1
|
Wang L, Du E, Liu Z, Liu Z. Preparation, Thermal, and Optical Properties of D-A-Type Molecules Based on 1,3,5-Triazine for Violet-Blue Fluorescent Materials. MATERIALS (BASEL, SWITZERLAND) 2025; 18:2043. [PMID: 40363545 PMCID: PMC12072454 DOI: 10.3390/ma18092043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/23/2025] [Accepted: 04/27/2025] [Indexed: 05/15/2025]
Abstract
Organic violet-blue fluorescent materials have garnered significant interest for a broad spectrum of applications. A series of triazine-based molecules, that is, 2,4,6-tri(9H-carbazol-9-yl)-1,3,5-triazine (TCZT), 2,4,6-tri(1H-indol-1-yl)-1,3,5-triazine (TIDT), and 2,4,6-tris(3,6-di-tert-butyl-9H-carbazol-9-yl)-1,3,5-triazine (TDBCZT), exhibiting violet-blue emission were synthesized via a catalyst-free aromatic nucleophilic substitution reaction. These compounds possess a non-planar and twisted structure with favorable charge-transfer characteristics, demonstrating excellent thermal stability (decomposition temperatures of 370 °C, 384 °C, and 230 °C, respectively). Cyclic voltammetry analysis, combined with time-dependent density functional theory (TD-DFT) calculations at the B3LYP/6-31G(d) level, offered detailed insights into their electronic structures and electrochemical properties. Optical properties were systematically characterized using Ultraviolet-visible (UV-Vis) absorption and photoluminescence (PL) spectroscopy. The compounds exhibited violet-blue luminescence with emission peaks located at 397 nm, 383 nm, and 402 nm in toluene, respectively. In their respective films, the compounds exhibited varying degrees of spectral shifts, with emission peaks at 408 nm, 381 nm, and 369 nm. Moreover, the CIE (Commission Internationale de l'Éclairage) coordinates of TIDT in toluene were (0.155, 0.067), indicative of excellent violet purity. These compounds demonstrated significant two-photon absorption (TPA) properties, with cross-sections of 4.6 GM, 15.3 GM, and 7.4 GM, respectively. Notably, they exhibited large molar absorptivities and substantial photoluminescence quantum yields (PLQYs), suggesting their potential for practical applications as violet-blue fluorescent materials.
Collapse
Affiliation(s)
- Lu Wang
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China
| | - Enwang Du
- School of Physics, Shandong University, Jinan 250100, China
| | - Zhi Liu
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China
| | - Zhiqiang Liu
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China
| |
Collapse
|
2
|
Mageswari GV, Chitose Y, Tsuchiya Y, Lin JH, Adachi C. Rational Molecular Design for Balanced Locally Excited and Charge- Transfer Nature for Two-Photon Absorption Phenomenon and Highly Efficient TADF-Based OLEDs. Angew Chem Int Ed Engl 2025; 64:e202420417. [PMID: 39587453 DOI: 10.1002/anie.202420417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 11/27/2024]
Abstract
The pursuit of highly efficient thermally activated delayed fluorescence (TADF) emitters with two-photon absorption (2PA) character is hampered by the concurrent achievement of a small singlet-triplet energy gap (ΔEST) and high photoluminescence quantum yield (ΦPL). Here, by introducing a terephthalonitrile unit into a sterically crowded donor-π-donor structure, inducing a hybrid electronic excitation character, we designed unique TADF emitters possessing 2PA ability. This rational molecular design was achieved through a main π-conjugated donor-acceptor-donor backbone in line with locally excited feature renders a large oscillator strength and transition dipole moment, maintaining a high 2PA cross-section value. The ancillary N-donor-acceptor-donor with charge transfer character highly balances the TADF phenomenon by minimizing ΔEST. A near-unity ΦPL value with a large radiative decay rate over an order of magnitude higher than the intersystem crossing rate and a high horizontal orientation ratio of 0.95 were simultaneously attained for TPCz2NP. The organic light-emitting diodes fabricated with this material exhibit a high maximum external quantum efficiency of 25.4 % with an elevated 2PA cross-section (σ2) value up to 143 GM at 850 nm. These findings offer a venue for designing high-performance TADF emitters with exceptional performance inclusive of 2PA properties, expanding for future functional material design.
Collapse
Affiliation(s)
- Gomathi Vinayakam Mageswari
- Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
| | - Youhei Chitose
- Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
- Department of Applied Chemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, Fukuoka, 819-0395, Japan
| | - Youichi Tsuchiya
- Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
| | - Ja-Hon Lin
- Department of Electro-Optical Engineering, Advanced Nanophotonics Technology Laboratory, National Taipei University of Technology, Taipei, 10608, Taiwan
| | - Chihaya Adachi
- Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
- International Institute for Carbon Neutral Energy Research (I2CNER), Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
| |
Collapse
|
3
|
Dos Santos JM, Hall D, Basumatary B, Bryden M, Chen D, Choudhary P, Comerford T, Crovini E, Danos A, De J, Diesing S, Fatahi M, Griffin M, Gupta AK, Hafeez H, Hämmerling L, Hanover E, Haug J, Heil T, Karthik D, Kumar S, Lee O, Li H, Lucas F, Mackenzie CFR, Mariko A, Matulaitis T, Millward F, Olivier Y, Qi Q, Samuel IDW, Sharma N, Si C, Spierling L, Sudhakar P, Sun D, Tankelevičiu Tė E, Duarte Tonet M, Wang J, Wang T, Wu S, Xu Y, Zhang L, Zysman-Colman E. The Golden Age of Thermally Activated Delayed Fluorescence Materials: Design and Exploitation. Chem Rev 2024; 124:13736-14110. [PMID: 39666979 DOI: 10.1021/acs.chemrev.3c00755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Since the seminal report by Adachi and co-workers in 2012, there has been a veritable explosion of interest in the design of thermally activated delayed fluorescence (TADF) compounds, particularly as emitters for organic light-emitting diodes (OLEDs). With rapid advancements and innovation in materials design, the efficiencies of TADF OLEDs for each of the primary color points as well as for white devices now rival those of state-of-the-art phosphorescent emitters. Beyond electroluminescent devices, TADF compounds have also found increasing utility and applications in numerous related fields, from photocatalysis, to sensing, to imaging and beyond. Following from our previous review in 2017 ( Adv. Mater. 2017, 1605444), we here comprehensively document subsequent advances made in TADF materials design and their uses from 2017-2022. Correlations highlighted between structure and properties as well as detailed comparisons and analyses should assist future TADF materials development. The necessarily broadened breadth and scope of this review attests to the bustling activity in this field. We note that the rapidly expanding and accelerating research activity in TADF material development is indicative of a field that has reached adolescence, with an exciting maturity still yet to come.
Collapse
Affiliation(s)
- John Marques Dos Santos
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - David Hall
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Biju Basumatary
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Megan Bryden
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Dongyang Chen
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Praveen Choudhary
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Thomas Comerford
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Ettore Crovini
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Andrew Danos
- Department of Physics, Durham University, Durham DH1 3LE, UK
| | - Joydip De
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Stefan Diesing
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Mahni Fatahi
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Máire Griffin
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Abhishek Kumar Gupta
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Hassan Hafeez
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Lea Hämmerling
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Emily Hanover
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- EaStCHEM School of Chemistry, The University of Edinburgh, Edinburgh, EH9 3FJ, UK
| | - Janine Haug
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Tabea Heil
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Durai Karthik
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Shiv Kumar
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Oliver Lee
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Haoyang Li
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Fabien Lucas
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | | | - Aminata Mariko
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Tomas Matulaitis
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Francis Millward
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Yoann Olivier
- Laboratory for Computational Modeling of Functional Materials, Namur Institute of Structured Matter, Université de Namur, Rue de Bruxelles, 61, 5000 Namur, Belgium
| | - Quan Qi
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Ifor D W Samuel
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Nidhi Sharma
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Changfeng Si
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Leander Spierling
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Pagidi Sudhakar
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Dianming Sun
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Eglė Tankelevičiu Tė
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Michele Duarte Tonet
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Jingxiang Wang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Tao Wang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Sen Wu
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Yan Xu
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Le Zhang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Eli Zysman-Colman
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| |
Collapse
|
4
|
Mao YH, Hung MK, Chung ST, Sharma S, Tsai KW, Chen SA. Interacting Emission Species among Donor and Acceptor Moieties in a Donor-Grafted Polymer Host/TADF-Guest System and Their Effects on Photoluminescence and Electroluminescence. ACS APPLIED MATERIALS & INTERFACES 2024; 16:60715-60731. [PMID: 39444357 PMCID: PMC11551908 DOI: 10.1021/acsami.4c15933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
Thermally activated delayed fluorescence (TADF)-based electroluminescence (EL) devices adopting a host/guest strategy in their emitting layer (EML) are capable of realizing high efficiency. However, TADF emitters composed of donor and acceptor moieties as guests dispersed in organic host materials containing a donor and/or an acceptor are subject to donor-acceptor (D-A) interactions. In addition, electron delocalization between neighboring emitter molecules could form different species of aggregates. Here, we investigate the effects of intermolecular interacting emission species on the optoelectronic properties of sky-blue/green/red (sB/G/R) TADF emitters as guests using poly(biphenyl-Si/Ge) grafted with various donor moieties as hosts. We found the presence of guest/guest exciplex (Dg/Ag)*, host/guest exciplexes (Dh/Ag)*, and aggregates through the exploration of interactions between neighboring TADF guest molecules and between host and TADF-guest molecules. The nonradiative 3(Dh/Ag)* (ΔEST ≈ 0.5 eV) could increase the internal conversion rate (kIC) and reduce delayed luminescence, and both of them could cause a decrease in PLQY. The luminescence of 3(Dh/Ag)* may have a positive or negative effect on PLQY depending on its triplet energy. As the singlet and triplet energies of (aggregate)* are lower than those of (ICT)*, energy transfer from (ICT)* to (aggregate)* could occur. The low PLQY nature of (aggregate)* means that it is more likely to cause quenching in device emission. The emissions from (Dh/Ag)* and (aggregate)* are found to have increased full width at half-maximum and lead to lower emission color purity. Such intermolecular interactions should also occur in host/guest (TADF) systems and nondoped TADF emitter systems and thus are important factors for the molecular design of the TADF emitter and/or its accompanying host for high device efficiency and emission color purity.
Collapse
Affiliation(s)
| | | | | | - Sunil Sharma
- Department of Chemical Engineering, National Tsing-Hua University, Hsinchu 30013, Taiwan, Republic of China
| | - Kuen-Wei Tsai
- Department of Chemical Engineering, National Tsing-Hua University, Hsinchu 30013, Taiwan, Republic of China
| | - Show-An Chen
- Department of Chemical Engineering, National Tsing-Hua University, Hsinchu 30013, Taiwan, Republic of China
| |
Collapse
|
5
|
Tanaka M. Boosting spontaneous orientation polarization of polar molecules based on fluoroalkyl and phthalimide units. Nat Commun 2024; 15:9297. [PMID: 39472568 PMCID: PMC11522372 DOI: 10.1038/s41467-024-53633-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/17/2024] [Indexed: 11/02/2024] Open
Abstract
Polar organic molecules form spontaneous polarization in vacuum-deposited films by permanent dipole orientations in the films, originating from the molecule's potential ability to align itself on the film surface during deposition. This study focuses on developing polar molecules that exhibit spontaneous orientation polarization (SOP) and possess a high surface potential. In the proposed molecular design, a hexafluoropropane (6F) unit facilitates spontaneous molecular orientation to align the permanent dipoles, and a phthalimide unit induces strong molecular polarization. Furthermore, the introduction of phthalimides into the molecular backbone raises the glass transition temperature of the molecules, leading to the suppression of molecular mobility on the film surface during film deposition and an improvement in the dipole orientation. The resulting surface potential slope is approximately 280 mV nm-1 without substrate temperature control. Furthermore, this work proposes a method using position isomers as a design strategy to tune the SOP polarity. The substitution position of the strong polar units influences the direction of the total molecular dipoles and affects the SOP polarity of the 6F-based molecules. The proposed molecular designs in this study provide wide tunability of the SOP intensity and polarity, which contributes to highly efficient organic optoelectronic and energy-harvesting devices.
Collapse
Affiliation(s)
- Masaki Tanaka
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan.
| |
Collapse
|
6
|
Deori U, Nanda GP, Murawski C, Rajamalli P. A perspective on next-generation hyperfluorescent organic light-emitting diodes. Chem Sci 2024:d4sc05489j. [PMID: 39444559 PMCID: PMC11494416 DOI: 10.1039/d4sc05489j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
Abstract
Hyperfluorescence, also known as thermally activated delayed fluorescence (TADF) sensitized fluorescence, is known as a next-generation efficient and innovative process for high-performance organic light-emitting diodes (OLEDs). High external quantum efficiency (EQE) and good color purity are crucial parameters for display applications. Hyperfluorescent OLEDs (HF-OLEDs) take the lead in this respect as they utilize the advantages of both TADF emitters and fluorescent dopants, realizing high EQE with color saturation and long-term stability. Hyperfluorescence is mediated through Förster resonance energy transfer (FRET) from a TADF sensitizer to the final fluorescent emitter. However, competing loss mechanisms such as Dexter energy transfer (DET) of triplet excitons and direct charge trapping on the final emitter need to be mitigated in order to achieve fluorescence emission with high efficiency. Despite tremendous progress, appropriate guidelines and fine optimization are still required to address these loss channels and to improve the device operational lifetime. This perspective aims to provide an overview of the evolution of HF-OLEDs by reviewing both molecular and device design pathways for highly efficient narrowband devices covering all colors of the visible spectrum. Existing challenges and potential solutions, such as molecules with peripheral inert substitution, multi-resonant (MR) TADF emitters as final dopants, and exciplex-sensitized HF-OLEDs, are discussed. Furthermore, the operational device lifetime is reviewed in detail before concluding with suggestions for future device development.
Collapse
Affiliation(s)
- Upasana Deori
- Materials Research Centre, Indian Institute of Science Bangalore 560012 Karnataka India
| | - Gyana Prakash Nanda
- Materials Research Centre, Indian Institute of Science Bangalore 560012 Karnataka India
| | - Caroline Murawski
- Kurt-Schwabe-Institut für Mess- und Sensortechnik Meinsberg e.V. Kurt-Schwabe-Straße 4 04736 Waldheim Germany
- Faculty of Chemistry and Food Chemistry, Faculty of Electrical and Computer Engineering, Technische Universität Dresden 01062 Dresden Germany
| | | |
Collapse
|
7
|
Hayakawa M, Tang X, Ueda Y, Eguchi H, Kondo M, Oda S, Fan XC, Iswara Lestanto GN, Adachi C, Hatakeyama T. "Core-Shell" Wave Function Modulation in Organic Narrowband Emitters. J Am Chem Soc 2024; 146:18331-18340. [PMID: 38900500 DOI: 10.1021/jacs.4c02598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Efficient red-green-blue primary luminescence with an extraordinarily narrow band and durability is crucial for advanced display applications. Recently, the emergence of multiple-resonance (MR) from short-range atomic interactions has been shown to induce extremely narrow spectral widths in pure organic emitters. However, achieving wide-range color tuning without compromising color purity remains a persistent challenge for MR emitters. Herein, the concept of electronic donor/acceptor "core-shell" modulation is proposed within a boron/nitrogen (B/N) MR skeleton, enabling the rational utilization of intramolecular charge transfer to facilitate wavelength shift. The dense B atoms localized at the center of the molecule effectively compress the electron density and stabilize the lowest unoccupied molecular orbital wave function. This electron-withdrawing core is embedded with peripheral electron-donating atoms. Consequently, doping a single B atom into a deep-blue MR framework led to a profound bathochromic shift from 447 to 624 nm (∼0.8 eV) while maintaining a narrow spectral width of 0.10 eV in this pure-red emitter. Notably, organic light-emitting diodes assisted by thermally activated delayed fluorescence molecules achieved superb electroluminescent stability, with an LT99 (99% of the initial luminance) exceeding 400 h at an initial luminance of 1000 cd m-2, approaching commercial-level performance without the assistance of phosphors.
Collapse
Affiliation(s)
- Masahiro Hayakawa
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Xun Tang
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395, Japan
| | - Yuta Ueda
- Department of Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Hayato Eguchi
- Department of Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Masakazu Kondo
- JNC Co., Ltd. 5-1 Goi Kaigan, Ichihara, Chiba 290-8551, Japan
| | - Susumu Oda
- Department of Applied Chemistry, Graduate School of Science and Engineering, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585, Japan
| | - Xiao-Chun Fan
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395, Japan
| | - Gerardus N Iswara Lestanto
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395, Japan
| | - Chihaya Adachi
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395, Japan
| | - Takuji Hatakeyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
8
|
Madushani B, Mamada M, Goushi K, Katagiri H, Nakanotani H, Hatakeyama T, Adachi C. Hexacarbazolylbenzene: An Excellent Host Molecule Causing Strong Guest Molecular Orientation and the High-Performance OLEDs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402275. [PMID: 38865445 DOI: 10.1002/adma.202402275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/19/2024] [Indexed: 06/14/2024]
Abstract
Hexacarbazolylbenzene (6CzPh), which is benzene substituted by six carbazole rings, is a simple and attractive compound. Despite the success of a wide variety of carbazole derivatives in organic light-emitting diodes (OLEDs), 6CzPh has not received attention so far. Here, excellent performances of 6CzPh are revealed as a host material in OLEDs regarding conventional host materials. Various strategies are implemented to improve the performance of OLEDs, e.g., triplet utilization by thermally activated delayed fluorescence (TADF) and phosphorescence emitters for maximizing internal quantum efficiency, and molecular orientation control for increasing outcoupling efficiency. The present host material is suited for both criteria. Robustness of the structure and sufficiently high triplet energy enables a high external quantum efficiency with a long device lifetime. Besides, the host material boosts the horizontal molecular orientations of several guest emitters. It is noteworthy that disk-shaped 4CzIPN marks the complete horizontal molecular orientations (Θh = 100%, S = -0.50). These results provide an effective way of improving efficiencies without sacrificing device durability for future OLEDs.
Collapse
Affiliation(s)
- Bhagya Madushani
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, Fukuoka, 819-0395, Japan
| | - Masashi Mamada
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Kenichi Goushi
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, Fukuoka, 819-0395, Japan
- International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, Nishi, Fukuoka, 819-0395, Japan
| | - Hiroshi Katagiri
- Graduate School of Organic Materials Science, Yamagata University, Yonezawa, Yamagata, 992-8510, Japan
| | - Hajime Nakanotani
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, Fukuoka, 819-0395, Japan
- International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, Nishi, Fukuoka, 819-0395, Japan
| | - Takuji Hatakeyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Chihaya Adachi
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, Fukuoka, 819-0395, Japan
- International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, Nishi, Fukuoka, 819-0395, Japan
| |
Collapse
|
9
|
Ghosh P, Alvertis AM, Chowdhury R, Murto P, Gillett AJ, Dong S, Sneyd AJ, Cho HH, Evans EW, Monserrat B, Li F, Schnedermann C, Bronstein H, Friend RH, Rao A. Decoupling excitons from high-frequency vibrations in organic molecules. Nature 2024; 629:355-362. [PMID: 38720042 PMCID: PMC11078737 DOI: 10.1038/s41586-024-07246-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/27/2024] [Indexed: 05/12/2024]
Abstract
The coupling of excitons in π-conjugated molecules to high-frequency vibrational modes, particularly carbon-carbon stretch modes (1,000-1,600 cm-1) has been thought to be unavoidable1,2. These high-frequency modes accelerate non-radiative losses and limit the performance of light-emitting diodes, fluorescent biomarkers and photovoltaic devices. Here, by combining broadband impulsive vibrational spectroscopy, first-principles modelling and synthetic chemistry, we explore exciton-vibration coupling in a range of π-conjugated molecules. We uncover two design rules that decouple excitons from high-frequency vibrations. First, when the exciton wavefunction has a substantial charge-transfer character with spatially disjoint electron and hole densities, we find that high-frequency modes can be localized to either the donor or acceptor moiety, so that they do not significantly perturb the exciton energy or its spatial distribution. Second, it is possible to select materials such that the participating molecular orbitals have a symmetry-imposed non-bonding character and are, thus, decoupled from the high-frequency vibrational modes that modulate the π-bond order. We exemplify both these design rules by creating a series of spin radical systems that have very efficient near-infrared emission (680-800 nm) from charge-transfer excitons. We show that these systems have substantial coupling to vibrational modes only below 250 cm-1, frequencies that are too low to allow fast non-radiative decay. This enables non-radiative decay rates to be suppressed by nearly two orders of magnitude in comparison to π-conjugated molecules with similar bandgaps. Our results show that losses due to coupling to high-frequency modes need not be a fundamental property of these systems.
Collapse
Affiliation(s)
- Pratyush Ghosh
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Antonios M Alvertis
- KBR, Inc., NASA Ames Research Center, Moffett Field, CA, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - Petri Murto
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | | | - Shengzhi Dong
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| | | | - Hwan-Hee Cho
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Emrys W Evans
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
- Department of Chemistry, Swansea University, Swansea, UK
| | - Bartomeu Monserrat
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK
| | - Feng Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| | | | - Hugo Bronstein
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | | | - Akshay Rao
- Cavendish Laboratory, University of Cambridge, Cambridge, UK.
| |
Collapse
|
10
|
Sugiyama R, Okada R, Noda T, Meguro N, Yoshida N, Hoshi K, Ohta H, Hayashi M, Sasabe H, Kido J. Highly Efficient Blue Fluorescent Organic Light-Emitting Devices Based on λ 5-Phosphinine Derivatives. Chemistry 2024; 30:e202304328. [PMID: 38332328 DOI: 10.1002/chem.202304328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/10/2024]
Abstract
Although λ5-phosphinine derivatives are known as a promising class of blue fluorescent emitters, those photoluminescent quantum yield (PLQY) values have been reached up to 92 %, however, only a few examples have been explored as an emitter for blue organic light-emitting device (OLED), and the external quantum efficiency (EQE) has been below 2.4 % so far. In this study, we newly developed two types of blue λ5-phosphinine derivatives namely CN-COCF3 and CO2Me-CHO, and investigated the photophysical properties in the solid states. The photophysical analyses in solid state films suggested that the strong electron-accepting nature of these λ5-phosphinine derivatives caused the inferior PLQY values, and the exciplex formation with the host and neighboring materials should be avoided to improve the device efficiency. By choosing suitable host and neighboring materials with deep ionization potentials, we successfully realized efficient blue fluorescent OLEDs with EQE of over 4 % and CIE (0.14, 0.18). This is among the best in λ5-phosphinine-based blue OLEDs so far.
Collapse
Affiliation(s)
- Ryo Sugiyama
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
- Research Center for Organic Electronics (ROEL), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
- Frontier Center for Organic Materials (FROM), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Riku Okada
- Department of Applied Chemistry, Graduate School of Science and Engineering, Ehime University, 790-8577, Matsuyama, Japan
| | - Taito Noda
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
- Research Center for Organic Electronics (ROEL), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
- Frontier Center for Organic Materials (FROM), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Naoki Meguro
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
- Research Center for Organic Electronics (ROEL), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
- Frontier Center for Organic Materials (FROM), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Naoto Yoshida
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
- Research Center for Organic Electronics (ROEL), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
- Frontier Center for Organic Materials (FROM), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Keigo Hoshi
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
- Research Center for Organic Electronics (ROEL), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
- Frontier Center for Organic Materials (FROM), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Hidetoshi Ohta
- Department of Applied Chemistry, Graduate School of Science and Engineering, Ehime University, 790-8577, Matsuyama, Japan
| | - Minoru Hayashi
- Department of Applied Chemistry, Graduate School of Science and Engineering, Ehime University, 790-8577, Matsuyama, Japan
| | - Hisahiro Sasabe
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
- Research Center for Organic Electronics (ROEL), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
- Frontier Center for Organic Materials (FROM), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Junji Kido
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
- Research Center for Organic Electronics (ROEL), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
- Frontier Center for Organic Materials (FROM), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
| |
Collapse
|
11
|
Kim H, Lee K, Kim JH, Kim WY. Deep Learning-Based Chemical Similarity for Accelerated Organic Light-Emitting Diode Materials Discovery. J Chem Inf Model 2024; 64:677-689. [PMID: 38270063 DOI: 10.1021/acs.jcim.3c01747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Thermally activated delayed fluorescence (TADF) material has attracted great attention as a promising metal-free organic light-emitting diode material with a high theoretical efficiency. To accelerate the discovery of novel TADF materials, computer-aided material design strategies have been developed. However, they have clear limitations due to the accessibility of only a few computationally tractable properties. Here, we propose TADF-likeness, a quantitative score to evaluate the TADF potential of molecules based on a data-driven concept of chemical similarity to existing TADF molecules. We used a deep autoencoder to characterize the common features of existing TADF molecules with common chemical descriptors. The score was highly correlated with the four essential electronic properties of TADF molecules and had a high success rate in large-scale virtual screening of millions of molecules to identify promising candidates at almost no cost, validating its feasibility for accelerating TADF discovery. The concept of TADF-likeness can be extended to other fields of materials discovery.
Collapse
Affiliation(s)
- Hyeonsu Kim
- Department of Chemistry, Korea Advanced Institute of Science & Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Kyunghoon Lee
- Department of Chemistry, Korea Advanced Institute of Science & Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jun Hyeong Kim
- Department of Chemistry, Korea Advanced Institute of Science & Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Woo Youn Kim
- Department of Chemistry, Korea Advanced Institute of Science & Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- AI Institute, Korea Advanced Institute of Science & Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
12
|
Wang L, Ge Z, Xu L, Song Y. An effective method in modulating thermally activated delayed fluorescence (TADF) emitters from green to blue emission: the role of the phenyl ring. Phys Chem Chem Phys 2024; 26:5597-5606. [PMID: 38285054 DOI: 10.1039/d3cp05632e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Developing efficient blue emitters with high performance and low cost is crucial for the further development of organic light-emitting diodes (OLEDs). Based on the two experimentally reported green thermally activated delayed fluorescence (TADF) emitters, which are thioxanthone derivatives consisting of carbazole as an electron donor and 9H-thioxanthen-9-one-S,S-dioxide (SOXO) as an electron acceptor with donor-acceptor (D-A) or donor-acceptor-donor (D-A-D) structures, two new blue TADF emitters are designed by simply inserting a phenyl ring between D and A units. The TADF processes of the four thioxanthone derivatives are studied systematically through first-principles calculations. The role of the introduced phenyl ring in the excited state properties of the designed molecules is explored by analyzing the changes in molecular geometries, frontier molecular orbital distributions, the lowest singlet-triplet energy splitting (ΔEST), the spin orbit coupling (SOC) constants, the radiative decay rates (kr) and the nonradiative decay rates (knr), as well as the intersystem crossing rates (kISC) and reverse intersystem crossing rates (kRISC). The results show that when incorporating phenyl units into the D-A and D-A-D structures, both high kr and enhanced kRISC are achieved in Cz-Ph-SOXO and DCz-DPh-SOXO, demonstrating that incorporating the phenyl unit in D-A and D-A-D structures is an efficient way for developing new SOXO-based TADF molecules. It is worth noting that the kRISC values for Cz-Ph-SOXO and DCz-DPh-SOXO are significantly increased with respect to those of the experimental molecules. The present results would provide helpful guidelines for developing new SOXO-based TADF molecules experimentally.
Collapse
Affiliation(s)
- Lijuan Wang
- School of Materials Science and Engineering, Harbin Institute of Technology at Weihai, 2 West Wenhua Road, Weihai, 264209, China.
| | - Zhongqi Ge
- School of Materials Science and Engineering, Harbin Institute of Technology at Weihai, 2 West Wenhua Road, Weihai, 264209, China.
| | - Lin Xu
- School of Materials Science and Engineering, Harbin Institute of Technology at Weihai, 2 West Wenhua Road, Weihai, 264209, China.
| | - Yan Song
- School of Materials Science and Engineering, Harbin Institute of Technology at Weihai, 2 West Wenhua Road, Weihai, 264209, China.
| |
Collapse
|
13
|
Siddiqui I, Kumar S, Tsai YF, Gautam P, Shahnawaz, Kesavan K, Lin JT, Khai L, Chou KH, Choudhury A, Grigalevicius S, Jou JH. Status and Challenges of Blue OLEDs: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2521. [PMID: 37764550 PMCID: PMC10536903 DOI: 10.3390/nano13182521] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
Organic light-emitting diodes (OLEDs) have outperformed conventional display technologies in smartphones, smartwatches, tablets, and televisions while gradually growing to cover a sizable fraction of the solid-state lighting industry. Blue emission is a crucial chromatic component for realizing high-quality red, green, blue, and yellow (RGBY) and RGB white display technologies and solid-state lighting sources. For consumer products with desirable lifetimes and efficiency, deep blue emissions with much higher power efficiency and operation time are necessary prerequisites. This article reviews over 700 papers covering various factors, namely, the crucial role of blue emission for full-color displays and solid-state lighting, the performance status of blue OLEDs, and the systematic development of fluorescent, phosphorescent, and thermally activated delayed fluorescence blue emitters. In addition, various challenges concerning deep blue efficiency, lifetime, and approaches to realizing deeper blue emission and higher efficacy for blue OLED devices are also described.
Collapse
Affiliation(s)
- Iram Siddiqui
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Sudhir Kumar
- Institute for Chemical and Bioengineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Yi-Fang Tsai
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Prakalp Gautam
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Shahnawaz
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Kiran Kesavan
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Jin-Ting Lin
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Luke Khai
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Kuo-Hsien Chou
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Abhijeet Choudhury
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Saulius Grigalevicius
- Department of Polymer Chemistry and Technology, Kaunas University of Technology, LT-50254 Kaunas, Lithuania
| | - Jwo-Huei Jou
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
14
|
Yumoto S, Katsumata J, Osawa F, Wada Y, Suzuki K, Kaji H, Marumoto K. Operando ESR observation in thermally activated delayed fluorescent organic light-emitting diodes. Sci Rep 2023; 13:11109. [PMID: 37429886 DOI: 10.1038/s41598-023-38063-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/02/2023] [Indexed: 07/12/2023] Open
Abstract
Organic light-emitting diodes (OLEDs) using thermally activated delayed fluorescence (TADF) materials have advantages over OLEDs using conventional fluorescent materials or high-cost phosphorescent materials, including higher efficiency and lower cost. To attain further high device performance, clarifying internal charge states in OLEDs at a microscopic viewpoint is crucial; however, only a few such studies have been performed. Here, we report a microscopic investigation into internal charge states in OLEDs with a TADF material by electron spin resonance (ESR) at a molecular level. We observed operando ESR signals of the OLEDs and identified their origins due to a hole-transport material PEDOT:PSS, gap states at an electron-injection layer, and a host material CBP in the light-emitting layer by performing density functional theory calculation and studying thin films used in the OLEDs. The ESR intensity varied with increasing applied bias before and after the light emission. We find leakage electrons in the OLED at a molecular level, which is suppressed by a further electron-blocking layer MoO3 between the PEDOT:PSS and light-emitting layer, resulting in the enhancement of luminance with a low-voltage drive. Such microscopic information and applying our method to other OLEDs will further improve the OLED performance from the microscopic viewpoint.
Collapse
Affiliation(s)
- Shintaro Yumoto
- Department of Materials Science, Institute of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8573, Japan
| | - Junya Katsumata
- Department of Materials Science, Institute of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8573, Japan
| | - Fumiya Osawa
- Department of Materials Science, Institute of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8573, Japan
| | - Yoshimasa Wada
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Katsuaki Suzuki
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Hironori Kaji
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Kazuhiro Marumoto
- Department of Materials Science, Institute of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8573, Japan.
- Tsukuba Research Center for Energy Materials Science (TREMS), University of Tsukuba, Ibaraki, 305-8571, Japan.
| |
Collapse
|
15
|
Madushani B, Mamada M, Goushi K, Nguyen TB, Nakanotani H, Kaji H, Adachi C. Multiple donor-acceptor design for highly luminescent and stable thermally activated delayed fluorescence emitters. Sci Rep 2023; 13:7644. [PMID: 37169821 PMCID: PMC10175249 DOI: 10.1038/s41598-023-34623-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023] Open
Abstract
A considerable variety of donor-acceptor (D-A) combinations offers the potential for realizing highly efficient thermally activated delayed fluorescence (TADF) materials. Multiple D-A type compounds are one of the promising families of TADF materials in terms of stability as well as efficiencies. However, those emitters are always composed of carbazole-based donors despite a wide choice of moieties used in linearly linked single D-A molecules. Herein, we developed a multiple D-A type TADF compound with two distinct donor units of 9,10-dihydro-9,9-dimethylacridine (DMAC) and carbazole as the hetero-donor design. The new emitter exhibits high photoluminescence quantum yield (PLQY) in various conditions including polar media blend and high concentrations. Organic light-emitting diodes (OLEDs) showed a reasonably high external quantum efficiency (EQE). In addition, we revealed that the multiple-D-A type molecules showed better photostability than the single D-A type molecules, while the operational stability in OLEDs involves dominant other factors.
Collapse
Affiliation(s)
- Bhagya Madushani
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, Motooka, Nishi, Fukuoka, 819-0395, Japan
| | - Masashi Mamada
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, Motooka, Nishi, Fukuoka, 819-0395, Japan.
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan.
| | - Kenichi Goushi
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, Motooka, Nishi, Fukuoka, 819-0395, Japan
| | - Thanh Ba Nguyen
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, Motooka, Nishi, Fukuoka, 819-0395, Japan
| | - Hajime Nakanotani
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, Motooka, Nishi, Fukuoka, 819-0395, Japan
| | - Hironori Kaji
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Chihaya Adachi
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, Motooka, Nishi, Fukuoka, 819-0395, Japan.
- International Institute for Carbon Neutral Energy Research (I2CNER), Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan.
| |
Collapse
|
16
|
Nguyen TB, Nakanotani H, Chan CY, Kakumachi S, Adachi C. Enhancing Triplet-Triplet Upconversion Efficiency and Operational Lifetime in Blue Organic Light-Emitting Diodes by Utilizing Thermally Activated Delayed Fluorescence Materials. ACS APPLIED MATERIALS & INTERFACES 2023; 15:23557-23563. [PMID: 37146232 DOI: 10.1021/acsami.3c02855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
In the process of triplet-triplet upconversion (TTU), a bright excited singlet can be generated because of the collision of two dark excited triplets. In particular, the efficiency of TTU is crucial for achieving a high exciton production yield in blue fluorescence organic light-emitting diodes (OLEDs) beyond the theoretical limit. While the theoretical upper limit of TTU contribution yield is expected to be 60%, blue OLEDs with the maximum TTU contribution are still scarce. Herein, we present a proof of concept for realizing the maximum TTU contribution yield in blue OLEDs, achieved through the doping of thermally activated delayed fluorescence (TADF) molecules in the carrier recombination zone. The bipolar carrier transport ability of TADF materials enables direct carrier recombination on the molecules, resulting in the expansion of the recombination zone. Although the external electroluminescence quantum efficiency of OLEDs is slightly lower than that of conventional TTU-OLEDs due to the low photoluminescence quantum yield of the doped layer, the TTU efficiency approaches the upper limit. Furthermore, the operational device lifetime of OLEDs employing TADF molecules increased by five times compared to the conventional ones, highlighting the expansion of the recombination zone as a crucial factor for enhancing overall OLED performance in TTU-OLEDs.
Collapse
Affiliation(s)
- Thanh B Nguyen
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hajime Nakanotani
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- International Institute for Carbon-Neutral Energy Research (I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Chin-Yiu Chan
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Shunta Kakumachi
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Chihaya Adachi
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- International Institute for Carbon-Neutral Energy Research (I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
17
|
Mandal B, Dunietz BD. Effects of Solvent Dielectric on Thermally Activated Delayed Fluorescence: A Predictive Computational Polarization Consistent Approach. J Phys Chem A 2023; 127:216-223. [PMID: 36563166 DOI: 10.1021/acs.jpca.2c08154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We study computationally thermally activated delayed fluorescence (TADF) in donor-acceptor compounds. The relevant electronic excited states that are strongly affected by the dielectric environment are treated by a polarization consistent framework. The high fidelity potential energy surfaces are used following a quantum-mechanical Fermi's golden rule (FGR) picture to calculate rates of intersystem crossing (ISC) and reverse intersystem crossing (RISC). To demonstrate the potency of the approach, we consider isomers of benzonitrile functionalized tert-butyl-substituted dimethylacridine (DMAC-BN), which were recently found to perform well as TADF emitters. The calculated excited state energies that appear to reproduce well measured spectral trends with respect to the dielectric constant are used to parametrize ISC/RISC FGR rates. The calculated rates reproduce well measured rates, whereas semiclassical based rates are grossly underestimated. In particular, we find in agreement with the recent experimental study [Phys. Rev. Appl.2019, 12, 044021] that the ortho and meta isomers are significantly more effective as TADF emitters. The computational framework provides valuable insight at the molecular level into RISC rates and therefore can contribute to the design of materials of increased TADF efficiency.
Collapse
Affiliation(s)
- Bikash Mandal
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio44242-0001, United States
| | - Barry D Dunietz
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio44242-0001, United States
| |
Collapse
|
18
|
Nagamura N, Sasabe H, Sato H, Ito N, Abe S, Sukegawa Y, Yokoyama D, Kaji H, Kido J. Robust Spirobifluorene Core Based Hole Transporters with High Mobility for Long-Life Green Phosphorescent Organic Light-Emitting Devices. Chemistry 2023; 29:e202202636. [PMID: 36173978 DOI: 10.1002/chem.202202636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Indexed: 01/04/2023]
Abstract
Using a tailored high triplet energy hole transport layer (HTL) is a suitable way to improve the efficiency and extend the lifetime of organic light-emitting devices (OLEDs), which can use all molecular excitons of singlets and triplets. In this study, dibenzofuran (DBF)-end-capped and spirobifluorene (SBF) core-based HTLs referred as TDBFSBF1 and TDBFSBF2 were effectively developed. TDBFSBF1 exhibited a high glass transition temperature of 178 °C and triplet energy of 2.5 eV. Moreover, a high external quantum efficiency of 22.0 %, long operational lifetime at 50 % of the initial luminance of 89,000 h, and low driving voltage at 1000 cd m-2 of 2.95 V were achieved in green phosphorescent OLEDs using TDBFSBF1. Further, a high-hole mobility μh value of 1.9×10-3 cm2 V-1 s-1 was recorded in TDBFSBF2. A multiscale simulation successfully reproduced the experimental μh values and indicated that the reorganization energy was the primary factor in determining the mobility differences among these SBF core based HTLs.
Collapse
Affiliation(s)
- Natsuo Nagamura
- Department of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Hisahiro Sasabe
- Department of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan.,Research Center of Organic Electronics (ROEL), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan.,Frontier Center for Organic Materials (FROM), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Hiroki Sato
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Nozomi Ito
- Department of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Shoki Abe
- Department of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Yoshihito Sukegawa
- Department of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Daisuke Yokoyama
- Department of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan.,Research Center of Organic Electronics (ROEL), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Hironori Kaji
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Junji Kido
- Department of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan.,Research Center of Organic Electronics (ROEL), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan.,Frontier Center for Organic Materials (FROM), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
| |
Collapse
|
19
|
Chan CY, Lee YT, Mamada M, Goushi K, Tsuchiya Y, Nakanotani H, Adachi C. Carbazole-2-carbonitrile as an acceptor in deep-blue thermally activated delayed fluorescence emitters for narrowing charge-transfer emissions. Chem Sci 2022; 13:7821-7828. [PMID: 35865880 PMCID: PMC9258325 DOI: 10.1039/d2sc02478k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/07/2022] [Indexed: 01/12/2023] Open
Abstract
This work reports a new acceptor for constructing donor–acceptor type (D–A type) blue thermally activated delayed fluorescence (TADF) emitters with narrowed charge-transfer (CT) emissions. A new acceptor core, carbazole-2-carbonitrile (CCN), is formed by the fusion of carbazole and benzonitrile. Three D–A type TADF emitters based on the CCN acceptor, namely 3CzCCN, 3MeCzCCN, and 3PhCzCCN, have been successfully synthesized and characterized. These emitters show deep-blue emissions from 439 to 457 nm with high photoluminescence quantum yields of up to 85% in degassed toluene solutions. Interestingly, all CCN-based deep-blue TADF emitters result in narrow CT emissions with full-width at half-maximums (FWHMs) of less than 50 nm in toluene solutions, which are pretty narrower compared with those of typical D–A type TADF emitters. Devices based on these emitters show high maximum external quantum efficiencies of up to 17.5%. Deep-blue donor–acceptor thermally activated delayed fluorescence emitters based on carbazole-2-carbonitrile are synthesized, resulting in narrow emission with full-width at half-maximums of less than 50 nm and a maximum OLED EQE of up to 17.5%.![]()
Collapse
Affiliation(s)
- Chin-Yiu Chan
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University Motooka, Nishi Fukuoka 819-0395 Japan
| | - Yi-Ting Lee
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University Motooka, Nishi Fukuoka 819-0395 Japan
| | - Masashi Mamada
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University Motooka, Nishi Fukuoka 819-0395 Japan
| | - Kenichi Goushi
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University Motooka, Nishi Fukuoka 819-0395 Japan
| | - Youichi Tsuchiya
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University Motooka, Nishi Fukuoka 819-0395 Japan
| | - Hajime Nakanotani
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University Motooka, Nishi Fukuoka 819-0395 Japan .,International Institute for Carbon Neutral Energy Research (I2CNER), Kyushu University 744 Motooka, Nishi Fukuoka 819-0395 Japan
| | - Chihaya Adachi
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University Motooka, Nishi Fukuoka 819-0395 Japan .,International Institute for Carbon Neutral Energy Research (I2CNER), Kyushu University 744 Motooka, Nishi Fukuoka 819-0395 Japan
| |
Collapse
|
20
|
Mac Ciarnáin R, Mo HW, Nagayoshi K, Fujimoto H, Harada K, Gehlhaar R, Ke TH, Heremans P, Adachi C. A Thermally Activated Delayed Fluorescence Green OLED with 4500 h Lifetime and 20% External Quantum Efficiency by Optimizing the Emission Zone using a Single-Emission Spectrum Technique. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201409. [PMID: 35581173 DOI: 10.1002/adma.202201409] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/07/2022] [Indexed: 06/15/2023]
Abstract
Device optimization of light-emitting diodes (LEDs) targets the most efficient conversion of electrically injected charges into emitted light. The emission zone in an LED is where charges recombine and light is emitted from. It is believed that the emission zone is strongly linked to device efficiency and lifetime. However, the emission zone size is below the optical diffraction limit, so it is difficult to measure. An accessible method based on a single emission spectrum that enables emission zone measurements with sub-second time resolution is shown. A procedure is introduced to study and control the emission zone of an LED system and correlate it with device performance. A thermally activated delayed fluorescence organic LED emission zone is experimentally measured over all luminescing current densities, while varying the device structure and while ageing. The emission zone is shown to be finely controlled by emitter doping because electron transport via the emitter is the charge-transport bottleneck of the system. Suspected quenching/degradation mechanisms are linked with the emission zone changes, device structure variation, and ageing. Using these findings, a device with an ultralong 4500 h T95 lifetime at 1000 cd m-2 with 20% external quantum efficiency is shown.
Collapse
Affiliation(s)
- Rossa Mac Ciarnáin
- imec, Kapeldreef 75, Leuven, B3001, Belgium
- KU Leuven, Kasteelpark Arenberg 10, Leuven, B3001, Belgium
| | - Hin Wai Mo
- i 3-opera, 5-14 Kyudai-shimmachi, Nishi, Fukuoka, 819-0388, Japan
| | - Kaori Nagayoshi
- i 3-opera, 5-14 Kyudai-shimmachi, Nishi, Fukuoka, 819-0388, Japan
| | - Hiroshi Fujimoto
- i 3-opera, 5-14 Kyudai-shimmachi, Nishi, Fukuoka, 819-0388, Japan
- OPERA Research Group, Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
| | - Kentaro Harada
- i 3-opera, 5-14 Kyudai-shimmachi, Nishi, Fukuoka, 819-0388, Japan
- OPERA Research Group, Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
| | | | | | - Paul Heremans
- imec, Kapeldreef 75, Leuven, B3001, Belgium
- KU Leuven, Kasteelpark Arenberg 10, Leuven, B3001, Belgium
| | - Chihaya Adachi
- i 3-opera, 5-14 Kyudai-shimmachi, Nishi, Fukuoka, 819-0388, Japan
- OPERA Research Group, Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
| |
Collapse
|
21
|
Park JW, Cho KH, Rhee YM. Mechanism of Ir(ppy) 3 Guest Exciton Formation with the Exciplex-Forming TCTA:TPBI Cohost within a Phosphorescent Organic Light-Emitting Diode Environment. Int J Mol Sci 2022; 23:5940. [PMID: 35682617 PMCID: PMC9180450 DOI: 10.3390/ijms23115940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 12/04/2022] Open
Abstract
Cohosts based on hole transporting and electron transporting materials often act as exciplexes in the form of intermolecular charge transfer complexes. Indeed, exciplex-forming cohosts have been widely developed as the host materials for efficient phosphorescent organic light-emitting diodes (OLEDs). In host-guest systems of OLEDs, the guest can be excited by two competing mechanisms, namely, excitation energy transfer (EET) and charge transfer (CT). Experimentally, it has been reported that the EET mechanism is dominant and the excitons are primarily formed in the host first and then transferred to the guest in phosphorescent OLEDs based on exciplex-forming cohosts. With this, exciplex-forming cohosts are widely employed for avoiding the formation of trapped charge carriers in the phosphorescent guest. However, theoretical studies are still lacking toward elucidating the relative importance between EET and CT processes in exciting the guest molecules in such systems. Here, we obtain the kinetics of guest excitation processes in a few trimer model systems consisting of an exciplex-forming cohost pair and a phosphorescent guest. We adopt the Förster resonance energy transfer (FRET) rate constants for the electronic transitions between excited states toward solving kinetic master equations. The input parameters for calculating the FRET rate constants are obtained from density functional theory (DFT) and time-dependent DFT. The results show that while the EET mechanism is important, the CT mechanism may still play a significant role in guest excitations. In fact, the relative importance of CT over EET depends strongly on the location of the guest molecule relative to the cohost pair. This is understandable as both the coupling for EET and the interaction energy for CT are strongly influenced by the geometric constraints. Understanding the energy transfer pathways from the exciplex state of cohost to the emissive state of guest may provide insights for improving exciplex-forming materials adopted in OLEDs.
Collapse
Affiliation(s)
| | | | - Young Min Rhee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (J.W.P.); (K.H.C.)
| |
Collapse
|
22
|
Singlet and triplet to doublet energy transfer: improving organic light-emitting diodes with radicals. Nat Commun 2022; 13:2744. [PMID: 35585063 PMCID: PMC9117228 DOI: 10.1038/s41467-022-29759-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 03/02/2022] [Indexed: 11/30/2022] Open
Abstract
Organic light-emitting diodes (OLEDs) must be engineered to circumvent the efficiency limit imposed by the 3:1 ratio of triplet to singlet exciton formation following electron-hole capture. Here we show the spin nature of luminescent radicals such as TTM-3PCz allows direct energy harvesting from both singlet and triplet excitons through energy transfer, with subsequent rapid and efficient light emission from the doublet excitons. This is demonstrated with a model Thermally-Activated Delayed Fluorescence (TADF) organic semiconductor, 4CzIPN, where reverse intersystem crossing from triplets is characteristically slow (50% emission by 1 µs). The radical:TADF combination shows much faster emission via the doublet channel (80% emission by 100 ns) than the comparable TADF-only system, and sustains higher electroluminescent efficiency with increasing current density than a radical-only device. By unlocking energy transfer channels between singlet, triplet and doublet excitons, further technology opportunities are enabled for optoelectronics using organic radicals. Organic light-emitting diodes must be engineered to circumvent efficiency limits imposed by the ratio of triplet to singlet exciton formation, following electron-hole capture. Here, authors unlock energy transfer channels between singlet, triplet and doublet excitons using thermally activated delayed fluorescence and radical emitters towards more efficient light-emitting devices.
Collapse
|
23
|
Sasabe H, Araki S, Abe S, Ito N, Kumada K, Noda T, Sukegawa Y, Yokoyama D, Kido J. Four Dibenzofuran‐Terminated High‐Triplet‐Energy Hole Transporters for High‐Efficiency and Long‐Life Organic Light‐Emitting Devices. Chemistry 2022; 28:e202104408. [DOI: 10.1002/chem.202104408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Hisahiro Sasabe
- Department of Organic Materials Science Yamagata University 4-3-16 Jonan, Yonezawa Yamagata 992-8510 Japan
- Research Center of Organic Electronics (ROEL) Yamagata University 4-3-16 Jonan, Yonezawa Yamagata 992-8510 Japan
- Frontier Center for Organic Materials (FROM) Yamagata University 4-3-16 Jonan, Yonezawa Yamagata 992-8510 Japan
| | - Suguru Araki
- Department of Organic Materials Science Yamagata University 4-3-16 Jonan, Yonezawa Yamagata 992-8510 Japan
| | - Shoki Abe
- Department of Organic Materials Science Yamagata University 4-3-16 Jonan, Yonezawa Yamagata 992-8510 Japan
| | - Nozomi Ito
- Department of Organic Materials Science Yamagata University 4-3-16 Jonan, Yonezawa Yamagata 992-8510 Japan
| | - Kengo Kumada
- Department of Organic Materials Science Yamagata University 4-3-16 Jonan, Yonezawa Yamagata 992-8510 Japan
| | - Taito Noda
- Department of Organic Materials Science Yamagata University 4-3-16 Jonan, Yonezawa Yamagata 992-8510 Japan
| | - Yoshihito Sukegawa
- Department of Organic Materials Science Yamagata University 4-3-16 Jonan, Yonezawa Yamagata 992-8510 Japan
| | - Daisuke Yokoyama
- Department of Organic Materials Science Yamagata University 4-3-16 Jonan, Yonezawa Yamagata 992-8510 Japan
- Research Center of Organic Electronics (ROEL) Yamagata University 4-3-16 Jonan, Yonezawa Yamagata 992-8510 Japan
| | - Junji Kido
- Department of Organic Materials Science Yamagata University 4-3-16 Jonan, Yonezawa Yamagata 992-8510 Japan
- Research Center of Organic Electronics (ROEL) Yamagata University 4-3-16 Jonan, Yonezawa Yamagata 992-8510 Japan
- Frontier Center for Organic Materials (FROM) Yamagata University 4-3-16 Jonan, Yonezawa Yamagata 992-8510 Japan
| |
Collapse
|
24
|
Yurash B, Dixon A, Espinoza C, Mikhailovsky A, Chae S, Nakanotani H, Adachi C, Nguyen TQ. Efficiency of Thermally Activated Delayed Fluorescence Sensitized Triplet Upconversion Doubled in Three-Component System. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2103976. [PMID: 34793602 DOI: 10.1002/adma.202103976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 11/01/2021] [Indexed: 06/13/2023]
Abstract
As in many fields, the most exciting endeavors in photon upconversion research focus on increasing the efficiency (upconversion quantum yield) and performance (anti-Stokes shift) while diminishing the cost of production. In this vein, studies employing metal-free thermally activated delayed fluorescence (TADF) sensitizers have garnered increased interest. Here, for the first time, the strategy of ternary photon upconversion is utilized with the TADF sensitizer 2,4,5,6-tetrakis(carbazol-9-yl)isophthalonitrile (4CzIPN), resulting in a doubling of the upconversion quantum yield in comparison to the binary system employing p-terphenyl as the emitter. In this ternary blend, the sensitizer 4CzIPN is paired with an intermediate acceptor, 1-methylnaphthalene, in addition to the emitter molecule, p-terphenyl, yielding a normalized upconversion quantum yield of 7.6% while maintaining the 0.83 eV anti-Stokes shift. These results illustrate the potential benefits of utilizing this strategy of energy-funneling, previously used only with heavy-metal based sensitizers, to increase the performance of these photon upconversion systems.
Collapse
Affiliation(s)
- Brett Yurash
- Center for Polymers and Organic Solids (CPOS) and Department of Chemistry & Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Alana Dixon
- Center for Polymers and Organic Solids (CPOS) and Department of Chemistry & Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Carolina Espinoza
- Center for Polymers and Organic Solids (CPOS) and Department of Chemistry & Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Alexander Mikhailovsky
- Center for Polymers and Organic Solids (CPOS) and Department of Chemistry & Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Sangmin Chae
- Center for Polymers and Organic Solids (CPOS) and Department of Chemistry & Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Hajime Nakanotani
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Chihaya Adachi
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Thuc-Quyen Nguyen
- Center for Polymers and Organic Solids (CPOS) and Department of Chemistry & Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| |
Collapse
|
25
|
Cao L, Li J, Zhu ZQ, Huang L, Li J. Stable and Efficient Near-Infrared Organic Light-Emitting Diodes Employing a Platinum(II) Porphyrin Complex. ACS APPLIED MATERIALS & INTERFACES 2021; 13:60261-60268. [PMID: 34874144 DOI: 10.1021/acsami.1c17335] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Stable and efficient emitters are highly desired for near-infrared organic light-emitting diodes (NIR OLEDs) due to their extensive applications in biometric authentication, night vision display, and telecommunication. As this technology advances, there is an increasing demand for the development of NIR OLEDs with an emission spectrum beyond 900 nm. This work reports a stable and efficient near-infrared Pt(II) porphyrin complex, i.e., Pt(II) tetra(3,5-difluorophenyl)tetranaphthoporphyrin named PtTPTNP-F8, of which 84% of the total emitted photons are at wavelengths longer than 900 nm. By introducing fluorine atoms on the meta positions of all four phenyl groups, PtTPTNP-F8 can successfully overcome the common thermal instability issue emerging from the heavy Pt(II) porphyrin complexes, demonstrating a sublimation yield of above 90%. By carefully choosing the host materials, a NIR OLED device with PtTPTNP-F8 as an emissive material achieves a high peak device efficiency of 1.9%. Furthermore, devices of PtTPTNP-F8 fabricated in a stable device structure demonstrate extraordinary operational stability with an LT99 lifetime (time to 99% of the initial photocurrent) of more than 1000 h at a constant driving current density of 20 mA cm-2.
Collapse
Affiliation(s)
- Linyu Cao
- Materials Science and Engineering, Arizona State University, Tempe, Arizona 85287, United States
| | - Jingjun Li
- Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Zhi-Qiang Zhu
- Materials Science and Engineering, Arizona State University, Tempe, Arizona 85287, United States
| | - Liang Huang
- Materials Science and Engineering, Arizona State University, Tempe, Arizona 85287, United States
| | - Jian Li
- Materials Science and Engineering, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
26
|
Park J, Lim J, Lee JH, Jang B, Han JH, Yoon SS, Lee JY. Asymmetric Blue Multiresonance TADF Emitters with a Narrow Emission Band. ACS APPLIED MATERIALS & INTERFACES 2021; 13:45798-45805. [PMID: 34519492 DOI: 10.1021/acsami.1c11399] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this study, we synthesized and characterized multiple resonance (MR) type blue thermally activated delayed fluorescence (TADF) emitters. Unlike many boron-based MR-TADF materials, the blue TADF emitters of this work had an asymmetric molecular structure with one boron, one oxygen, and one nitrogen. The aromatic units linked to the nitrogen were changed into diphenylamine, carbazole, dimethylacridine, and diphenylacridine to manage the light emission properties of the emitters. The TADF emitters exhibited a blue emission due to the weak electron-donating oxygen atom and the emission color was controlled by the aromatic unit connected to the nitrogen. The simple diphenylamine unit was effective in achieving real deep-blue emission for the BT2020 standard with a high external quantum efficiency (EQE), while the electron-rich nitrogen-based dimethylacridine and diphenylacridine accelerated the reverse intersystem crossing for high EQE and small EQE roll-off. Among the emitters, a diphenylamine-substituted emitter, 7-(tert-butyl)-9-phenyl-9H-5-oxa-9-aza-13b-boranaphtho[3,2,1-de]anthracene (B-O-dpa), showed a maximum external quantum efficiency of 16.3%, a small full width at half-maximum of 32 nm, and a real deep-blue color coordinate of (0.15, 0.05).
Collapse
Affiliation(s)
- Jinho Park
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Korea
| | - Junseop Lim
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Korea
| | - Jin Ho Lee
- Department of Chemistry, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Korea
| | - Beomsu Jang
- Department of Chemistry, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Korea
| | - Ju Hee Han
- Department of Chemistry, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Korea
| | - Seung Soo Yoon
- Department of Chemistry, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Korea
| | - Jun Yeob Lee
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Korea
| |
Collapse
|
27
|
Hiraga Y, Kuwahara R, Hatta T. Novel indolo[3,2,1-jk]carbazole-based bipolar host material for highly efficient thermally activated delayed-fluorescence organic light-emitting diodes. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
28
|
Arai A, Sasabe H, Nakao K, Masuda Y, Kido J. π-Extended Carbazole Derivatives as Host Materials for Highly Efficient and Long-Life Green Phosphorescent Organic Light-Emitting Diodes. Chemistry 2021; 27:4971-4976. [PMID: 33372324 DOI: 10.1002/chem.202005144] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/22/2020] [Indexed: 01/22/2023]
Abstract
High-performance organic light-emitting diodes (OLEDs) that use phosphorescent and/or thermally activated delayed fluorescence emitters are capable of realizing 100 % electron-to-photon conversion. The host materials in these OLEDs play crucial roles in determining OLED performance. Carbazole derivatives are frequently used as host materials, among which 3,3-bis(9H-carbazol-9-yl)biphenyl (mCBP) is often used for lifetime testing in scientific studies. In this study, the π conjugation of the carbazole unit was expanded to enhance OLED lifetime by designing and developing two benzothienocarbazole (BTCz)-based host materials, namely m1BTCBP and m4BTCBP. Among these host materials, m1BTCBP formed a highly efficient [Ir(ppy)3 ]-based OLED with an operational luminescence half-life (LT50 ) of over 300 h at an initial luminance of approximately 12000 cd m-2 (current density: 25 mA cm-2 ). The LT50 value at 1000 cd cm-2 was estimated to be about 23 000 h. This performance is clearly higher than that of mCBP-based OLEDs (LT50 ≈8500 h).
Collapse
Affiliation(s)
- Ayato Arai
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Hisahiro Sasabe
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan.,Research Center for Organic Electronics (ROEL), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan.,Frontier Center for Organic Materials (FROM), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Kohei Nakao
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Yuki Masuda
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Junji Kido
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan.,Research Center for Organic Electronics (ROEL), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan.,Frontier Center for Organic Materials (FROM), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
| |
Collapse
|
29
|
Danz N, Occhicone A, Pflumm C, Munzert P, Michelotti F, Michaelis D. Spectral analysis of organic LED emitters' orientation in thin layers by resonant emission on dielectric stacks. OPTICS EXPRESS 2021; 29:6608-6619. [PMID: 33726178 DOI: 10.1364/oe.417531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
Purposely tailored thin film stacks sustaining surface waves have been utilized to create a unique link between emission angle and wavelength of fluorescent dye molecules. The knowledge of the thin film stack's properties allows us to derive the intrinsically emitted luminescence spectrum as well as to gain information about the orientation of fluorophores from angularly resolved experiments. This corresponds to replacing all the equipment necessary for polarized spectroscopy with a single smart thin film stack, potentially enabling single shot analyses in the future. The experimental results agree well with those from other established techniques, when analyzing the Rubrene derivative in a 2,4,6-tris(biphenyl-3-yl)-1,3,5-triazine (T2T) host used for the fabrication of optimized organic light-emitting diodes. The findings illustrate how resonant layered stacks can be applied to integrated spectroscopic analyses.
Collapse
|
30
|
Liu X, Chan CY, Mathevet F, Mamada M, Tsuchiya Y, Lee YT, Nakanotani H, Kobayashi S, Shiochi M, Adachi C. Isotope Effect of Host Material on Device Stability of Thermally Activated Delayed Fluorescence Organic Light‐Emitting Diodes. SMALL SCIENCE 2021. [DOI: 10.1002/smsc.202000057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Xuelong Liu
- Center for Organic Photonics and Electronics Research (OPERA) Kyushu University 744 Motooka, Nishi Fukuoka 819-0395 Japan
| | - Chin-Yiu Chan
- Center for Organic Photonics and Electronics Research (OPERA) Kyushu University 744 Motooka, Nishi Fukuoka 819-0395 Japan
| | - Fabrice Mathevet
- Center for Organic Photonics and Electronics Research (OPERA) Kyushu University 744 Motooka, Nishi Fukuoka 819-0395 Japan
- Institut Parisien de Chimie Moléculaire CNRS UMR 8232 Chimie des Polymères Sorbonne Université 4 place Jussieu 75005 Paris France
| | - Masashi Mamada
- Center for Organic Photonics and Electronics Research (OPERA) Kyushu University 744 Motooka, Nishi Fukuoka 819-0395 Japan
| | - Youichi Tsuchiya
- Center for Organic Photonics and Electronics Research (OPERA) Kyushu University 744 Motooka, Nishi Fukuoka 819-0395 Japan
| | - Yi-Ting Lee
- Center for Organic Photonics and Electronics Research (OPERA) Kyushu University 744 Motooka, Nishi Fukuoka 819-0395 Japan
| | - Hajime Nakanotani
- Center for Organic Photonics and Electronics Research (OPERA) Kyushu University 744 Motooka, Nishi Fukuoka 819-0395 Japan
- International Institute for Carbon Neutral Energy Research (WPI-I2CNER) Kyushu University 744 Motooka, Nishi Fukuoka 819-0395 Japan
| | - Shinichiro Kobayashi
- Fukuoka i3-Center for Organic Photonics and Electronics Research (i3-opera) 5-14 Kyudai-shinmachi, Nishi-ku Fukuoka 819-0388 Japan
| | - Masayuki Shiochi
- Fukuoka i3-Center for Organic Photonics and Electronics Research (i3-opera) 5-14 Kyudai-shinmachi, Nishi-ku Fukuoka 819-0388 Japan
| | - Chihaya Adachi
- Center for Organic Photonics and Electronics Research (OPERA) Kyushu University 744 Motooka, Nishi Fukuoka 819-0395 Japan
- International Institute for Carbon Neutral Energy Research (WPI-I2CNER) Kyushu University 744 Motooka, Nishi Fukuoka 819-0395 Japan
| |
Collapse
|
31
|
Lee HL, Oh CS, Lee KH, Lee JY, Hong WP. Lifetime-Extending 3-(4-Phenylbenzo[4,5]thieno[3,2- d]pyrimidin-2-yl)benzonitrile Acceptor for Thermally Activated Delayed Fluorescence Emitters. ACS APPLIED MATERIALS & INTERFACES 2021; 13:2908-2918. [PMID: 33404213 DOI: 10.1021/acsami.0c17819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Highly efficient and long-living green thermally activated delayed fluorescence (TADF) organic light-emitting diodes (OLEDs) were developed using benzothienopyrimidine-4-benzonitrile acceptor-derived compounds as the TADF emitters. A molecular design merging the benzothienopyrimidine-4-benzonitrile acceptor with either indolocarbazole or diindolocarbazole was employed to prepare two TADF emitters, 5-(2-phenylbenzo[4,5]thieno[3,2-d]pyrimidin-4-yl)-2-(5-phenylindolo[3,2-a]carbazol-12(5H)-yl)benzonitrile and 2-(10,15-diphenyl-10,15-dihydro-5H-diindolo[3,2-a:3',2'-c]carbazol-5-yl)-5-(2-phenylbenzo[4,5]thieno[3,2-d]pyrimidin-4-yl)benzonitrile (BTPDIDCz), as the green and greenish-yellow emitters. Among the two emitters, BTPDIDCz with the diindolocarbazole donor combined with the benzothienopyrimidine-4-benzonitrile acceptor demonstrated a high external quantum efficiency of 24.5% and 3 times longer device lifetime than the state-of-the-art green emitter. This work proposed the potential of benzothienopyrimidine-4-benzonitrile as the acceptor for long lifetime in TADF emitters.
Collapse
Affiliation(s)
- Ha Lim Lee
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 440-746, Korea
| | - Chan Seok Oh
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 440-746, Korea
| | - Kyung Hyung Lee
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 440-746, Korea
| | - Jun Yeob Lee
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 440-746, Korea
| | - Wan Pyo Hong
- School of Advanced Material and Chemical Engineering, Daegu Catholic University, 13-13, Hayang-ro, Hayang-eup, Gyeonsan-si, Gyeongbuk 38430, Korea
| |
Collapse
|
32
|
Tanaka M, Nagata R, Nakanotani H, Adachi C. Precise Exciton Management of Quaternary Emission Layers for Highly Stable Organic Light-Emitting Diodes Based on Thermally Activated Delayed Fluorescence. ACS APPLIED MATERIALS & INTERFACES 2020; 12:50668-50674. [PMID: 33099997 DOI: 10.1021/acsami.0c15208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Simultaneous achievement of both high electroluminescence efficiency and high operational stability in organic light-emitting diodes (OLEDs) is required for their use in various practical applications. Although OLEDs based on thermally activated delayed fluorescence-assisted fluorescence (TAF) are considered to possess a promising device architecture to exploit the full potential of OLEDs, the operational stability of such systems still requires further improvement. In this study, a quaternary emission layer consisting of a combination of TAF and mixed-host systems is developed. OLEDs containing this emission layer show improved operational stability through the management of exciton generation processes while maintaining high electroluminescence efficiency. Furthermore, a gradient of the mixed ratio of the co-host matrix is used to optimize the recombination zone profile in the emission layer, leading to 17 times improvement of the operational lifetime compared with that of the corresponding single-host-based device. This research provides a simple and general method to develop highly stable TAF-OLEDs.
Collapse
Affiliation(s)
- Masaki Tanaka
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ryo Nagata
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hajime Nakanotani
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Chihaya Adachi
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
33
|
Etherington MK. Thermally Activated Delayed Fluorescence: Beyond the Single Molecule. Front Chem 2020; 8:716. [PMID: 33195010 PMCID: PMC7531616 DOI: 10.3389/fchem.2020.00716] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 07/13/2020] [Indexed: 11/30/2022] Open
Abstract
Emitters that exhibit thermally activated delayed fluorescence (TADF) are of interest for commercial applications in organic light-emitting diodes (OLEDs) due to their ability to achieve internal quantum efficiency of 100%. However, beyond the intrinsic properties of these materials it is important to understand how the molecules interact with each other and when these interactions may occur. Such interactions lead to a significant red shift in the photoluminescence and electroluminescence, making them less practicable for commercial use. Through summarizing the literature, covering solid-state solvation effects and aggregate effects in organic emitters, this mini review outlines a framework for the complete study of TADF emitters formed from the current-state-of-the-art techniques.
Collapse
Affiliation(s)
- Marc K. Etherington
- Department of Mathematics, Physics and Electrical Engineering, Northumbria University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
34
|
Recent Advances on Copper Complexes as Visible Light Photoinitiators and (Photo) Redox Initiators of Polymerization. Catalysts 2020. [DOI: 10.3390/catal10090953] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Metal complexes are used in numerous chemical and photochemical processes in organic chemistry. Metal complexes have not been excluded from the interest of polymerists to convert liquid resins into solid materials. If iridium complexes have demonstrated their remarkable photochemical reactivity in polymerization, their high costs and their attested toxicities have rapidly discarded these complexes for further developments. Conversely, copper complexes are a blooming field of research in (photo) polymerization due to their low cost, easy syntheses, long-living excited state lifetimes, and their remarkable chemical and photochemical stabilities. Copper complexes can also be synthesized in solution and by mechanochemistry, paving the way towards the synthesis of photoinitiators by Green synthetic approaches. In this review, an overview of the different copper complexes reported to date is presented. Copper complexes are versatile candidates for polymerization, as these complexes are now widely used not only in photopolymerization, but also in redox and photoassisted redox polymerization processes.
Collapse
|
35
|
Gao ZJ, Yeh TH, Xu JJ, Lee CC, Chowdhury A, Wang BC, Liu SW, Chen CH. Carbazole/Benzimidazole-Based Bipolar Molecules as the Hosts for Phosphorescent and Thermally Activated Delayed Fluorescence Emitters for Efficient OLEDs. ACS OMEGA 2020; 5:10553-10561. [PMID: 32426613 PMCID: PMC7227066 DOI: 10.1021/acsomega.0c00967] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
A series of carbazole/benzimidazole-based molecules, namely, o-CbzBiz, m-CbzBiz, and p-CbzBiz, were readily synthesized in three steps by integrating carbazole with benzimidazole via the ortho-, meta-, and para-positions of phenyl linked to N-phenyl carbazole. These bipolar molecules exhibited a maximum UV absorption band ranging from 310 to 327 nm and a maximum emission band ranging from 380 to 400 nm. Density functional theory calculations showed that the twist angles between the donor and acceptor moieties of these molecules were from 54.9 to 67.1°. Such a twisted structure hampered the π-electron conjugation within the molecule and resulted in high-lying LUMO levels and triplet energies, which make them suitable to be applied as host materials in OLED devices. Our results showed that a maximum external quantum efficiency (EQE) of OLED reached 21.8% when p-CbzBiz was applied as the host of a green phosphorescent emitter, i.e., Ir(ppy)2(acac). In addition, a maximum EQE of OLED reached 16.7% when o-CbzBiz with the host of a green TADF emitter, i.e., 4CzIPN. Moreover, these devices exhibited lower efficiency roll-off than the CBP-hosted device using the same emitters, which demonstrated the bipolar charge carrier property of carbazole/benzimidazole-based molecules.
Collapse
Affiliation(s)
- Zhen-Jie Gao
- Department
of Chemistry, Tamkang University, New Taipei City 251, Taiwan
| | - Tzu-Hung Yeh
- Department
of Electronic Engineering and Organic Electronics Research Center, Ming Chi University of Technology, New Taipei City 24301, Taiwan
- Department
of Electronic Engineering, National Taiwan
University of Science and Technology, Taipei 10607, Taiwan
| | - Jing-Jie Xu
- Department
of Chemistry, Tamkang University, New Taipei City 251, Taiwan
| | - Chih-Chien Lee
- Department
of Electronic Engineering, National Taiwan
University of Science and Technology, Taipei 10607, Taiwan
| | - Anuradha Chowdhury
- Department
of Electronic Engineering and Organic Electronics Research Center, Ming Chi University of Technology, New Taipei City 24301, Taiwan
| | - Bo-Cheng Wang
- Department
of Chemistry, Tamkang University, New Taipei City 251, Taiwan
| | - Shun-Wei Liu
- Department
of Electronic Engineering and Organic Electronics Research Center, Ming Chi University of Technology, New Taipei City 24301, Taiwan
| | - Chih-Hsin Chen
- Department
of Chemistry, Tamkang University, New Taipei City 251, Taiwan
| |
Collapse
|
36
|
Conformation-dependent degradation of thermally activated delayed fluorescence materials bearing cycloamino donors. Commun Chem 2020; 3:53. [PMID: 36703478 PMCID: PMC9814945 DOI: 10.1038/s42004-020-0303-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/09/2020] [Indexed: 01/29/2023] Open
Abstract
Organic light-emitting devices (OLEDs) containing organic molecules that exhibit thermally activated delayed fluorescence (TADF) produce high efficiencies. One challenge to the commercialization of the TADF OLEDs that remains to be addressed is their operational stability. Here we investigate the molecular factors that govern the stability of various archetypal TADF molecules based on a cycloamino donor-acceptor platform. Our results reveal that the intrinsic stability depends sensitively on the identity of the cycloamino donors in the TADF compounds. The rates and photochemical quantum yields of the degradation are positively correlated with the operation lifetimes of the devices. Our research shows that the stability is governed by the conformeric heterogeneity between the pseudo-axial and pseudo-equatorial forms of the cycloamino donor. Spontaneous bond dissociation occurs in the former (i.e., the pseudo-axial form), but the cleavage is disfavored in the pseudo-equatorial form. These findings provide valuable insights into the design of stable TADF molecules.
Collapse
|
37
|
Yamaguchi K, Matsushima T, Sandanayaka ASD, Homma Y, Uchida N, Adachi C. Enhanced Operational Durability of Thermally Activated Delayed Fluorescence‐Based Organic Light‐Emitting Diodes with a Triazine Electron Transporter. Chemistry 2020; 26:5598-5602. [DOI: 10.1002/chem.201905345] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/29/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Kenta Yamaguchi
- Center for Organic Photonics and Electronics Research (OPERA) Kyushu University 744 Motooka Nishi Fukuoka 819-0395 Japan
- Japan Science and Technology Agency (JST) ERATO Adachi Molecular Exciton Engineering Project Kyushu University 744 Motooka Nishi Fukuoka 819-0395 Japan
| | - Toshinori Matsushima
- Center for Organic Photonics and Electronics Research (OPERA) Kyushu University 744 Motooka Nishi Fukuoka 819-0395 Japan
- Japan Science and Technology Agency (JST) ERATO Adachi Molecular Exciton Engineering Project Kyushu University 744 Motooka Nishi Fukuoka 819-0395 Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER) Kyushu University 744 Motooka Nishi Fukuoka 819-0395 Japan
| | - Atula S. D. Sandanayaka
- Center for Organic Photonics and Electronics Research (OPERA) Kyushu University 744 Motooka Nishi Fukuoka 819-0395 Japan
- Japan Science and Technology Agency (JST) ERATO Adachi Molecular Exciton Engineering Project Kyushu University 744 Motooka Nishi Fukuoka 819-0395 Japan
| | - Yoko Homma
- Tokyo Research Center Organic Materials Research Laboratory Tosoh Corporation 2743-1, Hayakawa Ayase Kanagawa 252-1123 Japan
| | - Naoki Uchida
- Tokyo Research Center Organic Materials Research Laboratory Tosoh Corporation 2743-1, Hayakawa Ayase Kanagawa 252-1123 Japan
| | - Chihaya Adachi
- Center for Organic Photonics and Electronics Research (OPERA) Kyushu University 744 Motooka Nishi Fukuoka 819-0395 Japan
- Japan Science and Technology Agency (JST) ERATO Adachi Molecular Exciton Engineering Project Kyushu University 744 Motooka Nishi Fukuoka 819-0395 Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER) Kyushu University 744 Motooka Nishi Fukuoka 819-0395 Japan
| |
Collapse
|
38
|
Vázquez RJ, Yun JH, Muthike AK, Howell M, Kim H, Madu IK, Kim T, Zimmerman P, Lee JY, III TG. New Direct Approach for Determining the Reverse Intersystem Crossing Rate in Organic Thermally Activated Delayed Fluorescent (TADF) Emitters. J Am Chem Soc 2020; 142:8074-8079. [DOI: 10.1021/jacs.0c01225] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ricardo Javier Vázquez
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ju Hui Yun
- School of Chemical and Engineering, Sunkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 446-740, Republic of Korea
| | - Angelar K. Muthike
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Madeleine Howell
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hyungjun Kim
- Department of Chemistry, Incheon National University, Incheon 22012, Republic of Korea
| | - Ifeanyi K. Madu
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Taesu Kim
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Paul Zimmerman
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jun Yeob Lee
- School of Chemical and Engineering, Sunkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 446-740, Republic of Korea
| | - Theodore Goodson III
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
39
|
Paisley NR, Tonge CM, Hudson ZM. Stimuli-Responsive Thermally Activated Delayed Fluorescence in Polymer Nanoparticles and Thin Films: Applications in Chemical Sensing and Imaging. Front Chem 2020; 8:229. [PMID: 32328478 PMCID: PMC7160361 DOI: 10.3389/fchem.2020.00229] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/10/2020] [Indexed: 12/16/2022] Open
Abstract
Though molecules exhibiting thermally activated delayed fluorescence (TADF) have seen extensive development in organic light-emitting diodes, their incorporation into polymer nanomaterials and thin films has led to a range of applications in sensing and imaging probes. Triplet quenching can be used to probe oxygen concentration, and the reverse intersystem crossing mechanism which gives rise to TADF can also be used to measure temperature. Moreover, the long emission lifetimes of TADF materials allows for noise reduction in time-gated microscopy, making these compounds ideal for time-resolved fluorescence imaging (TRFI). A polymer matrix enables control over energy transfer between molecules, and can be used to modulate TADF behavior, solubility, biocompatibility, or desirable mechanical properties. Additionally, a polymer's oxygen permeability can be tuned to suit imaging applications in a range of media. Here we review the applications of polymer nanoparticles and films exhibiting TADF in sensing and imaging, demonstrating that this class of materials has great potential beyond electroluminescent devices still waiting to be explored.
Collapse
Affiliation(s)
| | | | - Zachary M. Hudson
- Department of Chemistry, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
40
|
Nguyen TB, Nakanotani H, Hatakeyama T, Adachi C. The Role of Reverse Intersystem Crossing Using a TADF-Type Acceptor Molecule on the Device Stability of Exciplex-Based Organic Light-Emitting Diodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1906614. [PMID: 31975459 DOI: 10.1002/adma.201906614] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/28/2019] [Indexed: 05/25/2023]
Abstract
Exciplex system exhibiting thermally activated delayed fluorescence (TADF) holds a considerable potential to improve organic light-emitting diode (OLED) performances. However, the operational lifetime of current exciplex-based devices, unfortunately, falls far behind the requirement for commercialization. Herein, rationally choosing a TADF-type electron acceptor molecule is reported as a new strategy to enhance OLEDs' operating lifetime. A comprehensive study of the exciplex system containing 9,9',9''-triphenyl-9H,9'H,9''H-3,3':6',3''-tercarbazole (Tris-PCz) and triazine (TRZ) derivatives clarifies the relationship between unwanted carrier recombination on acceptor molecules, TADF property of acceptors, and the device degradation event. By employing a proposed "exciton recycling" strategy, a threefold increased operational lifetime can be achieved while still maintaining high-performance OLED properties. In particular, a stable blue OLED that employs this strategy is successfully demonstrated. This research provides an important step for exciplex-based devices toward the significant improvement of operational stability.
Collapse
Affiliation(s)
- Thanh Ba Nguyen
- Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
| | - Hajime Nakanotani
- Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
- JST, ERATO, Adachi Molecular Exciton Engineering Project, c/o Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
- International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
| | - Takuji Hatakeyama
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan
| | - Chihaya Adachi
- Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
- JST, ERATO, Adachi Molecular Exciton Engineering Project, c/o Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
- International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
| |
Collapse
|
41
|
Li W, Li W, Gan L, Li M, Zheng N, Ning C, Chen D, Wu YC, Su SJ. J-Aggregation Enhances the Electroluminescence Performance of a Sky-Blue Thermally Activated Delayed-Fluorescence Emitter in Nondoped Organic Light-Emitting Diodes. ACS APPLIED MATERIALS & INTERFACES 2020; 12:2717-2723. [PMID: 31850735 DOI: 10.1021/acsami.9b17585] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A pivotal thermally activated delayed-fluorescence (TADF) emitter, DspiroAc-TRZ, was developed, and it exhibits greatly enhanced electroluminescence performance in nondoped organic light-emitting diodes (OLEDs) owing to the concurrent manipulation of aggregation behavior and monomolecular structure. The delicate non-planar packing pattern in the DspiroAc-TRZ crystal can not only lead to highly efficient solid-state luminescence but also form a loose intermolecular packing pattern, greatly decreasing the HOMO or LUMO overlaps in dimers and shortening the triplet exciton diffusion length. In addition, the rigid donor and acceptor moieties in DspiroAc-TRZ can rigidify the molecular backbone, resulting in a tiny geometric vibrational relaxation in the excited state. Impressively, high photoluminescent quantum yields of 78.5 and 83.7% were achieved for the DspiroAc-TRZ single crystal and nondoped film. A high external quantum efficiency (EQE) of 25.7% was achieved in a nondoped sky-blue TADF OLED, which is higher than any reported EQE value of nondoped sky-blue TADF OLEDs so far.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yuan-Chun Wu
- Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. , No.9-2, Tang Ming Avenue , Guang Ming District, Shenzhen 518132 , Guangdong Province , P. R. China
| | | |
Collapse
|
42
|
Hundemer F, Graf von Reventlow L, Leonhardt C, Polamo M, Nieger M, Seifermann SM, Colsmann A, Bräse S. Acceptor Derivatization of the 4CzIPN TADF System: Color Tuning and Introduction of Functional Groups. ChemistryOpen 2019; 8:1413-1420. [PMID: 31867149 PMCID: PMC6909881 DOI: 10.1002/open.201900141] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 11/18/2019] [Indexed: 12/20/2022] Open
Abstract
We demonstrate modular modifications of the widely employed emitter 2,4,5,6-tetra(9H-carbazol-9-yl)isophthalonitrile (4CzIPN) by replacing one or both nitrile acceptors with oxadiazole groups via a tetrazole intermediate. This allows the introduction of various functional groups including halides, alkynes, alkenes, nitriles, esters, ethers and a protected amino acid while preserving the thermally activated delayed fluorescence (TADF) properties. The substituents control the emission maximum of the corresponding emitters, ranging between 472-527 nm, and show high solid-state photoluminescence quantum yields up to 85 %. The TADF emission of two compounds, 4CzCNOXDtBu and 4CzdOXDtBu, a mono- and a bis-oxadiazole substituted 4CzIPN is characterized in detail by time- and temperature-dependent photoluminescence. Solution-processed OLEDs comprising 4CzCNOXDtBu and 4CzdOXDtBu show a significant blue-shift of the emission compared to the reference 4CzIPN, with external quantum efficiencies of 16 %, 5.9 % and 17 % at 100 cd m-2, respectively.
Collapse
Affiliation(s)
- Fabian Hundemer
- Institute of Organic ChemistryKarlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 676131KarlsruheGermany
| | - Lorenz Graf von Reventlow
- Karlsruhe Institute of Technology (KIT)Light Technology InstituteEngesserstrasse 1376131KarlsruheGermany
- Karlsruhe Institute of Technology (KIT)Material Research Center for Energy SystemsStrasse am Forum 776131KarlsruheGermany
| | - Céline Leonhardt
- Institute of Organic ChemistryKarlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 676131KarlsruheGermany
| | - Mika Polamo
- Department of ChemistryUniversity of HelsinkiP. O. Box 5500014 University ofHelsinkiFinland
| | - Martin Nieger
- Department of ChemistryUniversity of HelsinkiP. O. Box 5500014 University ofHelsinkiFinland
| | - Stefan M. Seifermann
- Institute of Organic ChemistryKarlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 676131KarlsruheGermany
| | - Alexander Colsmann
- Karlsruhe Institute of Technology (KIT)Light Technology InstituteEngesserstrasse 1376131KarlsruheGermany
- Karlsruhe Institute of Technology (KIT)Material Research Center for Energy SystemsStrasse am Forum 776131KarlsruheGermany
| | - Stefan Bräse
- Institute of Organic ChemistryKarlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 676131KarlsruheGermany
- Karlsruhe Institute of Technology (KIT)Material Research Center for Energy SystemsStrasse am Forum 776131KarlsruheGermany
- Institute of Toxicology and GeneticsKarlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 1D-76344Eggenstein-LeopoldshafenGermany
| |
Collapse
|
43
|
Li G, Zheng J, Klimes K, Zhu ZQ, Wu J, Zhu H, Li J. Novel Carbazole/Fluorene-Based Host Material for Stable and Efficient Phosphorescent OLEDs. ACS APPLIED MATERIALS & INTERFACES 2019; 11:40320-40331. [PMID: 31603311 DOI: 10.1021/acsami.9b13245] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A novel host material of "M"-type carbazole/fluorene-based mDCzPF with a high triplet energy by utilizing meta-substituted phenyl groups as linkers was developed. It was demonstrated that the position of the substituents significantly affected the molecular configuration and dipole moment, which played a critical role in the device performances. Red phosphorescent OLED utilizing the "M"-type mDCzPF as the host represented a 10-fold operational lifetime improvement over the OLED using a "V"-type pDCzPF linked by para-substituted phenyl groups as the host because of the good charge transport ability of the mDCzPF. Additionally, the "M"-type mDCzPF host was also compatible with a blue emitting phosphorescent emitter PtNON. The PtNON-doped OLED using mDCzPF as the host exhibited a peak EQE of 18.3% with a small roll off, yet maintained an EQE of 13.3% at a high brightness of 5000 cd/m2. Thus, the novel "M"-type mDCzPF could be employed as stable host material for efficient OLED emitting across the whole visible spectrum. This study should provide a viable method for designing new host materials for the development of stable and efficient phosphorescent OLEDs.
Collapse
Affiliation(s)
- Guijie Li
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering , Zhejiang University of Technology , Hangzhou , Zhejiang 310014 , P. R. China
- Material Science and Engineering , Arizona State University , Tempe , Arizona 85281 , United States
| | - Jianbing Zheng
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering , Zhejiang University of Technology , Hangzhou , Zhejiang 310014 , P. R. China
| | - Kody Klimes
- Material Science and Engineering , Arizona State University , Tempe , Arizona 85281 , United States
| | - Zhi-Qiang Zhu
- Material Science and Engineering , Arizona State University , Tempe , Arizona 85281 , United States
| | - Jiang Wu
- Material Science and Engineering , Arizona State University , Tempe , Arizona 85281 , United States
| | - Huangtianzhi Zhu
- Department of Chemistry , Zhejiang University , Hangzhou , Zhejiang 310027 , P. R. China
| | - Jian Li
- Material Science and Engineering , Arizona State University , Tempe , Arizona 85281 , United States
| |
Collapse
|
44
|
Li Y, Wei Q, Cao L, Fries F, Cucchi M, Wu Z, Scholz R, Lenk S, Voit B, Ge Z, Reineke S. Organic Light-Emitting Diodes Based on Conjugation-Induced Thermally Activated Delayed Fluorescence Polymers: Interplay Between Intra- and Intermolecular Charge Transfer States. Front Chem 2019; 7:688. [PMID: 31709224 PMCID: PMC6819504 DOI: 10.3389/fchem.2019.00688] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/04/2019] [Indexed: 11/17/2022] Open
Abstract
In this work, interactions between different host materials and a blue TADF polymer named P1 are systematically investigated. In photoluminescence, the host can have substantial impact on the photoluminescence quantum yield (PLQY) and the intensity of delayed fluorescence (ΦDF), where more than three orders of magnitude difference of ΦDF in various hosts is observed, resulting from a polarity effect of the host material and energy transfer. Additionally, an intermolecular charge-transfer (CT) emission with pronounced TADF characteristics is observed between P1 and 2,4,6-tris[3-(diphenylphosphinyl)phenyl]-1,3,5-triazine (PO-T2T), with a singlet-triplet splitting of 7 meV. It is noted that the contribution of harvested triplets in monochrome organic light-emitting diodes (OLEDs) correlates with ΦDF. For devices based on intermolecular CT-emission, the harvested triplets contribute ~90% to the internal quantum efficiency. The results demonstrate the vital importance of host materials on improving the PLQY and sensitizing ΦDF of TADF polymers for efficient devices. Solution-processed polychrome OLEDs with a color close to a white emission are presented, with the emission of intramolecular (P1) and intermolecular TADF (PO-T2T:P1).
Collapse
Affiliation(s)
- Yungui Li
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Institute for Applied Physics, Technische Universität Dresden, Dresden, Germany
| | - Qiang Wei
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy Sciences, Ningbo, China
| | - Liang Cao
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy Sciences, Ningbo, China.,Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, China
| | - Felix Fries
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Institute for Applied Physics, Technische Universität Dresden, Dresden, Germany
| | - Matteo Cucchi
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Institute for Applied Physics, Technische Universität Dresden, Dresden, Germany
| | - Zhongbin Wu
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Institute for Applied Physics, Technische Universität Dresden, Dresden, Germany
| | - Reinhard Scholz
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Institute for Applied Physics, Technische Universität Dresden, Dresden, Germany
| | - Simone Lenk
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Institute for Applied Physics, Technische Universität Dresden, Dresden, Germany
| | - Brigitte Voit
- Leibniz-Institut für Polymerforschung Dresden e.V, Dresden, Germany.,Organic Chemistry of Polymers, Technische Universität Dresden, Dresden, Germany
| | - Ziyi Ge
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy Sciences, Ningbo, China
| | - Sebastian Reineke
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Institute for Applied Physics, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
45
|
Li W, Li B, Cai X, Gan L, Xu Z, Li W, Liu K, Chen D, Su S. Tri‐Spiral Donor for High Efficiency and Versatile Blue Thermally Activated Delayed Fluorescence Materials. Angew Chem Int Ed Engl 2019; 58:11301-11305. [DOI: 10.1002/anie.201904272] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 05/25/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Wei Li
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and DevicesSouth China University of Technology Wushan Road 381, Tianhe District Guangzhou 510640 Guangdong Province P. R. China
| | - Binbin Li
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and DevicesSouth China University of Technology Wushan Road 381, Tianhe District Guangzhou 510640 Guangdong Province P. R. China
| | - Xinyi Cai
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and DevicesSouth China University of Technology Wushan Road 381, Tianhe District Guangzhou 510640 Guangdong Province P. R. China
| | - Lin Gan
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and DevicesSouth China University of Technology Wushan Road 381, Tianhe District Guangzhou 510640 Guangdong Province P. R. China
| | - Zhida Xu
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and DevicesSouth China University of Technology Wushan Road 381, Tianhe District Guangzhou 510640 Guangdong Province P. R. China
| | - Wenqi Li
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and DevicesSouth China University of Technology Wushan Road 381, Tianhe District Guangzhou 510640 Guangdong Province P. R. China
| | - Kunkun Liu
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and DevicesSouth China University of Technology Wushan Road 381, Tianhe District Guangzhou 510640 Guangdong Province P. R. China
| | - Dongcheng Chen
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and DevicesSouth China University of Technology Wushan Road 381, Tianhe District Guangzhou 510640 Guangdong Province P. R. China
| | - Shi‐Jian Su
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and DevicesSouth China University of Technology Wushan Road 381, Tianhe District Guangzhou 510640 Guangdong Province P. R. China
| |
Collapse
|
46
|
High performance from extraordinarily thick organic light-emitting diodes. Nature 2019; 572:502-506. [PMID: 31358964 DOI: 10.1038/s41586-019-1435-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/13/2019] [Indexed: 11/08/2022]
Abstract
Organic light-emitting diode (OLED) technology is promising for applications in next-generation displays and lighting. However, it is difficult-especially in large-area mass production-to cover a large substrate uniformly with organic layers, and variations in thickness cause the formation of shunting paths between electrodes1,2, thereby lowering device production yield. To overcome this issue, thicker organic transport layers are desirable because they can cover particles and residue on substrates, but increasing their thickness increases the driving voltage because of the intrinsically low charge-carrier mobilities of organics. Chemical doping of organic layers increases their electrical conductivity and enables fabrication of thicker OLEDs3,4, but additional absorption bands originating from charge transfer appear5, reducing electroluminescence efficiency because of light absorption. Thick OLEDs made with organic single crystals have been demonstrated6, but are not practical for mass production. Therefore, an alternative method of fabricating thicker OLEDs is needed. Here we show that extraordinarily thick OLEDs can be fabricated by using the organic-inorganic perovskite methylammonium lead chloride, CH3NH3PbCl3 (MAPbCl3), instead of organics as the transport layers. Because MAPbCl3 films have high carrier mobilities and are transparent to visible light, we were able to increase the total thickness of MAPbCl3 transport layers to 2,000 nanometres-more than ten times the thickness of standard OLEDs-without requiring high voltage or reducing either internal electroluminescence quantum efficiency or operational durability. These findings will contribute towards a higher production yield of high-quality OLEDs, which may be used for other organic devices, such as lasers, solar cells, memory devices and sensors.
Collapse
|
47
|
Li W, Li B, Cai X, Gan L, Xu Z, Li W, Liu K, Chen D, Su S. Tri‐Spiral Donor for High Efficiency and Versatile Blue Thermally Activated Delayed Fluorescence Materials. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Wei Li
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and DevicesSouth China University of Technology Wushan Road 381, Tianhe District Guangzhou 510640 Guangdong Province P. R. China
| | - Binbin Li
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and DevicesSouth China University of Technology Wushan Road 381, Tianhe District Guangzhou 510640 Guangdong Province P. R. China
| | - Xinyi Cai
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and DevicesSouth China University of Technology Wushan Road 381, Tianhe District Guangzhou 510640 Guangdong Province P. R. China
| | - Lin Gan
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and DevicesSouth China University of Technology Wushan Road 381, Tianhe District Guangzhou 510640 Guangdong Province P. R. China
| | - Zhida Xu
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and DevicesSouth China University of Technology Wushan Road 381, Tianhe District Guangzhou 510640 Guangdong Province P. R. China
| | - Wenqi Li
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and DevicesSouth China University of Technology Wushan Road 381, Tianhe District Guangzhou 510640 Guangdong Province P. R. China
| | - Kunkun Liu
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and DevicesSouth China University of Technology Wushan Road 381, Tianhe District Guangzhou 510640 Guangdong Province P. R. China
| | - Dongcheng Chen
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and DevicesSouth China University of Technology Wushan Road 381, Tianhe District Guangzhou 510640 Guangdong Province P. R. China
| | - Shi‐Jian Su
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and DevicesSouth China University of Technology Wushan Road 381, Tianhe District Guangzhou 510640 Guangdong Province P. R. China
| |
Collapse
|
48
|
Wu Z, Liu Y, Yu L, Zhao C, Yang D, Qiao X, Chen J, Yang C, Kleemann H, Leo K, Ma D. Strategic-tuning of radiative excitons for efficient and stable fluorescent white organic light-emitting diodes. Nat Commun 2019; 10:2380. [PMID: 31147542 PMCID: PMC6542840 DOI: 10.1038/s41467-019-10104-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/15/2019] [Indexed: 11/10/2022] Open
Abstract
The emerging thermally activated delayed fluorescence materials have great potential for efficiencies in organic light-emitting diodes by optimizing molecular structures of the emitter system. However, it is still challenging in the device structural design to achieve high efficiency and stable device operation in white organic light-emitting diodes. Here we propose a universal design strategy for thermally activated delayed fluorescence emitter-based fluorescent white organic light-emitting diodes, establishing an advanced system of “orange thermally activated delayed fluorescence emitter sensitized by blue thermally activated delayed fluorescence host” combined with an effective exciton-confined emissive layer. Compared to reference single-layer and double-layer emissive devices, the external quantum efficiency improves by 31 and 45%, respectively, and device operational stability also shows nearly fivefold increase. Additionally, a detailed optical simulation for the present structure is made, indicating the validity of the design strategy in the fluorescent white organic light-emitting diodes. Demonstrating white organic light-emitting diodes (OLEDs) based on thermally activated delayed fluorescence (TADF) emitters with high performance and operational stability remains a challenge. Here, the authors show efficient and stable white OLEDs based on a double-dopant TADF system.
Collapse
Affiliation(s)
- Zhongbin Wu
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, People's Republic of China.,Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Technische Universität Dresden, Nöthnitzer Str. 61, Dresden, 01187, Germany
| | - Yuan Liu
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Technische Universität Dresden, Nöthnitzer Str. 61, Dresden, 01187, Germany
| | - Ling Yu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Chenyang Zhao
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, People's Republic of China
| | - Dezhi Yang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, People's Republic of China
| | - Xianfeng Qiao
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, People's Republic of China
| | - Jiangshan Chen
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, People's Republic of China
| | - Chuluo Yang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Hans Kleemann
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Technische Universität Dresden, Nöthnitzer Str. 61, Dresden, 01187, Germany
| | - Karl Leo
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Technische Universität Dresden, Nöthnitzer Str. 61, Dresden, 01187, Germany.
| | - Dongge Ma
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, People's Republic of China.
| |
Collapse
|
49
|
Tang X, Tao Y, Liu H, Liu F, He X, Peng Q, Li J, Lu P. Phenothiazinen-Dimesitylarylborane-Based Thermally Activated Delayed Fluorescence: High-Performance Non-doped OLEDs With Reduced Efficiency Roll-Off at High Luminescence. Front Chem 2019; 7:373. [PMID: 31192193 PMCID: PMC6548864 DOI: 10.3389/fchem.2019.00373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/06/2019] [Indexed: 12/02/2022] Open
Abstract
We report a phenothiazinen-dimesitylarylborane thermally activated delayed fluorescence (TADF) molecule that exhibits high external quantum efficiency (EQE) in non-doped organic light-emitting diodes (OLEDs) at high luminescence. The non-doped device shows green electroluminescence with an emission peak of 540 nm and a maximum EQE of 19.66% obtained at a luminescence of ~170 cd m-2. The EQE is still as high as 17.31% at a high luminescence of 1,500 cd m-2 with small efficiency roll-off.
Collapse
Affiliation(s)
- Xiangyang Tang
- State Key Lab of Supramolecular Structure and Materials, Jilin University, Changchun, China
| | - Yanchun Tao
- State Key Lab of Supramolecular Structure and Materials, Jilin University, Changchun, China
| | - Hui Liu
- State Key Lab of Supramolecular Structure and Materials, Jilin University, Changchun, China
| | - Futong Liu
- State Key Lab of Supramolecular Structure and Materials, Jilin University, Changchun, China
| | - Xin He
- State Key Lab of Supramolecular Structure and Materials, Jilin University, Changchun, China
| | - Qiming Peng
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Jinyu Li
- State Key Lab of Supramolecular Structure and Materials, Jilin University, Changchun, China
| | - Ping Lu
- State Key Lab of Supramolecular Structure and Materials, Jilin University, Changchun, China
| |
Collapse
|
50
|
Lee HJ, Lee KH, Lee JY, Hong WP, Song OK. 33‐2:
Invited Paper:
Lifetime Improvement of Thermally Activated Delayed Fluorescent Organic Light‐Emitting Diodes. ACTA ACUST UNITED AC 2019. [DOI: 10.1002/sdtp.12956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ho Jung Lee
- School of Chemical EngineeringSungkyunkwan University Suwon Republic of Korea
| | - Kyung Hyung Lee
- School of Chemical EngineeringSungkyunkwan University Suwon Republic of Korea
| | - Jun Yeob Lee
- School of Chemical EngineeringSungkyunkwan University Suwon Republic of Korea
| | | | | |
Collapse
|