1
|
Llorente A, Arora GK, Murad R, Emerling BM. Phosphoinositide kinases in cancer: from molecular mechanisms to therapeutic opportunities. Nat Rev Cancer 2025; 25:463-487. [PMID: 40181165 DOI: 10.1038/s41568-025-00810-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/28/2025] [Indexed: 04/05/2025]
Abstract
Phosphoinositide kinases, extending beyond the well-known phosphoinositide 3-kinase (PI3K), are key players in the dynamic and site-specific phosphorylation of lipid phosphoinositides. Unlike PI3Ks, phosphatidylinositol 4-kinases (PI4Ks) and phosphatidylinositol phosphate kinases (PIPKs) do not usually exhibit mutational alterations, but mostly show altered expression in tumours, orchestrating a broad spectrum of signalling, metabolic and immune processes, all of which are crucial in the pathogenesis of cancer. Dysregulation of PI4Ks and PIPKs has been associated with various malignancies, which has sparked considerable interest towards their therapeutic targeting. In this Review we summarize the current understanding of the lesser-studied phosphoinositide kinase families, PI4K and PIPK, focusing on their functions and relevance in cancer. In addition, we provide an overview of ongoing efforts driving the preclinical and clinical development of phosphoinositide kinase-targeting molecules.
Collapse
Affiliation(s)
- Alicia Llorente
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Gurpreet K Arora
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Rabi Murad
- Bioformatics Core, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Brooke M Emerling
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
2
|
Carrillo ND, Chen M, Wen T, Awasthi P, Wolfe TJ, Sterling C, Cryns VL, Anderson RA. Lipid Transfer Proteins and PI4KIIα Initiate Nuclear p53-Phosphoinositide Signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.05.08.539894. [PMID: 37214930 PMCID: PMC10197520 DOI: 10.1101/2023.05.08.539894] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Phosphoinositide (PIP n ) messengers are present in non-membranous regions of nuclei where they are assembled into a phosphatidylinositol (PI) 3-kinase (PI3K)/Akt pathway that is distinct from the cytosolic membrane-localized pathway. In the nuclear pathway, PI kinases/phosphatases bind the p53 tumor suppressor protein (wild-type and mutant) to generate p53-PIP n complexes (p53-PIP n signalosome) that activate Akt by a PI3,4,5P 3 -dependent mechanism in non-membranous regions of the nucleus. This pathway is dependent on a source of nuclear PIP n s that is poorly characterized. Here we report that a subset of PI transfer proteins (PITPs), which transport PI between membranes to enable membrane-localized PIP n synthesis, also interact with p53 in the nucleus upon genotoxic stress. Class I PITPs (PITPα/β) specifically supply the PI required for the generation of p53-PIP n complexes and subsequent signaling in the nucleus. Additionally, the PI 4-kinase PI4KIIα binds to p53 and the PITPs to catalyze the formation of p53-PI4P. p53-PI4P is then sequentially phosphorylated to synthesize p53-PIP n complexes that regulate p53 stability, nuclear Akt activation and genotoxic stress resistance. In this way, PITPα/β and PI4KIIα bind p53 and collaborate to initiate p53-PIP n signaling by mechanisms that require PI transfer by PITPα/β and the catalytic activity of PI4KIIα. Moreover, the identification of these critical upstream regulators of p53-PIP n signaling point to PITPα/β and PI4KIIα as novel therapeutic targets in this pathway for diseases like cancer. Significance statement PI transfer proteins and a PI 4-kinase initiate nuclear p53-phosphoinositide signaling in membrane-free regions to promote stress resistance.
Collapse
|
3
|
Takeuchi K, Nagase L, Kageyama S, Kanoh H, Oshima M, Ogawa-Iio A, Ikeda Y, Fujii Y, Kondo S, Osaka N, Masuda T, Ishihara T, Nakamura Y, Hirota Y, Sasaki T, Senda T, Sasaki AT. PI5P4K inhibitors: promising opportunities and challenges. FEBS J 2025. [PMID: 39828902 DOI: 10.1111/febs.17393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 09/30/2024] [Accepted: 12/30/2024] [Indexed: 01/22/2025]
Abstract
Phosphatidylinositol 5-phosphate 4-kinases (PI5P4K), also known as type II PIPKs or PIPKIIs, convert the lipid second messenger PI5P to PI(4,5)P2. The PI5P4K family consists of three isozymes in mammals-PI5P4Kα, β, and γ-which notably utilize both GTP and ATP as phosphodonors. Unlike the other two isozymes, which can utilize both ATP and GTP, PI5P4Kβ exhibits a marked preference for GTP over ATP, acting as an intracellular GTP sensor that alters its kinase activity in response to physiological changes in GTP concentration. Knockout studies have demonstrated a critical role for PI5P4Kα and β in tumorigenesis, while PI5P4Kγ has been implicated in regulating immune and neural systems. Pharmacological targeting of PI5P4K holds promise for the development of new therapeutic approaches against cancer, immune dysfunction, and neurodegenerative diseases. Although several PI5P4K inhibitors have already been developed, challenges remain in PI5P4K inhibitor development, including a discrepancy between in vitro and cellular efficacy. This discrepancy is attributable to mainly three factors. (a) Most PI5P4K inhibitors were developed at low ATP levels, where these enzymes exhibit minimal activity. (b) Non-catalytic functions of PI5P4K require careful interpretation of PI5P4K depletion studies, as their scaffolding roles suppress class I PI3K signaling. (c) The lack of pharmacodynamic markers for in vivo assessment complicates efficacy assessment. To address these issues and promote the development of effective and targeted therapeutic strategies, this review provides an analytical overview of the distinct roles of individual isozymes and recent developments in PI5P4K inhibitors, emphasizing structural insights and the importance of pharmacodynamic marker identification.
Collapse
Affiliation(s)
- Koh Takeuchi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Japan
- Cellular and Molecular Biology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Lisa Nagase
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Japan
| | - Shun Kageyama
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Hirotaka Kanoh
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Masashi Oshima
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, OH, USA
| | - Aki Ogawa-Iio
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, OH, USA
- Department of Bioscience and Engineering, College of Systems Engineering and Science, Shibaura Institute of Technology, Minuma-ku, Japan
| | - Yoshiki Ikeda
- Institute for Integrated Cell-Material Sciences, Kyoto University, Sakyo-ku, Japan
| | - Yuki Fujii
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, OH, USA
| | - Sei Kondo
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Natsuki Osaka
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Takeshi Masuda
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Tsukasa Ishihara
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Yoshikazu Nakamura
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Yoshihisa Hirota
- Department of Bioscience and Engineering, College of Systems Engineering and Science, Shibaura Institute of Technology, Minuma-ku, Japan
| | - Takehiko Sasaki
- Department of Biochemical Pathophysiology, Medical Research Laboratory, Institute of Integrated Research, Institute of Science Tokyo, Japan
- Department of Lipid Biology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Japan
| | - Toshiya Senda
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Japan
- Department of Materials Structure Science, School of High Energy Accelerator Science, The Graduate University for Advanced Studies (SOKENDAI), Tsukuba, Japan
- Faculty of Pure and Applied Sciences, University of Tsukuba, Japan
| | - Atsuo T Sasaki
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, OH, USA
- Department of Cancer Biology, University of Cincinnati College of Medicine, OH, USA
- Department of Neurosurgery, Brain Tumor Center at UC Gardner Neuroscience Institute, Cincinnati, OH, USA
- Department of Clinical and Molecular Genetics, Hiroshima University Hospital, Japan
| |
Collapse
|
4
|
Sayed A, Eswara K, Teles K, Boudellioua A, Fischle W. Nuclear lipids in chromatin regulation: Biological roles, experimental approaches and existing challenges. Biol Cell 2025; 117:e2400103. [PMID: 39648467 PMCID: PMC11758486 DOI: 10.1111/boc.202400103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/14/2024] [Accepted: 11/22/2024] [Indexed: 12/10/2024]
Abstract
Lipids are crucial for various cellular functions. Besides the storage of energy equivalents, these include forming membrane bilayers and serving as signaling molecules. While significant progress has been made in the comprehension of the molecular and cellular biology of lipids, their functions in the cell nucleus remain poorly understood. The main role of the eukaryotic cell nucleus is to provide an environment for the storage and regulation of chromatin which is a complex of DNA, histones, and associated proteins. Recent studies suggest that nuclear lipids play a role in chromatin regulation and epigenetics. Here, we discuss various experimental methods in lipid-chromatin research, including biophysical, structural, and cell biology approaches, pointing out their strengths and weaknesses. We take the view that nuclear lipids have a far more widespread impact on chromatin than is currently acknowledged. This gap in comprehension is mostly due to existing experimental challenges in the study of lipid-chromatin biology. Several new, interdisciplinary approaches are discussed that could aid in elucidating the roles of nuclear lipids in chromatin regulation and gene expression.
Collapse
Affiliation(s)
- Ahmed Sayed
- Bioscience ProgramBiological and Environmental Science and Engineering DivisionKing Abdullah University of Science and Technology (KAUST)ThuwalKingdom of Saudi Arabia
- Chemistry DepartmentFaculty of ScienceAssiut UniversityAssiutEgypt
| | - Karthik Eswara
- Bioscience ProgramBiological and Environmental Science and Engineering DivisionKing Abdullah University of Science and Technology (KAUST)ThuwalKingdom of Saudi Arabia
| | - Kaian Teles
- Bioscience ProgramBiological and Environmental Science and Engineering DivisionKing Abdullah University of Science and Technology (KAUST)ThuwalKingdom of Saudi Arabia
| | - Ahlem Boudellioua
- Bioscience ProgramBiological and Environmental Science and Engineering DivisionKing Abdullah University of Science and Technology (KAUST)ThuwalKingdom of Saudi Arabia
| | - Wolfgang Fischle
- Bioscience ProgramBiological and Environmental Science and Engineering DivisionKing Abdullah University of Science and Technology (KAUST)ThuwalKingdom of Saudi Arabia
| |
Collapse
|
5
|
Hifdi N, Vaucourt M, Hnia K, Panasyuk G, Vandromme M. Phosphoinositide signaling in the nucleus: Impacts on chromatin and transcription regulation. Biol Cell 2025; 117:e2400096. [PMID: 39707648 PMCID: PMC11771838 DOI: 10.1111/boc.202400096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/22/2024] [Accepted: 12/02/2024] [Indexed: 12/23/2024]
Abstract
Phosphoinositides also called Polyphosphoinositides (PPIns) are small lipid messengers with established key roles in organelle trafficking and cell signaling in response to physiological and environmental inputs. Besides their well-described functions in the cytoplasm, accumulating evidences pointed to PPIns involvement in transcription and chromatin regulation. Through the description of previous and recent advances of PPIns implication in transcription, this review highlights key discoveries on how PPIns modulate nuclear factors activity and might impact chromatin to modify gene expression. Finally, we discuss how PPIns nuclear and cytosolic metabolisms work jointly in orchestrating key transduction cascades that end in the nucleus to modulate gene expression.
Collapse
Affiliation(s)
- Nesrine Hifdi
- Institute of Cardiovascular and Metabolic Diseases (I2MC), INSERM‐UMR 1297/University Paul SabatierToulouse Cedex 4France
| | - Mathilde Vaucourt
- Institute of Cardiovascular and Metabolic Diseases (I2MC), INSERM‐UMR 1297/University Paul SabatierToulouse Cedex 4France
| | - Karim Hnia
- Institute of Cardiovascular and Metabolic Diseases (I2MC), INSERM‐UMR 1297/University Paul SabatierToulouse Cedex 4France
| | - Ganna Panasyuk
- Institut Necker‐Enfants Malades (INEM), INSERM U1151/CNRS UMR 8253, Université de Paris CitéParisFrance
| | - Marie Vandromme
- Institute of Cardiovascular and Metabolic Diseases (I2MC), INSERM‐UMR 1297/University Paul SabatierToulouse Cedex 4France
| |
Collapse
|
6
|
Palamiuc L, Johnson JL, Haratipour Z, Loughran RM, Choi WJ, Arora GK, Tieu V, Ly K, Llorente A, Crabtree S, Wong JC, Ravi A, Wiederhold T, Murad R, Blind RD, Emerling BM. Hippo and PI5P4K signaling intersect to control the transcriptional activation of YAP. Sci Signal 2024; 17:eado6266. [PMID: 38805583 PMCID: PMC11283293 DOI: 10.1126/scisignal.ado6266] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/09/2024] [Indexed: 05/30/2024]
Abstract
Phosphoinositides are essential signaling molecules. The PI5P4K family of phosphoinositide kinases and their substrates and products, PI5P and PI4,5P2, respectively, are emerging as intracellular metabolic and stress sensors. We performed an unbiased screen to investigate the signals that these kinases relay and the specific upstream regulators controlling this signaling node. We found that the core Hippo pathway kinases MST1/2 phosphorylated PI5P4Ks and inhibited their signaling in vitro and in cells. We further showed that PI5P4K activity regulated several Hippo- and YAP-related phenotypes, specifically decreasing the interaction between the key Hippo proteins MOB1 and LATS and stimulating the YAP-mediated genetic program governing epithelial-to-mesenchymal transition. Mechanistically, we showed that PI5P interacted with MOB1 and enhanced its interaction with LATS, thereby providing a signaling connection between the Hippo pathway and PI5P4Ks. These findings reveal how these two important evolutionarily conserved signaling pathways are integrated to regulate metazoan development and human disease.
Collapse
Affiliation(s)
| | - Jared L. Johnson
- Weill Cornell Medicine, Meyer Cancer Center, New York, NY 10021
- Weill Cornell Medicine, Department of Medicine, New York, NY 10021
| | - Zeinab Haratipour
- Vanderbilt University Medical Center, Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Nashville, TN 37232
- Austin Peay State University, Clarksville, TN, 37044
| | | | - Woong Jae Choi
- Vanderbilt University Medical Center, Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Nashville, TN 37232
| | | | | | - Kyanh Ly
- Sanford Burnham Prebys, La Jolla, CA 92037
| | | | | | - Jenny C.Y. Wong
- Weill Cornell Medicine, Meyer Cancer Center, New York, NY 10021
- New York University Grossman School of Medicine, Department of Cell Biology, New York, NY 10016, USA
| | | | | | - Rabi Murad
- Sanford Burnham Prebys, La Jolla, CA 92037
| | - Raymond D. Blind
- Vanderbilt University Medical Center, Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Nashville, TN 37232
| | | |
Collapse
|
7
|
Vidalle MC, Sheth B, Fazio A, Marvi MV, Leto S, Koufi FD, Neri I, Casalin I, Ramazzotti G, Follo MY, Ratti S, Manzoli L, Gehlot S, Divecha N, Fiume R. Nuclear Phosphoinositides as Key Determinants of Nuclear Functions. Biomolecules 2023; 13:1049. [PMID: 37509085 PMCID: PMC10377365 DOI: 10.3390/biom13071049] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Polyphosphoinositides (PPIns) are signalling messengers representing less than five per cent of the total phospholipid concentration within the cell. Despite their low concentration, these lipids are critical regulators of various cellular processes, including cell cycle, differentiation, gene transcription, apoptosis and motility. PPIns are generated by the phosphorylation of the inositol head group of phosphatidylinositol (PtdIns). Different pools of PPIns are found at distinct subcellular compartments, which are regulated by an array of kinases, phosphatases and phospholipases. Six of the seven PPIns species have been found in the nucleus, including the nuclear envelope, the nucleoplasm and the nucleolus. The identification and characterisation of PPIns interactor and effector proteins in the nucleus have led to increasing interest in the role of PPIns in nuclear signalling. However, the regulation and functions of PPIns in the nucleus are complex and are still being elucidated. This review summarises our current understanding of the localisation, biogenesis and physiological functions of the different PPIns species in the nucleus.
Collapse
Affiliation(s)
- Magdalena C Vidalle
- Inositide Laboratory, School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Life Sciences Building 85, Highfield, Southampton SO17 1BJ, UK
| | - Bhavwanti Sheth
- Inositide Laboratory, School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Life Sciences Building 85, Highfield, Southampton SO17 1BJ, UK
| | - Antonietta Fazio
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Maria Vittoria Marvi
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Stefano Leto
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Foteini-Dionysia Koufi
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Irene Neri
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Irene Casalin
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Giulia Ramazzotti
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Matilde Y Follo
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Stefano Ratti
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Lucia Manzoli
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Sonakshi Gehlot
- Inositide Laboratory, School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Life Sciences Building 85, Highfield, Southampton SO17 1BJ, UK
| | - Nullin Divecha
- Inositide Laboratory, School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Life Sciences Building 85, Highfield, Southampton SO17 1BJ, UK
| | - Roberta Fiume
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| |
Collapse
|
8
|
Llorente A, Arora GK, Grenier SF, Emerling BM. PIP kinases: A versatile family that demands further therapeutic attention. Adv Biol Regul 2023; 87:100939. [PMID: 36517396 PMCID: PMC9992244 DOI: 10.1016/j.jbior.2022.100939] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Phosphoinositides are membrane-localized phospholipids that regulate a plethora of essential cellular processes. These lipid signaling molecules are critical for cell homeostasis and therefore their levels are strictly regulated by the coordinated action of several families of lipid kinases and phosphatases. In this review, we provide a focused perspective on the phosphatidylinositol phosphate kinase (PIPK) family and the three subfamilies that compose it: Type I PIPKs or phosphatidylinositol-4-phosphate 5-kinases (PI4P5Ks), Type II PIPKs or phosphatidylinositol-5-phosphate 4-kinases (PI5P4Ks), and Type III PIPKs or phosphatidylinositol-3-phosphate 5-kinases (PIKfyve). Each subfamily is responsible for catalyzing a hydroxyl phosphorylation on specific phosphoinositide species to generate a double phosphorylated lipid, therefore regulating the levels of both substrate and product. Here, we summarize our current knowledge about the functions and regulation of each PIPK subfamily. Further, we highlight the roles of these kinases in various in vivo genetic models and give an overview of their involvement in multiple pathological conditions. The phosphoinositide field has been long focused on targeting PI3K signaling, but growing evidence suggests that it is time to draw attention to the other phosphoinositide kinases. The discovery of the involvement of PIPKs in the pathogenesis of multiple diseases has prompted substantial efforts to turn these enzymes into pharmacological targets. An increasingly refined knowledge of the biology of PIPKs in a variety of in vitro and in vivo models will facilitate the development of effective approaches for therapeutic intervention with the potential to translate into meaningful clinical benefits for patients suffering from cancer, immunological and infectious diseases, and neurodegenerative disorders.
Collapse
Affiliation(s)
- Alicia Llorente
- Cell and Molecular Biology of Cancer Program, Sanford Burnham Prebys, La Jolla, CA, 92037, USA
| | - Gurpreet K Arora
- Cell and Molecular Biology of Cancer Program, Sanford Burnham Prebys, La Jolla, CA, 92037, USA
| | - Shea F Grenier
- Cell and Molecular Biology of Cancer Program, Sanford Burnham Prebys, La Jolla, CA, 92037, USA
| | - Brooke M Emerling
- Cell and Molecular Biology of Cancer Program, Sanford Burnham Prebys, La Jolla, CA, 92037, USA.
| |
Collapse
|
9
|
Wang YH, Sheetz MP. When PIP 2 Meets p53: Nuclear Phosphoinositide Signaling in the DNA Damage Response. Front Cell Dev Biol 2022; 10:903994. [PMID: 35646908 PMCID: PMC9136457 DOI: 10.3389/fcell.2022.903994] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
The mechanisms that maintain genome stability are critical for preventing tumor progression. In the past decades, many strategies were developed for cancer treatment to disrupt the DNA repair machinery or alter repair pathway selection. Evidence indicates that alterations in nuclear phosphoinositide lipids occur rapidly in response to genotoxic stresses. This implies that nuclear phosphoinositides are an upstream element involved in DNA damage signaling. Phosphoinositides constitute a new signaling interface for DNA repair pathway selection and hence a new opportunity for developing cancer treatment strategies. However, our understanding of the underlying mechanisms by which nuclear phosphoinositides regulate DNA damage repair, and particularly the dynamics of those processes, is rather limited. This is partly because there are a limited number of techniques that can monitor changes in the location and/or abundance of nuclear phosphoinositide lipids in real time and in live cells. This review summarizes our current knowledge regarding the roles of nuclear phosphoinositides in DNA damage response with an emphasis on the dynamics of these processes. Based upon recent findings, there is a novel model for p53's role with nuclear phosphoinositides in DNA damage response that provides new targets for synthetic lethality of tumors.
Collapse
Affiliation(s)
| | - Michael P. Sheetz
- Biochemistry and Molecular Biology Dept., University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
10
|
Unconventional metabolites in chromatin regulation. Biosci Rep 2022; 42:230604. [PMID: 34988581 PMCID: PMC8777195 DOI: 10.1042/bsr20211558] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/04/2022] [Accepted: 01/04/2022] [Indexed: 11/17/2022] Open
Abstract
Chromatin, the complex of DNA and histone proteins, serves as a main integrator of cellular signals. Increasing evidence links cellular functional to chromatin state. Indeed, different metabolites are emerging as modulators of chromatin function and structure. Alterations in chromatin state are decisive for regulating all aspects of genome function and ultimately have the potential to produce phenotypic changes. Several metabolites such as acetyl-CoA, S-adenosylmethionine (SAM) or adenosine triphosphate (ATP) have now been well characterized as main substrates or cofactors of chromatin-modifying enzymes. However, there are other metabolites that can directly interact with chromatin influencing its state or that modulate the properties of chromatin regulatory factors. Also, there is a growing list of atypical enzymatic and nonenzymatic chromatin modifications that originate from different cellular pathways that have not been in the limelight of chromatin research. Here, we summarize different properties and functions of uncommon regulatory molecules originating from intermediate metabolism of lipids, carbohydrates and amino acids. Based on the various modes of action on chromatin and the plethora of putative, so far not described chromatin-regulating metabolites, we propose that there are more links between cellular functional state and chromatin regulation to be discovered. We hypothesize that these connections could provide interesting starting points for interfering with cellular epigenetic states at a molecular level.
Collapse
|
11
|
Karabiyik C, Vicinanza M, Son SM, Rubinsztein DC. Glucose starvation induces autophagy via ULK1-mediated activation of PIKfyve in an AMPK-dependent manner. Dev Cell 2021; 56:1961-1975.e5. [PMID: 34107300 DOI: 10.1016/j.devcel.2021.05.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/24/2021] [Accepted: 05/12/2021] [Indexed: 12/11/2022]
Abstract
Autophagy is an essential catabolic process induced to provide cellular energy sources in response to nutrient limitation through the activation of kinases, like AMP-activated protein kinase (AMPK) and ULK1. Although glucose starvation induces autophagy, the exact mechanism underlying this signaling has yet to be elucidated. Here, we reveal a role for ULK1 in non-canonical autophagy signaling using diverse cell lines. ULK1 activated by AMPK during glucose starvation phosphorylates the lipid kinase PIKfyve on S1548, thereby increasing its activity and the synthesis of the phospholipid PI(5)P without changing the levels of PI(3,5)P2. ULK1-mediated activation of PIKfyve enhances the formation of PI(5)P-containing autophagosomes upon glucose starvation, resulting in an increase in autophagy flux. Phospho-mimic PIKfyve S1548D drives autophagy upregulation and lowers autophagy substrate levels. Our study has identified how ULK1 upregulates autophagy upon glucose starvation and induces the formation of PI(5)P-containing autophagosomes by activating PIKfyve.
Collapse
Affiliation(s)
- Cansu Karabiyik
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK; UK Dementia Research Institute, Cambridge, UK
| | - Mariella Vicinanza
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK; UK Dementia Research Institute, Cambridge, UK
| | - Sung Min Son
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK; UK Dementia Research Institute, Cambridge, UK
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK; UK Dementia Research Institute, Cambridge, UK.
| |
Collapse
|
12
|
Ratti S, Evangelisti C, Mongiorgi S, De Stefano A, Fazio A, Bonomini F, Follo MY, Faenza I, Manzoli L, Sheth B, Vidalle MC, Kimber ST, Divecha N, Cocco L, Fiume R. "Modulating Phosphoinositide Profiles as a Roadmap for Treatment in Acute Myeloid Leukemia". Front Oncol 2021; 11:678824. [PMID: 34109125 PMCID: PMC8181149 DOI: 10.3389/fonc.2021.678824] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/04/2021] [Indexed: 12/12/2022] Open
Abstract
Polyphosphoinositides (PPIns) and their modulating enzymes are involved in regulating many important cellular functions including proliferation, differentiation or gene expression, and their deregulation is involved in human diseases such as metabolic syndromes, neurodegenerative disorders and cancer, including Acute Myeloid Leukemia (AML). Given that PPIns regulating enzymes are highly druggable targets, several studies have recently highlighted the potential of targeting them in AML. For instance many inhibitors targeting the PI3K pathway are in various stages of clinical development and more recently other novel enzymes such as PIP4K2A have been implicated as AML targets. PPIns have distinct subcellular organelle profiles, in part driven by the specific localisation of enzymes that metabolise them. In particular, in the nucleus, PPIns are regulated in response to various extracellular and intracellular pathways and interact with specific nuclear proteins to control epigenetic cell state. While AML does not normally manifest with as many mutations as other cancers, it does appear in large part to be a disease of dysregulation of epigenetic signalling and many novel therapeutics are aimed at reprogramming AML cells toward a differentiated cell state or to one that is responsive to alternative successful but limited AML therapies such as ATRA. Here, we propose that by combining bioinformatic analysis with inhibition of PPIns pathways, especially within the nucleus, we might discover new combination therapies aimed at reprogramming transcriptional output to attenuate uncontrolled AML cell growth. Furthermore, we outline how different part of a PPIns signalling unit might be targeted to control selective outputs that might engender more specific and therefore less toxic inhibitory outcomes.
Collapse
Affiliation(s)
- Stefano Ratti
- Cellular Signalling Laboratory, Department of Biomedical Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Camilla Evangelisti
- Cellular Signalling Laboratory, Department of Biomedical Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Sara Mongiorgi
- Cellular Signalling Laboratory, Department of Biomedical Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Alessia De Stefano
- Cellular Signalling Laboratory, Department of Biomedical Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Antonietta Fazio
- Cellular Signalling Laboratory, Department of Biomedical Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Francesca Bonomini
- Cellular Signalling Laboratory, Department of Biomedical Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Matilde Y Follo
- Cellular Signalling Laboratory, Department of Biomedical Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Irene Faenza
- Cellular Signalling Laboratory, Department of Biomedical Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Lucia Manzoli
- Cellular Signalling Laboratory, Department of Biomedical Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Bhavwanti Sheth
- Inositide Laboratory, School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Magdalena C Vidalle
- Inositide Laboratory, School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Scott T Kimber
- Inositide Laboratory, School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Nullin Divecha
- Inositide Laboratory, School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Lucio Cocco
- Cellular Signalling Laboratory, Department of Biomedical Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Roberta Fiume
- Cellular Signalling Laboratory, Department of Biomedical Sciences (DIBINEM), University of Bologna, Bologna, Italy
| |
Collapse
|
13
|
Jacquet K, Binda O. ING Proteins: Tumour Suppressors or Oncoproteins. Cancers (Basel) 2021; 13:cancers13092110. [PMID: 33925563 PMCID: PMC8123807 DOI: 10.3390/cancers13092110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023] Open
Abstract
The INhibitor of Growth family was defined in the mid-1990s by the identification of a tumour suppressor, ING1, and subsequent expansion of the family based essentially on sequence similarities. However, later work and more recent investigations demonstrate that at least a few ING proteins are actually required for normal proliferation of eukaryotic cells, from yeast to human. ING proteins are also part of a larger family of chromatin-associated factors marked by a plant homeodomain (PHD), which mediates interactions with methylated lysine residues. Herein, we discuss the role of ING proteins and their various roles in chromatin signalling in the context of cancer development and progression.
Collapse
Affiliation(s)
- Karine Jacquet
- Institut NeuroMyoGène (INMG), Université Claude Bernard Lyon 1, Université de Lyon, CNRS UMR 5310, INSERM U 1217, 69008 Lyon, France;
| | - Olivier Binda
- Institut NeuroMyoGène (INMG), Université Claude Bernard Lyon 1, Université de Lyon, CNRS UMR 5310, INSERM U 1217, 69008 Lyon, France;
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Correspondence:
| |
Collapse
|
14
|
López-Contreras AK, Martínez-Ruiz MG, Olvera-Montaño C, Robles-Rivera RR, Arévalo-Simental DE, Castellanos-González JA, Hernández-Chávez A, Huerta-Olvera SG, Cardona-Muñoz EG, Rodríguez-Carrizalez AD. Importance of the Use of Oxidative Stress Biomarkers and Inflammatory Profile in Aqueous and Vitreous Humor in Diabetic Retinopathy. Antioxidants (Basel) 2020; 9:antiox9090891. [PMID: 32962301 PMCID: PMC7555116 DOI: 10.3390/antiox9090891] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/03/2020] [Accepted: 09/10/2020] [Indexed: 12/23/2022] Open
Abstract
Diabetic retinopathy is one of the leading causes of visual impairment and morbidity worldwide, being the number one cause of blindness in people between 27 and 75 years old. It is estimated that ~191 million people will be diagnosed with this microvascular complication by 2030. Its pathogenesis is due to alterations in the retinal microvasculature as a result of a high concentration of glucose in the blood for a long time which generates numerous molecular changes like oxidative stress. Therefore, this narrative review aims to approach various biomarkers associated with the development of diabetic retinopathy. Focusing on the molecules showing promise as detection tools, among them we consider markers of oxidative stress (TAC, LPO, MDA, 4-HNE, SOD, GPx, and catalase), inflammation (IL-6, IL-1ß, IL-8, IL-10, IL-17A, TNF-α, and MMPs), apoptosis (NF-kB, cyt-c, and caspases), and recently those that have to do with epigenetic modifications, their measurement in different biological matrices obtained from the eye, including importance, obtaining process, handling, and storage of these matrices in order to have the ability to detect the disease in its early stages.
Collapse
Affiliation(s)
- Ana Karen López-Contreras
- Department of Physiology, Health Sciences University Center, Institute of Clinical and Experimental Therapeutics, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico; (A.K.L.-C.); (M.G.M.-R.); (C.O.-M.); (R.R.R.-R.); (D.E.A.-S.); (J.A.C.-G.); (A.H.-C.); (E.G.C.-M.)
| | - María Guadalupe Martínez-Ruiz
- Department of Physiology, Health Sciences University Center, Institute of Clinical and Experimental Therapeutics, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico; (A.K.L.-C.); (M.G.M.-R.); (C.O.-M.); (R.R.R.-R.); (D.E.A.-S.); (J.A.C.-G.); (A.H.-C.); (E.G.C.-M.)
| | - Cecilia Olvera-Montaño
- Department of Physiology, Health Sciences University Center, Institute of Clinical and Experimental Therapeutics, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico; (A.K.L.-C.); (M.G.M.-R.); (C.O.-M.); (R.R.R.-R.); (D.E.A.-S.); (J.A.C.-G.); (A.H.-C.); (E.G.C.-M.)
| | - Ricardo Raúl Robles-Rivera
- Department of Physiology, Health Sciences University Center, Institute of Clinical and Experimental Therapeutics, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico; (A.K.L.-C.); (M.G.M.-R.); (C.O.-M.); (R.R.R.-R.); (D.E.A.-S.); (J.A.C.-G.); (A.H.-C.); (E.G.C.-M.)
| | - Diana Esperanza Arévalo-Simental
- Department of Physiology, Health Sciences University Center, Institute of Clinical and Experimental Therapeutics, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico; (A.K.L.-C.); (M.G.M.-R.); (C.O.-M.); (R.R.R.-R.); (D.E.A.-S.); (J.A.C.-G.); (A.H.-C.); (E.G.C.-M.)
- Department of Ophthalmology, Hospital Civil de Guadalajara “Fray Antonio Alcalde”, Guadalajara, Jalisco 44280, Mexico
| | - José Alberto Castellanos-González
- Department of Physiology, Health Sciences University Center, Institute of Clinical and Experimental Therapeutics, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico; (A.K.L.-C.); (M.G.M.-R.); (C.O.-M.); (R.R.R.-R.); (D.E.A.-S.); (J.A.C.-G.); (A.H.-C.); (E.G.C.-M.)
- Department of Ophthalmology, Specialties Hospital of the National Occidental Medical Center, Mexican Institute of Social Security, Guadalajara, Jalisco 44329, Mexico
| | - Abel Hernández-Chávez
- Department of Physiology, Health Sciences University Center, Institute of Clinical and Experimental Therapeutics, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico; (A.K.L.-C.); (M.G.M.-R.); (C.O.-M.); (R.R.R.-R.); (D.E.A.-S.); (J.A.C.-G.); (A.H.-C.); (E.G.C.-M.)
| | - Selene Guadalupe Huerta-Olvera
- Medical and Life Sciences Department, La Ciénega University Center, University of Guadalajara, Ocotlán, Jalisco 47810, Mexico;
| | - Ernesto German Cardona-Muñoz
- Department of Physiology, Health Sciences University Center, Institute of Clinical and Experimental Therapeutics, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico; (A.K.L.-C.); (M.G.M.-R.); (C.O.-M.); (R.R.R.-R.); (D.E.A.-S.); (J.A.C.-G.); (A.H.-C.); (E.G.C.-M.)
| | - Adolfo Daniel Rodríguez-Carrizalez
- Department of Physiology, Health Sciences University Center, Institute of Clinical and Experimental Therapeutics, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico; (A.K.L.-C.); (M.G.M.-R.); (C.O.-M.); (R.R.R.-R.); (D.E.A.-S.); (J.A.C.-G.); (A.H.-C.); (E.G.C.-M.)
- Correspondence:
| |
Collapse
|
15
|
Nuclear Inositides and Inositide-Dependent Signaling Pathways in Myelodysplastic Syndromes. Cells 2020; 9:cells9030697. [PMID: 32178280 PMCID: PMC7140618 DOI: 10.3390/cells9030697] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/04/2020] [Accepted: 03/11/2020] [Indexed: 12/21/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are a heterogeneous group of hematological malignancies characterized by peripheral blood cytopenia and abnormal myeloproliferation, as well as a variable risk of evolution into acute myeloid leukemia (AML). The nucleus is a highly organized organelle with several distinct domains where nuclear inositides localize to mediate essential cellular events. Nuclear inositides play a critical role in the modulation of erythropoiesis or myelopoiesis. Here, we briefly review the nuclear structure, the localization of inositides and their metabolic enzymes in subnuclear compartments, and the molecular aspects of nuclear inositides in MDS.
Collapse
|
16
|
Chen M, Wen T, Horn HT, Chandrahas VK, Thapa N, Choi S, Cryns VL, Anderson RA. The nuclear phosphoinositide response to stress. Cell Cycle 2020; 19:268-289. [PMID: 31902273 PMCID: PMC7028212 DOI: 10.1080/15384101.2019.1711316] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Accumulating evidence reveals that nuclear phosphoinositides (PIs) serve as central signaling hubs that control a multitude of nuclear processes by regulating the activity of nuclear proteins. In response to cellular stressors, PIs accumulate in the nucleus and multiple PI isomers are synthesized by the actions of PI-metabolizing enzymes, kinases, phosphatases and phospholipases. By directly interacting with effector proteins, phosphoinositide signals transduce changes in cellular functions. Here we describe nuclear phosphoinositide signaling in multiple sub-nuclear compartments and summarize the literature that demonstrates roles for specific kinases, phosphatases, and phospholipases in the orchestration of nuclear phosphoinositide signaling in response to cellular stress. Additionally, we discuss the specific PI-protein complexes through which these lipids execute their functions by regulating the configuration, stability, and transcription activity of their effector proteins. Overall, our review provides a detailed landscape of the current understanding of the nuclear PI-protein interactome and its role in shaping the coordinated response to cellular stress.
Collapse
Affiliation(s)
- Mo Chen
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Tianmu Wen
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Hudson T. Horn
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Narendra Thapa
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Suyong Choi
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Vincent L. Cryns
- Department of Medicine, University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
| | - Richard A. Anderson
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
17
|
Archambeau J, Blondel A, Pedeux R. Focus-ING on DNA Integrity: Implication of ING Proteins in Cell Cycle Regulation and DNA Repair Modulation. Cancers (Basel) 2019; 12:cancers12010058. [PMID: 31878273 PMCID: PMC7017203 DOI: 10.3390/cancers12010058] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/20/2019] [Accepted: 12/21/2019] [Indexed: 12/16/2022] Open
Abstract
The ING family of tumor suppressor genes is composed of five members (ING1-5) involved in cell cycle regulation, DNA damage response, apoptosis and senescence. All ING proteins belong to various HAT or HDAC complexes and participate in chromatin remodeling that is essential for genomic stability and signaling pathways. The gatekeeper functions of the INGs are well described by their role in the negative regulation of the cell cycle, notably by modulating the stability of p53 or the p300 HAT activity. However, the caretaker functions are described only for ING1, ING2 and ING3. This is due to their involvement in DNA repair such as ING1 that participates not only in NERs after UV-induced damage, but also in DSB repair in which ING2 and ING3 are required for accumulation of ATM, 53BP1 and BRCA1 near the lesion and for the subsequent repair. This review summarizes evidence of the critical roles of ING proteins in cell cycle regulation and DNA repair to maintain genomic stability.
Collapse
|
18
|
Dantas A, Al Shueili B, Yang Y, Nabbi A, Fink D, Riabowol K. Biological Functions of the ING Proteins. Cancers (Basel) 2019; 11:E1817. [PMID: 31752342 PMCID: PMC6896041 DOI: 10.3390/cancers11111817] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 11/07/2019] [Indexed: 02/06/2023] Open
Abstract
The proteins belonging to the inhibitor of growth (ING) family of proteins serve as epigenetic readers of the H3K4Me3 histone mark of active gene transcription and target histone acetyltransferase (HAT) or histone deacetylase (HDAC) protein complexes, in order to alter local chromatin structure. These multidomain adaptor proteins interact with numerous other proteins to facilitate their localization and the regulation of numerous biochemical pathways that impinge upon biological functions. Knockout of some of the ING genes in murine models by various groups has verified their status as tumor suppressors, with ING1 knockout resulting in the formation of large clear-cell B-lymphomas and ING2 knockout increasing the frequency of ameloblastomas, among other phenotypic effects. ING4 knockout strongly affects innate immunity and angiogenesis, and INGs1, ING2, and ING4 have been reported to affect apoptosis in different cellular models. Although ING3 and ING5 knockouts have yet to be published, preliminary reports indicate that ING3 knockout results in embryonic lethality and that ING5 knockout may have postpartum effects on stem cell maintenance. In this review, we compile the known information on the domains of the INGs and the effects of altering ING protein expression, to better understand the functions of this adaptor protein family and its possible uses for targeted cancer therapy.
Collapse
Affiliation(s)
- Arthur Dantas
- Arnie Charbonneau Cancer Institute, Departments of Biochemistry and Molecular Biology and Oncology, University of Calgary, 374 HMRB, 3330 Hospital Dr. NW, Calgary, AB T2N 4N1, Canada; (A.D.); (B.A.S.); (Y.Y.)
| | - Buthaina Al Shueili
- Arnie Charbonneau Cancer Institute, Departments of Biochemistry and Molecular Biology and Oncology, University of Calgary, 374 HMRB, 3330 Hospital Dr. NW, Calgary, AB T2N 4N1, Canada; (A.D.); (B.A.S.); (Y.Y.)
| | - Yang Yang
- Arnie Charbonneau Cancer Institute, Departments of Biochemistry and Molecular Biology and Oncology, University of Calgary, 374 HMRB, 3330 Hospital Dr. NW, Calgary, AB T2N 4N1, Canada; (A.D.); (B.A.S.); (Y.Y.)
| | - Arash Nabbi
- Princess Margaret Cancer Centre, Toronto, ON M5G 2M9, Canada
| | - Dieter Fink
- Institute of Laboratory Animal Science, Department for Biomedical Sciences, University of Veterinary Medicine Vienna, 1210 Vienna, Austria;
| | - Karl Riabowol
- Arnie Charbonneau Cancer Institute, Departments of Biochemistry and Molecular Biology and Oncology, University of Calgary, 374 HMRB, 3330 Hospital Dr. NW, Calgary, AB T2N 4N1, Canada; (A.D.); (B.A.S.); (Y.Y.)
| |
Collapse
|
19
|
Blondel A, Benberghout A, Pedeux R, Ricordel C. Exploiting ING2 Epigenetic Modulation as a Therapeutic Opportunity for Non-Small Cell Lung Cancer. Cancers (Basel) 2019; 11:cancers11101601. [PMID: 31640185 PMCID: PMC6827349 DOI: 10.3390/cancers11101601] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 10/11/2019] [Indexed: 02/07/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) has been the leading cause of cancer-related death worldwide, over the last few decades. Survival remains extremely poor in the metastatic setting and, consequently, innovative therapeutic strategies are urgently needed. Inhibitor of Growth Gene 2 (ING2) is a core component of the mSin3A/Histone deacetylases complex (HDAC), which controls the chromatin acetylation status and modulates gene transcription. This gene has been characterized as a tumor suppressor gene and its status in cancer has been scarcely explored. In this review, we focused on ING2 and other mSin3A/HDAC member statuses in NSCLC. Taking advantage of existing public databases and known pharmacological properties of HDAC inhibitors, finally, we proposed a therapeutic model based on an ING2 biomarker-guided strategy.
Collapse
Affiliation(s)
- Alice Blondel
- INSERM U1242, Chemistry Oncogenesis Stress and Signaling, CLCC Eugène Marquis, 35033 Rennes, France.
| | - Amine Benberghout
- INSERM U1242, Chemistry Oncogenesis Stress and Signaling, CLCC Eugène Marquis, 35033 Rennes, France.
| | - Rémy Pedeux
- INSERM U1242, Chemistry Oncogenesis Stress and Signaling, CLCC Eugène Marquis, 35033 Rennes, France.
| | - Charles Ricordel
- INSERM U1242, Chemistry Oncogenesis Stress and Signaling, CLCC Eugène Marquis, 35033 Rennes, France.
- CHU Rennes, Service de Pneumologie, Université de Rennes 1, 35033 Rennes, France.
| |
Collapse
|
20
|
Nuclear Phosphoinositides-Versatile Regulators of Genome Functions. Cells 2019; 8:cells8070649. [PMID: 31261688 PMCID: PMC6678639 DOI: 10.3390/cells8070649] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/21/2019] [Accepted: 06/25/2019] [Indexed: 12/17/2022] Open
Abstract
The many functions of phosphoinositides in cytosolic signaling were extensively studied; however, their activities in the cell nucleus are much less clear. In this review, we summarize data about their nuclear localization and metabolism, and review the available literature on their involvements in chromatin remodeling, gene transcription, and RNA processing. We discuss the molecular mechanisms via which nuclear phosphoinositides, in particular phosphatidylinositol (4,5)-bisphosphate (PI(4,5)P2), modulate nuclear processes. We focus on PI(4,5)P2’s role in the modulation of RNA polymerase I activity, and functions of the nuclear lipid islets—recently described nucleoplasmic PI(4,5)P2-rich compartment involved in RNA polymerase II transcription. In conclusion, the high impact of the phosphoinositide–protein complexes on nuclear organization and genome functions is only now emerging and deserves further thorough studies.
Collapse
|
21
|
Nuclear Phosphoinositides: Their Regulation and Roles in Nuclear Functions. Int J Mol Sci 2019; 20:ijms20122991. [PMID: 31248120 PMCID: PMC6627530 DOI: 10.3390/ijms20122991] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/22/2019] [Accepted: 06/17/2019] [Indexed: 12/29/2022] Open
Abstract
Polyphosphoinositides (PPIns) are a family of seven lipid messengers that regulate a vast array of signalling pathways to control cell proliferation, migration, survival and differentiation. PPIns are differentially present in various sub-cellular compartments and, through the recruitment and regulation of specific proteins, are key regulators of compartment identity and function. Phosphoinositides and the enzymes that synthesise and degrade them are also present in the nuclear membrane and in nuclear membraneless compartments such as nuclear speckles. Here we discuss how PPIns in the nucleus are modulated in response to external cues and how they function to control downstream signalling. Finally we suggest a role for nuclear PPIns in liquid phase separations that are involved in the formation of membraneless compartments within the nucleus.
Collapse
|
22
|
Nakada-Tsukui K, Watanabe N, Maehama T, Nozaki T. Phosphatidylinositol Kinases and Phosphatases in Entamoeba histolytica. Front Cell Infect Microbiol 2019; 9:150. [PMID: 31245297 PMCID: PMC6563779 DOI: 10.3389/fcimb.2019.00150] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 04/23/2019] [Indexed: 12/11/2022] Open
Abstract
Phosphatidylinositol (PtdIns) metabolism is indispensable in eukaryotes. Phosphoinositides (PIs) are phosphorylated derivatives of PtdIns and consist of seven species generated by reversible phosphorylation of the inositol moieties at the positions 3, 4, and 5. Each of the seven PIs has a unique subcellular and membrane domain distribution. In the enteric protozoan parasite Entamoeba histolytica, it has been previously shown that the PIs phosphatidylinositol 3-phosphate (PtdIns3P), PtdIns(4,5)P2, and PtdIns(3,4,5)P3 are localized to phagosomes/phagocytic cups, plasma membrane, and phagocytic cups, respectively. The localization of these PIs in E. histolytica is similar to that in mammalian cells, suggesting that PIs have orthologous functions in E. histolytica. In contrast, the conservation of the enzymes that metabolize PIs in this organism has not been well-documented. In this review, we summarized the full repertoire of the PI kinases and PI phosphatases found in E. histolytica via a genome-wide survey of the current genomic information. E. histolytica appears to have 10 PI kinases and 23 PI phosphatases. It has a panel of evolutionarily conserved enzymes that generate all the seven PI species. However, class II PI 3-kinases, type II PI 4-kinases, type III PI 5-phosphatases, and PI 4P-specific phosphatases are not present. Additionally, regulatory subunits of class I PI 3-kinases and type III PI 4-kinases have not been identified. Instead, homologs of class I PI 3-kinases and PTEN, a PI 3-phosphatase, exist as multiple isoforms, which likely reflects that elaborate signaling cascades mediated by PtdIns(3,4,5)P3 are present in this organism. There are several enzymes that have the nuclear localization signal: one phosphatidylinositol phosphate (PIP) kinase, two PI 3-phosphatases, and one PI 5-phosphatase; this suggests that PI metabolism also has conserved roles related to nuclear functions in E. histolytica, as it does in model organisms.
Collapse
Affiliation(s)
- Kumiko Nakada-Tsukui
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Natsuki Watanabe
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan.,Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Tomohiko Maehama
- Division of Molecular and Cellular Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
23
|
Phosphatidylinositol 5 Phosphate (PI5P): From Behind the Scenes to the Front (Nuclear) Stage. Int J Mol Sci 2019; 20:ijms20092080. [PMID: 31035587 PMCID: PMC6539119 DOI: 10.3390/ijms20092080] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 04/20/2019] [Accepted: 04/23/2019] [Indexed: 12/11/2022] Open
Abstract
Phosphatidylinositol (PI)-related signaling plays a pivotal role in many cellular aspects, including survival, cell proliferation, differentiation, DNA damage, and trafficking. PI is the core of a network of proteins represented by kinases, phosphatases, and lipases which are able to add, remove or hydrolyze PI, leading to different phosphoinositide products. Among the seven known phosphoinositides, phosphatidylinositol 5 phosphate (PI5P) was the last to be discovered. PI5P presence in cells is very low compared to other PIs. However, much evidence collected throughout the years has described the role of this mono-phosphoinositide in cell cycles, stress response, T-cell activation, and chromatin remodeling. Interestingly, PI5P has been found in different cellular compartments, including the nucleus. Here, we will review the nuclear role of PI5P, describing how it is synthesized and regulated, and how changes in the levels of this rare phosphoinositide can lead to different nuclear outputs.
Collapse
|
24
|
Polyphosphoinositides in the nucleus: Roadmap of their effectors and mechanisms of interaction. Adv Biol Regul 2019; 72:7-21. [PMID: 31003946 DOI: 10.1016/j.jbior.2019.04.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 01/01/2023]
Abstract
Biomolecular interactions between proteins and polyphosphoinositides (PPIn) are essential in the regulation of the vast majority of cellular processes. Consequently, alteration of these interactions is implicated in the development of many diseases. PPIn are phosphorylated derivatives of phosphatidylinositol and consist of seven species with different phosphate combinations. PPIn signal by recruiting proteins via canonical domains or short polybasic motifs. Although their actions are predominantly documented on cytoplasmic membranes, six of the seven PPIn are present within the nucleus together with the PPIn kinases, phosphatases and phospholipases that regulate their turnover. Importantly, the contribution of nuclear PPIn in the regulation of nuclear processes has led to an increased recognition of their importance compared to their more accepted cytoplasmic roles. This review summarises our knowledge on the identification and functional characterisation of nuclear PPIn-effector proteins as well as their mode of interactions, which tend to favour polybasic motifs.
Collapse
|
25
|
Kostrhon S, Kontaxis G, Kaufmann T, Schirghuber E, Kubicek S, Konrat R, Slade D. A histone-mimicking interdomain linker in a multidomain protein modulates multivalent histone binding. J Biol Chem 2017; 292:17643-17657. [PMID: 28864776 PMCID: PMC5663869 DOI: 10.1074/jbc.m117.801464] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/28/2017] [Indexed: 01/18/2023] Open
Abstract
N-terminal histone tails are subject to many posttranslational modifications that are recognized by and interact with designated reader domains in histone-binding proteins. BROMO domain adjacent to zinc finger 2B (BAZ2B) is a multidomain histone-binding protein that contains two histone reader modules, a plant homeodomain (PHD) and a bromodomain (BRD), linked by a largely disordered linker. Although previous studies have reported specificity of the PHD domain for the unmodified N terminus of histone H3 and of the BRD domain for H3 acetylated at Lys14 (H3K14ac), the exact mode of H3 binding by BAZ2B and its regulation are underexplored. Here, using isothermal titration calorimetry and NMR spectroscopy, we report that acidic residues in the BAZ2B PHD domain are essential for H3 binding and that BAZ2B PHD–BRD establishes a polyvalent interaction with H3K14ac. Furthermore, we provide evidence that the disordered interdomain linker modulates the histone-binding affinity by interacting with the PHD domain. In particular, lysine-rich stretches in the linker, which resemble the positively charged N terminus of histone H3, reduce the binding affinity of the PHD finger toward the histone substrate. Phosphorylation, acetylation, or poly(ADP-ribosyl)ation of the linker residues may therefore act as a cellular mechanism to transiently tune BAZ2B histone-binding affinity. Our findings further support the concept of interdomain linkers serving a dual role in substrate binding by appropriately positioning the adjacent domains and by electrostatically modulating substrate binding. Moreover, inhibition of histone binding by a histone-mimicking interdomain linker represents another example of regulation of protein–protein interactions by intramolecular mimicry.
Collapse
Affiliation(s)
- Sebastian Kostrhon
- From the Department of Biochemistry, Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Georg Kontaxis
- the Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, 1030 Vienna, Austria
| | - Tanja Kaufmann
- From the Department of Biochemistry, Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Erika Schirghuber
- the CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1030 Vienna, Austria, and.,the Christian Doppler Laboratory for Chemical Epigenetics and Antiinfectives, CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1030 Vienna, Austria
| | - Stefan Kubicek
- the CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1030 Vienna, Austria, and.,the Christian Doppler Laboratory for Chemical Epigenetics and Antiinfectives, CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1030 Vienna, Austria
| | - Robert Konrat
- the Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, 1030 Vienna, Austria
| | - Dea Slade
- From the Department of Biochemistry, Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria,
| |
Collapse
|
26
|
Hamann BL, Blind RD. Nuclear phosphoinositide regulation of chromatin. J Cell Physiol 2017; 233:107-123. [PMID: 28256711 DOI: 10.1002/jcp.25886] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 03/01/2017] [Indexed: 12/26/2022]
Abstract
Phospholipid signaling has clear connections to a wide array of cellular processes, particularly in gene expression and in controlling the chromatin biology of cells. However, most of the work elucidating how phospholipid signaling pathways contribute to cellular physiology have studied cytoplasmic membranes, while relatively little attention has been paid to the role of phospholipid signaling in the nucleus. Recent work from several labs has shown that nuclear phospholipid signaling can have important roles that are specific to this cellular compartment. This review focuses on the nuclear phospholipid functions and the activities of phospholipid signaling enzymes that regulate metazoan chromatin and gene expression. In particular, we highlight the roles that nuclear phosphoinositides play in several nuclear-driven physiological processes, such as differentiation, proliferation, and gene expression. Taken together, the recent discovery of several specifically nuclear phospholipid functions could have dramatic impact on our understanding of the fundamental mechanisms that enable tight control of cellular physiology.
Collapse
Affiliation(s)
- Bree L Hamann
- Division of Diabetes Endocrinology and Metabolism, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Raymond D Blind
- Division of Diabetes Endocrinology and Metabolism, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee.,Departments of Medicine, Biochemistry and Pharmacology, Division of Diabetes Endocrinology and Metabolism, The Vanderbilt Diabetes Research and Training Center and the Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
| |
Collapse
|
27
|
Fluorescence-Based Assays to Analyse Phosphatidylinositol 5-Phosphate in Autophagy. Methods Enzymol 2017. [PMID: 28253963 DOI: 10.1016/bs.mie.2016.09.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Autophagosome formation is stimulated by VPS34-dependent PI(3)P formation and by alternative VPS34-independent pathways. We recently described that PI(5)P regulates autophagosome biogenesis and rescues autophagy in VPS34-inactivated cells, suggesting that PI(5)P contributes to canonical autophagy. Our analysis revealed a hitherto unknown functional interplay between PIKfyve and PIPK type II in controlling PI(5)P levels in the context of autophagy. Among phosphoinositides, visualization of PI(5)P in intact cells has remained difficult. While PI(5)P has been implicated in signaling pathways, chromatin organization, bacterial invasion, and cytoskeletal remodeling, our study is the first report showing PI(5)P localization on autophagosomes and early autophagosomal structures when autophagy is induced by nutrient deprivation (amino acids or glucose starvation). We provided a detailed analysis of PI(5)P distribution by the use of super-resolution structured illuminated microscopy. Here, we present a set of tools for detection of PI(5)P during autophagy by confocal microscopy, live-cell imaging, and super-resolution microscopy.
Collapse
|
28
|
Zhang R, Jin J, Shi J, Hou Y. INGs are potential drug targets for cancer. J Cancer Res Clin Oncol 2017; 143:189-197. [PMID: 27544390 DOI: 10.1007/s00432-016-2219-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 08/09/2016] [Indexed: 12/11/2022]
Abstract
PURPOSE The inhibitor of growth (ING) family consists of ING1, ING2, ING3, ING4 and ING5, which function as the type II tumor suppressors. INGs regulate cell proliferation, senescence, apoptosis, differentiation, angiogenesis, DNA repair, metastasis, and invasion by multiple pathways. In addition, INGs increase cancer cell sensitivity for chemotherapy and radiotherapy, while clinical observations show that INGs are frequently lost in some types of cancers. The aim of the study was to summarize the recent progress regarding INGs regulating tumor progression. METHODS The literatures of INGs regulating tumor progression were searched and assayed. RESULTS The regulating signaling pathways of ING1, ING2, ING3 or ING4 on tumor progression were shown. The mechanisms of INGs on tumor suppression were also assayed. CONCLUSIONS This review better summarized the signaling mechanism of INGs on tumor suppression, which provides a candidate therapy strategy for cancers.
Collapse
Affiliation(s)
- Runyun Zhang
- Department of Oncology, Affiliated Wujin People's Hospital, Jiangsu University, Changzhou, 212017, People's Republic of China
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Jianhua Jin
- Department of Oncology, Affiliated Wujin People's Hospital, Jiangsu University, Changzhou, 212017, People's Republic of China
| | - Juanjuan Shi
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| | - Yongzhong Hou
- Department of Oncology, Affiliated Wujin People's Hospital, Jiangsu University, Changzhou, 212017, People's Republic of China.
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| |
Collapse
|
29
|
Phosphoinositides in the nucleus and myogenic differentiation: how a nuclear turtle with a PHD builds muscle. Biochem Soc Trans 2016; 44:299-306. [PMID: 26862219 DOI: 10.1042/bst20150238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Phosphoinositides are a family of phospholipid messenger molecules that control various aspects of cell biology in part by interacting with and regulating downstream protein partners. Importantly, phosphoinositides are present in the nucleus. They form part of the nuclear envelope and are present within the nucleus in nuclear speckles, intra nuclear chromatin domains, the nuclear matrix and in chromatin. What their exact role is within these compartments is not completely clear, but the identification of nuclear specific proteins that contain phosphoinositide interaction domains suggest that they are important regulators of DNA topology, chromatin conformation and RNA maturation and export. The plant homeo domain (PHD) finger is a phosphoinositide binding motif that is largely present in nuclear proteins that regulate chromatin conformation. In the present study I outline how changes in the levels of the nuclear phosphoinositide PtdIns5P impact on muscle cell differentiation through the PHD finger of TAF3 (TAF, TATA box binding protein (TBP)-associated factor), which is a core component of a number of different basal transcription complexes.
Collapse
|
30
|
Combined Action of Histone Reader Modules Regulates NuA4 Local Acetyltransferase Function but Not Its Recruitment on the Genome. Mol Cell Biol 2016; 36:2768-2781. [PMID: 27550811 DOI: 10.1128/mcb.00112-16] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 08/17/2016] [Indexed: 12/12/2022] Open
Abstract
Recognition of histone marks by reader modules is thought to be at the heart of epigenetic mechanisms. These protein domains are considered to function by targeting regulators to chromosomal loci carrying specific histone modifications. This is important for proper gene regulation as well as propagation of epigenetic information. The NuA4 acetyltransferase complex contains two of these reader modules, an H3K4me3-specific plant homeodomain (PHD) within the Yng2 subunit and an H3K36me2/3-specific chromodomain in the Eaf3 subunit. While each domain showed a close functional interaction with the respective histone mark that it recognizes, at the biochemical level, genetic level (as assessed with epistatic miniarray profile screens), and phenotypic level, cells with the combined loss of both readers showed greatly enhanced phenotypes. Chromatin immunoprecipitation coupled with next-generation sequencing experiments demonstrated that the Yng2 PHD specifically directs H4 acetylation near the transcription start site of highly expressed genes, while Eaf3 is important downstream on the body of the genes. Strikingly, the recruitment of the NuA4 complex to these loci was not significantly affected. Furthermore, RNA polymerase II occupancy was decreased only under conditions where both PHD and chromodomains were lost, generally in the second half of the gene coding regions. Altogether, these results argue that methylated histone reader modules in NuA4 are not responsible for its recruitment to the promoter or coding regions but, rather, are required to orient its acetyltransferase catalytic site to the methylated histone 3-bearing nucleosomes in the surrounding chromatin, cooperating to allow proper transition from transcription initiation to elongation.
Collapse
|
31
|
Abstract
Oxidative stress has a significant impact on the development and progression of common human pathologies, including cancer, diabetes, hypertension and neurodegenerative diseases. Increasing evidence suggests that oxidative stress globally influences chromatin structure, DNA methylation, enzymatic and non-enzymatic post-translational modifications of histones and DNA-binding proteins. The effects of oxidative stress on these chromatin alterations mediate a number of cellular changes, including modulation of gene expression, cell death, cell survival and mutagenesis, which are disease-driving mechanisms in human pathologies. Targeting oxidative stress-dependent pathways is thus a promising strategy for the prevention and treatment of these diseases. We summarize recent research developments connecting oxidative stress and chromatin regulation.
Collapse
Affiliation(s)
- Sarah Kreuz
- King Abdullah University of Science & Technology (KAUST), Environmental Epigenetics Program, Thuwal 23955-6900, Saudi Arabia
| | - Wolfgang Fischle
- King Abdullah University of Science & Technology (KAUST), Environmental Epigenetics Program, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
32
|
Kim S, Natesan S, Cornilescu G, Carlson S, Tonelli M, McClurg UL, Binda O, Robson CN, Markley JL, Balaz S, Glass KC. Mechanism of Histone H3K4me3 Recognition by the Plant Homeodomain of Inhibitor of Growth 3. J Biol Chem 2016; 291:18326-41. [PMID: 27281824 PMCID: PMC5000080 DOI: 10.1074/jbc.m115.690651] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Indexed: 12/23/2022] Open
Abstract
Aberrant access to genetic information disrupts cellular homeostasis and can lead to cancer development. One molecular mechanism that regulates access to genetic information includes recognition of histone modifications, which is carried out by protein modules that interact with chromatin and serve as landing pads for enzymatic activities that regulate gene expression. The ING3 tumor suppressor protein contains a plant homeodomain (PHD) that reads the epigenetic code via recognition of histone H3 tri-methylated at lysine 4 (H3K4me3), and this domain is lost or mutated in various human cancers. However, the molecular mechanisms targeting ING3 to histones and the role of this interaction in the cell remain elusive. Thus, we employed biochemical and structural biology approaches to investigate the interaction of the ING3 PHD finger (ING3PHD) with the active transcription mark H3K4me3. Our results demonstrate that association of the ING3PHD with H3K4me3 is in the sub-micromolar range (KD ranging between 0.63 and 0.93 μm) and is about 200-fold stronger than with the unmodified histone H3. NMR and computational studies revealed an aromatic cage composed of Tyr-362, Ser-369, and Trp-385 that accommodate the tri-methylated side chain of H3K4. Mutational analysis confirmed the critical importance of Tyr-362 and Trp-385 in mediating the ING3PHD-H3K4me3 interaction. Finally, the biological relevance of ING3PHD-H3K4me3 binding was demonstrated by the failure of ING3PHD mutant proteins to enhance ING3-mediated DNA damage-dependent cell death. Together, our results reveal the molecular mechanism of H3K4me3 selection by the ING3PHD and suggest that this interaction is important for mediating ING3 tumor suppressive activities.
Collapse
Affiliation(s)
- Sophia Kim
- From the Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, Vermont 05446
| | - Senthil Natesan
- From the Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, Vermont 05446
| | - Gabriel Cornilescu
- the National Magnetic Resonance Facility at Madison and Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, and
| | - Samuel Carlson
- From the Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, Vermont 05446
| | - Marco Tonelli
- the National Magnetic Resonance Facility at Madison and Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, and
| | - Urszula L McClurg
- the Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University, Newcastle Upon Tyne NE2 4HH, United Kingdom
| | - Olivier Binda
- the Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University, Newcastle Upon Tyne NE2 4HH, United Kingdom
| | - Craig N Robson
- the Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University, Newcastle Upon Tyne NE2 4HH, United Kingdom
| | - John L Markley
- the National Magnetic Resonance Facility at Madison and Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, and
| | - Stefan Balaz
- From the Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, Vermont 05446
| | - Karen C Glass
- From the Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, Vermont 05446,
| |
Collapse
|
33
|
Sumita K, Lo YH, Takeuchi K, Senda M, Kofuji S, Ikeda Y, Terakawa J, Sasaki M, Yoshino H, Majd N, Zheng Y, Kahoud ER, Yokota T, Emerling BM, Asara JM, Ishida T, Locasale JW, Daikoku T, Anastasiou D, Senda T, Sasaki AT. The Lipid Kinase PI5P4Kβ Is an Intracellular GTP Sensor for Metabolism and Tumorigenesis. Mol Cell 2016; 61:187-98. [PMID: 26774281 DOI: 10.1016/j.molcel.2015.12.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 08/21/2015] [Accepted: 12/02/2015] [Indexed: 12/25/2022]
Abstract
While cellular GTP concentration dramatically changes in response to an organism's cellular status, whether it serves as a metabolic cue for biological signaling remains elusive due to the lack of molecular identification of GTP sensors. Here we report that PI5P4Kβ, a phosphoinositide kinase that regulates PI(5)P levels, detects GTP concentration and converts them into lipid second messenger signaling. Biochemical analyses show that PI5P4Kβ preferentially utilizes GTP, rather than ATP, for PI(5)P phosphorylation, and its activity reflects changes in direct proportion to the physiological GTP concentration. Structural and biological analyses reveal that the GTP-sensing activity of PI5P4Kβ is critical for metabolic adaptation and tumorigenesis. These results demonstrate that PI5P4Kβ is the missing GTP sensor and that GTP concentration functions as a metabolic cue via PI5P4Kβ. The critical role of the GTP-sensing activity of PI5P4Kβ in cancer signifies this lipid kinase as a cancer therapeutic target.
Collapse
Affiliation(s)
- Kazutaka Sumita
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Yu-Hua Lo
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan
| | - Koh Takeuchi
- Biomedicinal Information Research Center and Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Koto, Tokyo 135-0064, Japan
| | - Miki Senda
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan
| | - Satoshi Kofuji
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Yoshiki Ikeda
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Jumpei Terakawa
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Mika Sasaki
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Hirofumi Yoshino
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Nazanin Majd
- Department of Neurology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Yuxiang Zheng
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Emily Rose Kahoud
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Takehiro Yokota
- Biomedicinal Information Research Center and Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Koto, Tokyo 135-0064, Japan
| | - Brooke M Emerling
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - John M Asara
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Tetsuo Ishida
- Department of Chemistry, Biology & Marine Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
| | - Jason W Locasale
- Department of Pharmacology and Cancer Biology, Duke Cancer Institute and Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Takiko Daikoku
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | | | - Toshiya Senda
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan; Department of Materials Structure Science, School of High Energy Accelerator Science, The Graduate University of Advanced Studies (Soken-dai), Tsukuba, Ibaraki 305-0801, Japan.
| | - Atsuo T Sasaki
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Department of Cancer Biology and Department of Neurosurgery, University of Cincinnati College of Medicine, Brain Tumor Center at University of Cincinnati Neuroscience Institute, Cincinnati, OH 45267, USA.
| |
Collapse
|
34
|
ZHAO SHUANG, YANG XUEFENG, GOU WENFENG, LU HANG, LI HUA, ZHU ZHITU, SUN HONGZHI, ZHENG HUACHUAN. Expression profiles of inhibitor of growth protein 2 in normal and cancer tissues: An immunohistochemical screening analysis. Mol Med Rep 2015; 13:1881-7. [DOI: 10.3892/mmr.2015.4723] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 08/25/2015] [Indexed: 11/06/2022] Open
|
35
|
Giudici ML, Clarke JH, Irvine RF. Phosphatidylinositol 5-phosphate 4-kinase γ (PI5P4Kγ), a lipid signalling enigma. Adv Biol Regul 2015; 61:47-50. [PMID: 26710750 DOI: 10.1016/j.jbior.2015.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 11/20/2015] [Accepted: 11/20/2015] [Indexed: 11/26/2022]
Abstract
The phosphatidylinositol 5-phosphate 4-kinases (PI5P4Ks) are an important family of enzymes, whose physiological roles are being teased out by a variety of means. Phosphatidylinositol-5-phosphate 4-kinase γ (PI5P4Kγ) is especially intriguing as its in vitro activity is very low. Here we review what is known about this enzyme and discuss some recent advances towards an understanding of its physiology. Additionally, the effects of the ATP-competitive inhibitor I-OMe Tyrphostin AG-538 on all three mammalian PI5P4Ks was explored, including two PI5P4Kγ mutants with altered ATP- or PI5P-binding sites. The results suggest a strategy for targeting non-ATP binding sites on inositol lipid kinases.
Collapse
Affiliation(s)
| | - Jonathan H Clarke
- Department of Pharmacology, Tennis Court Road, Cambridge CB2 1PD, UK
| | - Robin F Irvine
- Department of Pharmacology, Tennis Court Road, Cambridge CB2 1PD, UK.
| |
Collapse
|
36
|
Nabbi A, Almami A, Thakur S, Suzuki K, Boland D, Bismar TA, Riabowol K. ING3 protein expression profiling in normal human tissues suggest its role in cellular growth and self-renewal. Eur J Cell Biol 2015; 94:214-22. [PMID: 25819753 DOI: 10.1016/j.ejcb.2015.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 03/03/2015] [Accepted: 03/03/2015] [Indexed: 12/17/2022] Open
Abstract
Members of the INhibitor of Growth (ING) family of proteins act as readers of the epigenetic code through specific recognition of the trimethylated form of lysine 4 of histone H3 (H3K4Me3) by their plant homeodomains. The founding member of the family, ING1, was initially identified as a tumor suppressor with altered regulation in a variety of cancer types. While alterations in ING1 and ING4 levels have been reported in a variety of cancer types, little is known regarding ING3 protein levels in normal or transformed cells due to a lack of reliable immunological tools. In this study we present the characterization of a new monoclonal antibody we have developed against ING3 that specifically recognizes human and mouse ING3. The antibody works in western blots, immunofluorescence, immunoprecipitation and immunohistochemistry. Using this antibody we show that ING3 is most highly expressed in small intestine, bone marrow and epidermis, tissues in which cells undergo rapid proliferation and renewal. Consistent with this observation, we show that ING3 is expressed at significantly higher levels in proliferating versus quiescent epithelial cells. These data suggest that ING3 levels may serve as a surrogate for growth rate, and suggest possible roles for ING3 in growth and self renewal and related diseases such as cancer.
Collapse
Affiliation(s)
- Arash Nabbi
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Oncology, Southern Alberta Cancer Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Amal Almami
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Oncology, Southern Alberta Cancer Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Satbir Thakur
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Oncology, Southern Alberta Cancer Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Keiko Suzuki
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Oncology, Southern Alberta Cancer Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Donna Boland
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Oncology, Southern Alberta Cancer Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Tarek A Bismar
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Oncology, Southern Alberta Cancer Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Pathology & Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Karl Riabowol
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Oncology, Southern Alberta Cancer Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
37
|
Fiume R, Stijf-Bultsma Y, Shah ZH, Keune WJ, Jones DR, Jude JG, Divecha N. PIP4K and the role of nuclear phosphoinositides in tumour suppression. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:898-910. [PMID: 25728392 DOI: 10.1016/j.bbalip.2015.02.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Revised: 02/03/2015] [Accepted: 02/17/2015] [Indexed: 12/27/2022]
Abstract
Phosphatidylinositol-5-phosphate (PtdIns5P)-4-kinases (PIP4Ks) are stress-regulated lipid kinases that phosphorylate PtdIns5P to generate PtdIns(4,5)P₂. There are three isoforms of PIP4Ks: PIP4K2A, 2B and 2C, which localise to different subcellular compartments with the PIP4K2B isoform being localised predominantly in the nucleus. Suppression of PIP4K expression selectively prevents tumour cell growth in vitro and prevents tumour development in mice that have lost the tumour suppressor p53. p53 is lost or mutated in over 70% of all human tumours. These studies suggest that inhibition of PIP4K signalling constitutes a novel anti-cancer therapeutic target. In this review we will discuss the role of PIP4K in tumour suppression and speculate on how PIP4K modulates nuclear phosphoinositides (PPIns) and how this might impact on nuclear functions to regulate cell growth. This article is part of a Special Issue entitled Phosphoinositides.
Collapse
Affiliation(s)
- Roberta Fiume
- Cellular Signalling Laboratory, DIBINEM, University of Bologna, Bologna, Italy.
| | - Yvette Stijf-Bultsma
- Inositide Laboratory, Centre for Biological Sciences, Faculty of Natural & Environmental Sciences, Life Sciences Building 85, University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK
| | - Zahid H Shah
- Inositide Laboratory, Centre for Biological Sciences, Faculty of Natural & Environmental Sciences, Life Sciences Building 85, University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK
| | - Willem Jan Keune
- The Netherlands Cancer Institute, Amsterdam 1066CX, The Netherlands
| | - David R Jones
- Oncology iMED, AstraZeneca, Alderley Park, Macclesfield SK10 4TF, UK
| | - Julian Georg Jude
- IMP - Institute of Molecular Pathology, Vienna Biocenter, Dr. Bohr-Gasse 7, 1030 Vienna, Austria
| | - Nullin Divecha
- Inositide Laboratory, Centre for Biological Sciences, Faculty of Natural & Environmental Sciences, Life Sciences Building 85, University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK.
| |
Collapse
|
38
|
PI(5)P regulates autophagosome biogenesis. Mol Cell 2015; 57:219-34. [PMID: 25578879 PMCID: PMC4306530 DOI: 10.1016/j.molcel.2014.12.007] [Citation(s) in RCA: 204] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 10/22/2014] [Accepted: 11/25/2014] [Indexed: 01/12/2023]
Abstract
Phosphatidylinositol 3-phosphate (PI(3)P), the product of class III PI3K VPS34, recruits specific autophagic effectors, like WIPI2, during the initial steps of autophagosome biogenesis and thereby regulates canonical autophagy. However, mammalian cells can produce autophagosomes through enigmatic noncanonical VPS34-independent pathways. Here we show that PI(5)P can regulate autophagy via PI(3)P effectors and thereby identify a mechanistic explanation for forms of noncanonical autophagy. PI(5)P synthesis by the phosphatidylinositol 5-kinase PIKfyve was required for autophagosome biogenesis, and it increased levels of PI(5)P, stimulated autophagy, and reduced the levels of autophagic substrates. Inactivation of VPS34 impaired recruitment of WIPI2 and DFCP1 to autophagic precursors, reduced ATG5-ATG12 conjugation, and compromised autophagosome formation. However, these phenotypes were rescued by PI(5)P in VPS34-inactivated cells. These findings provide a mechanistic framework for alternative VPS34-independent autophagy-initiating pathways, like glucose starvation, and unravel a cytoplasmic function for PI(5)P, which previously has been linked predominantly to nuclear roles. PI(5)P positively regulates autophagy PI(5)P is associated with autophagy effectors that bind PI(3)P PI(5)P sustains noncanonical autophagy in PI(3)P-depleted cells PI(5)P is essential for VPS34-independent, glucose-starvation-induced autophagy
Collapse
|
39
|
Boal F, Mansour R, Gayral M, Saland E, Chicanne G, Xuereb JM, Marcellin M, Burlet-Schiltz O, Sansonetti PJ, Payrastre B, Tronchère H. TOM1 is a PI5P effector involved in the regulation of endosomal maturation. J Cell Sci 2015; 128:815-27. [DOI: 10.1242/jcs.166314] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Phosphoinositides represent a major class of lipids specifically involved in the organisation of signaling cascades, maintenance of the identity of organelles and regulation of multiple intracellular trafficking steps. We previously described that phosphatidylinositol 5-monophosphate (PI5P), produced by the Shigella flexneri phosphatase IpgD, is implicated in the endosomal sorting of the EGFR. Here, we show that the adaptor protein TOM1 is a new PI5P direct binding partner. We identify the domain of TOM1 involved in this interaction and characterize the binding motif. Finally, we demonstrate that the recruitment of TOM1 by PI5P on signaling endosomes is responsible for the delay in EGFR degradation and fluid-phase bulk endocytosis. Taken together, our data strongly suggest that PI5P-enrichment in signaling endosomes prevents endosomal maturation through the recruitment of TOM1, and point out to a new function of PI5P in regulating discrete maturation steps in the endosomal system.
Collapse
|
40
|
Defining the minimal peptide sequence of the ING1b tumour suppressor capable of efficiently inducing apoptosis. Cell Death Discov 2015; 1:15048. [PMID: 27551477 PMCID: PMC4979497 DOI: 10.1038/cddiscovery.2015.48] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 09/08/2015] [Indexed: 02/07/2023] Open
Abstract
The ING1b protein is a type-II tumour suppressor and stoichiometric member of the Sin3 histone deacetylase (HDAC) protein complex in which it acts to target HDAC activity to regulate chromatin structure. Altering ING1 levels by ectopic expression of ING1b in cancer cells promotes apoptosis, whereas altering levels by knockout in normal murine fibroblasts alters sensitivity to doxorubicin-induced apoptosis. We have identified a minimal region of ING1b capable of inducing levels of apoptosis in targeted cells as effectively as full-length ING1b, using transient overexpression of ING1b fragments followed by the Annexin V assay. We observed high levels of apoptosis in 14 of 14 cancer cell lines tested. Infecting triple-negative tumorigenic MDA-MB-468 breast cancer, U2OS or Saos-2 cells at multiplicities of infection (MOIs) ranging from 10 to 20 rapidly triggered apoptosis in ~80% of infected cells within 48 h. This was not due to the effects of virus, as infection at the same MOI with a control adenovirus expressing GFP was not effective in inducing apoptosis. When used at low MOIs, the ING1b fragment showed a cell-killing efficacy that was higher than native, full-length ING1b. Using a doxycycline-regulated inducible p53 expression system demonstrated that apoptosis induced by the ING1b fragment was p53 independent. Given the growing importance of combination therapies, we evaluated whether there was synergism between the ING1b fragment and HDAC inhibitors. Combination treatments with TSA, LBH 589 and SAHA reduced cancer cell survival by 3.9–4.7-fold as compared with single-drug treatment, and resulted in ~90% reduction in cell survival. Normalized isobologram analysis confirmed strong synergism between the ING1b fragment and drugs tested. These findings provide support for using ING1b-derived therapeutics as adjuvant treatments in combination with existing epigenetic therapies.
Collapse
|
41
|
Bulley SJ, Clarke JH, Droubi A, Giudici ML, Irvine RF. Exploring phosphatidylinositol 5-phosphate 4-kinase function. Adv Biol Regul 2014; 57:193-202. [PMID: 25311266 PMCID: PMC4359101 DOI: 10.1016/j.jbior.2014.09.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 09/01/2014] [Accepted: 09/02/2014] [Indexed: 11/30/2022]
Abstract
The family of phosphatidylinositol 5-phosphate 4-kinases (PI5P4Ks) is emerging from a comparative backwater in inositide signalling into the mainstream, as is their substrate, phosphatidylinositol 5-phosphate (PI5P). Here we review some of the key questions about the PI5P4Ks, their localisation, interaction, and regulation and also we summarise our current understanding of how PI5P is synthesised and what its cellular functions might be. Finally, some of the evidence for the involvement of PI5P4Ks in pathology is discussed.
Collapse
Affiliation(s)
- Simon J Bulley
- Department of Pharmacology, Tennis Court Road, Cambridge, CB2 1PD, UK
| | - Jonathan H Clarke
- Department of Pharmacology, Tennis Court Road, Cambridge, CB2 1PD, UK
| | - Alaa Droubi
- Department of Pharmacology, Tennis Court Road, Cambridge, CB2 1PD, UK
| | | | - Robin F Irvine
- Department of Pharmacology, Tennis Court Road, Cambridge, CB2 1PD, UK.
| |
Collapse
|
42
|
Gelato KA, Tauber M, Ong MS, Winter S, Hiragami-Hamada K, Sindlinger J, Lemak A, Bultsma Y, Houliston S, Schwarzer D, Divecha N, Arrowsmith CH, Fischle W. Accessibility of different histone H3-binding domains of UHRF1 is allosterically regulated by phosphatidylinositol 5-phosphate. Mol Cell 2014; 54:905-919. [PMID: 24813945 DOI: 10.1016/j.molcel.2014.04.004] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 03/11/2014] [Accepted: 04/02/2014] [Indexed: 11/30/2022]
Abstract
UHRF1 is a multidomain protein crucially linking histone H3 modification states and DNA methylation. While the interaction properties of its specific domains are well characterized, little is known about the regulation of these functionalities. We show that UHRF1 exists in distinct active states, binding either unmodified H3 or the H3 lysine 9 trimethylation (H3K9me3) modification. A polybasic region (PBR) in the C terminus blocks interaction of a tandem tudor domain (TTD) with H3K9me3 by occupying an essential peptide-binding groove. In this state the plant homeodomain (PHD) mediates interaction with the extreme N terminus of the unmodified H3 tail. Binding of the phosphatidylinositol phosphate PI5P to the PBR of UHRF1 results in a conformational rearrangement of the domains, allowing the TTD to bind H3K9me3. Our results define an allosteric mechanism controlling heterochromatin association of an essential regulatory protein of epigenetic states and identify a functional role for enigmatic nuclear phosphatidylinositol phosphates.
Collapse
Affiliation(s)
- Kathy A Gelato
- Laboratory of Chromatin Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Maria Tauber
- Laboratory of Chromatin Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Michelle S Ong
- Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Stefan Winter
- Laboratory of Chromatin Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Kyoko Hiragami-Hamada
- Laboratory of Chromatin Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Julia Sindlinger
- Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Strasse 4, 72076 Tübingen, Germany
| | - Alexander Lemak
- Princess Margaret Cancer Center, TMDT, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Yvette Bultsma
- Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Scott Houliston
- Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada; Princess Margaret Cancer Center, TMDT, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Dirk Schwarzer
- Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Strasse 4, 72076 Tübingen, Germany
| | - Nullin Divecha
- Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada; Princess Margaret Cancer Center, TMDT, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Wolfgang Fischle
- Laboratory of Chromatin Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.
| |
Collapse
|
43
|
Keep-ING balance: tumor suppression by epigenetic regulation. FEBS Lett 2014; 588:2728-42. [PMID: 24632289 DOI: 10.1016/j.febslet.2014.03.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 03/06/2014] [Indexed: 12/26/2022]
Abstract
Cancer cells accumulate genetic and epigenetic changes that alter gene expression to drive tumorigenesis. Epigenetic silencing of tumor suppressor, cell cycle, differentiation and DNA repair genes contributes to neoplastic transformation. The ING (inhibitor of growth) proteins (ING1-ING5) have emerged as a versatile family of growth regulators, phospholipid effectors, histone mark sensors and core components of HDAC1/2 - and several HAT chromatin-modifying complexes. This review will describe the characteristic pathways by which ING family proteins differentially affect the Hallmarks of Cancer and highlight the various epigenetic mechanisms by which they regulate gene expression. Finally, we will discuss their potentials as biomarkers and therapeutic targets in epigenetic treatment strategies.
Collapse
|
44
|
Viaud J, Boal F, Tronchère H, Gaits-Iacovoni F, Payrastre B. Phosphatidylinositol 5-phosphate: A nuclear stress lipid and a tuner of membranes and cytoskeleton dynamics. Bioessays 2013; 36:260-72. [DOI: 10.1002/bies.201300132] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Julien Viaud
- Inserm U1048; I2MC and Université Paul Sabatier; Toulouse France
| | - Frédéric Boal
- Inserm U1048; I2MC and Université Paul Sabatier; Toulouse France
| | - Hélène Tronchère
- Inserm U1048; I2MC and Université Paul Sabatier; Toulouse France
| | | | - Bernard Payrastre
- Inserm U1048; I2MC and Université Paul Sabatier; Toulouse France
- CHU de Toulouse; Laboratoire d'Hématologie; Toulouse France
| |
Collapse
|