1
|
Pant B, Singh BK. Far-field sub-diffraction focusing and controlled focus shaping of circularly polarized light using a dielectric phase plate. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2024; 41:1899-1904. [PMID: 39889013 DOI: 10.1364/josaa.536523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/27/2024] [Indexed: 02/02/2025]
Abstract
In recent years, sub-diffraction focusing has received substantial attention due to its versatility. However, achieving a flexible sub-diffraction focusing in the far field remains stimulating. Existing techniques either require complex fabrication facilities or are limited to the short focal length and high numerical aperture (NA) of the imaging system. Here, we introduce an optimization method for sub-diffraction focusing of a circularly polarized beam in the far field with a lens of large focal length. A cost-effective dielectric phase plate serves the purpose. By employing a phase plate composed of a thin layer of dielectric S i 3 N 4, the phase of the propagating beam is modulated in the beam's cross-section, which is divided into two regions of the opposite phase by the plate. A sub-diffraction focusing is achieved for a proper tunning between the two regions. In addition to sub-diffraction focusing, the phase plate is also capable of shaping the focus into a doughnut-shaped and a flat-top profile in the far field. This design provides a simple solution for sub-diffraction focusing and focus shaping that will find potential applications in optical imaging, optical trapping, and material processing.
Collapse
|
2
|
Ma H, Pan SQ, Wang WL, Yue X, Xi XH, Yan S, Wu DY, Wang X, Liu G, Ren B. Surface-Enhanced Raman Spectroscopy: Current Understanding, Challenges, and Opportunities. ACS NANO 2024; 18:14000-14019. [PMID: 38764194 DOI: 10.1021/acsnano.4c02670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
While surface-enhanced Raman spectroscopy (SERS) has experienced substantial advancements since its discovery in the 1970s, it is an opportunity to celebrate achievements, consider ongoing endeavors, and anticipate the future trajectory of SERS. In this perspective, we encapsulate the latest breakthroughs in comprehending the electromagnetic enhancement mechanisms of SERS, and revisit CT mechanisms of semiconductors. We then summarize the strategies to improve sensitivity, selectivity, and reliability. After addressing experimental advancements, we comprehensively survey the progress on spectrum-structure correlation of SERS showcasing their important role in promoting SERS development. Finally, we anticipate forthcoming directions and opportunities, especially in deepening our insights into chemical or biological processes and establishing a clear spectrum-structure correlation.
Collapse
Affiliation(s)
- Hao Ma
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Si-Qi Pan
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry & Toxicology, Xiamen University, Xiamen 361102, China
| | - Wei-Li Wang
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry & Toxicology, Xiamen University, Xiamen 361102, China
| | - Xiaxia Yue
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiao-Han Xi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Sen Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - De-Yin Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiang Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Guokun Liu
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry & Toxicology, Xiamen University, Xiamen 361102, China
| | - Bin Ren
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
3
|
Steves MA, He C, Xu K. Single-Molecule Spectroscopy and Super-Resolution Mapping of Physicochemical Parameters in Living Cells. Annu Rev Phys Chem 2024; 75:163-183. [PMID: 38360526 DOI: 10.1146/annurev-physchem-070623-034225] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
By superlocalizing the positions of millions of single molecules over many camera frames, a class of super-resolution fluorescence microscopy methods known as single-molecule localization microscopy (SMLM) has revolutionized how we understand subcellular structures over the past decade. In this review, we highlight emerging studies that transcend the outstanding structural (shape) information offered by SMLM to extract and map physicochemical parameters in living mammalian cells at single-molecule and super-resolution levels. By encoding/decoding high-dimensional information-such as emission and excitation spectra, motion, polarization, fluorescence lifetime, and beyond-for every molecule, and mass accumulating these measurements for millions of molecules, such multidimensional and multifunctional super-resolution approaches open new windows into intracellular architectures and dynamics, as well as their underlying biophysical rules, far beyond the diffraction limit.
Collapse
Affiliation(s)
- Megan A Steves
- Department of Chemistry, University of California, Berkeley, California, USA;
| | - Changdong He
- Department of Chemistry, University of California, Berkeley, California, USA;
| | - Ke Xu
- Department of Chemistry, University of California, Berkeley, California, USA;
| |
Collapse
|
4
|
Tolstik E, Lehnart SE, Soeller C, Lorenz K, Sacconi L. Cardiac multiscale bioimaging: from nano- through micro- to mesoscales. Trends Biotechnol 2024; 42:212-227. [PMID: 37806897 DOI: 10.1016/j.tibtech.2023.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 10/10/2023]
Abstract
Cardiac multiscale bioimaging is an emerging field that aims to provide a comprehensive understanding of the heart and its functions at various levels, from the molecular to the entire organ. It combines both physiologically and clinically relevant dimensions: from nano- and micrometer resolution imaging based on vibrational spectroscopy and high-resolution microscopy to assess molecular processes in cardiac cells and myocardial tissue, to mesoscale structural investigations to improve the understanding of cardiac (patho)physiology. Tailored super-resolution deep microscopy with advanced proteomic methods and hands-on experience are thus strategically combined to improve the quality of cardiovascular research and support future medical decision-making by gaining additional biomolecular information for translational and diagnostic applications.
Collapse
Affiliation(s)
- Elen Tolstik
- Department of Cardiovascular Pharmacology, Translational Research, Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V. Bunsen-Kirchhoff-Strasse 11, 44139 Dortmund, Germany.
| | - Stephan E Lehnart
- Department of Cardiology and Pneumology, Cellular Biophysics and Translational Cardiology Section, Heart Research Center Göttingen, University Medical Center Göttingen, Georg-August University Göttingen, Robert-Koch-Strasse 42a, 37075 Göttingen, Germany; Cluster of Excellence Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells (MBExC2067), University of Göttingen, 37073 Göttingen, Germany; Collaborative Research Center SFB1190 Compartmental Gates and Contact Sites in Cells, University of Göttingen, 37073 Göttingen, Germany
| | - Christian Soeller
- Department of Physiology, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland
| | - Kristina Lorenz
- Department of Cardiovascular Pharmacology, Translational Research, Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V. Bunsen-Kirchhoff-Strasse 11, 44139 Dortmund, Germany; Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Strasse 9, 97078 Würzburg, Germany
| | - Leonardo Sacconi
- Institute of Clinical Physiology, National Research Council, Rome, Italy; Institute for Experimental Cardiovascular Medicine, University Freiburg, Elsässer Strasse 2q, 79110 Freiburg, Germany.
| |
Collapse
|
5
|
Tang M, Han Y, Jia D, Yang Q, Cheng JX. Far-field super-resolution chemical microscopy. LIGHT, SCIENCE & APPLICATIONS 2023; 12:137. [PMID: 37277396 PMCID: PMC10240140 DOI: 10.1038/s41377-023-01182-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 06/07/2023]
Abstract
Far-field chemical microscopy providing molecular electronic or vibrational fingerprint information opens a new window for the study of three-dimensional biological, material, and chemical systems. Chemical microscopy provides a nondestructive way of chemical identification without exterior labels. However, the diffraction limit of optics hindered it from discovering more details under the resolution limit. Recent development of super-resolution techniques gives enlightenment to open this door behind far-field chemical microscopy. Here, we review recent advances that have pushed the boundary of far-field chemical microscopy in terms of spatial resolution. We further highlight applications in biomedical research, material characterization, environmental study, cultural heritage conservation, and integrated chip inspection.
Collapse
Affiliation(s)
- Mingwei Tang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
- Intelligent Perception Research Institute, Zhejiang Lab, Hangzhou, 311100, China
| | - Yubing Han
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Danchen Jia
- Department of Biomedical Engineering, Department of Electrical and Computer Engineering, Photonics Center, Boston University, Boston, MA, 02459, USA
| | - Qing Yang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
- Intelligent Perception Research Institute, Zhejiang Lab, Hangzhou, 311100, China
| | - Ji-Xin Cheng
- Department of Biomedical Engineering, Department of Electrical and Computer Engineering, Photonics Center, Boston University, Boston, MA, 02459, USA.
| |
Collapse
|
6
|
Mochizuki K, Kumamoto Y, Maeda S, Tanuma M, Kasai A, Takemura M, Harada Y, Hashimoto H, Tanaka H, Smith NI, Fujita K. High-throughput line-illumination Raman microscopy with multislit detection. BIOMEDICAL OPTICS EXPRESS 2023; 14:1015-1026. [PMID: 36950233 PMCID: PMC10026569 DOI: 10.1364/boe.480611] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/27/2022] [Accepted: 01/02/2023] [Indexed: 06/18/2023]
Abstract
Raman microscopy is an emerging tool for molecular imaging and analysis of living samples. Use of Raman microscopy in life sciences is, however, still limited because of its slow measurement speed for spectral imaging and analysis. We developed a multiline-illumination Raman microscope to achieve ultrafast Raman spectral imaging. A spectrophotometer equipped with a periodic array of confocal slits detects Raman spectra from a sample irradiated by multiple line illuminations. A comb-like Raman hyperspectral image is formed on a two-dimensional detector in the spectrophotometer, and a hyperspectral Raman image is acquired by scanning the sample with multiline illumination array. By irradiating a sample with 21 simultaneous illumination lines, we achieved high-throughput Raman hyperspectral imaging of mouse brain tissue, acquiring 1108800 spectra in 11.4 min. We also measured mouse kidney and liver tissue as well as conducted label-free live-cell molecular imaging. The ultrafast Raman hyperspectral imaging enabled by the presented technique will expand the possible applications of Raman microscopy in biological and medical fields.
Collapse
Affiliation(s)
- Kentaro Mochizuki
- Department of Applied Physics, Osaka University, Suita, Osaka 565-0871, Japan
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
- These authors contributed equally
| | - Yasuaki Kumamoto
- Department of Applied Physics, Osaka University, Suita, Osaka 565-0871, Japan
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka 565-0871, Japan
- These authors contributed equally
| | - Shunsuke Maeda
- Department of Applied Physics, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masato Tanuma
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Atsushi Kasai
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masashi Takemura
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Yoshinori Harada
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Hitoshi Hashimoto
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka 565-0871, Japan
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
- Molecular Research Center for Children’s Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Osaka 565-0871, Japan
- Institute for Datability Science, Osaka University, Suita, Osaka 565-0871, Japan
- Department of Molecular Pharmaceutical Sciences, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hideo Tanaka
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Nicholas Isaac Smith
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka 565-0871, Japan
- Biophotonics Laboratory, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Katsumasa Fujita
- Department of Applied Physics, Osaka University, Suita, Osaka 565-0871, Japan
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka 565-0871, Japan
- Advanced Photonics and Biosensing Open Innovation Laboratory, AIST-Osaka University, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
7
|
Li Y, Fan X, Huang Y, Guo X, Zhou L, Li P, Zhao J. Dielectric Metalens for Superoscillatory Focusing Based on High-Order Angular Bessel Function. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3485. [PMID: 36234611 PMCID: PMC9565310 DOI: 10.3390/nano12193485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
The phenomenon of optical superoscillation provides an unprecedented way to solve the problem of optical far-field label-free super-resolution imaging. Numerous optical devices that enable superoscillatory focusing were developed based on scalar and vector diffraction theories in the past several years. However, these reported devices are designed according to the half-wave zone method in spatial coordinates. In this paper, we propose a dielectric metalens for superoscillatory focusing based on the diffraction of angular Bessel functional phase modulated vector field, under the inspiration of the tightly autofocusing property of a radially polarized high-order Bessel beam. Based on this kind of metalens with a numerical aperture (NA) of 0.9, the linearly polarized light is converted into a radially polarized one and then focus into a superoscillating focal spot with the size of 0.32λ/NA. This angular spectrum modulation theory involved in this paper provides a different way of designing superoscillatory devices.
Collapse
Affiliation(s)
- Yu Li
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an 710129, China
- Xi’an Ming De Institute of Technology, Xi’an 710124, China
| | - Xinhao Fan
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an 710129, China
| | - Yunfeng Huang
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an 710129, China
| | - Xuyue Guo
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an 710129, China
| | - Liang Zhou
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an 710129, China
| | - Peng Li
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an 710129, China
| | - Jianlin Zhao
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an 710129, China
| |
Collapse
|
8
|
Leighton RE, Alperstein AM, Frontiera RR. Label-Free Super-Resolution Imaging Techniques. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2022; 15:37-55. [PMID: 35316608 PMCID: PMC9454238 DOI: 10.1146/annurev-anchem-061020-014723] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Biological and material samples contain nanoscale heterogeneities that are unresolvable with conventional microscopy techniques. Super-resolution fluorescence methods can break the optical diffraction limit to observe these features, but they require samples to be fluorescently labeled. Over the past decade, progress has been made toward developing super-resolution techniques that do not require the use of labels. These label-free techniques span a variety of different approaches, including structured illumination, transient absorption, infrared absorption, and coherent Raman spectroscopies. Many draw inspiration from widely successful fluorescence-based techniques such as stimulated emission depletion (STED) microscopy, photoactivated localization microscopy (PALM), and stochastic optical reconstruction microscopy (STORM). In this review, we discuss the progress made in these fields along with the current challenges and prospects in reaching resolutions comparable to those achieved with fluorescence-based methods.
Collapse
Affiliation(s)
- Ryan E Leighton
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, USA;
| | - Ariel M Alperstein
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, USA;
| | - Renee R Frontiera
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, USA;
| |
Collapse
|
9
|
Mazaheri L, Jelken J, Avilés MO, Legge S, Lagugné-Labarthet F. Investigating the Performances of Wide-Field Raman Microscopy with Stochastic Optical Reconstruction Post-Processing. APPLIED SPECTROSCOPY 2022; 76:340-351. [PMID: 35128956 PMCID: PMC8915227 DOI: 10.1177/00037028211056975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/07/2021] [Indexed: 05/25/2023]
Abstract
Super-resolution fluorescence microscopy based on localization algorithms has tremendously impacted the field of imaging by improving the spatial resolution of optical measurements with specific blinking fluorophores and concomitant reduction of acquisition time. In vibrational spectroscopy and imaging, various methods have been developed to surpass the diffraction limit including near-field scattering methods, such as in tip-enhanced Raman and infrared spectroscopies. Although these scanning-probe techniques can provide exquisite spatial resolution, they often require long acquisition times and tedious fabrication of nano-scale scanning probes. Herein, stochastic optical reconstruction microscopy (STORM) protocol is applied on Raman measurements acquired using a wide-field home-built microscopy setup. We explore how the fluctuations of the Raman signal acquired over a series of time-lapse images at specific spectral ranges can be exploited with STORM processing, possibly revealing details with improved spatial resolution, under lower irradiance and with faster acquisition speed that cannot be achieved in point scanning mode over the same field of view. Samples studied here include patterned silicon, polystyrene microspheres on a silicon wafer, and graphene on a silicon/silicon dioxide substrate. The outcome presents an effective way to collect Raman images at selected spectral ranges with spatial resolutions of ∼200 nm over a large field of view under 532 nm excitation together with an acquisition speed improved by two orders of magnitude and under a significantly reduced irradiance compared to confocal laser scanning acquisition.
Collapse
Affiliation(s)
| | | | | | | | - François Lagugné-Labarthet
- François Lagugné-Labarthet, Department of Chemistry, The Centre for Advanced Materials and Biomaterials Research (CAMBR), The University of Western Ontario (Western University), 1151 Richmond St., London, ON N6A 5B7, Canada.
| |
Collapse
|
10
|
Lin JS, Tian XD, Li G, Zhang FL, Wang Y, Li JF. Advanced plasmonic technologies for multi-scale biomedical imaging. Chem Soc Rev 2022; 51:9445-9468. [DOI: 10.1039/d2cs00525e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Plasmonic technologies are available for multi-scale biomedical imaging ranging from micrometre to angstrom level.
Collapse
Affiliation(s)
- Jia-Sheng Lin
- Xiamen Cardiovascular Hospital, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, Xiamen University, Xiamen 361005, China
| | - Xiang-Dong Tian
- Xiamen Cardiovascular Hospital, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, Xiamen University, Xiamen 361005, China
| | - Gang Li
- Xiamen Cardiovascular Hospital, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, Xiamen University, Xiamen 361005, China
| | - Fan-Li Zhang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Yan Wang
- Xiamen Cardiovascular Hospital, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, Xiamen University, Xiamen 361005, China
| | - Jian-Feng Li
- Xiamen Cardiovascular Hospital, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
11
|
Li Z, Persits N, Gray DJ, Ram RJ. Computational polarized Raman microscopy on sub-surface nanostructures with sub-diffraction-limit resolution. OPTICS EXPRESS 2021; 29:38027-38043. [PMID: 34808863 DOI: 10.1364/oe.443665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Raman microscopy with resolution below the diffraction limit is demonstrated on sub-surface nanostructures. Unlike most other modalities for nanoscale measurements, our approach is able to image nanostructures buried several microns below the sample surface while still extracting details about the chemistry, strain, and temperature of the nanostructures. In this work, we demonstrate that combining polarized Raman microscopy adjusted to optimize edge enhancement effects and nanostructure contrast with fast computational deconvolution methods can improve the spatial resolution while preserving the flexibility of Raman microscopy. The cosine transform method demonstrated here enables significant computational speed-up from O(N3) to O(Nlog N) - resulting in computation times that are significantly below the image acquisition time. CMOS poly-Si nanostructures buried below 0.3 - 6 µm of complex dielectrics are used to quantify the performance of the instrument and the algorithm. The relative errors of the feature sizes, the relative chemical concentrations and the fill factors of the deconvoluted images are all approximately 10% compared with the ground truth. For the smallest poly-Si feature of 230 nm, the absolute error is approximately 25 nm.
Collapse
|
12
|
Tian Y, Xu W, Ma K, Cong L, Shen Y, Han X, Liang C, Liang L, Qi G, Jin Y, Xu S. Label-Free Analysis of Cell Membrane Proteins via Evanescent Field Excited Surface-Enhanced Raman Scattering. J Phys Chem Lett 2021; 12:10720-10727. [PMID: 34709838 DOI: 10.1021/acs.jpclett.1c02966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Challenges in studying the structures and functions of cell membrane proteins lie in their lipophilicity, which makes them hard to be stabilized, crystallized, and expressed by E. coli. Herein, we propose an evanescent field excited surface-enhanced Raman scattering (EF-SERS) strategy for label-free analysis of membrane proteins in situ. Extracted cell membranes tightly wrapped the metal nanoparticles by an extruder, which ensures the SERS signals of the membrane proteins precisely benefit from the localized surface plasmons (LSPs). The leaky mode of a waveguide was employed to improve the plasmon excitation coupling. Thus, the LSPs and waveguide modes together enable the achievement of high-quality SERS profiles of membrane proteins. By spectral analysis, the structural changes of membrane proteins can be deeply understood at the molecular level. This method has broader applicability in establishing the Ramanomics of membrane proteins and unraveling the exact changes of membrane proteins during physiological processes.
Collapse
Affiliation(s)
- Yu Tian
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Avenue, Changchun 130012, Jilin, P.R. China
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Avenue, Changchun 130012, Jilin, P.R. China
| | - Weiqing Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Avenue, Changchun 130012, Jilin, P.R. China
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Avenue, Changchun 130012, Jilin, P.R. China
| | - Kongshuo Ma
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Avenue, Changchun 130022, Jilin, P.R. China
| | - Lili Cong
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Avenue, Changchun 130012, Jilin, P.R. China
| | - Yanting Shen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Avenue, Changchun 130012, Jilin, P.R. China
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Avenue, Changchun 130012, Jilin, P.R. China
| | - Xiaoxia Han
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Avenue, Changchun 130012, Jilin, P.R. China
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Avenue, Changchun 130012, Jilin, P.R. China
| | - Chongyang Liang
- Institute of Frontier Medical Science, Jilin University, 1163 Xinmin Avenue, Changchun 130021, P.R. China
| | - Lijia Liang
- Cardiovascular Research Center of Chongqing College, University of Chinese Academy of Sciences, 266 Fangzheng Avenue, Chongqing 400700, P.R. China
| | - Guohua Qi
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Avenue, Changchun 130022, Jilin, P.R. China
| | - Yongdong Jin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Avenue, Changchun 130022, Jilin, P.R. China
| | - Shuping Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Avenue, Changchun 130012, Jilin, P.R. China
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Avenue, Changchun 130012, Jilin, P.R. China
| |
Collapse
|
13
|
Santra K, Nguyen V, Smith EA, Petrich JW, Song X. Localization of Nonblinking Point Sources Using Higher-Order-Mode Detection and Optical Heterodyning: Developing a Strategy for Extending the Scope of Molecular, Super-resolution Imaging. J Phys Chem B 2021; 125:3092-3104. [PMID: 33750142 DOI: 10.1021/acs.jpcb.0c10875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
While the stochastic, "blinking" nature of fluorescent systems has enabled the super-resolution of their localization by the fitting of their point-spread functions (PSFs), this strategy cannot be exploited for similar resolution of "nonblinking" systems, such as those that might be encountered in a coherent Raman experiment. An alternative method for subdiffraction-limited imaging lies in the exploitation of optical heterodyning. For example, if a Gaussian PSF (a TEM00 mode) of a point emitter is displaced with respect to the origin of the optical system, photons in the higher-order TEM modes carry information about that displacement. Information concerning the displacement can be extracted from photons in these higher-order modes. These photons can be collected by optical heterodyning, which exploits the large gain in a detector's response to an optical signal from an emitter coupled to a local oscillator, which is prepared in the TEM of interest, e.g., TEM10. We have generalized and developed the heterodyning technique to localize point emitters via the detection of higher-order spatial modes. We have developed a theoretical approach to find a practical estimation limit of the localization parameters using a realistic model that accounts for shot noise, background noise, and Gaussian noise. To demonstrate the applicability of the method, we designed experiments in which a laser is a surrogate for one and two point emitters. Using the Fisher information and its accompanying Cramér-Rao lower bound, we demonstrate super-resolution localization in these cases: we show that objects can be localized to roughly 2-3 orders of magnitude of their point-spread function's size for a given optical system. Finally and most importantly, it is suggested that the results will ultimately be generalizable to multiple emitters and, most importantly, to "nonblinking" molecular systems, which will be essential for broadening the scope of super-resolution measurements beyond the limits of fluorescence-based techniques.
Collapse
Affiliation(s)
- Kalyan Santra
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States.,Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011, United States
| | - Viet Nguyen
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States.,Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011, United States
| | - Emily A Smith
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States.,Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011, United States
| | - Jacob W Petrich
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States.,Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011, United States
| | - Xueyu Song
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States.,Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011, United States
| |
Collapse
|
14
|
Shen Y, Yue J, Xu W, Xu S. Recent progress of surface-enhanced Raman spectroscopy for subcellular compartment analysis. Theranostics 2021; 11:4872-4893. [PMID: 33754033 PMCID: PMC7978302 DOI: 10.7150/thno.56409] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/25/2021] [Indexed: 12/14/2022] Open
Abstract
Organelles are involved in many cell life activities, and their metabolic or functional disorders are closely related to apoptosis, neurodegenerative diseases, cardiovascular diseases, and the development and metastasis of cancers. The explorations of subcellular structures, microenvironments, and their abnormal conditions are conducive to a deeper understanding of many pathological mechanisms, which are expected to achieve the early diagnosis and the effective therapy of diseases. Organelles are also the targeted locations of drugs, and they play significant roles in many targeting therapeutic strategies. Surface-enhanced Raman spectroscopy (SERS) is a powerful analytical tool that can provide the molecular fingerprint information of subcellular compartments and the real-time cellular dynamics in a non-invasive and non-destructive way. This review aims to summarize the recent advances of SERS studies on subcellular compartments, including five parts. The introductions of SERS and subcellular compartments are given. SERS is promising in subcellular compartment studies due to its molecular specificity and high sensitivity, and both of which highly match the high demands of cellular/subcellular investigations. Intracellular SERS is mainly cataloged as the labeling and label-free methods. For subcellular targeted detections and therapies, how to internalize plasmonic nanoparticles or nanostructure in the target locations is a key point. The subcellular compartment SERS detections, SERS measurements of isolated organelles, investigations of therapeutic mechanisms from subcellular compartments and microenvironments, and integration of SERS diagnosis and treatment are sequentially presented. A perspective view of the subcellular SERS studies is discussed from six aspects. This review provides a comprehensive overview of SERS applications in subcellular compartment researches, which will be a useful reference for designing the SERS-involved therapeutic systems.
Collapse
Affiliation(s)
- Yanting Shen
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
- School of Pharmaceutical Sciences, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, China
| | - Jing Yue
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Weiqing Xu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Shuping Xu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
- Department of Molecular Sciences, ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, Sydney, New South Wales 2109, Australia
| |
Collapse
|
15
|
Mandelbaum Y, Mottes R, Zalevsky Z, Zitoun D, Karsenty A. Investigations of Shape, Material and Excitation Wavelength Effects on Field Enhancement in SERS Advanced Tips. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:237. [PMID: 33477470 PMCID: PMC7830025 DOI: 10.3390/nano11010237] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 11/17/2022]
Abstract
This article, a part of the larger research project of Surface-Enhanced Raman Scattering (SERS), describes an advanced study focusing on the shapes and materials of Tip-Enhanced Raman Scattering (TERS) designated to serve as part of a novel imager device. The initial aim was to define the optimal shape of the "probe": tip or cavity, round or sharp. The investigations focused on the effect of shape (hemi-sphere, hemispheroid, ellipsoidal cavity, ellipsoidal rod, nano-cone), and the effect of material (Ag, Au, Al) on enhancement, as well as the effect of excitation wavelengths on the electric field. Complementary results were collected: numerical simulations consolidated with analytical models, based on solid assumptions. Preliminary experimental results of fabrication and structural characterization are also presented. Thorough analyses were performed around critical parameters, such as the plasmonic metal-Silver, Aluminium or Gold-using Rakic model, the tip geometry-sphere, spheroid, ellipsoid, nano-cone, nano-shell, rod, cavity-and the geometry of the plasmonic array: cross-talk in multiple nanostructures. These combined outcomes result in an optimized TERS design for a large number of applications.
Collapse
Affiliation(s)
- Yaakov Mandelbaum
- Advanced Laboratory of Electro-Optics (ALEO), Department of Applied Physics/Electro-Optics Engineering, Jerusalem College of Technology, Jerusalem 9116001, Israel; (Y.M.); (R.M.)
| | - Raz Mottes
- Advanced Laboratory of Electro-Optics (ALEO), Department of Applied Physics/Electro-Optics Engineering, Jerusalem College of Technology, Jerusalem 9116001, Israel; (Y.M.); (R.M.)
| | - Zeev Zalevsky
- Faculty of Engineering, Bar-Ilan University, Ramat Gan 5290002, Israel;
- Nanotechnology Center, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - David Zitoun
- Faculty of Exact Science, Department of Chemistry, Bar-Ilan University, Ramat Gan 5290002, Israel;
| | - Avi Karsenty
- Advanced Laboratory of Electro-Optics (ALEO), Department of Applied Physics/Electro-Optics Engineering, Jerusalem College of Technology, Jerusalem 9116001, Israel; (Y.M.); (R.M.)
- Nanotechnology Center for Research and Education, Jerusalem College of Technology, Jerusalem 9116001, Israel
| |
Collapse
|
16
|
Darienzo RE, Mironava T, Tannenbaum R. Raman Signal Enhancement by Quasi-Fractal Geometries of Au Nanoparticles. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2019; 19:4740-4746. [PMID: 30913781 PMCID: PMC6883356 DOI: 10.1166/jnn.2019.16348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The synthesis of star-like gold nanoparticles (SGNs) in a temperature-controlled environment allows for temperature modulation and facilitates the growth of highly branched nanoparticles. By increasing the synthesis temperature, the level of branching increases as well. These highly branched features represent a distinctly novel, quasi-fractal nanoparticle morphology, referred to herein as gold nano caltrops (GNC). The increased surface roughness, local curvature and degree of inhomogeneity of GNC lend themselves to generating improved enhancement of the scattering signals in surface-enhanced Raman spectroscopy (SERS) via a mechanism in which the localized surface plasmon sites, or "hot spots," provide the engine for the signal amplification, rather than the more conventional surface plasmon. Here, the synthesis procedure and the surface-enhancing capabilities of GNC are described and discussed.
Collapse
Affiliation(s)
- Richard E Darienzo
- Biomedical Nanomaterials Research Laboratory, Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Tatsiana Mironava
- Biomedical Nanomaterials Research Laboratory, Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Rina Tannenbaum
- Biomedical Nanomaterials Research Laboratory, Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
17
|
Valpapuram I, Candeloro P, Coluccio ML, Parrotta EI, Giugni A, Das G, Cuda G, Di Fabrizio E, Perozziello G. Waveguiding and SERS Simplified Raman Spectroscopy on Biological Samples. BIOSENSORS-BASEL 2019; 9:bios9010037. [PMID: 30832416 PMCID: PMC6468818 DOI: 10.3390/bios9010037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/19/2019] [Accepted: 02/21/2019] [Indexed: 12/11/2022]
Abstract
Biomarkers detection at an ultra-low concentration in biofluids (blood, serum, saliva, etc.) is a key point for the early diagnosis success and the development of personalized therapies. However, it remains a challenge due to limiting factors like (i) the complexity of analyzed media, and (ii) the aspecificity detection and the poor sensitivity of the conventional methods. In addition, several applications require the integration of the primary sensors with other devices (microfluidic devices, capillaries, flasks, vials, etc.) where transducing the signal might be difficult, reducing performances and applicability. In the present work, we demonstrate a new class of optical biosensor we have developed integrating an optical waveguide (OWG) with specific plasmonic surfaces. Exploiting the plasmonic resonance, the devices give consistent results in surface enhanced Raman spectroscopy (SERS) for continuous and label-free detection of biological compounds. The OWG allows driving optical signals in the proximity of SERS surfaces (detection area) overcoming spatial constraints, in order to reach places previously optically inaccessible. A rutile prism couples the remote laser source to the OWG, while a Raman spectrometer collects the SERS far field scattering. The present biosensors were implemented by a simple fabrication process, which includes photolithography and nanofabrication. By using such devices, it was possible to detect cell metabolites like Phenylalanine (Phe), Adenosine 5-triphosphate sodium hydrate (ATP), Sodium Lactate, Human Interleukin 6 (IL6), and relate them to possible metabolic pathway variation.
Collapse
Affiliation(s)
- Immanuel Valpapuram
- Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy.
| | - Patrizio Candeloro
- Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy.
| | - Maria Laura Coluccio
- Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy.
| | - Elvira Immacolata Parrotta
- Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy.
| | - Andrea Giugni
- Structural Molecular Imaging Light Enhanced Spectroscopies Laboratory, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
| | - Gobind Das
- Structural Molecular Imaging Light Enhanced Spectroscopies Laboratory, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
| | - Gianni Cuda
- Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy.
| | - Enzo Di Fabrizio
- Structural Molecular Imaging Light Enhanced Spectroscopies Laboratory, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
| | - Gerardo Perozziello
- Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy.
| |
Collapse
|
18
|
Long X, Yue W, Su Y, Chen W, Li L. Large-Scale, Bandwidth-Adjustable, Visible Absorbers by Evaporation and Annealing Process. NANOSCALE RESEARCH LETTERS 2019; 14:48. [PMID: 30756198 PMCID: PMC6372700 DOI: 10.1186/s11671-019-2881-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/27/2019] [Indexed: 05/30/2023]
Abstract
Optical absorbers have received a significant amount of attention due to their wide range of applications in biomedical sensing, solar cell, photon detection, and surface-enhanced Raman spectroscopy. However, most of the optical absorbers are fabricated with high-cost sophisticated nanofabrication techniques, which limit their practical applications. Here, we introduce a cost-effective method to fabricate an optical absorber by using a simple evaporation technique. The absorbers are composed of evaporated nanoparticles above a silver (Ag) mirror separated by a silicon oxide layer. Experimental results show over 77% absorption in the wavelength range from 470 to 1000 nm for the absorber with isolated Ag nanoparticles on the top. The performance of the absorber is adjustable with the morphology and composition of the top-layer nanoparticles. When the top layer was hybrid silver-copper (Ag-Cu) nanoparticles (NPs), the absorption exceeding 90% of the range of 495-562 nm (bandwidth of 67 nm) was obtained. In addition, the bandwidth for over 90% absorption of the Ag-Cu NP absorber was broadened to about 500 nm (506-1000 nm) when it annealed at certain temperatures. Our work provides a simple way to make a highly efficient absorber of a large area for the visible light, and to transit absorption from a narrow band to broadband only by temperature treatment.
Collapse
Affiliation(s)
- Xiyu Long
- College of Physics and Electronic Engineering, Sichuan Normal University, Chengdu, 610101 China
| | - Weisheng Yue
- State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences, P.O. Box 350, Chengdu, 610209 China
| | - Yarong Su
- College of Physics and Electronic Engineering, Sichuan Normal University, Chengdu, 610101 China
| | - Weidong Chen
- College of Physics and Electronic Engineering, Sichuan Normal University, Chengdu, 610101 China
| | - Ling Li
- College of Physics and Electronic Engineering, Sichuan Normal University, Chengdu, 610101 China
| |
Collapse
|
19
|
Chen G, Wen ZQ, Qiu CW. Superoscillation: from physics to optical applications. LIGHT, SCIENCE & APPLICATIONS 2019; 8:56. [PMID: 31231522 PMCID: PMC6560133 DOI: 10.1038/s41377-019-0163-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/14/2019] [Accepted: 05/21/2019] [Indexed: 05/10/2023]
Abstract
The resolution of conventional optical elements and systems has long been perceived to satisfy the classic Rayleigh criterion. Paramount efforts have been made to develop different types of superresolution techniques to achieve optical resolution down to several nanometres, such as by using evanescent waves, fluorescence labelling, and postprocessing. Superresolution imaging techniques, which are noncontact, far field and label free, are highly desirable but challenging to implement. The concept of superoscillation offers an alternative route to optical superresolution and enables the engineering of focal spots and point-spread functions of arbitrarily small size without theoretical limitations. This paper reviews recent developments in optical superoscillation technologies, design approaches, methods of characterizing superoscillatory optical fields, and applications in noncontact, far-field and label-free superresolution microscopy. This work may promote the wider adoption and application of optical superresolution across different wave types and application domains.
Collapse
Affiliation(s)
- Gang Chen
- College of Optoelectronic Engineering, Chongqing University, 174 Shazheng Street, Chongqing, 400044 China
| | - Zhong-Quan Wen
- College of Optoelectronic Engineering, Chongqing University, 174 Shazheng Street, Chongqing, 400044 China
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583 Singapore
| |
Collapse
|
20
|
Podevin M, Fotidis IA, Angelidaki I. Microalgal process-monitoring based on high-selectivity spectroscopy tools: status and future perspectives. Crit Rev Biotechnol 2017; 38:704-718. [DOI: 10.1080/07388551.2017.1398132] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Michael Podevin
- Department of Environmental Engineering, Technical University of Denmark, Lyngby, Denmark
| | - Ioannis A. Fotidis
- Department of Environmental Engineering, Technical University of Denmark, Lyngby, Denmark
| | - Irini Angelidaki
- Department of Environmental Engineering, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
21
|
A Review of Three-Dimensional Scanning Near-Field Optical Microscopy (3D-SNOM) and Its Applications in Nanoscale Light Management. APPLIED SCIENCES-BASEL 2017. [DOI: 10.3390/app7100973] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
22
|
Olson AP, Spies KB, Browning AC, Soneral PAG, Lindquist NC. Chemically imaging bacteria with super-resolution SERS on ultra-thin silver substrates. Sci Rep 2017; 7:9135. [PMID: 28831104 PMCID: PMC5567233 DOI: 10.1038/s41598-017-08915-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 07/18/2017] [Indexed: 11/10/2022] Open
Abstract
Plasmonic hotspots generate a blinking Surface Enhanced Raman Spectroscopy (SERS) effect that can be processed using Stochastic Optical Reconstruction Microscopy (STORM) algorithms for super-resolved imaging. Furthermore, by imaging through a diffraction grating, STORM algorithms can be modified to extract a full SERS spectrum, thereby capturing spectral as well as spatial content simultaneously. Here we demonstrate SERS and STORM combined in this way for super-resolved chemical imaging using an ultra-thin silver substrate. Images of gram-positive and gram-negative bacteria taken with this technique show excellent agreement with scanning electron microscope images, high spatial resolution at <50 nm, and spectral SERS content that can be correlated to different regions. This may be used to identify unique chemical signatures of various cells. Finally, because we image through as-deposited, ultra-thin silver films, this technique requires no nanofabrication beyond a single deposition and looks at the cell samples from below. This allows direct imaging of the cell/substrate interface of thick specimens or imaging samples in turbid or opaque liquids since the optical path doesn’t pass through the sample. These results show promise that super-resolution chemical imaging may be used to differentiate chemical signatures from cells and could be applied to other biological structures of interest.
Collapse
Affiliation(s)
- Aeli P Olson
- Physics Department, Bethel University, St Paul, MN, 55112, USA
| | - Kelsey B Spies
- Biology Department, Bethel University, St Paul, MN, 55112, USA
| | - Anna C Browning
- Biology Department, Bethel University, St Paul, MN, 55112, USA
| | | | | |
Collapse
|
23
|
Ghobadi A, Dereshgi SA, Hajian H, Bozok B, Butun B, Ozbay E. Ultra-broadband, wide angle absorber utilizing metal insulator multilayers stack with a multi-thickness metal surface texture. Sci Rep 2017; 7:4755. [PMID: 28684879 PMCID: PMC5500529 DOI: 10.1038/s41598-017-04964-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 05/22/2017] [Indexed: 11/25/2022] Open
Abstract
In this paper, we propose a facile route to fabricate a metal insulator multilayer stack to obtain ultra-broadband, wide angle behavior from the structure. The absorber, which covers near infrared (NIR) and visible (Vis) ranges, consists of a metal-insulator-metal-insulator (MIMI) multilayer where the middle metal layer has a variant thickness. It is found that this non-uniform thickness of the metal provides us with an absorption that is much broader compared to planar architecture. In the non-uniform case, each thickness is responsible for a specific wavelength range where the overall absorption is the superposition of these resonant responses and consequently a broad, perfect light absorption is attained. We first numerically examine the impact of different geometries on the overall light absorption property of the multilayer design. Afterward, we fabricate the designs and characterize them to experimentally verify our numerical findings. Characterizations show a good agreement with numerical results where the optimum absorption bandwidth for planar design is found to be 620 nm (380 nm-1000 nm) and it is significantly boosted to an amount of 1060 nm (350 nm-1410 nm) for multi-thickness case.
Collapse
Affiliation(s)
- Amir Ghobadi
- NANOTAM-Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey.
- Department of Electrical and Electronics Engineering, Bilkent University, 06800, Ankara, Turkey.
| | - Sina Abedini Dereshgi
- NANOTAM-Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey
- Department of Electrical and Electronics Engineering, Bilkent University, 06800, Ankara, Turkey
| | - Hodjat Hajian
- NANOTAM-Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey
| | - Berkay Bozok
- NANOTAM-Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey
- Department of Electrical and Electronics Engineering, Bilkent University, 06800, Ankara, Turkey
| | - Bayram Butun
- NANOTAM-Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey
| | - Ekmel Ozbay
- NANOTAM-Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey.
- Department of Electrical and Electronics Engineering, Bilkent University, 06800, Ankara, Turkey.
- Department of Physics, Bilkent University, 06800, Ankara, Turkey.
- UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, Turkey.
| |
Collapse
|
24
|
Abstract
This review describes the growing partnership between super-resolution imaging and plasmonics, by describing the various ways in which the two topics mutually benefit one another to enhance our understanding of the nanoscale world. First, localization-based super-resolution imaging strategies, where molecules are modulated between emissive and nonemissive states and their emission localized, are applied to plasmonic nanoparticle substrates, revealing the hidden shape of the nanoparticles while also mapping local electromagnetic field enhancements and reactivity patterns on their surface. However, these results must be interpreted carefully due to localization errors induced by the interaction between metallic substrates and single fluorophores. Second, plasmonic nanoparticles are explored as image contrast agents for both superlocalization and super-resolution imaging, offering benefits such as high photostability, large signal-to-noise, and distance-dependent spectral features but presenting challenges for localizing individual nanoparticles within a diffraction-limited spot. Finally, the use of plasmon-tailored excitation fields to achieve subdiffraction-limited spatial resolution is discussed, using localized surface plasmons and surface plasmon polaritons to create confined excitation volumes or image magnification to enhance spatial resolution.
Collapse
Affiliation(s)
- Katherine A Willets
- Department of Chemistry, Temple University , Philadelphia, Pennsylvania 19122, United States
| | - Andrew J Wilson
- Department of Chemistry, Temple University , Philadelphia, Pennsylvania 19122, United States
| | - Vignesh Sundaresan
- Department of Chemistry, Temple University , Philadelphia, Pennsylvania 19122, United States
| | - Padmanabh B Joshi
- Department of Chemistry, Temple University , Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
25
|
Lee M, Jeon TY, Mun C, Kwon JD, Yun J, Kim SH, Kim DH, Chang SC, Park SG. 3D multilayered plasmonic nanostructures with high areal density for SERS. RSC Adv 2017. [DOI: 10.1039/c6ra28150h] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Highly efficient 3D plasmonic nanostructures with high areal density for SERS are reported.
Collapse
Affiliation(s)
- MinKyoung Lee
- Advanced Functional Thin Films Department
- Korea Institute of Materials Science (KIMS)
- Changwon
- Korea
- Institute of BioPhysio Sensor Technology
| | - Tae Yoon Jeon
- Department of Chemical and Biomolecular Engineering (BK21+ Program)
- KAIST
- Daejeon
- Korea
| | - ChaeWon Mun
- Advanced Functional Thin Films Department
- Korea Institute of Materials Science (KIMS)
- Changwon
- Korea
| | - Jung-Dae Kwon
- Advanced Functional Thin Films Department
- Korea Institute of Materials Science (KIMS)
- Changwon
- Korea
| | - Jungheum Yun
- Advanced Functional Thin Films Department
- Korea Institute of Materials Science (KIMS)
- Changwon
- Korea
| | - Shin-Hyun Kim
- Department of Chemical and Biomolecular Engineering (BK21+ Program)
- KAIST
- Daejeon
- Korea
| | - Dong-Ho Kim
- Advanced Functional Thin Films Department
- Korea Institute of Materials Science (KIMS)
- Changwon
- Korea
| | - Seung-Cheol Chang
- Institute of BioPhysio Sensor Technology
- Graduate Department of Molecular Science Technology
- Pusan National University
- Busan 46241
- Korea
| | - Sung-Gyu Park
- Advanced Functional Thin Films Department
- Korea Institute of Materials Science (KIMS)
- Changwon
- Korea
| |
Collapse
|
26
|
Yugay D, Goronzy DP, Kawakami LM, Claridge SA, Song TB, Yan Z, Xie YH, Gilles J, Yang Y, Weiss PS. Copper Ion Binding Site in β-Amyloid Peptide. NANO LETTERS 2016; 16:6282-6289. [PMID: 27616333 DOI: 10.1021/acs.nanolett.6b02590] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
β-Amyloid aggregates in the brain play critical roles in Alzheimer's disease, a chronic neurodegenerative condition. Amyloid-associated metal ions, particularly zinc and copper ions, have been implicated in disease pathogenesis. Despite the importance of such ions, the binding sites on the β-amyloid peptide remain poorly understood. In this study, we use scanning tunneling microscopy, circular dichroism, and surface-enhanced Raman spectroscopy to probe the interactions between Cu2+ ions and a key β-amyloid peptide fragment, consisting of the first 16 amino acids, and define the copper-peptide binding site. We observe that in the presence of Cu2+, this peptide fragment forms β-sheets, not seen without the metal ion. By imaging with scanning tunneling microscopy, we are able to identify the binding site, which involves two histidine residues, His13 and His14. We conclude that the binding of copper to these residues creates an interstrand histidine brace, which enables the formation of β-sheets.
Collapse
Affiliation(s)
- Diana Yugay
- California NanoSystems Institute, University of California, Los Angeles , Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles , Los Angeles, California 90095, United States
| | - Dominic P Goronzy
- California NanoSystems Institute, University of California, Los Angeles , Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles , Los Angeles, California 90095, United States
| | - Lisa M Kawakami
- Department of Chemistry and Biochemistry, University of California, Los Angeles , Los Angeles, California 90095, United States
| | - Shelley A Claridge
- Department of Chemistry and Biochemistry, University of California, Los Angeles , Los Angeles, California 90095, United States
| | - Tze-Bin Song
- Department of Materials Science and Engineering, University of California, Los Angeles , Los Angeles, California 90095, United States
| | - Zhongbo Yan
- Department of Materials Science and Engineering, University of California, Los Angeles , Los Angeles, California 90095, United States
| | - Ya-Hong Xie
- California NanoSystems Institute, University of California, Los Angeles , Los Angeles, California 90095, United States
- Department of Materials Science and Engineering, University of California, Los Angeles , Los Angeles, California 90095, United States
| | - Jérôme Gilles
- Department of Mathematics and Statistics, San Diego State University , San Diego, California 92182, United States
| | - Yang Yang
- California NanoSystems Institute, University of California, Los Angeles , Los Angeles, California 90095, United States
- Department of Materials Science and Engineering, University of California, Los Angeles , Los Angeles, California 90095, United States
| | - Paul S Weiss
- California NanoSystems Institute, University of California, Los Angeles , Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles , Los Angeles, California 90095, United States
- Department of Materials Science and Engineering, University of California, Los Angeles , Los Angeles, California 90095, United States
| |
Collapse
|
27
|
Ekiz MS, Cinar G, Khalily MA, Guler MO. Self-assembled peptide nanostructures for functional materials. NANOTECHNOLOGY 2016; 27:402002. [PMID: 27578525 DOI: 10.1088/0957-4484/27/40/402002] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Nature is an important inspirational source for scientists, and presents complex and elegant examples of adaptive and intelligent systems created by self-assembly. Significant effort has been devoted to understanding these sophisticated systems. The self-assembly process enables us to create supramolecular nanostructures with high order and complexity, and peptide-based self-assembling building blocks can serve as suitable platforms to construct nanostructures showing diverse features and applications. In this review, peptide-based supramolecular assemblies will be discussed in terms of their synthesis, design, characterization and application. Peptide nanostructures are categorized based on their chemical and physical properties and will be examined by rationalizing the influence of peptide design on the resulting morphology and the methods employed to characterize these high order complex systems. Moreover, the application of self-assembled peptide nanomaterials as functional materials in information technologies and environmental sciences will be reviewed by providing examples from recently published high-impact studies.
Collapse
Affiliation(s)
- Melis Sardan Ekiz
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, 06800 Turkey
| | | | | | | |
Collapse
|
28
|
Steeves AJ, Atwal A, Schock SC, Variola F. Evaluation of the direct effects of poly(dopamine) on the in vitro response of human osteoblastic cells. J Mater Chem B 2016; 4:3145-3156. [DOI: 10.1039/c5tb02510a] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Functional poly(dopamine) coatings promise to become an efficient strategy to endow biomaterials with enhanced bioactive properties.
Collapse
Affiliation(s)
- Alexander J. Steeves
- Faculty of Engineering
- Department of Mechanical Engineering
- University of Ottawa
- Canada
| | - Aman Atwal
- Faculty of Science
- Department of Biopharmaceutical Sciences
- University of Ottawa
- Canada
| | - Sarah C. Schock
- The Children's Hospital of Eastern Ontario (CHEO) Research Institute
- Canada
- Faculty of Medicine
- Department of Cellular and Molecular Medicine
- University of Ottawa
| | - Fabio Variola
- Faculty of Engineering
- Department of Mechanical Engineering
- University of Ottawa
- Canada
- Faculty of Medicine
| |
Collapse
|
29
|
Affiliation(s)
- Ian L. Gunsolus
- Department of Chemistry, University of Minnesota, 207 Pleasant
Street SE, Minneapolis, Minnesota 55455, United States
| | - Christy L. Haynes
- Department of Chemistry, University of Minnesota, 207 Pleasant
Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
30
|
Repän T, Lavrinenko AV, Zhukovsky SV. Dark-field hyperlens: Super-resolution imaging of weakly scattering objects. OPTICS EXPRESS 2015; 23:25350-25364. [PMID: 26406731 DOI: 10.1364/oe.23.025350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We propose a device for subwavelength optical imaging based on a metal-dielectric multilayer hyperlens designed in such a way that only large-wavevector (evanescent) waves are transmitted while all propagating (small-wavevector) waves from the object area are blocked by the hyper-lens. We numerically demonstrate that as the result of such filtering, the image plane only contains scattered light from subwavelength features of the objects and is completely free from background illumination. Similar in spirit to conventional dark-field microscopy, the proposed dark-field hyperlens is shown to enhance the subwavelength image contrast by more than two orders of magnitude. These findings are essential for optical imaging of weakly scattering subwavelength objects, such as real-time dynamic nanoscopy of label-free biological objects.
Collapse
|
31
|
Kha NM, Chen CH, Su WN, Rick J, Hwang BJ. Improved Raman and photoluminescence sensitivity achieved using bifunctional Ag@SiO2 nanocubes. Phys Chem Chem Phys 2015; 17:21226-35. [DOI: 10.1039/c4cp05217j] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Surface-enhanced Raman scattering (SERS) and metal-enhanced photoluminescence (MEPL) responses can be greatly improved by introducing a thin coating of silica (SiO2) on silver nanocubes.
Collapse
Affiliation(s)
- Nguyen Minh Kha
- NanoElectrochemistry Laboratory
- Department of Chemical Engineering
- National Taiwan University of Science and Technology
- Taipei 106
- Taiwan
| | - Ching-Hsiang Chen
- NanoElectrochemistry Laboratory
- Graduate Institute of Applied Science and Technology
- National Taiwan University of Science and Technology
- Taipei 106
- Taiwan
| | - Wei-Nien Su
- NanoElectrochemistry Laboratory
- Graduate Institute of Applied Science and Technology
- National Taiwan University of Science and Technology
- Taipei 106
- Taiwan
| | - John Rick
- NanoElectrochemistry Laboratory
- Graduate Institute of Applied Science and Technology
- National Taiwan University of Science and Technology
- Taipei 106
- Taiwan
| | - Bing-Joe Hwang
- NanoElectrochemistry Laboratory
- Department of Chemical Engineering
- National Taiwan University of Science and Technology
- Taipei 106
- Taiwan
| |
Collapse
|
32
|
Xie Y, Yang S, Mao Z, Li P, Zhao C, Cohick Z, Huang PH, Huang TJ. In situ fabrication of 3D Ag@ZnO nanostructures for microfluidic surface-enhanced Raman scattering systems. ACS NANO 2014; 8:12175-84. [PMID: 25402207 PMCID: PMC4278689 DOI: 10.1021/nn503826r] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Accepted: 11/07/2014] [Indexed: 05/20/2023]
Abstract
In this work, we develop an in situ method to grow highly controllable, sensitive, three-dimensional (3D) surface-enhanced Raman scattering (SERS) substrates via an optothermal effect within microfluidic devices. Implementing this approach, we fabricate SERS substrates composed of Ag@ZnO structures at prescribed locations inside microfluidic channels, sites within which current fabrication of SERS structures has been arduous. Conveniently, properties of the 3D Ag@ZnO nanostructures such as length, packing density, and coverage can also be adjusted by tuning laser irradiation parameters. After exploring the fabrication of the 3D nanostructures, we demonstrate a SERS enhancement factor of up to ∼2×10(6) and investigate the optical properties of the 3D Ag@ZnO structures through finite-difference time-domain simulations. To illustrate the potential value of our technique, low concentrations of biomolecules in the liquid state are detected. Moreover, an integrated cell-trapping function of the 3D Ag@ZnO structures records the surface chemical fingerprint of a living cell. Overall, our optothermal-effect-based fabrication technique offers an effective combination of microfluidics with SERS, resolving problems associated with the fabrication of SERS substrates in microfluidic channels. With its advantages in functionality, simplicity, and sensitivity, the microfluidic-SERS platform presented should be valuable in many biological, biochemical, and biomedical applications.
Collapse
Affiliation(s)
- Yuliang Xie
- Department of Engineering Science and Mechanics and Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Shikuan Yang
- Department of Engineering Science and Mechanics and Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Zhangming Mao
- Department of Engineering Science and Mechanics and Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Peng Li
- Department of Engineering Science and Mechanics and Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Chenglong Zhao
- Department of Engineering Science and Mechanics and Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Zane Cohick
- Department of Engineering Science and Mechanics and Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Po-Hsun Huang
- Department of Engineering Science and Mechanics and Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Tony Jun Huang
- Department of Engineering Science and Mechanics and Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
33
|
Ganbold EO, Yoon J, Kim D, Joo SW. Nonidentical intracellular drug release rates in Raman and fluorescence spectroscopic determination. Phys Chem Chem Phys 2014; 17:3019-23. [PMID: 25424882 DOI: 10.1039/c4cp04235b] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Intracellular drug release rates were measured by monitoring mitoxantrone (MTX) on gold nanoparticle (AuNP) carriers by means of real-time label-free bimodal imaging with confocal Raman and fluorescence spectroscopy. The quenching nature of the MTX-AuNPs by nanometal surface energy transfer (NSET) was analyzed using the determined Stern-Volmer constant of KSV = 2.28 × 10(9) M(-1). The amount of MTX released was estimated by both the decrease in the surface-enhanced resonance Raman scattering (SERRS) signal and the increase in the fluorescence intensity. Both SERRS and NSET provide quantitative relationships between the spectral intensities of MTX concentrations in solution. Inside live cells, the signal decay profiles of the drug release from AuNPs appeared to be faster at the beginning of the bond-breaking drug release for the SERRS (R(-12)) than the recovery time of the NSET (R(-4) or R(-6)). In the first 45 min, a rather fast decay rate k of 0.0252 min(-1) with a short half-life t1/2 of 27.5 min was observed, whereas the rate became significantly slower in a diffusion process, 0.0093 min(-1) with a longer half-life of 101.4 min, after 45 min.
Collapse
|
34
|
Ertsgaard CT, McKoskey RM, Rich IS, Lindquist NC. Dynamic placement of plasmonic hotspots for super-resolution surface-enhanced Raman scattering. ACS NANO 2014; 8:10941-10946. [PMID: 25268457 DOI: 10.1021/nn504776b] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In this paper, we demonstrate dynamic placement of locally enhanced plasmonic fields using holographic laser illumination of a silver nanohole array. To visualize these focused "hotspots", the silver surface was coated with various biological samples for surface-enhanced Raman spectroscopy (SERS) imaging. Due to the large field enhancements, blinking behavior of the SERS hotspots was observed and processed using a stochastic optical reconstruction microscopy algorithm enabling super-resolution localization of the hotspots to within 10 nm. These hotspots were then shifted across the surface in subwavelength (<100 nm for a wavelength of 660 nm) steps using holographic illumination from a spatial light modulator. This created a dynamic imaging and sensing surface, whereas static illumination would only have produced stationary hotspots. Using this technique, we also show that such subwavelength shifting and localization of plasmonic hotspots has potential for imaging applications. Interestingly, illuminating the surface with randomly shifting SERS hotspots was sufficient to completely fill in a wide field of view for super-resolution chemical imaging.
Collapse
|
35
|
Liu M, Wang Z, Zong S, Chen H, Zhu D, Wu L, Hu G, Cui Y. SERS detection and removal of mercury(II)/silver(I) using oligonucleotide-functionalized core/shell magnetic silica sphere@Au nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2014; 6:7371-9. [PMID: 24738775 DOI: 10.1021/am5006282] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Heavy metal ions, such as Hg(2+) and Ag(+), pose severe risks in human health and the environment. For sensitive detection and selective removal of Hg(2+) and Ag(+) ions, here, we demonstrate a surface-enhanced Raman scattering (SERS)-active platform by employing the oligonucleotide-functionalized magnetic silica sphere (MSS)@Au nanoparticles (NPs). This system exploits mismatched T-Hg-T and C-Ag-C bridges to capture Hg(2+) and Ag(+) ions, exhibiting excellent responses for Hg(2+) ions in the range of 0.1-1000 nM and for Ag(+) in the range of 10-1000 nM. The assay is highly selective for the target ions and does not respond to other metal ions. Additionally, the Hg(2+) and Ag(+) ions in this system can be effectively removed from surrounding solutions by an external magnetic field or through spontaneous precipitation. Moreover, more than 80% of the MSS@Au NPs can be easily recycled with the help of cysteine. We anticipate that the designed strategy could be extended to other analytes that can bind to DNA molecules with a high affinity, and can be used in many potential applications such as environmental renovation, toxin detection, and groundwater analysis.
Collapse
Affiliation(s)
- Min Liu
- Advanced Photonics Center, Southeast University , 2# Sipai Lou, Nanjing 210096, Jiangsu China
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Jiang J, Ou-Yang L, Zhu L, Zou J, Tang H. Novel one-pot fabrication of lab-on-a-bubble@Ag substrate without coupling-agent for surface enhanced Raman scattering. Sci Rep 2014; 4:3942. [PMID: 24487575 PMCID: PMC3909904 DOI: 10.1038/srep03942] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 01/09/2014] [Indexed: 12/04/2022] Open
Abstract
Through in-situ reduction of silver nitrate without using any coupling-agent, a substrate for surface-enhanced Raman scattering (SERS) was prepared by coating silver on hollow buoyant silica microspheres as a lab on a bubble (LoB). The silver coated LoBs (LoBs@Ag) floated on surface of a solution could provide a very convenient platform for the detection of target molecules in the solution. The LoBs@Ag substrate not only immobilized well-distributed Ag nanoparticles on the surface LoBs, but excluded the interference of coupling agents. This yielded high-resolution SERS spectra with excellent reproducibility. The adsorption of crystal violet (CV) on the LoBs@Ag substrate was investigated by means of SERS combined with density functional theory (DFT) calculations. The LoBs@Ag substrate exhibited a remarkable Raman enhancement effect for CV with an enhancement factor of 6.9 × 10(8) and wide adaptability from dye, pesticide to bio-molecules. On the basis of this substrate, a simple and sensitive SERS method was proposed for the determination of trace organic pollutants or bio-molecules.
Collapse
Affiliation(s)
- Jizhou Jiang
- College of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission and Ministry of Education, College of Chemistry and Materials Science, South Central University for Nationalities, Wuhan 430074, P.R. China
| | - Lei Ou-Yang
- College of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Lihua Zhu
- College of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Jing Zou
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan 430073, P.R. China
| | - Heqing Tang
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission and Ministry of Education, College of Chemistry and Materials Science, South Central University for Nationalities, Wuhan 430074, P.R. China
| |
Collapse
|
37
|
Affiliation(s)
- Karen A. Antonio
- University of Notre Dame, Department of
Chemistry and Biochemistry, Notre
Dame, Indiana 46556, United States
| | - Zachary D. Schultz
- University of Notre Dame, Department of
Chemistry and Biochemistry, Notre
Dame, Indiana 46556, United States
| |
Collapse
|