1
|
Moreno RD. Human globozoospermia-related genes and their role in acrosome biogenesis. WIREs Mech Dis 2023; 15:e1589. [PMID: 36493758 DOI: 10.1002/wsbm.1589] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 12/13/2022]
Abstract
The mammalian acrosome is a secretory vesicle attached to the sperm nucleus whose fusion with the overlying plasma membrane is required to achieve fertilization. Acrosome biogenesis starts during meiosis, but it lasts through the entire process of haploid cell differentiation (spermiogenesis). Acrosome biogenesis is a stepwise process that involves membrane traffic from the Golgi apparatus, but it also seems that the lysosome/endosome system participates in this process. Defective sperm head morphology is accompanied by defective acrosome shape and function, and patients with these characteristics are infertile or subfertile. The most extreme case of acrosome biogenesis failure is globozoospermia syndrome, which is primarily characterized by the presence of round-headed spermatozoa without acrosomes with cytoskeleton defects around the nucleus and infertility. Several genes participating in acrosome biogenesis have been uncovered using genetic deletions in mice, but only a few of them have been found to be deleted or modified in patients with globozoospermia. Understanding acrosome biogenesis is crucial to uncovering the molecular basis of male infertility and developing new diagnostic tools and assisted reproductive technologies that may help infertile patients through more effective treatment techniques. This article is categorized under: Reproductive System Diseases > Environmental Factors Infectious Diseases > Stem Cells and Development Reproductive System Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Ricardo D Moreno
- Departmento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
2
|
Battulin N, Korablev A, Ryzhkova A, Smirnov A, Kabirova E, Khabarova A, Lagunov T, Serova I, Serov O. The human EF1a promoter does not provide expression of the transgene in mice. Transgenic Res 2022; 31:525-535. [PMID: 35960480 PMCID: PMC9372930 DOI: 10.1007/s11248-022-00319-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/03/2022] [Indexed: 12/01/2022]
Abstract
In this work, we set out to create mice susceptible to the SARS-CoV-2 coronavirus. To ensure the ubiquitous expression of the human ACE2 gene we used the human EF1a promoter. Using pronuclear microinjection of the transgene construct, we obtained six founders with the insertion of the EF1a-hACE2 transgene, from which four independent mouse lines were established. Unfortunately, only one line had low levels of hACE2 expression in some organs. In addition, we did not detect the hACE2 protein in primary lung fibroblasts from any of the transgenic lines. Bisulfite sequencing analysis revealed that the EF1a promoter was hypermethylated in the genomes of transgenic animals. Extensive analysis of published works about transgenic animals indicated that EF1a transgenic constructs are frequently inactive. Thus, our case cautions against using the EF1a promoter to generate transgenic animals, as it is prone to epigenetic silencing.
Collapse
Affiliation(s)
- Nariman Battulin
- Laboratory of Developmental Genetics, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia, 630090. .,Institute of Genetic Technologies, Novosibirsk State University, Novosibirsk, Russia, 630090.
| | - Alexey Korablev
- Laboratory of Developmental Genetics, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia, 630090
| | - Anastasia Ryzhkova
- Laboratory of Developmental Genetics, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia, 630090
| | - Alexander Smirnov
- Laboratory of Developmental Genetics, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia, 630090
| | - Evelyn Kabirova
- Laboratory of Developmental Genetics, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia, 630090
| | - Anna Khabarova
- Laboratory of Developmental Genetics, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia, 630090
| | - Timofey Lagunov
- Laboratory of Developmental Genetics, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia, 630090
| | - Irina Serova
- Laboratory of Developmental Genetics, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia, 630090
| | - Oleg Serov
- Laboratory of Developmental Genetics, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia, 630090
| |
Collapse
|
3
|
Sørensen AT, Rombach J, Gether U, Madsen KL. The Scaffold Protein PICK1 as a Target in Chronic Pain. Cells 2022; 11:1255. [PMID: 35455935 PMCID: PMC9031029 DOI: 10.3390/cells11081255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/23/2022] [Accepted: 03/30/2022] [Indexed: 02/05/2023] Open
Abstract
Well-tolerated and effective drugs for treating chronic pain conditions are urgently needed. Most chronic pain patients are not effectively relieved from their pain and suffer from debilitating drug side effects. This has not only drastic negative consequences for the patients' quality of life, but also constitute an enormous burden on society. It is therefore of great interest to explore new potent targets for effective pain treatment with fewer side effects and without addiction liability. A critical component of chronic pain conditions is central sensitization, which involves the reorganization and strengthening of synaptic transmission within nociceptive pathways. Such changes are considered as maladaptive and depend on changes in the surface expression and signaling of AMPA-type glutamate receptors (AMPARs). The PDZ-domain scaffold protein PICK1 binds the AMPARs and has been suggested to play a key role in these maladaptive changes. In the present paper, we review the regulation of AMPARs by PICK1 and its relation to pain pathology. Moreover, we highlight other pain-relevant PICK1 interactions, and we evaluate various compounds that target PICK1 and have been successfully tested in pain models. Finally, we evaluate the potential on-target side effects of interfering with the action of PICK1 action in CNS and beyond. We conclude that PICK1 constitutes a valid drug target for the treatment of inflammatory and neuropathic pain conditions without the side effects and abuse liability associated with current pain medication.
Collapse
Affiliation(s)
| | | | | | - Kenneth Lindegaard Madsen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark; (A.T.S.); (J.R.); (U.G.)
| |
Collapse
|
4
|
Darbey A, Rebourcet D, Curley M, Kilcoyne K, Jeffery N, Reed N, Milne L, Roesl C, Brown P, Smith LB. A comparison of in vivo viral targeting systems identifies adeno-associated virus serotype 9 (AAV9) as an effective vector for genetic manipulation of Leydig cells in adult mice. Andrology 2020; 9:460-473. [PMID: 32996275 DOI: 10.1111/andr.12915] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/01/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Despite the increasing popularity of deliverable transgenics, a robust and fully validated method for targeting Leydig cells, capable of delivering long-term transgene expression, is yet to be defined. OBJECTIVES We compared three viral vector systems in terms of their cell targeting specificity, longevity of gene expression and impact on targeted cell types when delivered to the interstitial compartment of the mouse testis. MATERIALS & METHODS We delivered lentiviral, adenoviral and adeno-associated (AAV) viral particles to the interstitial compartment of adult mouse testis. Immunolocalization and stereology were performed to characterize ability of vectors to target and deliver transgenes to Leydig cells. RESULTS Viral vectors utilized in this study were found to specifically target Leydig cells when delivered interstitially. Transgene expression in lentiviral-targeted Leydig cells was detected for 7 days post-injection before Leydig cells underwent apoptosis. Adenoviral-delivered transgene expression was detected for 10 days post-injection with no evidence of targeted cell apoptosis. We found serotype differences in AAV injected testis with AAV serotype 9 targeting a significant proportion of Leydig cells. Targeting efficiency increased to an average of 59.63% (and a maximum of 80%) of Leydig cells with the addition of neuraminidase during injection. In AAV injected testis sections, transgene expression was detectable for up to 50 days post-injection. DISCUSSION & CONCLUSION Lentivirus, Adenovirus and Adeno-Associated virus delivery to the testis resulted in key variances in targeting efficiency of Leydig cells and in longevity of transgene expression, but identified AAV9 + Neuraminidase as an efficient vector system for transgene delivery and long-term expression. Simple viral delivery procedures and the commercial availability of viral vectors suggests AAV9 + Neuraminidase will be of significant utility to researchers investigating the genetics underpinning Leydig cell function and holds promise to inform the development of novel therapeutics for the treatment of male reproductive disorders.
Collapse
Affiliation(s)
- Annalucia Darbey
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK.,School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Diane Rebourcet
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Michael Curley
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Karen Kilcoyne
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Nathan Jeffery
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Natalie Reed
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Laura Milne
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Cornelia Roesl
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Pamela Brown
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Lee B Smith
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK.,School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
5
|
Chen W, Sun Y, Sun Q, Zhang J, Jiang M, Chang C, Huang X, Wang C, Wang P, Zhang Z, Chen X, Wang Y. MFN2 Plays a Distinct Role from MFN1 in Regulating Spermatogonial Differentiation. Stem Cell Reports 2020; 14:803-817. [PMID: 32330448 PMCID: PMC7221103 DOI: 10.1016/j.stemcr.2020.03.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 03/27/2020] [Accepted: 03/27/2020] [Indexed: 12/20/2022] Open
Abstract
Although mitochondrial morphology is well-known for its role in cellular homeostasis, there is surprisingly little knowledge on whether mitochondrial remodeling is required for postnatal germ cell development. In this study, we investigated the functions of MFN1 and MFN2, two GTPases in mitochondrial fusion, during early spermatogenesis. We observed increased MFN expressions along with increased mitochondrial and endoplasmic reticulum (ER) activities during spermatogonial differentiation. Deletion of either Mfn led to DNA oxidation and apoptosis specifically in differentiating spermatogonia and spermatocytes, which in turn caused male infertility. We further found MFN2 regulated spermatogenesis by modulating both mitochondrial and ER functions, a mechanism distinct from that of MFN1. Defects of germ cell development in MFN2 mutants were corrected by MFN2 at either mitochondria or ER but not by MFN1. Our study thus reveals an essential requirement of MFN-mediated mitochondrial and ER coordination in spermatogenesis, providing critical insights into mitochondrial determinants of male fertility.
Collapse
Affiliation(s)
- Wei Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yun Sun
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Qi Sun
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jingjing Zhang
- Translational Medicine Research Center, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Manxi Jiang
- Department of Animal Science, School of Medicine, Shanghai JiaoTong University, Shanghai 200025, China
| | - Chingwen Chang
- Department of Animal Sciences, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI 48824, USA
| | - Xiaoli Huang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Chuanyun Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Pengxiang Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Zhaoran Zhang
- Department of Animal Sciences, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI 48824, USA
| | - Xuejin Chen
- Department of Animal Science, School of Medicine, Shanghai JiaoTong University, Shanghai 200025, China
| | - Yuan Wang
- Department of Animal Sciences, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
6
|
Darbey A, Smith LB. Deliverable transgenics & gene therapy possibilities for the testes. Mol Cell Endocrinol 2018; 468:81-94. [PMID: 29191697 DOI: 10.1016/j.mce.2017.11.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/24/2017] [Accepted: 11/24/2017] [Indexed: 11/30/2022]
Abstract
Male infertility and hypogonadism are clinically prevalent conditions with a high socioeconomic burden and are both linked to an increased risk in cardiovascular-metabolic diseases and earlier mortality. Therefore, there is an urgent need to better understand the causes and develop new treatments for these conditions that affect millions of men. The accelerating advancement in gene editing and delivery technologies promises improvements in both diagnosis as well as affording the opportunity to develop bespoke treatment options which would both prove beneficial for the millions of individuals afflicted with these reproductive disorders. In this review, we summarise the systems developed and utilised for the delivery of gene therapy and discuss how each of these systems could be applied for the development of a gene therapy system in the testis and how they could be of use for the future diagnosis and repair of common male reproductive disorders.
Collapse
Affiliation(s)
- Annalucia Darbey
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Lee B Smith
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK; School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
7
|
Binding of PICK1 PDZ domain with calcineurin B regulates osteoclast differentiation. Biochem Biophys Res Commun 2018; 496:83-88. [PMID: 29305867 DOI: 10.1016/j.bbrc.2017.12.173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 12/31/2017] [Indexed: 12/20/2022]
Abstract
The calcineurin/nuclear factor of activated T cell (NFAT) signaling pathway plays a major role in osteoclast differentiation; however, the proteins that react with the calcineurin-NFAT complex in osteoclasts to regulate osteoclastogenesis remain unclear. Here, we present evidence that PICK1 also positively regulates calcineurin B in osteoclasts to activate NFAT to promote osteoclastogenesis. mRNA and protein expression of PICK1 in murine primary bone marrow macrophages (BMMs) was significantly increased during RANKL-induced osteoclast differentiation. The interaction of PICK1 with calcineurin B in BMMs was confirmed by co-immunoprecipitation. An inhibitor of the PICK1 PDZ domain significantly decreased osteoclastogenesis marker gene expression and the number of TRAP-positive multinucleated cells among RAW264.7 osteoclast progenitor cells. Overexpression of PICK1 in RAW264.7 cells significantly increased the number of TRAP-positive mature osteoclasts. Increased NFAT activation with transcriptional activation of PICK1 during RAW264.7 osteoclastogenesis was also confirmed in a tetracycline-controlled PICK1 expression system. These results suggest that the PDZ domain of PICK1 directly interacts with calcineurin B in osteoclast progenitor cells and promotes osteoclast differentiation through activation of calcineurin-NFAT signaling.
Collapse
|
8
|
Hannigan MM, Zagore LL, Licatalosi DD. Ptbp2 Controls an Alternative Splicing Network Required for Cell Communication during Spermatogenesis. Cell Rep 2017; 19:2598-2612. [PMID: 28636946 PMCID: PMC5543815 DOI: 10.1016/j.celrep.2017.05.089] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/04/2017] [Accepted: 05/25/2017] [Indexed: 01/12/2023] Open
Abstract
Alternative splicing has essential roles in development. Remarkably, spermatogenic cells express more alternatively spliced RNAs compared to most whole tissues; however, regulation of these RNAs remains unclear. Here, we characterize the alternative splicing landscape during spermatogenesis and reveal an essential function for the RNA-binding protein Ptbp2 in this highly regulated developmental program. We found that Ptbp2 controls a network of genes involved in cell adhesion, migration, and polarity, suggesting that splicing regulation by Ptbp2 is critical for germ cell communication with Sertoli cells (multifunctional somatic cells necessary for spermatogenesis). Indeed, Ptbp2 ablation in germ cells resulted in disorganization of the filamentous actin (F-actin) cytoskeleton in Sertoli cells, indicating that alternative splicing regulation is necessary for cellular crosstalk during germ cell development. Collectively, the data delineate an alternative splicing regulatory network essential for spermatogenesis, the splicing factor that controls it, and its biological importance in germ-Sertoli communication.
Collapse
Affiliation(s)
- Molly M Hannigan
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Leah L Zagore
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Donny D Licatalosi
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
9
|
Multiple faces of protein interacting with C kinase 1 (PICK1): Structure, function, and diseases. Neurochem Int 2016; 98:115-21. [DOI: 10.1016/j.neuint.2016.03.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 03/02/2016] [Accepted: 03/02/2016] [Indexed: 11/19/2022]
|
10
|
Liu XX, Shen XF, Liu FJ. Screening targeted testis‑specific genes for molecular assessment of aberrant sperm quality. Mol Med Rep 2016; 14:1594-600. [PMID: 27356588 PMCID: PMC4940090 DOI: 10.3892/mmr.2016.5434] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 05/09/2016] [Indexed: 02/06/2023] Open
Abstract
Teratospermia is a heterogeneous and complex disorder, which is closely associated with male fertility. Genes and gene products associated with teratospermia may serve as targeted biomarkers that help understand the underlying mechanisms of male infertility; however, systematic information on the subject remains to be elucidated. The present study performed a comparative bioinformatics analysis to identify biomarkers associated with sperm quality, particular focusing on testis-specific biomarkers. A stepwise screening approach identified 1,085 testis/epididymis-specific genes and 3,406 teratospermia-associated genes, resulting in 348 testis-specific genes associated with aberrant sperm quality. These genes were functionally associated with the reproduction process. Gene products corresponding to heat shock protein family A (Hsp70) member 4 like (HSPA4L) and phosphoglycerate kinase 2 were characterized at the cellular level in human testes and ejaculated spermatozoa. HSPA4L expression in sperm was revealed to be associated with sperm quality. The present study provided a novel insight into the understanding of sperm quality, and a potential method for the diagnosis and assessment of sperm quality in the event of male infertility.
Collapse
Affiliation(s)
- Xue Xia Liu
- Central Laboratory, Yantai Yu Huang Ding Hospital, Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Xiao Fang Shen
- Central Laboratory, Yantai Yu Huang Ding Hospital, Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Fu-Jun Liu
- Central Laboratory, Yantai Yu Huang Ding Hospital, Qingdao University, Yantai, Shandong 264000, P.R. China
| |
Collapse
|
11
|
Qin J, Xu H, Zhang P, Zhang C, Zhu Z, Qu R, Qin Y, Zeng W. An efficient strategy for generation of transgenic mice by lentiviral transduction of male germline stem cells in vivo. J Anim Sci Biotechnol 2015; 6:59. [PMID: 26705472 PMCID: PMC4690335 DOI: 10.1186/s40104-015-0058-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 12/09/2015] [Indexed: 12/27/2022] Open
Abstract
Background Male germline stem cells (MGSCs) are a subpopulation of germ cells in the testis tissue. MGSCs are capable of differentiation into spermatozoa and thus are perfect targets for genomic manipulation to generate transgenic animals. Method The present study was to optimize a protocol of production of transgenic mice through transduction of MGSCs in vivo using lentiviral-based vectors. The recombinant lentiviral vectors with either EF-1 or CMV promoter to drive the expression of enhanced green fluorescent protein (eGFP) transgene were injected into seminiferous tubules or inter-tubular space of 7-day-old and 28-day-old mouse testes. At 5 or 6 wk post-surgery, these pre-founders were mated with wild-type C57BL/6J female mice (1.5 to 2.0-month-old). Results Sixty-seven percent of F1 generation and 55.56 % of F2 offspring were positive for eGFP transgene under the control of EF-1 promoter via PCR analysis. The transgenic pups were generated in an injection site-and age-independent manner. The expression of transgene was displayed in the progeny derived from lentiviral vector containing CMV promoter to drive transgene, but it was silenced or undetectable in the offspring derived from lentiviral vector with transgene under EF-1 promoter. The methylation level of gDNA in the promoter region of transgene was much higher in the samples derived lentiviral vectors with EF-1 promoter than that with CMV promoter, suggesting eGFP transgene was suppressed by DNA methylation in vivo. Conclusion This research reported here an effective strategy for generation of transgenic mice through transduction of MGSCs in vivo using lentivirus vectors with specific promoters, and the transgenic offspring were obtained in an injection site-and age-independent manner. This protocol could be applied to other animal species, leading to advancement of animal transgenesis in agricultural and biomedical fields. Electronic supplementary material The online version of this article (doi:10.1186/s40104-015-0058-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jinzhou Qin
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100 China
| | - Haixia Xu
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100 China
| | - Pengfei Zhang
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100 China
| | - Conghui Zhang
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100 China
| | - Zhendong Zhu
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100 China
| | - Rongfeng Qu
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100 China
| | - Yuwei Qin
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100 China
| | - Wenxian Zeng
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100 China
| |
Collapse
|
12
|
Role of genetic mutations in folate-related enzyme genes on Male Infertility. Sci Rep 2015; 5:15548. [PMID: 26549413 PMCID: PMC4637885 DOI: 10.1038/srep15548] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 09/29/2015] [Indexed: 01/11/2023] Open
Abstract
Several studies showed that the genetic mutations in the folate-related enzyme genes might be associated with male infertility; however, the results were still inconsistent. We performed a meta-analysis with trial sequential analysis to investigate the associations between the MTHFR C677T, MTHFR A1298C, MTR A2756G, MTRR A66G mutations and the MTHFR haplotype with the risk of male infertility. Overall, a total of 37 studies were selected. Our meta-analysis showed that the MTHFR C677T mutation was a risk factor for male infertility in both azoospermia and oligoasthenoteratozoospermia patients, especially in Asian population. Men carrying the MTHFR TC haplotype were most liable to suffer infertility while those with CC haplotype had lowest risk. On the other hand, the MTHFR A1298C mutation was not related to male infertility. MTR A2756G and MTRR A66G were potential candidates in the pathogenesis of male infertility, but more case-control studies were required to avoid false-positive outcomes. All of these results were confirmed by the trial sequential analysis. Finally, our meta-analysis with trial sequential analysis proved that the genetic mutations in the folate-related enzyme genes played a significant role in male infertility.
Collapse
|
13
|
He J, Xia M, Tsang WH, Chow KL, Xia J. ICA1L forms BAR-domain complexes with PICK1 and is critical for acrosome formation in spermiogenesis. J Cell Sci 2015; 128:3822-36. [DOI: 10.1242/jcs.173534] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 08/21/2015] [Indexed: 01/17/2023] Open
Abstract
Mutations of the Pick1 gene cause globozoospermia, a male infertility disorder in both mice and human. PICK1 is critical for vesicle trafficking and its deficiency in sperm cells leads to abnormal vesicle trafficking from the Golgi to acrosome. This eventually disrupts acrosome formation and leads to male infertility. We identified a novel BAR-domain binding partner of PICK1: ICA1L, which has sequence similarities to ICA69. ICA1L is expressed in testes and brain, and is the major binding partner for PICK1 in testes. ICA1L and PICK1 are highly expressed in spermatids and trafficked together at different stages of spermiogenesis. ICA1L knockout mice were generated by CRISPR-Cas technology. PICK1 expression was reduced by 80% in the testes of male mice lacking ICA1L. Sperms from ICA1L knockout mice had abnormalities in acrosome, nucleus and mitochondrial sheath formation. Both total and mobile sperms were reduced in number and about half of the remaining sperms had characteristics of globozoospermia. These defects ultimately resulted in reduced fertility of male ICA1L knockout mice and the fertility of male mice was completely eliminated in ICA69/ICA1L double knockout mice.
Collapse
Affiliation(s)
- Jing He
- Division of Life Science, Division of Biomedical Engineering and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Mengying Xia
- Division of Life Science, Division of Biomedical Engineering and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Wai Hung Tsang
- Division of Life Science, Division of Biomedical Engineering and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - King Lau Chow
- Division of Life Science, Division of Biomedical Engineering and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jun Xia
- Division of Life Science, Division of Biomedical Engineering and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
14
|
Zhang S, Tang Q, Wu W, Yuan B, Lu C, Xia Y, Ding H, Hu L, Chen D, Sha J, Wang X. Association between DAZL polymorphisms and susceptibility to male infertility: systematic review with meta-analysis and trial sequential analysis. Sci Rep 2014; 4:4642. [PMID: 24717865 PMCID: PMC5380160 DOI: 10.1038/srep04642] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 03/21/2014] [Indexed: 12/19/2022] Open
Abstract
Several studies have investigated the association between polymorphisms in the Deleted in AZoospermia-Like (DAZL) gene and male infertility risk, but with inconsistent results. We aimed to derive a more precise estimation of the relationship, therefore a meta-analysis was performed. A total of 13 case-control studies, including 2556 cases and 1997 controls, were selected. Two polymorphisms in DAZL were investigated, namely T12A (Thr12 → Ala) and T54A (Thr54 → Ala). Our meta-analysis showed that A > G is a risk factor for male infertility (P = 0.047, OR = 1.262, 95%CI = 1.003-1.587). However, when using trial sequential analysis (TSA) to confirm, we found that A > G risk effect turned out to be false positive. In addition, significant association was found between the T54A polymorphism and male infertility under co-dominant model (AG vs. AA: OR = 4.364, 95%CI = 2.207-8.630, P < 0.001) and dominant model (OR = 4.584, 95%CI = 2.320-9.058, P < 0.001). Stratified analysis showed that significantly strong association between T54A polymorphism and male infertility was present only in Asians, but not in Caucasians. Further studies of T12A and T54A with their biological functions are needed to understand the role of these polymorphisms in the development of male infertility.
Collapse
Affiliation(s)
- Simin Zhang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- These authors contributed equally to this work
| | - Qiuqin Tang
- State Key Laboratory of Reproductive Medicine, Department of Obstetrics, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing 210004, China
- These authors contributed equally to this work
| | - Wei Wu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- State Key Laboratory of Reproductive Medicine, Wuxi Maternal and Child Health Care Hospital Affiliated to Nanjing Medical University, Wuxi 214002, China
| | - Beilei Yuan
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Chuncheng Lu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Hongjuan Ding
- State Key Laboratory of Reproductive Medicine, Department of Obstetrics, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing 210004, China
| | - Lingqing Hu
- State Key Laboratory of Reproductive Medicine, Wuxi Maternal and Child Health Care Hospital Affiliated to Nanjing Medical University, Wuxi 214002, China
| | - Daozhen Chen
- State Key Laboratory of Reproductive Medicine, Wuxi Maternal and Child Health Care Hospital Affiliated to Nanjing Medical University, Wuxi 214002, China
| | - Jiahao Sha
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China
| | - Xinru Wang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|