Russell B, Nosten F, Renia L, Tan KSW. Validation of a chloroquine-induced cell death mechanism for clinical use against malaria. Cell Death Dis 2014; 5:e1305. [PMID: 24967967 PMCID: PMC4611737 DOI: 10.1038/cddis.2014.265] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 04/04/2014] [Accepted: 05/20/2014] [Indexed: 01/09/2023]
Abstract
An alternative antimalarial pathway of an ‘outdated' drug, chloroquine (CQ), may facilitate its return to the shrinking list of effective antimalarials. Conventionally, CQ is believed to interfere with hemozoin formation at nanomolar concentrations, but resistant parasites are able to efflux this drug from the digestive vacuole (DV). However, we show that the DV membrane of both resistant and sensitive laboratory and field parasites is compromised after exposure to micromolar concentrations of CQ, leading to an extrusion of DV proteases. Furthermore, only a short period of exposure is required to compromise the viability of late-stage parasites. To study the feasibility of this strategy, mice malaria models were used to demonstrate that high doses of CQ also triggered DV permeabilization in vivo and reduced reinvasion efficiency. We suggest that a time-release oral formulation of CQ may sustain elevated blood CQ levels sufficiently to clear even CQ-resistant parasites.
Collapse
Affiliation(s)
- J-H Ch'ng
- 1] Department of Microbiology, National University of Singapore, 5 Science Drive 2, Singapore, Singapore [2] Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Nobels väg 16, KI Solna Campus, Box 280, Stockholm, Sweden
| | - Y-Q Lee
- 1] Department of Microbiology, National University of Singapore, 5 Science Drive 2, Singapore, Singapore [2] NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Centre for Life Sciences (CeLS), #05-01, 28 Medical Drive, Singapore, Singapore
| | - S Y Gun
- Singapore Immunology Network, Agency for Science Technology and Research (A*STAR), Biopolis, 8A Biomedical Grove, Immunos Building, Level 4, Singapore, Singapore
| | - W-N Chia
- Singapore Immunology Network, Agency for Science Technology and Research (A*STAR), Biopolis, 8A Biomedical Grove, Immunos Building, Level 4, Singapore, Singapore
| | - Z-W Chang
- Singapore Immunology Network, Agency for Science Technology and Research (A*STAR), Biopolis, 8A Biomedical Grove, Immunos Building, Level 4, Singapore, Singapore
| | - L-K Wong
- Department of Chemistry, National University of Singapore, Block S8, Level 3, 3 Science Drive 3, Singapore, Singapore
| | - K T Batty
- 1] School of Pharmacy, Curtin University, GPO Box U1987, Perth Western Australia 6845 Bentley, WA, Australia [2] West Coast Institute, 35 Kendrew Crescent, Joondalup, WA, Australia
| | - B Russell
- Department of Microbiology, National University of Singapore, 5 Science Drive 2, Singapore, Singapore
| | - F Nosten
- 1] Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 68/30 Bantung Road, PO.BOX 46, Maesot, TAK, Thailand [2] Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Churchill Hospital, Old Road, Oxford, UK
| | - L Renia
- Singapore Immunology Network, Agency for Science Technology and Research (A*STAR), Biopolis, 8A Biomedical Grove, Immunos Building, Level 4, Singapore, Singapore
| | - K S-W Tan
- Department of Microbiology, National University of Singapore, 5 Science Drive 2, Singapore, Singapore
| |
Collapse
|
20
|
Kotturi SR, Somanadhan B, Ch’ng JH, Tan KSW, Butler MS, Lear MJ. Diverted total synthesis of falcitidin acyl tetrapeptides as new antimalarial leads. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.02.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
21
|
Singh K, Kaur G, Mjambili F, Smith PJ, Chibale K. Synthesis of metergoline analogues and their evaluation as antiplasmodial agents. MEDCHEMCOMM 2014. [DOI: 10.1039/c3md00310h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of metergoline analogues were synthesized and evaluatedin vitrofor antiplasmodial activity and cytotoxicity towards a mammalian cell line. Some of the compounds exhibited promising selective antiplasmodial activity along with a high selectivity index relative to metergoline.
Collapse
Affiliation(s)
- Kawaljit Singh
- Department of Chemistry and Institute of Infectious Disease & Molecular Medicine
- University of Cape Town
- Rondebosch 7701, South Africa
| | - Gurminder Kaur
- Department of Chemistry and Institute of Infectious Disease & Molecular Medicine
- University of Cape Town
- Rondebosch 7701, South Africa
| | - Faith Mjambili
- Department of Chemistry and Institute of Infectious Disease & Molecular Medicine
- University of Cape Town
- Rondebosch 7701, South Africa
| | | | - Kelly Chibale
- Department of Chemistry and Institute of Infectious Disease & Molecular Medicine
- University of Cape Town
- Rondebosch 7701, South Africa
| |
Collapse
|
22
|
A high-content phenotypic screen reveals the disruptive potency of quinacrine and 3',4'-dichlorobenzamil on the digestive vacuole of Plasmodium falciparum. Antimicrob Agents Chemother 2013; 58:550-8. [PMID: 24217693 DOI: 10.1128/aac.01441-13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Plasmodium falciparum is the etiological agent of malignant malaria and has been shown to exhibit features resembling programmed cell death. This is triggered upon treatment with low micromolar doses of chloroquine or other lysosomotrophic compounds and is associated with leakage of the digestive vacuole contents. In order to exploit this cell death pathway, we developed a high-content screening method to select compounds that can disrupt the parasite vacuole, as measured by the leakage of intravacuolar Ca(2+). This assay uses the ImageStream 100, an imaging-capable flow cytometer, to assess the distribution of the fluorescent calcium probe Fluo-4. We obtained two hits from a small library of 25 test compounds, quinacrine and 3',4'-dichlorobenzamil. The ability of these compounds to permeabilize the digestive vacuole in laboratory strains and clinical isolates was validated by confocal microscopy. The hits could induce programmed cell death features in both chloroquine-sensitive and -resistant laboratory strains. Quinacrine was effective at inhibiting field isolates in a 48-h reinvasion assay regardless of artemisinin clearance status. We therefore present as proof of concept a phenotypic screening method with the potential to provide mechanistic insights to the activity of antimalarial drugs.
Collapse
|