1
|
Aguilera SB, McCarthy A, Khalifian S, Lorenc ZP, Goldie K, Chernoff WG. The Role of Calcium Hydroxylapatite (Radiesse) as a Regenerative Aesthetic Treatment: A Narrative Review. Aesthet Surg J 2023; 43:1063-1090. [PMID: 37635437 PMCID: PMC11025388 DOI: 10.1093/asj/sjad173] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023] Open
Abstract
For decades, a wide variety of natural and synthetic materials have been used to augment human tissue to improve aesthetic outcomes. Dermal fillers are some of the most widely used aesthetic treatments throughout the body. Initially, the primary function of dermal fillers was to restore depleted volume. As biomaterial research has advanced, however, a variety of biostimulatory fillers have become staples in aesthetic medicine. Such fillers often contain a carrying vehicle and a biostimulatory material that induces de novo synthesis of major structural components of the extracellular matrix. One such filler, Radiesse (Merz Aesthetics, Raleigh, NC), is composed of calcium hydroxylapatite microspheres suspended in a carboxymethylcellulose gel. In addition to immediate volumization, Radiesse treatment results in increases of collagen, elastin, vasculature, proteoglycans, and fibroblast populations via a cell-biomaterial-mediated interaction. When injected, Radiesse acts as a cell scaffold and clinically manifests as immediate restoration of depleted volume, improvements in skin quality and appearance, and regeneration of endogenous extracellular matrices. This narrative review contextualizes Radiesse as a regenerative aesthetic treatment, summarizes its unique use cases, reviews its rheological, material, and regenerative properties, and hypothesizes future combination treatments in the age of regenerative aesthetics. LEVEL OF EVIDENCE: 5
Collapse
Affiliation(s)
| | - Alec McCarthy
- Corresponding Author: Dr Alec McCarthy, Medical Affairs North America, Merz Aesthetics, 6501 Six Forks Road, Raleigh, NC 27615, USA. E-mail:
| | | | | | | | | |
Collapse
|
2
|
Dhall S, Park MS, Li C, Sathyamoorthy M. Regenerative Effects of Hypoxia Primed Flowable Placental Formulation in Muscle and Dermal Injury. Int J Mol Sci 2021; 22:7151. [PMID: 34281205 PMCID: PMC8267721 DOI: 10.3390/ijms22137151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/14/2021] [Accepted: 06/18/2021] [Indexed: 11/17/2022] Open
Abstract
The placental tissue, due to its angiogenic, anti-inflammatory, antioxidative, antimicrobial, and anti-fibrotic properties, has become a compelling source towards a solution for several indications in regenerative medicine. However, methods to enhance and capture the therapeutic properties with formulations that can further the applications of viable placental tissue have not been explored. In this study, we investigated the regenerative effects of a hypoxia primed flowable placental formulation (FPF), composed of amnion/chorion and umbilical tissue, in two in vivo injury models. Laser Doppler data from rodent ischemia hindlimbs treated with FPF revealed significant tissue perfusion improvements compared to control ischemic hindlimbs. To further corroborate FPF's effects, we used a rodent ischemic bipedicle skin flap wound model. FPF treatment significantly increased the rate of wound closure and the quality of wound healing. FPF-treated wounds displayed reduced inflammation and an increase in angiogenesis. Furthermore, quantitative PCR and next-generation sequencing analysis confirmed these changes in the FPF-treated group at both the gene and transcriptional level. The observed modulation in miRNAs was associated with angiogenesis, regulation of inflammatory microenvironment, cell migration and apoptosis, reactive oxygen species generation, and restoring epithelial barrier function, all processes involved in impaired tissue healing. Taken together, these data validate the tissue regenerative properties of the flowable placental formulation configuration tested.
Collapse
Affiliation(s)
- Sandeep Dhall
- Smith & Nephew Plc., Columbia, MD 21046, USA; (C.L.); (M.S.)
| | - Min Sung Park
- Smith & Nephew Plc., Columbia, MD 21046, USA; (C.L.); (M.S.)
| | | | | |
Collapse
|
3
|
Distinct differences in hypoxic responses between human oral mucosa and skin fibroblasts in a 3D collagen matrix. In Vitro Cell Dev Biol Anim 2020; 56:452-479. [PMID: 32588253 DOI: 10.1007/s11626-020-00458-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/16/2020] [Indexed: 02/03/2023]
Abstract
The differences between oral mucosa and skin wound healing involving hypoxic responses of fibroblasts are poorly elucidated. In this study, we aimed to study the different hypoxic responses between oral and skin fibroblasts embedded in a three-dimensional (3D) collagen matrix to address the early stage of wound healing. Primary oral mucosa fibroblasts (OMFs) obtained from the retromolar area and skin fibroblasts (SFs) obtained from the abdomen were cultured in the 3D 'floating model' under either 21%, 5% or 1% O2 for 2 days. Cell viability under hypoxia was higher in the OMFs than in the SFs. Collagen gel contraction was suppressed under hypoxic conditions in both fibroblasts, consistent with the reduction of alpha smooth muscle actin expression, except for SFs under 1% O2. Subsequently, their gene expression profiles between 21 and 1% O2 concentrations were compared via microarray technology, and the expression profiles of the extracellular matrix (ECM)-associated proteins, including matrix metalloproteinases and collagens, were evaluated. The OMFs were more susceptible to 1% O2, and more of their genes were downregulated than the SFs'. Although the production and expression levels of ECM-associated proteins in both fibroblasts diminished under hypoxia, those levels in OMFs were significantly higher than those in SFs. In the case of single origin OMFs and SFs, our findings suggest that OMFs possess a higher baseline production capacity of several ECM-associated proteins than SFs, except type III collagen. The intrinsic hypoxic responses of OMFs may be attributed to a more favourable wound healing in oral mucosa.
Collapse
|
4
|
Wang XT, McKeever CC, Vonu P, Patterson C, Liu PY. Dynamic Histological Events and Molecular Changes in Excisional Wound Healing of Diabetic DB/DB Mice. J Surg Res 2019; 238:186-197. [DOI: 10.1016/j.jss.2019.01.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 12/18/2018] [Accepted: 01/17/2019] [Indexed: 01/08/2023]
|
5
|
Imle A, Kumberger P, Schnellbächer ND, Fehr J, Carrillo-Bustamante P, Ales J, Schmidt P, Ritter C, Godinez WJ, Müller B, Rohr K, Hamprecht FA, Schwarz US, Graw F, Fackler OT. Experimental and computational analyses reveal that environmental restrictions shape HIV-1 spread in 3D cultures. Nat Commun 2019; 10:2144. [PMID: 31086185 PMCID: PMC6514199 DOI: 10.1038/s41467-019-09879-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/04/2019] [Indexed: 11/09/2022] Open
Abstract
Pathogens face varying microenvironments in vivo, but suitable experimental systems and analysis tools to dissect how three-dimensional (3D) tissue environments impact pathogen spread are lacking. Here we develop an Integrative method to Study Pathogen spread by Experiment and Computation within Tissue-like 3D cultures (INSPECT-3D), combining quantification of pathogen replication with imaging to study single-cell and cell population dynamics. We apply INSPECT-3D to analyze HIV-1 spread between primary human CD4 T-lymphocytes using collagen as tissue-like 3D-scaffold. Measurements of virus replication, infectivity, diffusion, cellular motility and interactions are combined by mathematical analyses into an integrated spatial infection model to estimate parameters governing HIV-1 spread. This reveals that environmental restrictions limit infection by cell-free virions but promote cell-associated HIV-1 transmission. Experimental validation identifies cell motility and density as essential determinants of efficacy and mode of HIV-1 spread in 3D. INSPECT-3D represents an adaptable method for quantitative time-resolved analyses of 3D pathogen spread. Here, using an integrative experimental and computational approach, Imle et al. show how cell motility and density affect HIV cell-associated transmission in a three-dimensional tissue-like culture system of CD4+ T cells and collagen, and how different collagen matrices restrict infection by cell-free virions.
Collapse
Affiliation(s)
- Andrea Imle
- Department of Infectious Diseases, Centre for Integrative Infectious Disease Research (CIID), Integrative Virology, University Hospital Heidelberg, 69120, Heidelberg, Germany.,Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117, Heidelberg, Germany
| | - Peter Kumberger
- Centre for Modelling and Simulation in the Biosciences, BioQuant, Heidelberg University, 69120, Heidelberg, Germany
| | - Nikolas D Schnellbächer
- Institute for Theoretical Physics and BioQuant, Heidelberg University, 69120, Heidelberg, Germany
| | - Jana Fehr
- Centre for Modelling and Simulation in the Biosciences, BioQuant, Heidelberg University, 69120, Heidelberg, Germany.,Digital Health & Machine Learning, Hasso-Plattner Institute, 14482, Potsdam, Germany
| | - Paola Carrillo-Bustamante
- Centre for Modelling and Simulation in the Biosciences, BioQuant, Heidelberg University, 69120, Heidelberg, Germany.,Vector Biology Unit, Max-Planck Institute for Infection Biology, 10117, Berlin, Germany
| | - Janez Ales
- HCI/IWR, Heidelberg University, 69120, Heidelberg, Germany
| | - Philip Schmidt
- HCI/IWR, Heidelberg University, 69120, Heidelberg, Germany
| | - Christian Ritter
- Biomedical Computer Vision Group, BioQuant, IPMB, and DKFZ, Heidelberg University, 69120, Heidelberg, Germany
| | - William J Godinez
- Biomedical Computer Vision Group, BioQuant, IPMB, and DKFZ, Heidelberg University, 69120, Heidelberg, Germany
| | - Barbara Müller
- Department of Infectious Diseases, Centre for Integrative Infectious Disease Research (CIID), Virology, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Karl Rohr
- Biomedical Computer Vision Group, BioQuant, IPMB, and DKFZ, Heidelberg University, 69120, Heidelberg, Germany
| | | | - Ulrich S Schwarz
- Institute for Theoretical Physics and BioQuant, Heidelberg University, 69120, Heidelberg, Germany
| | - Frederik Graw
- Centre for Modelling and Simulation in the Biosciences, BioQuant, Heidelberg University, 69120, Heidelberg, Germany
| | - Oliver T Fackler
- Department of Infectious Diseases, Centre for Integrative Infectious Disease Research (CIID), Integrative Virology, University Hospital Heidelberg, 69120, Heidelberg, Germany. .,German Centre for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany.
| |
Collapse
|
6
|
Sapudom J, Pompe T. Biomimetic tumor microenvironments based on collagen matrices. Biomater Sci 2018; 6:2009-2024. [DOI: 10.1039/c8bm00303c] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review provides an overview of the current approaches to engineer defined 3D matrices for the investigation of tumor cell behaviorin vitro, with a focus on collagen-based fibrillar systems.
Collapse
Affiliation(s)
- Jiranuwat Sapudom
- Biophysical Chemistry Group
- Institute of Biochemistry
- Faculty of Life Sciences
- Leipzig University
- Leipzig 04103
| | - Tilo Pompe
- Biophysical Chemistry Group
- Institute of Biochemistry
- Faculty of Life Sciences
- Leipzig University
- Leipzig 04103
| |
Collapse
|
7
|
MCPIP1 Regulates Fibroblast Migration in 3-D Collagen Matrices Downstream of MAP Kinases and NF-κB. J Invest Dermatol 2015; 135:2944-2954. [PMID: 26399696 PMCID: PMC4648714 DOI: 10.1038/jid.2015.334] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 07/27/2015] [Accepted: 08/03/2015] [Indexed: 12/13/2022]
Abstract
The fibroblast-populated 3D collagen matrix has been used to model matrix contraction, cell motility, and general fibroblast biology. MCPIP1 (monocyte chemotactic protein-induced protein 1) has been shown to regulate inflammation, angiogenesis, and cellular motility. In the present study, we demonstrated induction of MCPIP1 in human fibroblasts embedded in the stress-released 3D collagen matrix, which occurred through activation of mitogen-activated protein kinases, phosphoinositide 3-kinase, and NF-κB. Furthermore, MCPIP1 induction was associated with inhibition of fibroblast migration out of the nested collagen matrix. MCPIP1 induction or ectopic expression also upregulated p53. RNA interference of p53 prevented the inhibition of migration produced by induction or ectopic expression of MCPIP1. Our findings suggest a new role for MCPIP1 as a molecular switch that regulates fibroblast migration in the nested collagen matrix model.
Collapse
|
8
|
Sapudom J, Rubner S, Martin S, Kurth T, Riedel S, Mierke CT, Pompe T. The phenotype of cancer cell invasion controlled by fibril diameter and pore size of 3D collagen networks. Biomaterials 2015; 52:367-75. [DOI: 10.1016/j.biomaterials.2015.02.022] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/02/2015] [Indexed: 01/27/2023]
|
9
|
Abstract
Type I collagen is a fibrillar protein, a member of a large family of collagen proteins. It is present in most body tissues, usually in combination with other collagens and other components of extracellular matrix. Its synthesis is increased in various pathological situations, in healing wounds, in fibrotic tissues and in many tumors. After extraction from collagen-rich tissues it is widely used in studies of cell behavior, especially those of fibroblasts and myofibroblasts. Cells cultured in a classical way, on planar plastic dishes, lack the third dimension that is characteristic of body tissues. Collagen I forms gel at neutral pH and may become a basis of a 3D matrix that better mimics conditions in tissue than plastic dishes.
Collapse
Affiliation(s)
- Jiří Kanta
- a Department of Medical Biochemistry; Medical Faculty in Hradec Králové; Charles University ; Prague , Czech Republic
| |
Collapse
|
10
|
Leung BM, Moraes C, Cavnar SP, Luker KE, Luker GD, Takayama S. Microscale 3D collagen cell culture assays in conventional flat-bottom 384-well plates. ACTA ACUST UNITED AC 2014; 20:138-45. [PMID: 25510473 DOI: 10.1177/2211068214563793] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Three-dimensional (3D) culture systems such as cell-laden hydrogels are superior to standard two-dimensional (2D) monolayer cultures for many drug-screening applications. However, their adoption into high-throughput screening (HTS) has been lagging, in part because of the difficulty of incorporating these culture formats into existing robotic liquid handling and imaging infrastructures. Dispensing cell-laden prepolymer solutions into 2D well plates is a potential solution but typically requires large volumes of reagents to avoid evaporation during polymerization, which (1) increases costs, (2) makes drug penetration variable and (3) complicates imaging. Here we describe a technique to efficiently produce 3D microgels using automated liquid-handling systems and standard, nonpatterned, flat-bottomed, 384-well plates. Sub-millimeter-diameter, cell-laden collagen gels are deposited on the bottom of a ~2.5 mm diameter microwell with no concerns about evaporation or meniscus effects at the edges of wells, using aqueous two-phase system patterning. The microscale cell-laden collagen-gel constructs are readily imaged and readily penetrated by drugs. The cytotoxicity of chemotherapeutics was monitored by bioluminescence and demonstrated that 3D cultures confer chemoresistance as compared with similar 2D cultures. Hence, these data demonstrate the importance of culturing cells in 3D to obtain realistic cellular responses. Overall, this system provides a simple and inexpensive method for integrating 3D culture capability into existing HTS infrastructure.
Collapse
Affiliation(s)
- Brendan M Leung
- Department of Biomedical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Christopher Moraes
- Department of Biomedical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA Department of Chemical Engineering, McGill University, Montreal, Canada
| | - Stephen P Cavnar
- Department of Biomedical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Kathryn E Luker
- Center for Molecular Imaging, Department of Radiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Gary D Luker
- Department of Biomedical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA Center for Molecular Imaging, Department of Radiology, University of Michigan Medical School, Ann Arbor, MI, USA Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Shuichi Takayama
- Department of Biomedical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA Department of Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI, USA Division of Nano-Bio and Chemical Engineering WCU Project, UNIST, Republic of Korea
| |
Collapse
|