1
|
Imaging Method by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Tissue or Tumor: A Mini Review. Processes (Basel) 2022. [DOI: 10.3390/pr10020388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is an advanced technique that uses minimum fragmented ions from complex molecules for mass spectrometry (MS) analysis (tissue profiling by mass spectrometry). It is able to analyze spatially resolved tissue or tumor sections at the molecular level. It has become a valuable tool for tumor and tissue imaging, due to its ease of operation and high mass resolution, but it still has vast room for development in the instrumentation of larger proteins in some tissues. In this review, we focus on the main components of MALDI-MS instrumentation, sample handling and processing, the working principle of MALDI-MS, and its applications in diagnostic and prognostic assessments, tumor removal and drug development. Although it is less effective at detecting larger proteins in some tissues, it still shows huge potential because of its advancements in instrumentation and processing protocols. This article may benefit those who have interests in MALDI-MS for tissue or tumor imaging.
Collapse
|
2
|
Visualization of the distribution of nanoparticle-formulated AZD2811 in mouse tumor model using matrix-assisted laser desorption ionization mass spectrometry imaging. Sci Rep 2020; 10:15535. [PMID: 32968211 PMCID: PMC7511311 DOI: 10.1038/s41598-020-72665-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023] Open
Abstract
Penetration of nanoparticles into viable tumor regions is essential for an effective response. Mass spectrometry imaging (MSI) is a novel method for evaluating the intratumoral pharmacokinetics (PK) of a drug in terms of spatial distribution. The application of MSI for analysis of nanomedicine PK remains in its infancy. In this study, we evaluated the applicability of MALDI-MSI for nanoparticle-formulated drug visualization in tumors and biopsies, with an aim toward future application in clinical nanomedicine research. We established an analytic method for the free drug (AZD2811) and then applied it to visualize nanoparticle-formulated AZD2811. MSI analysis demonstrated heterogeneous intratumoral drug distribution in three xenograft tumors. The intensity of MSI signals correlated well with total drug concentration in tumors, indicating that drug distribution can be monitored quantitatively. Analysis of tumor biopsies indicated that MSI is applicable for analyzing the distribution of nanoparticle-formulated drugs in tumor biopsies, suggesting clinical applicability.
Collapse
|
3
|
Hamada A. [Drug Development Based on Intracellular Pharmacokinetic Analysis of Molecular Target Drug in Mice Bearing Patient-derived Xenograft Model]. YAKUGAKU ZASSHI 2020; 140:641-648. [PMID: 32378664 DOI: 10.1248/yakushi.19-00218-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Traditionally, anticancer drug discovery research has been conducted based on immortalized cancer cell lines, either cultured in vitro or grown in vivo. In the USA and Europe, patient derived xenograft (PDX) model is rapidly expelling traditional in vitro and in vivo models due to the good predictability of clinical outcome and its nature of retaining characteristics and heterogeneity in the original tumor. Furthermore, a significant association was also reported between drug responses in patient and corresponding PDX as high as 87%. We are preparing a PDX model for Japanese cancer patients including drug resistance examples and rare cancers. Using the established PDX model, we confirmed the possibility that the tumor microenvironment might affect the efficacy and distribution of drugs even if the target receptor is expressed in tumor sites as compared to the cell line (CDX) model, which has been widely used in drug discovery. Interestingly, although expressing a target receptor in viable tumor cells, we also have found a PDX model with a lower distribution of molecular target drug. Therefore we will evaluate the usefulness of the PDX model in drug development by exploring new biomarkers and elucidating the mechanisms of drug resistance in target tumors. Moreover, pharmaco-imaging system will allow us to visualize the exposure and distribution of drugs in tumors at macro and micro levels. Finally, we evaluate relations between distribution of drugs in the tumor microenvironment including target tumor cells, neovessels, stromal cells, immune cells, and fibroblasts.
Collapse
Affiliation(s)
- Akinobu Hamada
- Division of Molecular Pharmacology, National Cancer Center Research Institute
| |
Collapse
|
4
|
Melnyk T, Đorđević S, Conejos-Sánchez I, Vicent MJ. Therapeutic potential of polypeptide-based conjugates: Rational design and analytical tools that can boost clinical translation. Adv Drug Deliv Rev 2020; 160:136-169. [PMID: 33091502 DOI: 10.1016/j.addr.2020.10.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/09/2020] [Accepted: 10/14/2020] [Indexed: 12/14/2022]
Abstract
The clinical success of polypeptides as polymeric drugs, covered by the umbrella term "polymer therapeutics," combined with related scientific and technological breakthroughs, explain their exponential growth in the development of polypeptide-drug conjugates as therapeutic agents. A deeper understanding of the biology at relevant pathological sites and the critical biological barriers faced, combined with advances regarding controlled polymerization techniques, material bioresponsiveness, analytical methods, and scale up-manufacture processes, have fostered the development of these nature-mimicking entities. Now, engineered polypeptides have the potential to combat current challenges in the advanced drug delivery field. In this review, we will discuss examples of polypeptide-drug conjugates as single or combination therapies in both preclinical and clinical studies as therapeutics and molecular imaging tools. Importantly, we will critically discuss relevant examples to highlight those parameters relevant to their rational design, such as linking chemistry, the analytical strategies employed, and their physicochemical and biological characterization, that will foster their rapid clinical translation.
Collapse
Affiliation(s)
- Tetiana Melnyk
- Centro de Investigación Príncipe Felipe, Polymer Therapeutics Lab, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| | - Snežana Đorđević
- Centro de Investigación Príncipe Felipe, Polymer Therapeutics Lab, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| | - Inmaculada Conejos-Sánchez
- Centro de Investigación Príncipe Felipe, Polymer Therapeutics Lab, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| | - María J Vicent
- Centro de Investigación Príncipe Felipe, Polymer Therapeutics Lab, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| |
Collapse
|
5
|
Applications of MALDI mass spectrometry imaging for pharmacokinetic studies during drug development. Drug Metab Pharmacokinet 2019; 34:209-216. [DOI: 10.1016/j.dmpk.2019.04.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/14/2019] [Accepted: 04/19/2019] [Indexed: 12/23/2022]
|
6
|
Precision pharmacology: Mass spectrometry imaging and pharmacokinetic drug resistance. Crit Rev Oncol Hematol 2019; 141:153-162. [PMID: 31302407 DOI: 10.1016/j.critrevonc.2019.06.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 06/08/2019] [Accepted: 06/13/2019] [Indexed: 12/27/2022] Open
Abstract
Failure of systemic cancer treatment can be, at least in part, due to the drug not being delivered to the tumour at sufficiently high concentration and/or sufficiently homogeneous distribution; this is termed as "pharmacokinetic drug resistance". To understand whether a drug is being adequately delivered to the tumour, "precision pharmacology" techniques are needed. Mass spectrometry imaging (MSI) is a relatively new and complex technique that allows imaging of drug distribution within tissues. In this review we address the applicability of MSI to the study of cancer drug distribution from the bench to the bedside. We address: (i) the role of MSI in pre-clinical studies to characterize anti-cancer drug distribution within the body and the tumour, (ii) the application of MSI in pre-clinical studies to define optimal drug dose or schedule, combinations or new drug delivery systems, and finally (iii) the emerging role of MSI in clinical research.
Collapse
|
7
|
Song X, He J, Li C, Sun C, Pang X, Zhang J, Zang Q, Luo Z, Li X, Zhang R, Abliz Z. Fabrication of homogenous three-dimensional biomimetic tissue for mass spectrometry imaging. JOURNAL OF MASS SPECTROMETRY : JMS 2019; 54:378-388. [PMID: 30742348 DOI: 10.1002/jms.4342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 01/26/2019] [Accepted: 02/06/2019] [Indexed: 06/09/2023]
Abstract
Reference samples are essential for mass spectrometric method optimization, data quality control, and target analyte quantitation. However, it is highly challenging to prepare an ideal homogeneous, standard-spiked tissue sample for mass spectrometry imaging (MSI) research. Herein, we present a standard-spiked 3D biomimetic tissue model fabricated with native cells, homogenate matrix, and biocompatible polymer. Unlike traditional homogenized tissue surrogates or those constructed with "on-tissue" or "under-tissue" micropipetting strategies, this simulated tissue shares both structural integrity of cells and homogeneous properties of matrix. As a result, analyte standards could undergo more in-depth incorporation and has a more comparable native status with a real tissue. Series of tissue sections made from the 3D tissue model were proven to be feasible and useful for the parameter optimization, analyte quantitation, and calibration curve fitting for the air-flow assisted desorption electrospray ionization MSI. Additionally, by analyzing the quality control model sections, we proposed a median principal component score calibration and demonstrated that this method can normalize instrumental fluctuations to stable levels in a large-scale untargeted MSI experiments for the reliable metabolomic biomarker discovery. Thus, these results indicated that the standard-spiked 3D biomimetic tissue has convincing significance in MSI analysis.
Collapse
Affiliation(s)
- Xiaowei Song
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jiuming He
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Chao Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Chenglong Sun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Xuechao Pang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jin Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Qingce Zang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Zhigang Luo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Xin Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Ruiping Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Zeper Abliz
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Centre for Imaging and Systems Biology, School of Pharmacy, Minzu University of China, Beijing, 100081, China
| |
Collapse
|
8
|
Imaging Mass Microscopy of Kidneys from Azithromycin-Treated Rats with Phospholipidosis. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:1993-2003. [PMID: 29981744 DOI: 10.1016/j.ajpath.2018.05.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 05/11/2018] [Accepted: 05/29/2018] [Indexed: 11/23/2022]
Abstract
Drug-induced phospholipidosis is a lysosomal storage disorder characterized by the excess accumulation of tissue phospholipids. Although azithromycin can be used to induce phospholipidosis, no experimental studies evaluating the relationship between drug accumulation and phospholipid localization have been performed. In this study, azithromycin was orally administered to rats for 7 days, and the relationship between drug and phospholipid accumulation was performed using imaging mass microscopy. The administration of azithromycin induced tubular epithelial vacuolation in the inner stripe of the outer medulla of the kidney, consistent with the lamellar bodies that are typical manifestations of drug-induced phospholipidosis. Azithromycin and phospholipid tissue levels were extensively elevated in the kidneys of azithromycin-treated rats. Imaging mass microscopy revealed that both azithromycin and its metabolites were found in the kidneys of azithromycin-treated rats but not in control animals. The vacuolated areas of the kidneys were primarily found in the inner stripe of the outer medulla, consistent with the areas of high azithromycin concentration. Azithromycin was colocalized with several phospholipids-phosphatidylinositol (18:0/20:4), phosphatidylethanolamine (18:0/20:4 and 16:0/20:4), and possibly didocosahexaenoyl (C22:6)-bis(monoacylglycerol) phosphate, a putative biomarker of drug-induced phospholipidosis. In summary, we found correlations between regions of kidney damage and the accumulation of azithromycin, its metabolites, and phospholipids using imaging mass microscopy. Such analyses may help reveal the mechanism and identify putative biomarkers of drug-induced phospholipidosis.
Collapse
|
9
|
Speck U, Häckel A, Schellenberger E, Kamann S, Löchel M, Clever YP, Peters D, Scheller B, Trog S, Bettink S. Drug Distribution and Basic Pharmacology of Paclitaxel/Resveratrol-Coated Balloon Catheters. Cardiovasc Intervent Radiol 2018; 41:1599-1610. [PMID: 29968090 PMCID: PMC6132862 DOI: 10.1007/s00270-018-2018-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/20/2018] [Indexed: 11/16/2022]
Abstract
Purpose To experimentally investigate a new homogenously paclitaxel/resveratrol-coated balloon catheter in terms of transport of the coating to the treated tissue and local effects including histology and functional tests. Methods Adherence of the coating to the balloon was explored by in vitro simulation of its passage to the lesion. Paclitaxel and resveratrol transfer to the vessel wall was investigated in porcine coronary and peripheral arteries. Matrix-assisted laser desorption/ionization (MALDI) was used for direct microscopic visualization of paclitaxel in arterial tissue. Inhibition of neointimal proliferation and tolerance of complete coating and resveratrol-only coating was investigated in pigs 4 weeks after treatment, and the effect of resveratrol on inflammation and healing after 3 and 7 days. Results Drug loss on the way to the lesion was < 10% of dose, while 65 ± 13% was detected at the site of balloon inflation. After treatment similar proportions of drug were detected in coronary and peripheral arteries, i.e., 7.4 ± 4.6% of dose or 125 ± 74 ng/mg tissue. MALDI showed circumferential deposition. Inhibition of neointimal proliferation by paclitaxel/resveratrol coating was significant (p = 0.001) whereas resveratrol-only coating did not inhibit neointimal proliferation. During the first week after treatment of peripheral arteries with resveratrol-only balloons, we observed nominally less inflammation and fibrin deposition along with a significant macrophage reduction and more pronounced re-endothelialization. No safety issues emerged including left ventricular ejection fraction for detection of potential distal embolization after high-dose treatment of coronary arteries. Conclusions Paclitaxel/resveratrol-coated balloons were effective and safe in animal studies. Beyond acting as excipient resveratrol may contribute to vascular healing.
Collapse
Affiliation(s)
- Ulrich Speck
- Department of Radiology, Experimental Radiology, Charité, 10098, Berlin, Germany.
| | - Akvile Häckel
- Department of Radiology, Experimental Radiology, Charité, 10098, Berlin, Germany
| | - Eyk Schellenberger
- Department of Radiology, Experimental Radiology, Charité, 10098, Berlin, Germany
| | - Stefanie Kamann
- Department of Radiology, Experimental Radiology, Charité, 10098, Berlin, Germany
| | | | - Yvonne P Clever
- Clinical and Experimental Interventional Cardiology, University of Saarland, 66421, Homburg, Saarland, Germany
| | | | - Bruno Scheller
- Clinical and Experimental Interventional Cardiology, University of Saarland, 66421, Homburg, Saarland, Germany
| | | | - Stephanie Bettink
- Clinical and Experimental Interventional Cardiology, University of Saarland, 66421, Homburg, Saarland, Germany
| |
Collapse
|
10
|
Qin L, Zhang Y, Liu Y, He H, Han M, Li Y, Zeng M, Wang X. Recent advances in matrix-assisted laser desorption/ionisation mass spectrometry imaging (MALDI-MSI) for in situ analysis of endogenous molecules in plants. PHYTOCHEMICAL ANALYSIS : PCA 2018; 29:351-364. [PMID: 29667236 DOI: 10.1002/pca.2759] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 02/01/2018] [Accepted: 02/04/2018] [Indexed: 05/27/2023]
Abstract
INTRODUCTION Mass spectrometry imaging (MSI) as a label-free and powerful imaging technique enables in situ evaluation of a tissue metabolome and/or proteome, becoming increasingly popular in the detection of plant endogenous molecules. OBJECTIVE The characterisation of structure and spatial information of endogenous molecules in plants are both very important aspects to better understand the physiological mechanism of plant organism. METHODS Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) is a commonly-used tissue imaging technique, which requires matrix to assist in situ detection of a variety of molecules on the surface of a tissue section. In previous studies, MALDI-MSI was mostly used for the detection of molecules from animal tissue sections, compared to plant samples due to cell structural limitations, such as plant cuticles, epicuticular waxes, and cell walls. Despite the enormous progress that has been made in tissue imaging, there is still a challenge for MALDI-MSI suitable for the imaging of endogenous compounds in plants. RESULTS This review summarises the recent advances in MALDI-MSI, focusing on the application of in situ detection of endogenous molecules in different plant organs, i.e. root, stem, leaf, flower, fruit, and seed. CONCLUSION Further improvements on instrumentation sensitivity, matrix selection, image processing and sample preparation will expand the application of MALDI-MSI in plant research.
Collapse
Affiliation(s)
- Liang Qin
- Centre for Imaging & Systems Biology, Minzu University of China, Beijing, P. R. China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, P. R. China
| | - Yawen Zhang
- Centre for Imaging & Systems Biology, Minzu University of China, Beijing, P. R. China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, P. R. China
| | - Yaqin Liu
- Centre for Imaging & Systems Biology, Minzu University of China, Beijing, P. R. China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, P. R. China
| | - Huixin He
- Centre for Imaging & Systems Biology, Minzu University of China, Beijing, P. R. China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, P. R. China
| | - Manman Han
- Centre for Imaging & Systems Biology, Minzu University of China, Beijing, P. R. China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, P. R. China
| | - Yanyan Li
- The Hospital of Minzu University of China, Minzu University of China, Beijing, P. R. China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- Collaborative Innovation Centre of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, P. R. China
| | - Xiaodong Wang
- Centre for Imaging & Systems Biology, Minzu University of China, Beijing, P. R. China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, P. R. China
| |
Collapse
|
11
|
Fujimura Y, Miura D, Tachibana H. A Phytochemical-Sensing Strategy Based on Mass Spectrometry Imaging and Metabolic Profiling for Understanding the Functionality of the Medicinal Herb Green Tea. Molecules 2017; 22:molecules22101621. [PMID: 28953237 PMCID: PMC6151411 DOI: 10.3390/molecules22101621] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 09/25/2017] [Accepted: 09/25/2017] [Indexed: 11/25/2022] Open
Abstract
Low-molecular-weight phytochemicals have health benefits and reduce the risk of diseases, but the mechanisms underlying their activities have remained elusive because of the lack of a methodology that can easily visualize the exact behavior of such small molecules. Recently, we developed an in situ label-free imaging technique, called mass spectrometry imaging, for visualizing spatially-resolved biotransformations based on simultaneous mapping of the major bioactive green tea polyphenol and its phase II metabolites. In addition, we established a mass spectrometry-based metabolic profiling technique capable of evaluating the bioactivities of diverse green tea extracts, which contain multiple phytochemicals, by focusing on their compositional balances. This methodology allowed us to simultaneously evaluate the relative contributions of the multiple compounds present in a multicomponent system to its bioactivity. This review highlights small molecule-sensing techniques for visualizing the complex behaviors of herbal components and linking such information to an enhanced understanding of the functionalities of multicomponent medicinal herbs.
Collapse
Affiliation(s)
- Yoshinori Fujimura
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan.
| | - Daisuke Miura
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan.
| | - Hirofumi Tachibana
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan.
| |
Collapse
|
12
|
Yasunaga M, Manabe S, Tsuji A, Furuta M, Ogata K, Koga Y, Saga T, Matsumura Y. Development of Antibody-Drug Conjugates Using DDS and Molecular Imaging. Bioengineering (Basel) 2017; 4:bioengineering4030078. [PMID: 28952557 PMCID: PMC5615324 DOI: 10.3390/bioengineering4030078] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/13/2017] [Accepted: 09/14/2017] [Indexed: 12/04/2022] Open
Abstract
Antibody-drug conjugate (ADC), as a next generation of antibody therapeutics, is a combination of an antibody and a drug connected via a specialized linker. ADC has four action steps: systemic circulation, the enhanced permeability and retention (EPR) effect, penetration within the tumor tissue, and action on cells, such as through drug delivery system (DDS) drugs. An antibody with a size of about 10 nm has the same capacity for passive targeting as some DDS carriers, depending on the EPR effect. In addition, some antibodies are capable of active targeting. A linker is stable in the bloodstream but should release drugs efficiently in the tumor cells or their microenvironment. Thus, the linker technology is actually a typical controlled release technology in DDS. Here, we focused on molecular imaging. Fluorescent and positron emission tomography (PET) imaging is useful for the visualization and evaluation of antibody delivery in terms of passive and active targeting in the systemic circulation and in tumors. To evaluate the controlled release of the ADC in the targeted area, a mass spectrometry imaging (MSI) with a mass microscope, to visualize the drug released from ADC, was used. As a result, we succeeded in confirming the significant anti-tumor activity of anti-fibrin, or anti-tissue factor-ADC, in preclinical settings by using DDS and molecular imaging.
Collapse
Affiliation(s)
- Masahiro Yasunaga
- Division of Developmental Therapeutics, EPOC, National Cancer Center, Kashiwa 277-8577, Japan.
| | - Shino Manabe
- Synthetic Cellular Chemistry Laboratory, RIKEN, Wako 351-0198, Japan.
| | - Atsushi Tsuji
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, QST, Chiba 263-8555, Japan; .
| | | | | | - Yoshikatsu Koga
- Division of Developmental Therapeutics, EPOC, National Cancer Center, Kashiwa 277-8577, Japan.
| | - Tsuneo Saga
- Department of Diagnostic Radiology, Kyoto University Hospital; Kyoto 606-8501, Japan.
| | - Yasuhiro Matsumura
- Division of Developmental Therapeutics, EPOC, National Cancer Center, Kashiwa 277-8577, Japan.
| |
Collapse
|
13
|
Bartelink IH, Prideaux B, Krings G, Wilmes L, Lee PRE, Bo P, Hann B, Coppé JP, Heditsian D, Swigart-Brown L, Jones EF, Magnitsky S, Keizer RJ, de Vries N, Rosing H, Pawlowska N, Thomas S, Dhawan M, Aggarwal R, Munster PN, Esserman LJ, Ruan W, Wu AHB, Yee D, Dartois V, Savic RM, Wolf DM, van ’t Veer L. Heterogeneous drug penetrance of veliparib and carboplatin measured in triple negative breast tumors. Breast Cancer Res 2017; 19:107. [PMID: 28893315 PMCID: PMC5594551 DOI: 10.1186/s13058-017-0896-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 08/14/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Poly(ADP-ribose) polymerase inhibitors (PARPi), coupled to a DNA damaging agent is a promising approach to treating triple negative breast cancer (TNBC). However, not all patients respond; we hypothesize that non-response in some patients may be due to insufficient drug penetration. As a first step to testing this hypothesis, we quantified and visualized veliparib and carboplatin penetration in mouse xenograft TNBCs and patient blood samples. METHODS MDA-MB-231, HCC70 or MDA-MB-436 human TNBC cells were implanted in 41 beige SCID mice. Low dose (20 mg/kg) or high dose (60 mg/kg) veliparib was given three times daily for three days, with carboplatin (60 mg/kg) administered twice. In addition, blood samples were analyzed from 19 patients from a phase 1 study of carboplatin + PARPi talazoparib. Veliparib and carboplatin was quantified using liquid chromatography-mass spectrometry (LC-MS). Veliparib tissue penetration was visualized using matrix-assisted laser desorption/ionization mass spectrometric imaging (MALDI-MSI) and platinum adducts (covalent nuclear DNA-binding) were quantified using inductively coupled plasma-mass spectrometry (ICP-MS). Pharmacokinetic modeling and Pearson's correlation were used to explore associations between concentrations in plasma, tumor cells and peripheral blood mononuclear cells (PBMCs). RESULTS Veliparib penetration in xenograft tumors was highly heterogeneous between and within tumors. Only 35% (CI 95% 26-44%), 74% (40-97%) and 46% (9-37%) of veliparib observed in plasma penetrated into MDA-MB-231, HCC70 and MDA-MB-436 cell-based xenografts, respectively. Within tumors, penetration heterogeneity was larger with the 60 mg/kg compared to the 20 mg/kg dose (RSD 155% versus 255%, P = 0.001). These tumor concentrations were predicted similar to clinical dosing levels, but predicted tumor concentrations were below half maximal concentration values as threshold of response. Xenograft veliparib concentrations correlated positively with platinum adduct formation (R 2 = 0.657), but no PARPi-platinum interaction was observed in patients' PBMCs. Platinum adduct formation was significantly higher in five gBRCA carriers (ratio of platinum in DNA in PBMCs/plasma 0.64% (IQR 0.60-1.16%) compared to nine non-carriers (ratio 0.29% (IQR 0.21-0.66%, P < 0.0001). CONCLUSIONS PARPi/platinum tumor penetration can be measured by MALDI-MSI and ICP-MS in PBMCs and fresh frozen, OCT embedded core needle biopsies. Large variability in platinum adduct formation and spatial heterogeneity in veliparib distribution may lead to insufficient drug exposure in select cell populations.
Collapse
Affiliation(s)
- Imke H. Bartelink
- Department of Medicine, University of California San Francisco, 2340 Sutter Street, San Francisco, CA 9411 USA
| | - Brendan Prideaux
- Rutgers New Jersey Medical School, Public Health Research Institute, Rutgers, The State University of New Jersey, 225 Warren Ave, Newark, NJ USA
| | - Gregor Krings
- Department of Pathology, University of California, San Francisco, CA USA
| | - Lisa Wilmes
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA USA
| | - Pei Rong Evelyn Lee
- Department of Laboratory Medicine, UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA USA
| | - Pan Bo
- Department of Laboratory Medicine, UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA USA
| | - Byron Hann
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA USA
| | - Jean-Philippe Coppé
- Department of Laboratory Medicine, UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA USA
| | - Diane Heditsian
- Patient advocate University of California, San Francisco Breast Science Advocacy Core, San Francisco, CA USA
| | - Lamorna Swigart-Brown
- Department of Laboratory Medicine, UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA USA
| | - Ella F. Jones
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA USA
| | - Sergey Magnitsky
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA USA
| | - Ron J Keizer
- Department of Bioengineering & Therapeutic Sciences, University of California San Francisco, San Francisco, USA
| | - Niels de Vries
- Department of Clinical Pharmacy, Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, NKI-AVL, Amsterdam, The Netherlands
| | - Hilde Rosing
- Department of Clinical Pharmacy, Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, NKI-AVL, Amsterdam, The Netherlands
| | - Nela Pawlowska
- Department of Medicine, University of California San Francisco, 2340 Sutter Street, San Francisco, CA 9411 USA
| | - Scott Thomas
- Department of Medicine, University of California San Francisco, 2340 Sutter Street, San Francisco, CA 9411 USA
| | - Mallika Dhawan
- Department of Medicine, University of California San Francisco, 2340 Sutter Street, San Francisco, CA 9411 USA
| | - Rahul Aggarwal
- Department of Medicine, University of California San Francisco, 2340 Sutter Street, San Francisco, CA 9411 USA
| | - Pamela N. Munster
- Department of Medicine, University of California San Francisco, 2340 Sutter Street, San Francisco, CA 9411 USA
| | - Laura J. Esserman
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA USA
| | - Weiming Ruan
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA USA
| | - Alan H. B. Wu
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA USA
| | - Douglas Yee
- Division of Hematology Oncology, University of Minnesota, Minneapolis, MN USA
| | - Véronique Dartois
- Rutgers New Jersey Medical School, Public Health Research Institute, Rutgers, The State University of New Jersey, 225 Warren Ave, Newark, NJ USA
| | - Radojka M. Savic
- Department of Bioengineering & Therapeutic Sciences, University of California San Francisco, San Francisco, USA
| | - Denise M. Wolf
- Department of Laboratory Medicine, UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA USA
| | - Laura van ’t Veer
- Department of Laboratory Medicine, UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA USA
| |
Collapse
|
14
|
Yasunaga M, Manabe S, Tsuji A, Furuta M, Ogata K, Koga Y, Fujiwara Y, Saga T, Matsumura Y. Development of ADCs Using Molecular Imaging. YAKUGAKU ZASSHI 2017; 137:535-544. [PMID: 28458285 DOI: 10.1248/yakushi.16-00255-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Antibody-drug conjugates (ADCs) comprise an antibody, a linker, and a drug or payload. The selection of a tumor-specific antibody and development of a linker having an efficient controlled drug release (CDR) are critical steps in developing a fully functional and effective ADC. In our research strategy, molecular imaging technologies have been employed to evaluate the efficiency of antibody delivery and CDR of the linker. In preclinical setting, antibody delivery into the tumor area or antibody penetration through the tumor stroma in malignant lymphoma or pancreatic tumor was evaluated by in vivo fluorescence imaging technique. Positron emission tomography (PET) imaging studies were conducted using 89Zr-labeled antibody to evaluate tumor targeting in a spontaneous carcinogenesis model. The model had dense stroma and was pathophysiologically very similar to human cancer. The drug imaging system, using microscopic mass spectroscopy (MMS) with enhanced resolution and sensitivity, was used for the evaluation of CDR. Paclitaxel (PTX)-incorporated micelle, a high-molecular-weight (HMW) carrier with CDR, showing similar properties as those of ADC, was analyzed. In contrast to free PTX, micelle selectively increased drug accumulation into the tumor and reduced toxicity in normal tissues by the enhanced permeability and retention (EPR) effect. Our drug imaging system has been used recently to evaluate the CDR of the ADC-linker. We present our work on the development of ADC using a molecular imaging technique.
Collapse
Affiliation(s)
- Masahiro Yasunaga
- Division of Developmental Therapeutics, EPOC, National Cancer Center
| | | | - Atsushi Tsuji
- Diagnostic Imaging Program, Molecular Imaging Center, National Institute of Radiological Sciences
| | | | | | - Yoshikatsu Koga
- Division of Developmental Therapeutics, EPOC, National Cancer Center
| | - Yuki Fujiwara
- Division of Developmental Therapeutics, EPOC, National Cancer Center
| | - Tsuneo Saga
- Diagnostic Imaging Program, Molecular Imaging Center, National Institute of Radiological Sciences
| | | |
Collapse
|
15
|
Abstract
Over the last decade mass spectrometry imaging (MSI) has been integrated in to many areas of drug discovery and development. It can have significant impact in oncology drug discovery as it allows efficacy and safety of compounds to be assessed against the backdrop of the complex tumour microenvironment. We will discuss the roles of MSI in investigating compound and metabolite biodistribution and defining pharmacokinetic -pharmacodynamic relationships, analysis that is applicable to all drug discovery projects. We will then look more specifically at how MSI can be used to understand tumour metabolism and other applications specific to oncology research. This will all be described alongside the challenges of applying MSI to industry research with increased use of metrology for MSI.
Collapse
|
16
|
Abstract
Drug analysis represents a large field in different disciplines. Plasma is commonly considered to be the biosample of choice for that purpose. However, concentrations often do not represent the levels present within deeper compartments and therefore cannot sufficiently explain efficacy or toxicology of drugs. MALDI-MS in drug analysis is of great interest for high-throughput quantification and particularly spatially resolved tissue imaging. The current perspective article will deal with challenges and opportunities of MALDI-MS drug analysis in different biological samples. A particular focus will be on hair samples. Recent applications were included, reviewed for their instrumental setup and sample preparation and pros and cons as well as future perspectives are critically discussed.
Collapse
|
17
|
Imaging mass spectrometry for the precise design of antibody-drug conjugates. Sci Rep 2016; 6:24954. [PMID: 27098163 PMCID: PMC4838941 DOI: 10.1038/srep24954] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 04/07/2016] [Indexed: 01/25/2023] Open
Abstract
Antibody-drug conjugates (ADCs) are a class of immunotherapeutic agents that enable the delivery of cytotoxic drugs to target malignant cells. Because various cancers and tumour vascular endothelia strongly express anti-human tissue factor (TF), we prepared ADCs consisting of a TF-specific monoclonal antibody (mAb) linked to the anticancer agent (ACA) monomethyl auristatin E (MMAE) via a valine-citrulline (Val-Cit) linker (human TF ADC). Identifying the most efficient drug design in advance is difficult because ADCs have complicated structures. The best method of assessing ADCs is to examine their selectivity and efficiency in releasing and distributing the ACA within tumour tissue. Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS) can be used to directly detect the distributions of native molecules within tumour tissues. Here, MALDI-IMS enabled the identification of the intratumour distribution of MMAE released from the ADC. In conclusion, MALDI-IMS is a useful tool to assess ADCs and facilitate the optimization of ADC design.
Collapse
|
18
|
Abstract
During the last decade, lateral and temporal localization of drug compounds and their metabolites have been demonstrated and dynamically developed using MS imaging. The pharmaceutical industry has recognized the potential of the technology that provides simultaneous distribution and quantitative data. In this review, we present the latest technological achievements and summarize applications of drug imaging focusing on studies about metabolites by MALDI-MS imaging. We also introduce potential areas with pharmaceutical applications that are currently under exploration, including pharmacological, toxicological characterizations and metabolic enzyme localization in comparison with drug and metabolite distribution.
Collapse
|
19
|
Ogata K, Furuta M. Visualization of Drug Distribution by Imaging Mass Microscope. J SYN ORG CHEM JPN 2016. [DOI: 10.5059/yukigoseikyokaishi.74.995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
20
|
Goto T, Terada N, Inoue T, Kobayashi T, Nakayama K, Okada Y, Yoshikawa T, Miyazaki Y, Uegaki M, Utsunomiya N, Makino Y, Sumiyoshi S, Yamasaki T, Kamba T, Ogawa O. Decreased expression of lysophosphatidylcholine (16:0/OH) in high resolution imaging mass spectrometry independently predicts biochemical recurrence after surgical treatment for prostate cancer. Prostate 2015; 75:1821-30. [PMID: 26332786 DOI: 10.1002/pros.23088] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 08/18/2015] [Indexed: 12/31/2022]
Abstract
BACKGROUND Human prostate cancers are highly heterogeneous, indicating a need for various novel biomarkers to predict their prognosis. Lipid metabolism affects numerous cellular processes, including cell growth, proliferation, differentiation, and motility. Direct profiling of lipids in tissue using high-resolution matrix-assisted laser desorption/ionization imaging mass spectrometry (HR-MALDI-IMS) may provide molecular details that supplement tissue morphology. METHODS Prostate tissue samples were obtained from 31 patients, with localized prostate cancer who underwent radical prostatectomy. The samples were assessed by HR-MALDI-IMS in positive mode, with the molecules identified by tandem mass spectrometry (MS/MS). The effect of identified molecules on prostate specific antigen recurrence free survival after radical prostatectomy was determined by Cox regression analysis and by the Kaplan-Meier method. RESULTS Thirteen molecules were found to be highly expressed in prostate tissue, with five being significantly lower in cancer tissue than in benign epithelium. MS/MS showed that these molecules were [lysophosphatidylcholine (LPC)(16:0/OH)+H](+), [LPC(16:0/OH)+Na](+), [LPC(16:0/OH)+K](+), [LPC(16:0/OH)+matrix+H](+), and [sphingomyelin (SM)(d18:1/16:0)+H](+). Reduced expression of LPC(16:0/OH) in cancer tissue was an independent predictor of biochemical recurrence after radical prostatectomy. CONCLUSIONS HR-MALDI-IMS showed that the expression of LPC(16:0/OH) and SM(d18:1/16:0) was lower in prostate cancer than in benign prostate epithelium. These differences in expression of phospholipids may predict prostate cancer aggressiveness, and provide new insights into lipid metabolism in prostate cancer.
Collapse
Affiliation(s)
- Takayuki Goto
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Naoki Terada
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takahiro Inoue
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takashi Kobayashi
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kenji Nakayama
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshiyuki Okada
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takeshi Yoshikawa
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yu Miyazaki
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masayuki Uegaki
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Noriaki Utsunomiya
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuki Makino
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shinji Sumiyoshi
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Toshinari Yamasaki
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomomi Kamba
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Osamu Ogawa
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
21
|
|
22
|
Sakai-Kato K, Nishiyama N, Kozaki M, Nakanishi T, Matsuda Y, Hirano M, Hanada H, Hisada S, Onodera H, Harashima H, Matsumura Y, Kataoka K, Goda Y, Okuda H, Kawanishi T. General considerations regarding the in vitro and in vivo properties of block copolymer micelle products and their evaluation. J Control Release 2015; 210:76-83. [PMID: 25979322 DOI: 10.1016/j.jconrel.2015.05.259] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 05/06/2015] [Indexed: 12/26/2022]
Abstract
Block copolymer micelles are nanoparticles formed from block copolymers that comprise a hydrophilic polymer such as poly(ethylene glycol) and a poorly soluble polymer such as poly(amino acids). The design of block copolymer micelles is intended to regulate the in vivo pharmacokinetics, stability, and distribution profiles of an entrapped or block copolymer-linked active substance. Several block copolymer micelle products are currently undergoing clinical development; however, a major challenge in the development and evaluation of such products is identification of the physicochemical properties that affect the properties of the drug product in vivo. Here we review the overall in vitro and in vivo characteristics of block copolymer micelle products with a focus on the products currently under clinical investigation. We present examples of methods suitable for the evaluation of the physicochemical properties, non-clinical pharmacokinetics, and safety of block copolymer micelle products.
Collapse
Affiliation(s)
- Kumiko Sakai-Kato
- National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan.
| | - Nobuhiro Nishiyama
- Polymer Chemistry Division, Chemical Resources Laboratory, Tokyo Institute of Technology, R1-11, 4259 Nagatsuda, Midori, Yokohama 226-8503, Japan
| | - Masato Kozaki
- Kowa Co., Ltd., 332-1, Ohnoshinden, Fuji-shi, Shizuoka 417-8650, Japan
| | - Takeshi Nakanishi
- Nippon Kayaku Co., Ltd., 3-31-12 Shimo, Kita-ku, Tokyo 115-8588, Japan
| | - Yoshihiro Matsuda
- Pharmaceuticals and Medical Devices Agency, 3-3-2 Kasumigaseki, Chiyoda-ku, Tokyo 100-0013, Japan
| | - Mai Hirano
- Pharmaceuticals and Medical Devices Agency, 3-3-2 Kasumigaseki, Chiyoda-ku, Tokyo 100-0013, Japan
| | - Hiroyuki Hanada
- NanoCarrier Co., Ltd., Chuou 144-15, 226-39 Wakashiba, Kashiwa, Chiba 277-0871, Japan
| | - Shigeru Hisada
- ASKA Pharmaceutical Co., Ltd., 5-36-1 Shimosakunobe, Takatsu-ku, Kawasaki, Kanagawa 213-8522, Japan
| | - Hiroshi Onodera
- Pharmaceuticals and Medical Devices Agency, 3-3-2 Kasumigaseki, Chiyoda-ku, Tokyo 100-0013, Japan
| | - Hideyoshi Harashima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Yasuhiro Matsumura
- Division of Developmental Therapeutics, Research Center for Innovative Oncology, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba 277-8577, Japan
| | - Kazunori Kataoka
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan; Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Yukihiro Goda
- National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Haruhiro Okuda
- National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Toru Kawanishi
- National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| |
Collapse
|
23
|
In situ drug and metabolite analysis [corrected] in biological and clinical research by MALDI MS imaging. Bioanalysis 2015; 6:1241-53. [PMID: 24946924 DOI: 10.4155/bio.14.88] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In recent years the analysis in mass spectrometry (MS) [corrected] imaging has been expanded to detect a wide variety of low molecular weight compounds (LMWC), including exogenous and endogenous compounds. The high sensitivity and selectivity of MS imaging combined with visualization of molecular spatial distribution in tissues, makes it a valuable [corrected] platform in targeted drug and untargeted metabolomic analysis [corrected] in biological and clinical research. Here, we review the current and potential applications of MALDI MS imaging in these areas. The aim of advancing MALDI MS imaging in the field of LMWC is to support clinical applications by understanding drug and drug-metabolite distribution, investigating toxicity and discovering [corrected] new biomarkers.
Collapse
|
24
|
Sosnowski P, Zera T, Wilenska B, Szczepanska-Sadowska E, Misicka A. Imaging and identification of endogenous peptides from rat pituitary embedded in egg yolk. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2015; 29:327-335. [PMID: 26406344 DOI: 10.1002/rcm.7112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 11/27/2014] [Accepted: 11/30/2014] [Indexed: 06/05/2023]
Abstract
RATIONALE Mass spectrometry imaging (MSI) can provide accurate data containing the spatial distribution of endogenous peptides in tissue sections without previous treatment. One of the key issues in analyzing small samples is establishing a proper technique for mounting and manipulating collected tissue in order to avoid contamination of the sample with optimal cutting temperature (OCT) resin. METHODS We present a method for embedding rat pituitary tissue in a frozen egg yolk block, which enables its further imaging in experiments on a matrix-assisted laser desorption/ionization (MALDI) mass spectrometer with time-of-flight (TOF) analyzer. Embedding the sample in the egg yolk prevents contamination from the OCT resin, which decreases MALDI signal quality. RESULTS In the present study we detected numerous m/z peaks related to endogenous peptides. We identified fifteen peptides and their post-translational modifications by tandem mass spectrometry (MS/MS) directly on tissue sections of the hypophysis posterior and intermediate lobes; among these peptides were vasopressin, oxytocin, copeptin, melanocyte-stimulating hormones and beta-endorphin. We also showed that egg yolk itself does not affect localization of peptides in the pituitary. CONCLUSIONS Egg yolk embedding enables preparation of tissue sections from small tissue fragments to organs such as the pituitary gland, which is suitable for localization and identification of endogenous peptides by the MALDI-MSI and MALDI-MS/MS techniques.
Collapse
Affiliation(s)
- Piotr Sosnowski
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | - Tymoteusz Zera
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, The Medical University of Warsaw, Banacha 1B, 02-097, Warsaw, Poland
| | - Beata Wilenska
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | - Ewa Szczepanska-Sadowska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, The Medical University of Warsaw, Banacha 1B, 02-097, Warsaw, Poland
| | - Aleksandra Misicka
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
- Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawinskiego 5, 02-106, Warsaw, Poland
| |
Collapse
|
25
|
Nilsson A, Goodwin RJA, Shariatgorji M, Vallianatou T, Webborn PJH, Andrén PE. Mass Spectrometry Imaging in Drug Development. Anal Chem 2015; 87:1437-55. [DOI: 10.1021/ac504734s] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Anna Nilsson
- Biomolecular
Imaging and Proteomics, National Center for Mass Spectrometry Imaging,
Department of Pharmaceutical Biosciences, Uppsala University, P.O. Box 591 BMC, 75124 Uppsala, Sweden
| | - Richard J. A. Goodwin
- Drug Safety & Metabolism, Innovative Medicines, AstraZeneca, Darwin Building 310, Cambridge Science Park, Milton Road, Cambridge, Cambridgeshire CB4 OWG, U.K
| | - Mohammadreza Shariatgorji
- Biomolecular
Imaging and Proteomics, National Center for Mass Spectrometry Imaging,
Department of Pharmaceutical Biosciences, Uppsala University, P.O. Box 591 BMC, 75124 Uppsala, Sweden
| | - Theodosia Vallianatou
- Biomolecular
Imaging and Proteomics, National Center for Mass Spectrometry Imaging,
Department of Pharmaceutical Biosciences, Uppsala University, P.O. Box 591 BMC, 75124 Uppsala, Sweden
| | - Peter J. H. Webborn
- Drug Safety & Metabolism, Innovative Medicines, AstraZeneca, Darwin Building 310, Cambridge Science Park, Milton Road, Cambridge, Cambridgeshire CB4 OWG, U.K
| | - Per E. Andrén
- Biomolecular
Imaging and Proteomics, National Center for Mass Spectrometry Imaging,
Department of Pharmaceutical Biosciences, Uppsala University, P.O. Box 591 BMC, 75124 Uppsala, Sweden
| |
Collapse
|
26
|
Fujimura Y. Small molecule-sensing strategy and techniques for understanding the functionality of green tea. Biosci Biotechnol Biochem 2015; 79:687-99. [PMID: 25561325 DOI: 10.1080/09168451.2014.996205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Various low-molecular-weight phytochemicals in green tea (Camellia sinensis L.), especially (-)-epigallocatechin-3-O-gallate (EGCG), are known to be involved in health promotion and disease risk reduction. However, the underlying mechanism has remained elusive because of the absence of an analytical technique that can easily detect the precise behavior of such a small molecule. Recently, we have identified a cell-surface EGCG-sensing receptor and the related signaling molecules that control the physiological functions of EGCG. We also developed a novel in situ label-free imaging technique for visualizing spatially resolved biotransformations based on simultaneous mapping of EGCG and its phase II metabolites. Furthermore, we established a chemometric method capable of evaluating the functionality of multicomponent green tea extracts by focusing on their compositional balances. This review highlights our proposed small molecule-sensing techniques for detecting the complex behavior of green tea components and linking such information to an enhanced understanding of green tea functionality.
Collapse
Affiliation(s)
- Yoshinori Fujimura
- a Innovation Center for Medical Redox Navigation , Kyushu University , Fukuoka , Japan
| |
Collapse
|
27
|
Quantitative detection of drug dose and spatial distribution in the lung revealed by Cryoslicing Imaging. J Pharm Biomed Anal 2015; 102:129-36. [DOI: 10.1016/j.jpba.2014.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 08/06/2014] [Accepted: 09/01/2014] [Indexed: 12/21/2022]
|
28
|
Kriegsmann J, Kriegsmann M, Casadonte R. MALDI TOF imaging mass spectrometry in clinical pathology: a valuable tool for cancer diagnostics (review). Int J Oncol 2014; 46:893-906. [PMID: 25482502 DOI: 10.3892/ijo.2014.2788] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 11/04/2014] [Indexed: 11/06/2022] Open
Abstract
Matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) imaging mass spectrometry (IMS) is an evolving technique in cancer diagnostics and combines the advantages of mass spectrometry (proteomics), detection of numerous molecules, and spatial resolution in histological tissue sections and cytological preparations. This method allows the detection of proteins, peptides, lipids, carbohydrates or glycoconjugates and small molecules.Formalin-fixed paraffin-embedded tissue can also be investigated by IMS, thus, this method seems to be an ideal tool for cancer diagnostics and biomarker discovery. It may add information to the identification of tumor margins and tumor heterogeneity. The technique allows tumor typing, especially identification of the tumor of origin in metastatic tissue, as well as grading and may provide prognostic information. IMS is a valuable method for the identification of biomarkers and can complement histology, immunohistology and molecular pathology in various fields of histopathological diagnostics, especially with regard to identification and grading of tumors.
Collapse
Affiliation(s)
- Jörg Kriegsmann
- MVZ for Histology, Cytology and Molecular Diagnostics, Trier, Germany
| | - Mark Kriegsmann
- Institute for Pathology, University of Heidelberg, Heidelberg, Germany
| | | |
Collapse
|
29
|
Distribution and quantification of irinotecan and its active metabolite SN-38 in colon cancer murine model systems using MALDI MSI. Anal Bioanal Chem 2014; 407:2107-16. [PMID: 25311193 DOI: 10.1007/s00216-014-8237-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 09/24/2014] [Accepted: 10/02/2014] [Indexed: 10/24/2022]
Abstract
Tissue distribution and quantitative analysis of small molecules is a key to assess the mechanism of drug action and evaluate treatment efficacy. The prodrug irinotecan (CPT-11) is widely used for chemotherapeutic treatment of colorectal cancer. CPT-11 requires conversion into its active metabolite SN-38 to exert the desired pharmacological effect. MALDI-Fourier transform ion cyclotron resonance (FT-ICR) and MALDI-time-of-flight (TOF) mass spectrometry imaging (MSI) were performed for detection of CPT-11 and SN-38 in tissue sections from mice post CPT-11 injection. In-depth information was gained about the distribution and quantity of drug compounds in normal and tumor tissue. The prodrug was metabolized, as proven by the detection of SN-38 in liver, kidney and digestive tract. In tumors from genetic mouse models for colorectal cancer (Apc (1638N/wt) x pvillin-Kras (V12G) ), CPT-11 was detected but not the active metabolite. In order to correlate drug distribution relative to vascularization, MALDI data were superimposed with CD31 (PECAM-1) immunohistochemistry. This analysis indicated that intratumoral access of CPT-11 mainly occurred by extravasation from microvessels. The present study exploits the power of MALDI MSI in drug analysis, and presents a novel approach to monitor drug distribution in relation to vessel functionality in preclinical and clinical research.
Collapse
|
30
|
Kim YH, Fujimura Y, Sasaki M, Yang X, Yukihira D, Miura D, Unno Y, Ogata K, Nakajima H, Yamashita S, Nakahara K, Murata M, Lin IC, Wariishi H, Yamada K, Tachibana H. In situ label-free visualization of orally dosed strictinin within mouse kidney by MALDI-MS imaging. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:9279-9285. [PMID: 25195619 DOI: 10.1021/jf503143g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) is a powerful technique for visualizing the distribution of a wide range of biomolecules within tissue sections. However, methodology for visualizing a bioactive ellagitannin has not yet been established. This paper presents a novel in situ label-free MALDI-MSI technique for visualizing the distribution of strictinin, a bioactive ellagitannin found in green tea, within mammalian kidney after oral dosing. Among nine representative matrix candidates, 1,5-diaminonaphthalene (1,5-DAN), harmane, and ferulic acid showed higher sensitivity to strictinin spotted onto a MALDI sample plate. Of these, 1,5-DAN enables visualization of a two-dimensional image of strictinin directly spotted on mouse kidney sections with the highest sensitivity. Furthermore, 1,5-DAN-based MALDI-MSI could detect the unique distribution of orally dosed strictinin within kidney sections. This in situ label-free imaging technique will contribute to the localization analysis of strictinin and its biological mechanisms.
Collapse
Affiliation(s)
- Yoon Hee Kim
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University , 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Ugalde U, Rodriguez-Urra AB. The Mycelium Blueprint: insights into the cues that shape the filamentous fungal colony. Appl Microbiol Biotechnol 2014; 98:8809-19. [PMID: 25172134 DOI: 10.1007/s00253-014-6019-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 08/05/2014] [Accepted: 08/06/2014] [Indexed: 01/15/2023]
Abstract
The mycelium is an organised cellular network that develops according to a functionally coherent plan. As it expands, the mycelium is capable of modulating the relative abundance of different cell types to suit the prevailing environmental conditions. This versatile pattern of multicellular development involves sophisticated environmental sensing and intercellular communication systems that have barely been recognised. This review describes an insight into our current understanding of the signalling molecules and mechanisms that take part in the ordered and timely emergence of various cell types and their biological significance. The prospects that this emerging knowledge may offer for the sustainable control of fungal colonisation or dispersal will also be considered.
Collapse
Affiliation(s)
- Unai Ugalde
- Department of Applied Chemistry, Faculty of Chemistry, University of the Basque Country, Manuel Lardizabal Ibilbidea, 3 20018, Donostia-San Sebastian, Spain,
| | | |
Collapse
|
32
|
Intratumor heterogeneity and its impact on drug distribution and sensitivity. Clin Pharmacol Ther 2014; 96:224-38. [PMID: 24827540 DOI: 10.1038/clpt.2014.105] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 05/07/2014] [Indexed: 01/04/2023]
Abstract
We provide an overview of the available information on the distribution of chemotherapeutics in human tumors, highlighting the progress made to assess the heterogeneity of drug concentrations in relation to the complex neoplastic tissue using novel analytical methods, e.g., mass spectrometry imaging. The increase in interstitial fluid pressure due to abnormal vascularization and stiffness of tumor stroma explains the variable and heterogeneous drug concentrations. Therapeutic strategies to enhance tumor drug distribution, thus possibly increasing efficacy, are discussed.
Collapse
|
33
|
MALDI Mass Spectrometry Imaging for Visualizing In Situ Metabolism of Endogenous Metabolites and Dietary Phytochemicals. Metabolites 2014; 4:319-46. [PMID: 24957029 PMCID: PMC4101509 DOI: 10.3390/metabo4020319] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 04/17/2014] [Accepted: 05/04/2014] [Indexed: 01/28/2023] Open
Abstract
Understanding the spatial distribution of bioactive small molecules is indispensable for elucidating their biological or pharmaceutical roles. Mass spectrometry imaging (MSI) enables determination of the distribution of ionizable molecules present in tissue sections of whole-body or single heterogeneous organ samples by direct ionization and detection. This emerging technique is now widely used for in situ label-free molecular imaging of endogenous or exogenous small molecules. MSI allows the simultaneous visualization of many types of molecules including a parent molecule and its metabolites. Thus, MSI has received much attention as a potential tool for pathological analysis, understanding pharmaceutical mechanisms, and biomarker discovery. On the other hand, several issues regarding the technical limitations of MSI are as of yet still unresolved. In this review, we describe the capabilities of the latest matrix-assisted laser desorption/ionization (MALDI)-MSI technology for visualizing in situ metabolism of endogenous metabolites or dietary phytochemicals (food factors), and also discuss the technical problems and new challenges, including MALDI matrix selection and metabolite identification, that need to be addressed for effective and widespread application of MSI in the diverse fields of biological, biomedical, and nutraceutical (food functionality) research.
Collapse
|
34
|
Abstract
It is expected that the incidence of various adverse effects of anticancer agents maybe decreased owing to the reduced drug distribution in normal tissue. Anticancer agent incorporating nanoparticles including micelles and liposomes can evade non-specific capture by the reticuloendothelial system because the outer shell of the nanoparticles is covered with polyethylene glycol. Consequently, the micellar and liposomal carrier can be delivered selectively to a tumor by utilizing the enhanced permeability and retention effect. Presently, several anticancer agent-incorporating nano-carrier systems are under preclinical and clinical evaluation. Several drug delivery system formulations have been approved worldwide. Regarding a pipeline of clinical development of anticancer agent incorporating micelle carrier system, several clinical trials are now underway not only in Japan but also in other countries. A Phase 3 trial of NK105, a paclitaxel incorporating micelle is now underway. In this paper, preclinical and clinical studies of NK105, NC-6004, cisplatin incorporating micelle, NC-6300, epirubicin incorporating micelle and the concept of cancer stromal targeting therapy using nanoparticles and monoclonal antibodies against cancer related stromal components are reviewed.
Collapse
Affiliation(s)
- Yasuhiro Matsumura
- Division of Developmental Therapeutics, Research Center for Innovative Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| |
Collapse
|
35
|
Goto T, Terada N, Inoue T, Nakayama K, Okada Y, Yoshikawa T, Miyazaki Y, Uegaki M, Sumiyoshi S, Kobayashi T, Kamba T, Yoshimura K, Ogawa O. The expression profile of phosphatidylinositol in high spatial resolution imaging mass spectrometry as a potential biomarker for prostate cancer. PLoS One 2014; 9:e90242. [PMID: 24587297 PMCID: PMC3938652 DOI: 10.1371/journal.pone.0090242] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 01/27/2014] [Indexed: 01/23/2023] Open
Abstract
High-resolution matrix-assisted laser desorption/ionization imaging mass spectrometry (HR-MALDI-IMS) is an emerging application for the comprehensive and detailed analysis of the spatial distribution of ionized molecules in situ on tissue slides. HR-MALDI-IMS in negative mode in a mass range of m/z 500–1000 was performed on optimal cutting temperature (OCT) compound-embedded human prostate tissue samples obtained from patients with prostate cancer at the time of radical prostatectomy. HR-MALDI-IMS analysis of the 14 samples in the discovery set identified 26 molecules as highly expressed in the prostate. Tandem mass spectrometry (MS/MS) showed that these molecules included 14 phosphatidylinositols (PIs), 3 phosphatidylethanolamines (PEs) and 3 phosphatidic acids (PAs). Among the PIs, the expression of PI(18:0/18:1), PI(18:0/20:3) and PI(18:0/20:2) were significantly higher in cancer tissue than in benign epithelium. A biomarker algorithm for prostate cancer was formulated by analyzing the expression profiles of PIs in cancer tissue and benign epithelium of the discovery set using orthogonal partial least squares discriminant analysis (OPLS-DA). The sensitivity and specificity of this algorithm for prostate cancer diagnosis in the 24 validation set samples were 87.5 and 91.7%, respectively. In conclusion, HR-MALDI-IMS identified several PIs as being more highly expressed in prostate cancer than benign prostate epithelium. These differences in PI expression profiles may serve as a novel diagnostic tool for prostate cancer.
Collapse
Affiliation(s)
- Takayuki Goto
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Naoki Terada
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takahiro Inoue
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kenji Nakayama
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshiyuki Okada
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takeshi Yoshikawa
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yu Miyazaki
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masayuki Uegaki
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shinji Sumiyoshi
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Takashi Kobayashi
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomomi Kamba
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koji Yoshimura
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Osamu Ogawa
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- * E-mail:
| |
Collapse
|