1
|
Pourteymour S, Majhi RK, Norheim FA, Drevon CA. Exercise Delays Brain Ageing Through Muscle-Brain Crosstalk. Cell Prolif 2025:e70026. [PMID: 40125692 DOI: 10.1111/cpr.70026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/25/2025] [Accepted: 03/05/2025] [Indexed: 03/25/2025] Open
Abstract
Ageing is often accompanied by cognitive decline and an increased risk of dementia. Exercise is a powerful tool for slowing brain ageing and enhancing cognitive function, as well as alleviating depression, improving sleep, and promoting overall well-being. The connection between exercise and healthy brain ageing is particularly intriguing, with exercise-induced pathways playing key roles. This review explores the link between exercise and brain health, focusing on how skeletal muscle influences the brain through muscle-brain crosstalk. We examine the interaction between the brain with well-known myokines, including brain-derived neurotrophic factor, macrophage colony-stimulating factor, vascular endothelial growth factor and cathepsin B. Neuroinflammation accumulates in the ageing brain and leads to cognitive decline, impaired motor skills and increased susceptibility to neurodegenerative diseases. Finally, we examine the evidence on the effects of exercise on neuronal myelination in the central nervous system, a crucial factor in maintaining brain health throughout the lifespan.
Collapse
Affiliation(s)
- Shirin Pourteymour
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Rakesh Kumar Majhi
- Tissue Restoration Lab, Department of Biological Sciences and Bioengineering, Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, India
- Center of Excellence in Cancer, Gangwal School of Medical Science and Technology, Indian Institute of Technology Kanpur, Kanpur, India
| | - Frode A Norheim
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Christian A Drevon
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
- Vitas Ltd, Oslo, Norway
| |
Collapse
|
2
|
Cherednichenko A, Miró-Padilla A, Adrián-Ventura J, Monzonís-Carda I, Beltran-Valls MR, Moliner-Urdiales D, Ávila C. Physical activity and hippocampal volume in young adults. Brain Imaging Behav 2024; 18:1333-1342. [PMID: 39249711 PMCID: PMC11680645 DOI: 10.1007/s11682-024-00916-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2024] [Indexed: 09/10/2024]
Abstract
Evidence from previous studies suggests that physical activity (PA) may contribute to functional and structural changes in the hippocampus throughout the lifespan. However, there is limited evidence available regarding the young adult population. Additionally, the personality traits that may influence this association remain unclear. With a sample of 84 young adults (43 women; age 22.7 ± 2.8y; range 18-29), the main aim of the current study was to analyze the association between objective and self-reported measures of daily PA and hippocampus subfield gray matter volumes, and to examine the role of the personality trait of punishment sensitivity in this association. Our results showed that only moderate to vigorous levels of objectively measured PA were positively associated with the hippocampal CA2/CA3 volume. Moreover, punishment sensitivity correlated negatively with the objective measure of sedentarism and with self-reported measures of PA. However, regression analyses did not find any interaction between punishment sensitivity and PA in explaining individual differences in hippocampal volumes. Thus, our data suggest that intense PA may contribute to enhancing the hippocampal CA2/CA3 volume in young adults.
Collapse
Affiliation(s)
- Anastasia Cherednichenko
- Neuropsychology and Functional Neuroimaging Group, Department of Basic Psychology, Clinical Psychology and Psychobiology, Universitat Jaume I, Castelló de la Plana, Spain
| | - Anna Miró-Padilla
- Neonatal Research Group, Health Research Institute La Fe, Avenida Fernando Abril Martorell 106, Valencia, 46026, Spain.
| | - Jesús Adrián-Ventura
- Department of Psychology and Sociology, University of Zaragoza, Teruel, 44003, Spain
| | - Irene Monzonís-Carda
- LIFE Research Group, Department of Education, Universitat Jaume I, Castellon, 12071, Spain
| | | | - Diego Moliner-Urdiales
- LIFE Research Group, Department of Education, Universitat Jaume I, Castellon, 12071, Spain
| | - César Ávila
- Neuropsychology and Functional Neuroimaging Group, Department of Basic Psychology, Clinical Psychology and Psychobiology, Universitat Jaume I, Castelló de la Plana, Spain.
| |
Collapse
|
3
|
Khalil MH. Environmental Affordance for Physical Activity, Neurosustainability, and Brain Health: Quantifying the Built Environment's Ability to Sustain BDNF Release by Reaching Metabolic Equivalents (METs). Brain Sci 2024; 14:1133. [PMID: 39595896 PMCID: PMC11592236 DOI: 10.3390/brainsci14111133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Background/Objectives: Unlike enriched environments for rodents, human-built environments often hinder neuroplasticity through sedentary lifestyles, to which exercise can merely overcome its adverse effects. This paper introduces "environmental affordance for physical activity" to quantify the potential of spatial layout designs to stimulate activity and sustain neuroplasticity, mainly hippocampal neurogenesis. Methods: A novel framework links metabolic equivalents (METs) that can be afforded by the spatial layout of the built environment to its role in increasing the brain-derived neurotrophic factor (BDNF)-a biomarker that promotes and sustains adult hippocampal neurogenesis and synaptic plasticity. Equations are developed to assess the built environment's affordance for physical activity through BDNF changes measurable after brief exposure to the built environment for 20-35 min. Results: The developed equations are evidenced to be feasible to cause BDNF release through low- to moderate-intensity physical activity. This model provides a feasible assessment tool to test the built environment's effectiveness towards neurosustainability. Conclusions: By sustaining neurogenesis, the environmental affordance for physical activity holds promise for improving mental health and preventing cognitive decline.
Collapse
|
4
|
Macedonia M, Mathias B, Rodella C, Andrä C, Sedaghatgoftar N, Repetto C. Reduction in physical activity during Covid-19 lockdowns predicts individual differences in cognitive performance several months after the end of the safety measures. Acta Psychol (Amst) 2024; 250:104472. [PMID: 39306872 DOI: 10.1016/j.actpsy.2024.104472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/06/2024] [Accepted: 08/19/2024] [Indexed: 11/12/2024] Open
Abstract
Prior studies suggest that the reductions in physical activity during Covid-19-related lockdowns impacted physical and mental health. Whether reductions in physical activity that occurred during lockdowns also relate to cognitive functions such as memory and attention is less explored. Here, we investigated whether changes in physical activity (PA) that occurred during and following Covid-19-related lockdowns could predict a variety of measures of cognitive performance in 318 young adults. Participants were assessed on their engagement in PA before, during, and after lockdowns. They also completed tests of cognitive control, working memory, and short-term memory following lockdown(s). As expected, engagement in PA decreased during lockdown and returned to near baseline levels thereafter. Decreases in PA during lockdown predicted individual differences in cognitive performance following lockdown. Greater reductions in PA during lockdown were associated with lower scores on the go/no-go task, a measure of cognitive control ability, and the n-back task, a measure of working memory performance. Larger post-lockdown increases in PA were associated with higher scores on the same tasks. Individual differences in pandemic-related stress and insomnia also predicted cognitive outcomes. These findings suggest that reductions of PA can predict cognitive performance, and underscore the importance of maintaining PA for cognitive health, especially in situations such as lockdowns.
Collapse
Affiliation(s)
- Manuela Macedonia
- Department of Information Engineering, Johannes Kepler University, Linz, Austria.
| | - Brian Mathias
- School of Psychology, University of Aberdeen, Aberdeen, United Kingdom
| | - Claudia Rodella
- Department of Psychology, Catholic University of the Sacred Heart, Milan, Italy
| | - Christian Andrä
- Department of Movement and Sport Pedagogy, University of Applied Sciences for Sport and Management, Potsdam, Germany
| | | | - Claudia Repetto
- Department of Psychology, Catholic University of the Sacred Heart, Milan, Italy
| |
Collapse
|
5
|
Łapińska L, Szum-Jakubowska A, Krentowska A, Pawlak M, Hładuński M, Waszkiewicz N, Karczewska-Kupczewska M, Kamiński K, Kowalska I. The relationship between brain structure volumes, depressive symptoms and body composition in obese/overweight and normal-/underweight women. Sci Rep 2024; 14:21021. [PMID: 39251805 PMCID: PMC11384777 DOI: 10.1038/s41598-024-71924-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 09/02/2024] [Indexed: 09/11/2024] Open
Abstract
Depressive symptoms are highly prevalent and heterogeneous in women. Different brain structures might be associated with depressive symptoms and body composition in women with obesity/overweight and normal-/underweight, although the data is limited. The analysis included 265 women from Bialystok PLUS population study, untreated with antidepressive or antipsychotic medications. The subjects underwent brain magnetic resonance imaging and body composition analysis. Beck Depression Inventory (BDI) score was inversely associated with nucleus accumbens volume (β = -0.217, p = 0.008) in women with BMI ≥ 25 kg/m2, but with insula volume (β = -0.147, p = 0.027) in women with BMI < 25 kg/m2 after adjustment for age and estimated intracranial volume (eTIV). In women with BMI ≥ 25 kg/m2, nucleus accumbens volume was inversely associated with the percentage of visceral fat and BDI score (β = -0.236, p = 0.012, β = -0.192, p = 0.017) after adjustment for age and eTIV. In women with BMI < 25 kg/m2, insula volume was positively associated with total fat-free mass and negatively with the BDI score (β = 0.142, p = 0.030, β = -0.137, p = 0.037) after adjustment for age and eTIV. Depressive symptoms might be associated with nucleus accumbens volume in overweight/obese women, while in normal-/ underweight women-with alterations in insula volume.
Collapse
Affiliation(s)
- Lidia Łapińska
- Department of Internal Medicine and Metabolic Diseases, Medical University of Bialystok, M. Sklodowskiej-Curie 24a, 15-276, Bialystok, Poland.
| | - Aleksandra Szum-Jakubowska
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, Bialystok, Poland
| | - Anna Krentowska
- Department of Internal Medicine and Metabolic Diseases, Medical University of Bialystok, M. Sklodowskiej-Curie 24a, 15-276, Bialystok, Poland
| | - Mikołaj Pawlak
- Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Marcin Hładuński
- Independent Laboratory of Molecular Imaging, Medical University of Bialystok, Bialystok, Poland
| | | | - Monika Karczewska-Kupczewska
- Department of Internal Medicine and Metabolic Diseases, Medical University of Bialystok, M. Sklodowskiej-Curie 24a, 15-276, Bialystok, Poland
| | - Karol Kamiński
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, Bialystok, Poland
| | - Irina Kowalska
- Department of Internal Medicine and Metabolic Diseases, Medical University of Bialystok, M. Sklodowskiej-Curie 24a, 15-276, Bialystok, Poland
| |
Collapse
|
6
|
Won J, Callow DD, Purcell JJ, Smith JC. Hippocampal functional connectivity mediates the association between cardiorespiratory fitness and cognitive function in healthy young adults. J Int Neuropsychol Soc 2024; 30:199-208. [PMID: 37646336 DOI: 10.1017/s1355617723000498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
OBJECTIVE Higher cardiorespiratory fitness (CRF) induces neuroprotective effects in the hippocampus, a key brain region for memory and learning. We investigated the association between CRF and functional connectivity (FC) of the hippocampus in healthy young adults. We also examined the association between hippocampal FC and neurocognitive function. Lastly, we tested whether hippocampal FC mediates the association between 2-Min Walk Test (2MWT) and neurocognitive function. METHODS 913 young adults (28.7 ± 3.7 years) from the Human Connectome Project were included in the analyses. The 2MWT performance result was used as a proxy for cardiovascular endurance. Fluid and crystalized composite neurocognitive scores were used to assess cognition. Resting-state functional MRI data were processed to measure hippocampal FC. Linear regression was used to examine the association between 2MWT, hippocampal FC, and neurocognitive outcomes after controlling for age, sex, years of education, body mass index, systolic blood pressure, and gait speed. RESULTS Better 2MWT performance was associated with greater FC between the anterior hippocampus and right posterior cingulate and left middle temporal gyrus. No associations between 2MWT and posterior hippocampal FC, whole hippocampal FC, and caudate FC (control region) were observed. Greater anterior hippocampal FC was associated with better crystalized cognition scores. Lastly, greater FC between the anterior hippocampus and right posterior cingulate mediated the association between better 2MWT scores and higher crystalized cognition scores. CONCLUSIONS Anterior hippocampal FC may be one underlying neurophysiological mechanism that promotes the association between 2MWT performance and crystalized composite cognitive function in healthy young adults.
Collapse
Affiliation(s)
- Junyeon Won
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, TX, USA
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Kinesiology, University of Maryland, College Park, MD, USA
| | - Daniel D Callow
- Department of Kinesiology, University of Maryland, College Park, MD, USA
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, USA
| | - Jeremy J Purcell
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, USA
| | - J Carson Smith
- Department of Kinesiology, University of Maryland, College Park, MD, USA
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, USA
| |
Collapse
|
7
|
Norling AM, Gerstenecker A, Bolding MS, Hoef LV, Buford T, Walden R, An H, Ying C, Myers T, Jones BS, Del Bene V, Lazar RM. Effects of a brief HIIT intervention on cognitive performance in older women. GeroScience 2024; 46:1371-1384. [PMID: 37581755 PMCID: PMC10828265 DOI: 10.1007/s11357-023-00893-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 07/25/2023] [Indexed: 08/16/2023] Open
Abstract
Cardiorespiratory fitness (CRF) mitigates age-related decline in cognition and brain volume. Little is known, however, about the effects of high-intensity interval training (HIIT) on cognitive aging and the relationship between HIIT, cognition, hippocampal subfield volumes, and cerebral oxygen extraction fraction (OEF). Older sedentary women participated in an 8-week HIIT intervention. We conducted cognitive assessments, fitness assessments (VO2max), MRI scans: asymmetric spin echo oxygen extraction fraction (ASE-OEF), high-resolution multiple image co-registration and averaging (HR-MICRA) imaging, and transcranial Doppler ultrasonography before and after the intervention. VO2max increased from baseline (M = 19.36, SD = 2.84) to follow-up (M = 23.25, SD = 3.61), Z = - 2.93, p < .001, r = 0.63. Composite cognitive (Z = - 2.05, p = 0.041), language (Z = - 2.19, p = 0.028), and visuospatial memory (Z = - 2.22, p = 0.026), z-scores increased significantly. Hippocampal subfield volumes CA1 and CA3 dentate gyrus and subiculum decreased non-significantly (all p > 0.05); whereas a significant decrease in CA2 (Z = - 2.045, p = 0.041, r = 0.436) from baseline (M = 29.51; SD = 24.50) to follow-up (M = 24.50; SD = 13.38) was observed. Right hemisphere gray matter was correlated with language z-scores (p = 0.025; r = 0.679). The subiculum was correlated with attention (p = 0.047; r = 0.618) and verbal memory (p = 0.020; r = 0.700). The OEF and CBF were unchanged at follow-up (all p > .05). Although we observed cognitive improvements following 8 weeks of our HIIT intervention, they were not explained by hippocampal, OEF, or CBF changes.
Collapse
Affiliation(s)
- Amani M Norling
- Department of Neurology, University of Alabama at Birmingham, 650 Sparks Center, 1720 7Th Avenue South, Birmingham, AL, 35294, USA.
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, USA.
- Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Adam Gerstenecker
- Department of Neurology, University of Alabama at Birmingham, 650 Sparks Center, 1720 7Th Avenue South, Birmingham, AL, 35294, USA
- Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mark S Bolding
- Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lawrence Ver Hoef
- Department of Neurology, University of Alabama at Birmingham, 650 Sparks Center, 1720 7Th Avenue South, Birmingham, AL, 35294, USA
| | - Thomas Buford
- Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Randall Walden
- School of Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hongyu An
- Mallinckrodt Institute of Radiology, Washington University of Medicine in St. Louis, St. Louis, MO, USA
| | - Chunwei Ying
- Mallinckrodt Institute of Radiology, Washington University of Medicine in St. Louis, St. Louis, MO, USA
| | - Terina Myers
- Department of Neurology, University of Alabama at Birmingham, 650 Sparks Center, 1720 7Th Avenue South, Birmingham, AL, 35294, USA
- Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Benjamin S Jones
- Department of Neurology, University of Alabama at Birmingham, 650 Sparks Center, 1720 7Th Avenue South, Birmingham, AL, 35294, USA
| | - Victor Del Bene
- Department of Neurology, University of Alabama at Birmingham, 650 Sparks Center, 1720 7Th Avenue South, Birmingham, AL, 35294, USA
- Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ronald M Lazar
- Department of Neurology, University of Alabama at Birmingham, 650 Sparks Center, 1720 7Th Avenue South, Birmingham, AL, 35294, USA
- Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
8
|
Scharf C, Koschutnig K, Zussner T, Fink A, Tilp M. Twelve weeks of physical exercise breaks with coordinative exercises at the workplace increase the sulcal depth and decrease gray matter volume in brain structures related to visuomotor processes. Brain Struct Funct 2024; 229:63-74. [PMID: 38070007 PMCID: PMC10827861 DOI: 10.1007/s00429-023-02732-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 11/03/2023] [Indexed: 01/31/2024]
Abstract
Physical exercise can evoke changes in the brain structure. Consequently, these can lead to positive impacts on brain health. However, physical exercise studies including coordinative exercises are rare. Therefore, in this study, we investigated how 12 weeks of physical exercise breaks (PEBs) with coordinative exercises, focusing mainly on juggling tasks, affected the brain structure. The participants were randomly allocated to an intervention group (IG, n = 16; 42.8 ± 10.2 years) and a control group (CG, n = 9; 44.2 ± 12.3 years). The IG performed the PEBs with coordinative exercises twice per week for 15-20 min per session. Before the intervention, after 6 weeks of the intervention, and after 12 weeks of the intervention, participants underwent a high-resolution 3T T1-weighted magnetic resonance imagining scan. Juggling performance was assessed by measuring the time taken to perform a three-ball cascade. A surface-based analysis revealed an increase in vertex-wise cortical depth in a cluster including the inferior parietal lobe after 6 and 12 weeks of training in the IG. After 12 weeks, the IG showed a decrease in gray matter (GM) volume in a cluster primarily involving the right insula and the right operculum. The changes in the GM volume were related to improvements in juggling performance. No significant changes were found for the CG. To conclude, the present study showed that regular engagement in PEBs with coordinative exercises led to changes in brain structures strongly implicated in visuomotor processes involving hand and arm movements.
Collapse
Affiliation(s)
- Carina Scharf
- Institute of Human Movement Science, Sport and Health, University of Graz, Mozartgasse 14, 8010, Graz, Austria.
| | - Karl Koschutnig
- Institute of Psychology, University of Graz, Universitätsplatz 2, 8010, Graz, Austria
| | - Thomas Zussner
- Institute of Psychology, University of Graz, Universitätsplatz 2, 8010, Graz, Austria
| | - Andreas Fink
- Institute of Psychology, University of Graz, Universitätsplatz 2, 8010, Graz, Austria
| | - Markus Tilp
- Institute of Human Movement Science, Sport and Health, University of Graz, Mozartgasse 14, 8010, Graz, Austria
| |
Collapse
|
9
|
Yu J, Abdullah MFIL, Mansor NS. EEG components of inhibitory control ability in internet gaming disorder: A systematic review and meta-analysis of randomized controlled trials. Brain Behav 2024; 14:e3388. [PMID: 38376031 PMCID: PMC10808847 DOI: 10.1002/brb3.3388] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/11/2023] [Accepted: 12/21/2023] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Inhibitory control ability is a crucial cognitive function that enables individuals to regulate their impulses and behaviors in a goal-directed manner. However, with the increasing prevalence of internet gaming disorder (IGD), there has been growing concern about the impact of excessive gaming on inhibitory control ability. Despite the accumulating evidence on this topic, the research conclusion on whether people with IGD have worse inhibition control ability than healthy controls remains inconsistent, and the lack of effective electroencephalography prediction indicators further complicates this issue. To address this research gap, the present study aimed to investigate whether N2 event-related potential (ERP) and P3 ERP components could serve as reliable indicators of inhibitory control ability in individuals with IGD. METHODS To achieve this goal, a systematic literature search was conducted in several databases, including Web of Science, ScienceDirect (EBSCO), SpringerLink, PubMed, and Wiley Online Library. The inclusion criteria were strictly implemented to ensure the quality of the studies included in the meta-analysis. In the end, a total of 5 studies, with 139 participants diagnosed with IGD and 139 healthy controls, were included in the analysis. RESULTS Meta-analysis revealed large effect sizes of N2 and P3 amplitudes in individuals with IGD, indicating that these two ERP components could be potential indicators of inhibitory control ability. Specifically, the N2 and P3 amplitude was significantly larger in individuals with IGD than in the healthy control group, suggesting deficits in inhibitory control function and increased impulsivity in the IGD group. In the inhibition control task, the IGD group required more cognitive resources to suppress impulsive responses. CONCLUSION Overall, the findings of this meta-analysis shed light on the potential use of N2 and P3 amplitudes as reliable indicators of inhibitory control ability in individuals with IGD. The results provide crucial insights into the neural mechanisms underlying inhibitory control impairment in IGD, which could inform the development of effective interventions for this condition. Further research is needed to explore the functional significance of these ERP components and their potential clinical applications in the diagnosis and treatment of IGD.
Collapse
Affiliation(s)
- Junjian Yu
- Department of Community HealthAdvanced Medical and Dental InstituteUniversiti Sains MalaysiaPenangMalaysia
| | | | - Nor Shuhada Mansor
- Department of Community HealthAdvanced Medical and Dental InstituteUniversiti Sains MalaysiaPenangMalaysia
| |
Collapse
|
10
|
AO YAWEN, LI YUSHUANG, ZHAO YILIN, ZHANG LIANG, YANG RENJIE, ZHA YUNFEI. Hippocampal Subfield Volumes in Amateur Marathon Runners. Med Sci Sports Exerc 2023; 55:1208-1217. [PMID: 36878015 PMCID: PMC10241426 DOI: 10.1249/mss.0000000000003144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
PURPOSE Numerous studies have implicated the involvement of structure and function of the hippocampus in physical exercise, and the larger hippocampal volume is one of the relevant benefits reported in exercise. It remains to be determined how the different subfields of hippocampus respond to physical exercise. METHODS A 3D T1-weighted magnetic resonance imaging was acquired in 73 amateur marathon runners (AMR) and 52 healthy controls (HC) matched with age, sex, and education. The Montreal Cognitive Assessment, the Pittsburgh Sleep Quality Index (PSQI), and the Fatigue Severity Scale were assessed in all participants. We obtained hippocampal subfield volumes using FreeSurfer 6.0. We compared the volumes of the hippocampal subfield between the two groups and ascertained correlation between the significant subfield metrics and the significant behavioral measure in AMR group. RESULTS The AMR had significantly better sleep than HC, manifested as with lower score of PSQI. Sleep duration in AMR and HC was not significantly different from each other. In the AMR group, the left and right hippocampus, cornu ammonis 1 (CA1), CA4, granule cell and molecular layers of the dentate gyrus, molecular layer, left CA2-3, and left hippocampal-amygdaloid transition area volumes were significantly larger compared with those in the HC group. In AMR group, the correlations between the PSQI and the hippocampal subfield volumes were not significant. No correlations were found between hippocampal subfield volumes and sleep duration in AMR group. CONCLUSIONS We reported larger volumes of specific hippocampal subfields in AMR, which may provide a hippocampal volumetric reserve that protects against age-related hippocampal deterioration. These findings should be further investigated in longitudinal studies.
Collapse
|
11
|
Sun X, Liu C, Ji H, Li W, Miao M, Yuan W, Yuan Z, Liang H, Kan H. Prenatal exposure to ambient PM 2.5 and its chemical constituents and child intelligence quotient at 6 years of age. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114813. [PMID: 36948012 DOI: 10.1016/j.ecoenv.2023.114813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 06/18/2023]
Abstract
There are limited studies on the associations between prenatal exposure to constituents of fine particulate matter (PM2.5) and children's intelligence quotient (IQ). Our study aimed to explore the associations between prenatal PM2.5 and its six constituents and the IQ levels of 6-year-old children. We included 512 mother-child pairs. We used a satellite-based modelling framework to estimate prenatal PM2.5 and its six constituents (ammonium, sulfate, nitrate, organic carbon, soil dust, and black carbon). We assessed the children's IQ using the short form of the Wechsler Intelligence Scale. Perceptual Reasoning Index (PRI), Verbal Comprehension Index (VCI), and Full Scale IQ (FSIQ) scores were computed. The multiple informant model (MIM) was applied to explore the trimester specific effects of PM2.5 and its six constituents' exposure on children's PRI, VCI, and FSIQ. To examine whether the duration of breastfeeding and physical activity (PA) could modify the effects of PM2.5 on children's IQ, we stratified the analyses according to the duration of breastfeeding (≤6 and >6 months) and time of outdoor activities after school (≤2 and >2 h/week). The first trimester PM2.5 and its five constituents' exposures were inversely associated with FSIQ [β = -1.34, 95 % confidence interval [CI] (-2.71, 0.04) for PM2.5] and PRI [β = -2.18, 95 %CI (-3.80, -0.57) for PM2.5] in children. The associations were magnified among boys and those with less outdoor activities or shorter breastfeeding duration. Our results indicate that prenatal PM2.5 and several of its main constituents' exposure may disrupt cognitive development in children aged 6 years. More PA and longer breastfeeding duration may alleviate the detrimental effects of prenatal PM2.5 exposure on children's cognitive function.
Collapse
Affiliation(s)
- Xiaowei Sun
- NHC Key Lab. Of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai, China
| | - Cong Liu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai, China
| | - Honglei Ji
- NHC Key Lab. Of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai, China
| | - Weihua Li
- NHC Key Lab. Of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai, China
| | - Maohua Miao
- NHC Key Lab. Of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai, China
| | - Wei Yuan
- NHC Key Lab. Of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai, China
| | - Zhengwei Yuan
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Hong Liang
- NHC Key Lab. Of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai, China.
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Angelo BC, DeFendis A, Yau A, Alves JM, Thompson PM, Xiang AH, Page KA, Luo S. Relationships between physical activity, healthy eating and cortical thickness in children and young adults. Brain Imaging Behav 2022; 16:2690-2704. [DOI: 10.1007/s11682-022-00728-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2022] [Indexed: 12/03/2022]
|
13
|
Sars D. PE augmented mindfulness: A neurocognitive framework for research and future healthcare. Front Hum Neurosci 2022; 16:899988. [PMID: 36082227 PMCID: PMC9446465 DOI: 10.3389/fnhum.2022.899988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
Various well-controlled studies have suggested that practitioners in mindfulness can be prone to patient drop-out (e.g., due to chronic stress, pathology, cognitive reactivity), despite researchers having identified the underlying mechanisms that link mindfulness to mental health. In this article, a framework for physical exercise (PE) augmented mindfulness is proposed, which posits that consistently practiced PE before meditation can support (early-stage) mindfulness. Neurocognitive research shows PE (aerobic exercises or yoga) and mindfulness to impact similar pathways of stress regulation that involve cognitive control and stress regulation, thereby supporting the proposed synergistic potential of PE augmented mindfulness. Research focused on the psychophysiological impact of PE, showed its practice to promote short-term neurocognitive changes that can promote both cognitive control and the attainment of mindful awareness (MA). In order to chart dose responses required for protocol development, further research will be presented. Together these findings are discussed in light of future research on this multidisciplinary topic, protocol development, mindful walking, and further application in healthcare and beyond.
Collapse
Affiliation(s)
- David Sars
- Mettaminds.org, Mindfulness Based Projects, Amsterdam, Netherlands
- Centre for Integral Rehabilitation (CIR), Amsterdam, Netherlands
| |
Collapse
|
14
|
Wang L, Li X, Zheng W, Chen X, Chen Q, Hu Y, Cao L, Ren J, Qin W, Lu J, Chen N. Motor imagery evokes strengthened activation in sensorimotor areas and its effective connectivity related to cognitive regions in patients with complete spinal cord injury. Brain Imaging Behav 2022; 16:2049-2060. [PMID: 35994188 DOI: 10.1007/s11682-022-00675-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2022] [Indexed: 11/28/2022]
Abstract
The objective of this study was to investigate the alterations of brain activation and effective connectivity during motor imagery (MI) in complete spinal cord injury (CSCI) patients and to reveal a potential mechanism of MI in motor rehabilitation of CSCI patients. Fifteen CSCI patients and twenty healthy controls underwent the MI task-related fMRI scan, and the motor execution (ME) task only for healthy controls. The brain activation patterns of the two groups during MI, and CSCI patients during the MI task and healthy controls during the ME task were compared. Then the significantly changed brain activation areas in CSCI patients during the MI task were used as regions of interest for effective connectivity analysis, using a voxel-wise granger causality analysis (GCA) method. Compared with healthy controls, increased activations in left primary sensorimotor cortex and bilateral cerebellar lobules IV-VI were detected in CSCI patients during the MI task, and the activation level of these areas even equaled that of healthy controls during the ME task. Furthermore, GCA revealed decreased effective connectivity from sensorimotor related areas (primary sensorimotor cortex and cerebellar lobules IV-VI) to cognitive related areas (prefrontal cortex, precuneus, middle temporal gyrus, and inferior temporal gyrus) in CSCI patients. Our findings demonstrated that motor related brain areas can be functionally preserved and activated through MI after CSCI, it maybe the potential mechanism of MI in the motor rehabilitation of CSCI patients. In addition, Sensorimotor related brain regions have less influence on the cognitive related regions in CSCI patients during MI (The trial registration number: ChiCTR2000032793).
Collapse
Affiliation(s)
- Ling Wang
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, 100053, China
| | - Xuejing Li
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.,Department of Radiology, China Rehabilitation Research Center, Beijing, 100068, China
| | - Weimin Zheng
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, 100053, China
| | - Xin Chen
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, 100053, China
| | - Qian Chen
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Yongsheng Hu
- Department of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Lei Cao
- Department of Rehabilitation Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Jian Ren
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Wen Qin
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Jie Lu
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, 100053, China
| | - Nan Chen
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China. .,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, 100053, China.
| |
Collapse
|
15
|
Just N, Chevillard PM, Migaud M. Imaging and spectroscopic methods to investigate adult neurogenesis in vivo: New models and new avenues. Front Neurosci 2022; 16:933947. [PMID: 35992937 PMCID: PMC9389108 DOI: 10.3389/fnins.2022.933947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/11/2022] [Indexed: 11/25/2022] Open
Abstract
Adult neurogenesis (AN) can be defined as the birth and development of new neurons in adulthood. Until the 1990s, AN was deemed not to happen after birth. Gradually, several groups demonstrated that specific zones of the brain of various species had a neurogenic potential. AN could be the key to treating a large range of neurodegenerative, neuropsychiatric, and metabolic diseases, with a better understanding of the mechanisms allowing for regeneration of new neurons. Despite this promising prospect, the existence of AN has not been validated in vivo in humans and therefore remains controversial. Moreover, the weight of AN-induced plasticity against other mechanisms of brain plasticity is not known, adding to the controversy. In this review, we would like to show that recent technical advances in brain MR imaging methods combined with improved models can resolve the debate.
Collapse
Affiliation(s)
- Nathalie Just
- Danish Research Centre for Magnetic Resonance, Center for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager og Hvidovre, Hvidovre, Denmark
- Physiologie de la Reproduction et des Comportements, Centre INRAE Val de Loire, CNRS, IFCE, INRAE, and Université de Tours, Nouzilly, France
- *Correspondence: Nathalie Just
| | - Pierre-Marie Chevillard
- Physiologie de la Reproduction et des Comportements, Centre INRAE Val de Loire, CNRS, IFCE, INRAE, and Université de Tours, Nouzilly, France
| | - Martine Migaud
- Physiologie de la Reproduction et des Comportements, Centre INRAE Val de Loire, CNRS, IFCE, INRAE, and Université de Tours, Nouzilly, France
| |
Collapse
|
16
|
Ninneman JV, Gretzon NP, Stegner AJ, Lindheimer JB, Falvo MJ, Wylie GR, Dougherty RJ, Almassi NE, Van Riper SM, Boruch AE, Dean DC, Koltyn KF, Cook DB. Pain, But Not Physical Activity, Is Associated with Gray Matter Volume Differences in Gulf War Veterans with Chronic Pain. J Neurosci 2022; 42:5605-5616. [PMID: 35697521 PMCID: PMC9295831 DOI: 10.1523/jneurosci.2394-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/27/2022] [Accepted: 05/02/2022] [Indexed: 01/16/2023] Open
Abstract
Chronic musculoskeletal pain (CMP) is a significant burden for Persian Gulf War Veterans (GWVs), yet the causes are poorly understood. Brain structure abnormalities are observed in GWVs, however relationships with modifiable lifestyle factors such as physical activity (PA) are unknown. We evaluated gray matter volumes and associations with symptoms, PA, and sedentary time in GWVs with and without CMP. Ninety-eight GWVs (10 females) with CMP and 56 GWVs (7 females) controls completed T1-weighted magnetic resonance imaging, pain and fatigue symptom questionnaires, and PA measurement via actigraphy. Regional gray matter volumes were analyzed using voxel-based morphometry and were compared across groups using analysis of covariance (ANCOVA). Separate multiple linear regression models were used to test associations between PA intensities, sedentary time, symptoms, and gray matter volumes. Familywise cluster error rates were used to control for multiple comparisons (α = 0.05). GWVs with CMP reported greater pain and fatigue symptoms, worse mood, and engaged in less moderate-to-vigorous PA and more sedentary time than healthy GWVs (all p values < 0.05). GWVs with CMP had smaller gray matter volumes in the bilateral insula and larger volumes in the frontal pole (p < 0.05adjusted). Gray matter volumes in the left insula were associated with pain symptoms (r partial = 0.26, -0.29; p < 0.05adjusted). No significant associations were observed for either PA or sedentary time (p > 0.05adjusted). GWVs with CMP had smaller gray matter volumes within a critical brain region of the descending pain processing network and larger volumes within brain regions associated with pain sensation and affective processing, which may reflect pain chronification.SIGNIFICANCE STATEMENT The pathophysiology of chronic pain in Gulf War veterans is understudied and not well understood. In a large sample of Gulf War veterans, we report veterans with chronic musculoskeletal pain have smaller gray matter volumes in brain regions associated with pain regulation and larger volumes in regions associated with pain sensitivity compared with otherwise healthy Gulf War veterans. Gray matter volumes in regions of pain regulation were significantly associated with pain symptoms and encompassed the observed group brain volume differences. These results are suggestive of deficient pain modulation that may contribute to pain chronification.
Collapse
Affiliation(s)
- Jacob V Ninneman
- William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin 53705
- Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Nicholas P Gretzon
- William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin 53705
- Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Aaron J Stegner
- William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin 53705
- Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Jacob B Lindheimer
- William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin 53705
- Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Michael J Falvo
- War Related Illness and Injury Study Center, U.S. Department of Veterans Affairs, Veterans Affairs New Jersey Health Care System, East Orange, New Jersey 07018
- New Jersey Medical School, Rutgers University, Newark, New Jersey 08854
| | - Glenn R Wylie
- War Related Illness and Injury Study Center, U.S. Department of Veterans Affairs, Veterans Affairs New Jersey Health Care System, East Orange, New Jersey 07018
- Kessler Foundation, West Orange, New Jersey 07052
- New Jersey Medical School, Rutgers University, Newark, New Jersey 08854
| | - Ryan J Dougherty
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21287
| | - Neda E Almassi
- William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin 53705
- Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Stephanie M Van Riper
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California 94301
| | - Alexander E Boruch
- William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin 53705
- Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Douglas C Dean
- William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin 53705
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| | - Kelli F Koltyn
- Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Dane B Cook
- William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin 53705
- Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin 53706
| |
Collapse
|
17
|
Yalçin M, Mundorf A, Thiel F, Amatriain-Fernández S, Kalthoff IS, Beucke JC, Budde H, Garthus-Niegel S, Peterburs J, Relógio A. It's About Time: The Circadian Network as Time-Keeper for Cognitive Functioning, Locomotor Activity and Mental Health. Front Physiol 2022; 13:873237. [PMID: 35547585 PMCID: PMC9081535 DOI: 10.3389/fphys.2022.873237] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/08/2022] [Indexed: 12/24/2022] Open
Abstract
A variety of organisms including mammals have evolved a 24h, self-sustained timekeeping machinery known as the circadian clock (biological clock), which enables to anticipate, respond, and adapt to environmental influences such as the daily light and dark cycles. Proper functioning of the clock plays a pivotal role in the temporal regulation of a wide range of cellular, physiological, and behavioural processes. The disruption of circadian rhythms was found to be associated with the onset and progression of several pathologies including sleep and mental disorders, cancer, and neurodegeneration. Thus, the role of the circadian clock in health and disease, and its clinical applications, have gained increasing attention, but the exact mechanisms underlying temporal regulation require further work and the integration of evidence from different research fields. In this review, we address the current knowledge regarding the functioning of molecular circuits as generators of circadian rhythms and the essential role of circadian synchrony in a healthy organism. In particular, we discuss the role of circadian regulation in the context of behaviour and cognitive functioning, delineating how the loss of this tight interplay is linked to pathological development with a focus on mental disorders and neurodegeneration. We further describe emerging new aspects on the link between the circadian clock and physical exercise-induced cognitive functioning, and its current usage as circadian activator with a positive impact in delaying the progression of certain pathologies including neurodegeneration and brain-related disorders. Finally, we discuss recent epidemiological evidence pointing to an important role of the circadian clock in mental health.
Collapse
Affiliation(s)
- Müge Yalçin
- Institute for Theoretical Biology (ITB), Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- Molecular Cancer Research Center (MKFZ), Medical Department of Hematology, Oncology, and Tumour Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Annakarina Mundorf
- Institute for Systems Medicine and Faculty of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Freya Thiel
- Institute for Systems Medicine and Faculty of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany
- Institute and Policlinic of Occupational and Social Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Sandra Amatriain-Fernández
- Institute for Systems Medicine and Faculty of Human Sciences, MSH Medical School Hamburg, Hamburg, Germany
| | - Ida Schulze Kalthoff
- Institute for Systems Medicine and Faculty of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Jan-Carl Beucke
- Institute for Systems Medicine and Faculty of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Henning Budde
- Institute for Systems Medicine and Faculty of Human Sciences, MSH Medical School Hamburg, Hamburg, Germany
| | - Susan Garthus-Niegel
- Institute for Systems Medicine and Faculty of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany
- Institute and Policlinic of Occupational and Social Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Department of Child Health and Development, Norwegian Institute of Public Health, Oslo, Norway
| | - Jutta Peterburs
- Institute for Systems Medicine and Faculty of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Angela Relógio
- Institute for Theoretical Biology (ITB), Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- Molecular Cancer Research Center (MKFZ), Medical Department of Hematology, Oncology, and Tumour Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- Institute for Systems Medicine and Faculty of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany
| |
Collapse
|
18
|
Zhang Y, Ke L, Fu Y, Di Q, Ma X. Physical activity attenuates negative effects of short-term exposure to ambient air pollution on cognitive function. ENVIRONMENT INTERNATIONAL 2022; 160:107070. [PMID: 34973588 DOI: 10.1016/j.envint.2021.107070] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 12/02/2021] [Accepted: 12/25/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND As physical activity benefits brain health whereas air pollution damages it, the cognitive response to these exposures may interact. PURPOSE This study aimed to assess the short-term joint effect of physical activity and air pollution on cognitive function in a panel of healthy young adults. METHODS We followed ninety healthy subjects aged around 22 years from September 2020 to June 2021 and measured their personal exposure to fine particulate matter (PM2.5) (μg/m3) and daily accelerometer-based moderate-to-vigorous physical activity (MVPA) (min/day) in 4 one-week-long sessions over the study period. At the end of each measurement session, we assessed executive function using Stroop color-word test and collected resting-state electroencephalogram (EEG) signals. RESULTS We found short-term PM2.5 exposure damaged executive function (βPM25 = 0.0064, p = 0.039) but physical activity could counterbalance it (βMVPA = -0.0047, p = 0.048), whereby beta-3 wave played as a potential mediating role. MVPA-induced improvement on executive function was larger in polluted air (βMVPA = -0.010, p = 0.035) than that in clean air (βMVPA = -0.003, p = 0.45). To offset the negative effect of air pollution on cognitive function, individuals should do extra 13.6 min MVPA every day for every 10 μg/m3 increase in daily PM2.5. CONCLUSION This study implies that physical activity could be used as a preventive approach to compensate the cognitive damages of air pollution.
Collapse
Affiliation(s)
- Yao Zhang
- Division of Sports Science & Physical Education, Tsinghua University, Beijing 100084, China.
| | - Limei Ke
- School of Medicine, Tsinghua University, Beijing 100084, China.
| | - Yingyao Fu
- Division of Sports Science & Physical Education, Tsinghua University, Beijing 100084, China.
| | - Qian Di
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China; Institute for Healthy China, Tsinghua University, Beijing 100084, China.
| | - Xindong Ma
- Division of Sports Science & Physical Education, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
19
|
Hendrikse J, Chye Y, Thompson S, Rogasch NC, Suo C, Coxon JP, Yücel M. Regular aerobic exercise is positively associated with hippocampal structure and function in young and middle-aged adults. Hippocampus 2021; 32:137-152. [PMID: 34961996 DOI: 10.1002/hipo.23397] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/03/2021] [Accepted: 12/05/2021] [Indexed: 01/21/2023]
Abstract
Regular exercise has numerous benefits for brain health, including the structure and function of the hippocampus. The hippocampus plays a critical role in memory function, and is altered in a number of psychiatric disorders associated with memory impairments (e.g., depression and schizophrenia), as well as healthy aging. While many studies have focused on how regular exercise may improve hippocampal integrity in older individuals, less is known about these effects in young to middle-aged adults. Therefore, we assessed the associations of regular exercise and cardiorespiratory fitness with hippocampal structure and function in these age groups. We recruited 40 healthy young to middle-aged adults, comprised of two groups (n = 20) who self-reported either high or low levels of exercise, according to World Health Organization guidelines. We assessed cardiorespiratory fitness using a graded exercise test (VO2 max) and hippocampal structure via manual tracing of T1-weighted magnetic resonance images. We also assessed hippocampal function using magnetic resonance spectroscopy to derive estimates of N-acetyl-aspartate concentration and hippocampal-dependent associative memory and pattern separation tasks. We observed evidence of increased N-acetyl-aspartate concentration and associative memory performance in individuals engaging in high levels of exercise. However, no differences in hippocampal volume or pattern separation capacity were observed between groups. Cardiorespiratory fitness was positively associated with left and right hippocampal volume and N-acetyl-aspartate concentration. However, no associations were observed between cardiorespiratory fitness and associative memory or pattern separation. Therefore, we provide evidence that higher levels of exercise and cardiorespiratory fitness are associated with improved hippocampal structure and function. Exercise may provide a low-risk, effective method of improving hippocampal integrity in an early-to-mid-life stage.
Collapse
Affiliation(s)
- Joshua Hendrikse
- Turner Institute for Brain and Mental Health and School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Yann Chye
- Turner Institute for Brain and Mental Health and School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Sarah Thompson
- Turner Institute for Brain and Mental Health and School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Nigel C Rogasch
- Turner Institute for Brain and Mental Health and School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia.,Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia.,Discipline of Psychiatry, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Chao Suo
- Turner Institute for Brain and Mental Health and School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| | - James P Coxon
- Turner Institute for Brain and Mental Health and School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Murat Yücel
- Turner Institute for Brain and Mental Health and School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
20
|
Hippocampal and non-hippocampal correlates of physically active lifestyle and their relation to episodic memory in older adults. Neurobiol Aging 2021; 109:100-112. [PMID: 34706317 DOI: 10.1016/j.neurobiolaging.2021.08.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 11/21/2022]
Abstract
Aging is associated with compromised neurocognition. While aerobic exercise has been linked with cognitive resilience, findings regarding its relationship with brain morphology are inconsistent. Furthermore, the biological underpinnings of the relationship between aerobic activity and memory in the aging human brain are unclear. To investigate these issues, we examined hippocampal and non-hippocampal structural correlates of aerobically active lifestyle and cardiorespiratory fitness in older adults. We then examined structural pathways which may potentially mediate the association between active lifestyle and memory. Fifty participants (aged 65-80) underwent structural and diffusion MRI, memory evaluation, were examined for active lifestyle and cardiorespiratory fitness. Morphological features of the hippocampus and fornix, white matter lesions, and brain atrophy were assessed. Active lifestyle and cardiorespiratory fitness correlated with all neurocognitive measures. An exploratory mediation analysis revealed hippocampal and white matter lesions pathways linking active lifestyle and cardiorespiratory fitness with memory. Our results support a neuroprotective role of aerobic exercise on the aging brain and suggest plausible morphological pathways that may underlie the relationship between aerobic exercise and memory.
Collapse
|
21
|
Fink A, Koschutnig K, Zussner T, Perchtold-Stefan CM, Rominger C, Benedek M, Papousek I. A two-week running intervention reduces symptoms related to depression and increases hippocampal volume in young adults. Cortex 2021; 144:70-81. [PMID: 34653905 DOI: 10.1016/j.cortex.2021.08.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/09/2021] [Accepted: 08/10/2021] [Indexed: 10/20/2022]
Abstract
This study examined the effects of a two-week running intervention on depressive symptoms and structural changes of different subfields of the hippocampus in young adults from the general population. The intervention was realized in small groups of participants in a mostly forested area and was organized into seven units of about 60 min each. The study design included two intervention groups which were tested at three time points and which received the intervention time-delayed: The first group between the first and the second time point, and the second group between the second and the third time point (waiting control group). At each test session, magnetic resonance imaging (MRI) was performed and symptoms related to depression were measured by means of the Center for Epidemiological Studies Depression (CES-D) Scale. Results revealed a significant reduction of CES-D scores after the running intervention. The intervention also resulted in significant increases in the volume of the hippocampus, and reductions of CES-D scores right after the intervention were associated with increases in hippocampal volume. These findings add important new evidence on the beneficial role of aerobic exercise on depressive symptoms and related structural alterations of the hippocampus.
Collapse
Affiliation(s)
- Andreas Fink
- Institute of Psychology, University of Graz, Austria.
| | | | | | | | | | | | | |
Collapse
|
22
|
Maasakkers CM, Thijssen DH, Knight SP, Newman L, O'Connor JD, Scarlett S, Carey D, Buckley A, McMorrow JP, Leidhin CN, Feeney J, Melis RJ, Kenny RA, Claassen JA, Looze CD. Hemodynamic and structural brain measures in high and low sedentary older adults. J Cereb Blood Flow Metab 2021; 41:2607-2616. [PMID: 33866848 PMCID: PMC8504407 DOI: 10.1177/0271678x211009382] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Due to its cardiovascular effects sedentary behaviour might impact cerebrovascular function in the long term, affecting cerebrovascular regulatory mechanisms and perfusion levels. Consequently this could underly potential structural brain abnormalities associated with cognitive decline. We therefore assessed the association between sedentary behaviour and brain measures of cerebrovascular perfusion and structural abnormalities in community-dwelling older adults. Using accelerometery (GENEActiv) data from The Irish Longitudinal Study on Ageing (TILDA) we categorised individuals by low- and high-sedentary behaviour (≤8 vs >8 hours/day). We examined prefrontal haemoglobin oxygenation levels using Near-Infrared Spectroscopy during rest and after an orthostatic challenge in 718 individuals (66 ± 8 years, 52% female). Global grey matter cerebral blood flow, total grey and white matter volume, total and subfield hippocampal volumes, cortical thickness, and white matter hyperintensities were measured using arterial spin labelling, T1, and FLAIR MRI in 86 individuals (72 ± 6 years, 55% female). While no differences in prefrontal or global cerebral hemodynamics were found between groups, high-sedentary individuals showed lower hippocampal volumes and increased white matter hyperintensities compared to their low-sedentary counterparts. Since these structural cerebral abnormalities are associated with cognitive decline and Alzheimer's disease, future work exploring the causal pathways underlying these differences is needed.
Collapse
Affiliation(s)
- Carlijn M Maasakkers
- Department of Geriatrics/Radboud Alzheimer Center, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands.,The Irish Longitudinal Study on Ageing, Trinity College Dublin, Dublin, Ireland
| | - Dick Hj Thijssen
- Department of Physiology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands.,Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool, UK
| | - Silvin P Knight
- The Irish Longitudinal Study on Ageing, Trinity College Dublin, Dublin, Ireland
| | - Louise Newman
- The Irish Longitudinal Study on Ageing, Trinity College Dublin, Dublin, Ireland
| | - John D O'Connor
- The Irish Longitudinal Study on Ageing, Trinity College Dublin, Dublin, Ireland
| | - Siobhan Scarlett
- The Irish Longitudinal Study on Ageing, Trinity College Dublin, Dublin, Ireland
| | - Daniel Carey
- The Irish Longitudinal Study on Ageing, Trinity College Dublin, Dublin, Ireland
| | - Anne Buckley
- The Irish Longitudinal Study on Ageing, Trinity College Dublin, Dublin, Ireland
| | - Jason P McMorrow
- The National Centre for Advanced Medical Imaging (CAMI), St. James's Hospital, Dublin, Ireland
| | - Caoilfhionn Ní Leidhin
- The National Centre for Advanced Medical Imaging (CAMI), St. James's Hospital, Dublin, Ireland
| | - Joanne Feeney
- The Irish Longitudinal Study on Ageing, Trinity College Dublin, Dublin, Ireland
| | - René Jf Melis
- Department of Geriatrics/Radboud Alzheimer Center, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rose Anne Kenny
- The Irish Longitudinal Study on Ageing, Trinity College Dublin, Dublin, Ireland.,Department of Medical Gerontology, Mercer's Institute for Successful Ageing, St James's Hospital, Dublin, Ireland
| | - Jurgen Ahr Claassen
- Department of Geriatrics/Radboud Alzheimer Center, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Céline De Looze
- The Irish Longitudinal Study on Ageing, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
23
|
Cui L, Tao S, Yin HC, Shen QQ, Wang Y, Zhu LN, Li XJ. Tai Chi Chuan Alters Brain Functional Network Plasticity and Promotes Cognitive Flexibility. Front Psychol 2021; 12:665419. [PMID: 34267705 PMCID: PMC8275936 DOI: 10.3389/fpsyg.2021.665419] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/01/2021] [Indexed: 01/17/2023] Open
Abstract
Objective: This study used resting-state functional magnetic resonance imaging to investigate the effects of 8 weeks of Tai Chi Chuan and general aerobic exercise on the topological parameters of brain functional networks, explored the advantages of Tai Chi Chuan for improving functional network plasticity and cognitive flexibility, and examined how changes in topological attributes of brain functional networks relate to cognitive flexibility. Methods: Thirty-six healthy adults were grouped into Tai Chi Chuan (Bafa Wubu of Tai Chi), general aerobic exercise (brisk walking), and control groups. All of the subjects underwent fMRI and behavioral assessment before and after the exercise intervention. Results: Tai Chi Chuan exercise significantly enhanced the clustering coefficient and local efficiency compared with general aerobic exercise. Regarding the nodal properties, Tai Chi Chuan significantly enhanced the nodal clustering coefficient of the bilateral olfactory cortex and left thalamus, significantly reduced the nodal clustering coefficient of the left inferior temporal gyrus, significantly improved the nodal efficiency of the right precuneus and bilateral posterior cingulate gyrus, and significantly improved the nodal local efficiency of the left thalamus and right olfactory cortex. Furthermore, the behavioral performance results demonstrated that cognitive flexibility was enhanced by Tai Chi Chuan. The change in the nodal clustering coefficient in the left thalamus induced by Tai Chi Chuan was a significant predictor of cognitive flexibility. Conclusion: These findings demonstrated that Tai Chi Chuan could promote brain functional specialization. Brain functional specialization enhanced by Tai Chi Chuan exercise was a predictor of greater cognitive flexibility.
Collapse
Affiliation(s)
- Lei Cui
- College of P.E. and Sports, Beijing Normal University, Beijing, China.,State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Sha Tao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Heng-Chan Yin
- College of P.E. and Sports, Beijing Normal University, Beijing, China
| | - Qi-Qi Shen
- College of P.E. and Sports, Beijing Normal University, Beijing, China
| | - Yuan Wang
- College of P.E. and Sports, Beijing Normal University, Beijing, China
| | - Li-Na Zhu
- College of P.E. and Sports, Beijing Normal University, Beijing, China
| | - Xiu-Juan Li
- PE Department, Renmin University of China, Beijing, China
| |
Collapse
|
24
|
Hug A, Bernini A, Wang H, Lutti A, Jende JME, Böttinger M, Weber MA, Weidner N, Lang S. In chronic complete spinal cord injury supraspinal changes detected by quantitative MRI are confined to volume reduction in the caudal brainstem. NEUROIMAGE-CLINICAL 2021; 31:102716. [PMID: 34144346 PMCID: PMC8217673 DOI: 10.1016/j.nicl.2021.102716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 11/25/2022]
Abstract
Cervical spinal cord and medulla oblongata atrophy correlate in chronic SCI. The most likely underlying mechanism is Wallerian degeneration of ascending tracts. No other structural MRI brain changes were evident in our cohort of chronic SCI.
There is much controversy about the potential impact of spinal cord injury (SCI) on brain anatomy and function, which is mirrored in the substantial divergence of findings between animal models and human imaging studies. Given recent advances in quantitative magnetic resonance imaging (MRI) we sought to tackle the unresolved question about the link between the presumed injury associated volume differences and underlying brain tissue property changes in a cohort of chronic complete SCI patients. Using the established computational anatomy methods of voxel-based morphometry (VBM) and voxel-based quantification (VBQ), we performed statistical analyses on grey and white matter volumes as well as on parameter maps indicative for myelin, iron, and free tissue water content in the brain of complete SCI patients (n = 14) and healthy individuals (n = 14). Our regionally unbiased white matter analysis showed a significant volume reduction of the dorsal aspect at the junction between the most rostral part of the spinal cord and the medulla oblongata consistent with Wallerian degeneration of proprioceptive axons in the dorsal column tracts in SCI subjects. This observation strongly correlated with spinal cord atrophy assessed by quantification of the spinal cord cross-sectional area at the cervical level C2/3. These findings suggest that Wallerian degeneration of the dorsal column tracts represents a main contributor to the observed spinal cord atrophy, which is highly consistent with preclinical histological evidence of remote changes in the central nervous system secondary to SCI. Structural changes in other brain regions representing remote changes in the course of chronic SCI could neither be confirmed by conventional VBM nor by VBQ analysis. Whether and how MRI based brain morphometry and brain tissue property analysis will inform clinical decision making and clinical trial outcomes in spinal cord medicine remains to be determined.
Collapse
Affiliation(s)
- Andreas Hug
- Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany.
| | - Adriano Bernini
- Laboratory for Research in Neuroimaging (LREN), Department of Clinical Neurosciences Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Haili Wang
- Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Antoine Lutti
- Laboratory for Research in Neuroimaging (LREN), Department of Clinical Neurosciences Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Johann M E Jende
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Markus Böttinger
- Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Marc-André Weber
- Department of Radiology, Heidelberg University Hospital, Heidelberg, Germany; Institute of Diagnostic and Interventional Radiology, University Medical Center Rostock, Rostock, Germany
| | - Norbert Weidner
- Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Simone Lang
- Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
25
|
Aghjayan SL, Lesnovskaya A, Esteban-Cornejo I, Peven JC, Stillman CM, Erickson KI. Aerobic exercise, cardiorespiratory fitness, and the human hippocampus. Hippocampus 2021; 31:817-844. [PMID: 34101305 PMCID: PMC8295234 DOI: 10.1002/hipo.23337] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 04/22/2021] [Accepted: 04/25/2021] [Indexed: 01/27/2023]
Abstract
The hippocampus is particularly susceptible to neurodegeneration. Physical activity, specifically increasing cardiorespiratory fitness via aerobic exercise, shows promise as a potential method for mitigating hippocampal decline in humans. Numerous studies have now investigated associations between the structure and function of the hippocampus and engagement in physical activity. Still, there remains continued debate and confusion about the relationship between physical activity and the human hippocampus. In this review, we describe the current state of the physical activity and exercise literature as it pertains to the structure and function of the human hippocampus, focusing on four magnetic resonance imaging measures: volume, diffusion tensor imaging, resting-state functional connectivity, and perfusion. We conclude that, despite significant heterogeneity in study methods, populations of interest, and scope, there are consistent positive findings, suggesting a promising role for physical activity in promoting hippocampal structure and function throughout the lifespan.
Collapse
Affiliation(s)
- Sarah L Aghjayan
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alina Lesnovskaya
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Irene Esteban-Cornejo
- PROFITH "PROmoting FITness and Health Through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain.,College of Science, Health, Engineering, and Education, Murdoch University, Perth, Western Australia
| | - Jamie C Peven
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Chelsea M Stillman
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kirk I Erickson
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,College of Science, Health, Engineering, and Education, Murdoch University, Perth, Western Australia
| |
Collapse
|
26
|
Ishihara T, Miyazaki A, Tanaka H, Fujii T, Takahashi M, Nishina K, Kanari K, Takagishi H, Matsuda T. Childhood exercise predicts response inhibition in later life via changes in brain connectivity and structure. Neuroimage 2021; 237:118196. [PMID: 34029739 DOI: 10.1016/j.neuroimage.2021.118196] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/19/2021] [Accepted: 05/19/2021] [Indexed: 10/21/2022] Open
Abstract
Participation in exercise during early life (i.e., childhood through adolescence) enhances response inhibition; however, it is unclear whether participation in exercise during early life positively predicts response inhibition in later life. This historical cohort study was designed to clarify whether participation in exercise (e.g., structured sports participation) during early life predicts response inhibition in adulthood and if so, to reveal the brain connectivity and cortical structures contributing to this association. We analyzed data derived from 214 participants (women = 104, men = 110; age: 26‒69 years). Results indicated that participation in exercise during childhood (before entering junior high school; ≤ 12 years old) significantly predicted better response inhibition. No such association was found if exercise participation took place in early adolescence or later (junior high school or high school; ≥ 12 years old). The positive association of exercise participation during childhood with response inhibition was moderated by decreased structural and functional connectivity in the frontoparietal (FPN), cingulo-opercular (CON), and default mode networks (DMN), and increased inter-hemispheric structural networks. Greater cortical thickness and lower levels of dendritic arborization and density in the FPN, CON, and DMN also moderated this positive association. Our results suggest that participation in exercise during childhood positively predicts response inhibition later in life and that this association can be moderated by changes in neuronal circuitry, such as increased cortical thickness and efficiency, and strengthened inter-hemispheric connectivity.
Collapse
Affiliation(s)
- Toru Ishihara
- Graduate School of Human Development and Environment, Kobe University, 3-11 Tsurukabuto, Nada-ku, Kobe 657-8501, Japan; Tamagawa University Brain Science Institute, 6-1-1 Tamagawagakuen, Machida, Tokyo 194-8610, Japan
| | - Atsushi Miyazaki
- Tamagawa University Brain Science Institute, 6-1-1 Tamagawagakuen, Machida, Tokyo 194-8610, Japan
| | - Hiroki Tanaka
- Tamagawa University Brain Science Institute, 6-1-1 Tamagawagakuen, Machida, Tokyo 194-8610, Japan; Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Takayuki Fujii
- Tamagawa University Brain Science Institute, 6-1-1 Tamagawagakuen, Machida, Tokyo 194-8610, Japan
| | - Muneyoshi Takahashi
- Tamagawa University Brain Science Institute, 6-1-1 Tamagawagakuen, Machida, Tokyo 194-8610, Japan
| | - Kuniyuki Nishina
- Tamagawa University Brain Science Institute, 6-1-1 Tamagawagakuen, Machida, Tokyo 194-8610, Japan
| | - Kei Kanari
- Tamagawa University Brain Science Institute, 6-1-1 Tamagawagakuen, Machida, Tokyo 194-8610, Japan
| | - Haruto Takagishi
- Tamagawa University Brain Science Institute, 6-1-1 Tamagawagakuen, Machida, Tokyo 194-8610, Japan
| | - Tetsuya Matsuda
- Tamagawa University Brain Science Institute, 6-1-1 Tamagawagakuen, Machida, Tokyo 194-8610, Japan.
| |
Collapse
|
27
|
Negaresh R, Gharakhanlou R, Sahraian MA, Abolhasani M, Motl RW, Zimmer P. Physical activity may contribute to brain health in multiple sclerosis: An MR volumetric and spectroscopy study. J Neuroimaging 2021; 31:714-723. [PMID: 33955618 DOI: 10.1111/jon.12869] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/18/2021] [Accepted: 04/07/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Physical activity may represent a disease-modifying therapy in persons with multiple sclerosis (pwMS). To date, there is limited research regarding mechanisms based on brain imaging for understanding the beneficial effects of physical activity in pwMS. This study examined the relationship between physical activity levels and thalamic and hippocampal volumes and brain metabolism in pwMS. METHODS The sample of 52 pwMS (37.3 ± 9.6 years of age; 35 females, 17 males) underwent a combination of volumetric magnetic resonance imaging and magnetic resonance spectroscopy. Current and lifetime physical activity were assessed using actigraphy and the adapted version of the Historical Activity Questionnaire, respectively. RESULTS Positive associations were observed between both actigraphy and self-reported levels of moderate-to-vigorous physical activity (MVPA) and thalamic and hippocampal volumes. Regarding brain metabolism, actigraphy and self-reported levels of MVPA were positively associated with higher hippocampal and thalamic levels of N-acetylaspartate/creatine ratio (NAA/Cr: marker of neural integrity and cell energy state). CONCLUSIONS This study provides novel evidence for a positive association between physical activity and thalamic and hippocampal volume and metabolism in pwMS. These findings support the hypothesis that physical activity, particularly MVPA, may serve as a disease-modifying treatment by improving brain health in pwMS.
Collapse
Affiliation(s)
- Raoof Negaresh
- Department of Sport Physiology, Tarbiat Modares University, Tehran, Iran
| | - Reza Gharakhanlou
- Department of Sport Physiology, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Ali Sahraian
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Abolhasani
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Robert W Motl
- Department of Physical Therapy, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Philipp Zimmer
- Division for Performance and Health (Sports Medicine), Department of Sport and Sport Science, TU Dortmund University, Dortmund, Germany
| |
Collapse
|
28
|
Bajaj S, Killgore WDS. Association between emotional intelligence and effective brain connectome: A large-scale spectral DCM study. Neuroimage 2021; 229:117750. [PMID: 33454407 DOI: 10.1016/j.neuroimage.2021.117750] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/21/2020] [Accepted: 01/07/2021] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Emotional Intelligence (EI) is a well-documented aspect of social and interpersonal functioning, but the underlying neural mechanisms for this capacity remain poorly understood. Here we used advanced brain connectivity techniques to explore the associations between EI and effective connectivity (EC) within four functional brain networks. METHODS The Mayer-Salovey-Caruso Emotional Intelligence Test (MSCEIT) was used to collect EI data from 55 healthy individuals (mean age = 30.56±8.3 years, 26 males). The MSCEIT comprises two area cores - experiential EI (T1) and strategic EI (T2). The T1 core included two sub-scales - perception of emotions (S1) and using emotions to facilitate thinking (S2), and the T2 core included two sub-scales - understanding of emotions (S3) and management of emotions (S4). All participants underwent structural and resting-state functional magnetic resonance imaging (rsfMRI) scans. The spectral dynamic causal modeling approach was implemented to estimate EC within four networks of interest - the default-mode network (DMN), dorsal attention network (DAN), control-execution network (CEN) and salience network (SN). The strength of EC within each network was correlated with the measures of EI, with correlations at pFDR < 0.05 considered as significant. RESULTS There was no significant association between any of the measures of EI and EC strength within the DMN and DAN. For CEN, however, we found that there were significant negative associations between EC strength from the right anterior prefrontal cortex (RAPFC) to the left anterior prefrontal cortex (LAPFC) and both S2 and T1, and significant positive associations between EC strength from LAPFC to RAPFC and S2. EC strength from the right superior parietal cortex (SPC) to RAPFC also showed significant negative association with S4 and T2. For the SN, S3 showed significant negative association with EC strength from the right insula to RAPFC and significant positive association with EC strength from the left insula to dorsal anterior cingulate cortex (DACC). CONCLUSIONS We provide evidence that the negative ECs within the right hemisphere, and from the right to left hemisphere, and positive ECs within the left hemisphere and from the left to right hemisphere of CEN (involving bilateral frontal and right parietal region) and SN (involving right frontal, anterior cingulate and bilateral insula) play a significant role in regulating and processing emotions. These findings also suggest that measures of EC can be utilized as important biomarkers to better understand the underlying neural mechanisms of EI.
Collapse
Affiliation(s)
- Sahil Bajaj
- Social, Cognitive and Affective Neuroscience Laboratory (SCAN Lab), Department of Psychiatry, College of Medicine, University of Arizona, Tucson, AZ, USA; Multimodal Clinical Neuroimaging Laboratory (MCNL), Center for Neurobehavioral Research, Boys Town National Research Hospital, 14015 Flanagan Blvd. Suite #102, Boys Town, NE 68010, USA.
| | - William D S Killgore
- Social, Cognitive and Affective Neuroscience Laboratory (SCAN Lab), Department of Psychiatry, College of Medicine, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
29
|
Esteban-Cornejo I, Stillman CM, Rodriguez-Ayllon M, Kramer AF, Hillman CH, Catena A, Erickson KI, Ortega FB. Physical fitness, hippocampal functional connectivity and academic performance in children with overweight/obesity: The ActiveBrains project. Brain Behav Immun 2021; 91:284-295. [PMID: 33049365 DOI: 10.1016/j.bbi.2020.10.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVES Physical fitness is a modifiable factor associated with enhanced brain health during childhood. To our knowledge, the present study is the first to examine: (i) whether physical fitness components (i.e., cardiorespiratory, motor and muscular fitness) are associated with resting state functional connectivity of hippocampal seeds to different cortical regions in children with overweight/obesity, and (ii) whether resting state hippocampal functional connectivity is coupled with better academic performance. PATIENTS AND METHODS In this cross-sectional study, a total of 99 children with overweight/obesity aged 8-11 years were recruited from Granada, Spain (November 2014 to February 2016). The physical fitness components were assessed following the ALPHA health-related fitness test battery. T1-weighted and resting-state fMRI images were acquired with a 3.0 Tesla Siemens Magnetom Tim Trio system. Academic performance was assessed by the Woodcock-Muñoz standardized test. Hippocampal seed-based procedures with post-hoc regression analyses were performed. RESULTS In the fully adjusted models, cardiorespiratory fitness was independently associated with greater hippocampal connectivity between anterior hippocampus and frontal regions (β ranging from 0.423 to 0.424, p < 0.001). Motor fitness was independently associated with diminished hippocampal connectivity between posterior hippocampus and frontal regions (β ranging from -0.583 to -0.694, p < 0.001). However, muscular fitness was not independently associated with hippocampal functional connectivity. Positive resting state hippocampal functional connectivity was related to better written expression (β ranging from 0.209 to 0.245; p < 0.05). CONCLUSIONS Physical fitness components may associate with functional connectivity between hippocampal subregions and frontal regions, independent of hippocampal volume, in children with overweight/obesity. Particularly, cardiorespiratory fitness may enhance anterior hippocampal functional connectivity and motor fitness may diminish posterior hippocampal functional connectivity. In addition, resting state hippocampal functional connectivity may relate to better written expression.
Collapse
Affiliation(s)
- Irene Esteban-Cornejo
- PROFITH "PROmoting FITness and Health through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain.
| | - Chelsea M Stillman
- Brain Aging & Cognitive Health Lab, Department of Psychology, University of Pittsburgh, 3601 Sennot Square, Pittsburgh, PA, USA
| | - María Rodriguez-Ayllon
- PROFITH "PROmoting FITness and Health through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Arthur F Kramer
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Center for Cognitive and Brain Health, Department of Psychology, Northeastern University, Boston, MA, USA
| | - Charles H Hillman
- Center for Cognitive and Brain Health, Department of Psychology, Northeastern University, Boston, MA, USA; Department of Physical Therapy, Movement, & Rehabilitation Sciences, Northeastern University, Boston, MA, USA
| | - Andrés Catena
- Department of Experimental Psychology, Mind, Brain and Behavior Research Center (CIMCYC), University of Granada, Granada, Spain
| | - Kirk I Erickson
- Brain Aging & Cognitive Health Lab, Department of Psychology, University of Pittsburgh, 3601 Sennot Square, Pittsburgh, PA, USA
| | - Francisco B Ortega
- PROFITH "PROmoting FITness and Health through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain
| |
Collapse
|
30
|
Fukuo M, Kamagata K, Kuramochi M, Andica C, Tomita H, Waki H, Sugano H, Tange Y, Mitsuhashi T, Uchida W, Takenaka Y, Hagiwara A, Harada M, Goto M, Hori M, Aoki S, Naito H. Regional brain gray matter volume in world-class artistic gymnasts. J Physiol Sci 2020; 70:43. [PMID: 32948133 PMCID: PMC10717960 DOI: 10.1186/s12576-020-00767-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 08/31/2020] [Indexed: 12/19/2022]
Abstract
The relationship between long-term intensive training and brain plasticity in gymnasts has recently been reported. However, the relationship between abilities in different gymnastic events and brain structural changes has not been explored. This study aimed to evaluate the correlation between world-class gymnasts (WCGs)' specific abilities in different gymnastics events and their gray matter (GM) volume. Ten right-handed Japanese male WCGs and 10 right-handed gender- and age-matched controls with no history of gymnastic training participated in this study. Whole brain three-dimensional T1-weighted images (magnetization-prepared rapid gradient-echo sequence) with 0.90 mm3 voxels were obtained using a 3 T-MRI scanner from each subject. Volume-based morphometry (VolBM) was used to compare GM volume differences between WCGs and controls. We then explored the correlation between specific gymnastic abilities using different gymnastic apparatuses, and GM volume. Significantly higher GM volumes (false discovery rate-corrected p < 0.05) in the inferior parietal lobule, middle temporal gyrus, precentral gyrus, rostral middle frontal gyrus, and superior frontal gyrus were demonstrated in WCGs, compared with controls using VolBM. Moreover, significant positive correlations were observed between brain regions and the difficulty scores for each gymnastic event, for example, rings and inferior parietal lobule and parallel bars and rostral middle frontal gyrus. These results may reflect the neural basis of an outstanding gymnastic ability resulting from brain plasticity in areas associated with spatial perception, vision, working memory, and motor control.
Collapse
Affiliation(s)
- Makoto Fukuo
- Juntendo University Graduate School of Health and Sports Scienc, 1-1 Hirakagakuendai, Inzai, Chiba, 270-1695, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University Graduate School of Medicin, Tokyo, Japan
| | - Mana Kuramochi
- Department of Radiology, Juntendo University Graduate School of Medicin, Tokyo, Japan
- Department of Radiological Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Christina Andica
- Department of Radiology, Juntendo University Graduate School of Medicin, Tokyo, Japan
| | - Hiroyuki Tomita
- Juntendo University Graduate School of Health and Sports Scienc, 1-1 Hirakagakuendai, Inzai, Chiba, 270-1695, Japan
| | - Hidefumi Waki
- Juntendo University Graduate School of Health and Sports Scienc, 1-1 Hirakagakuendai, Inzai, Chiba, 270-1695, Japan.
| | - Hidenori Sugano
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuichi Tange
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takumi Mitsuhashi
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Wataru Uchida
- Department of Radiology, Juntendo University Graduate School of Medicin, Tokyo, Japan
- Department of Radiological Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Yuki Takenaka
- Department of Radiology, Juntendo University Graduate School of Medicin, Tokyo, Japan
- Department of Radiological Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Akifumi Hagiwara
- Department of Radiology, Juntendo University Graduate School of Medicin, Tokyo, Japan
- Department of Radiology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Mutsumi Harada
- Juntendo University Graduate School of Health and Sports Scienc, 1-1 Hirakagakuendai, Inzai, Chiba, 270-1695, Japan
| | - Masami Goto
- School of Allied Health Science, Kitasato University, Kanagawa, Japan
| | - Masaaki Hori
- Department of Radiology, Juntendo University Graduate School of Medicin, Tokyo, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University Graduate School of Medicin, Tokyo, Japan
| | - Hisashi Naito
- Juntendo University Graduate School of Health and Sports Scienc, 1-1 Hirakagakuendai, Inzai, Chiba, 270-1695, Japan
| |
Collapse
|
31
|
Frederiksen KS, Gjerum L, Waldemar G, Hasselbalch SG. Physical Activity as a Moderator of Alzheimer Pathology: A Systematic Review of Observational Studies. Curr Alzheimer Res 2020; 16:362-378. [PMID: 30873924 DOI: 10.2174/1567205016666190315095151] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 02/12/2019] [Accepted: 03/13/2019] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Observational studies have found that physical activity is associated with a reduced risk of cognitive decline and dementia. Whether physical activity may also reduce the level of AD pathology, remains undetermined. OBJECTIVE To examine the relationship between physical activity and AD biomarkers (beta-amyloid1- 42, total tau and phosphorylated tau in CSF, amyloid PET, hippocampal atrophy on MRI and parietotemporal hypometabolism on brain 18F-FDG-PET). METHODS We carried out a systematic review of the observational studies of physical activity and AD biomarkers in healthy subjects, subjective cognitive complaints, mild cognitive impairment (MCI) and AD dementia. RESULTS We identified a total of 40 papers, which were eligible for inclusion. Thirty-four studies were conducted on healthy subjects, 3 on MCI and healthy subjects, 1 on MCI, and 2 on AD and healthy controls. Six studies reported on CSF biomarkers, 9 on amyloid PET, 29 on MRI and 4 on brain 18FFDG- PET. The majority of studies did not find a significant association between physical activity and AD biomarkers. CONCLUSION The quality of included studies with only a few longitudinal studies, limits the conclusions which may be drawn from the present findings especially regarding the biomarkers other than hippocampal volume. However, the majority of the identified studies did not find a significant association.
Collapse
Affiliation(s)
- Kristian Steen Frederiksen
- Danish Dementia Research Centre, Section 6911, Department of Neurology, Rigshospitalet, University of Copenhagen, 9 Blegdamsvej, DK-2100 Copenhagen, Denmark
| | - Le Gjerum
- Danish Dementia Research Centre, Section 6911, Department of Neurology, Rigshospitalet, University of Copenhagen, 9 Blegdamsvej, DK-2100 Copenhagen, Denmark
| | - Gunhild Waldemar
- Danish Dementia Research Centre, Section 6911, Department of Neurology, Rigshospitalet, University of Copenhagen, 9 Blegdamsvej, DK-2100 Copenhagen, Denmark
| | - Steen Gregers Hasselbalch
- Danish Dementia Research Centre, Section 6911, Department of Neurology, Rigshospitalet, University of Copenhagen, 9 Blegdamsvej, DK-2100 Copenhagen, Denmark
| |
Collapse
|
32
|
Leon-Llamas JL, Villafaina S, Murillo-Garcia A, Dominguez-Muñoz FJ, Gusi N. Effects of 24-Week Exergame Intervention on the Gray Matter Volume of Different Brain Structures in Women with Fibromyalgia: A Single-Blind, Randomized Controlled Trial. J Clin Med 2020; 9:E2436. [PMID: 32751515 PMCID: PMC7463870 DOI: 10.3390/jcm9082436] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Exergame-induced changes in the volume of brain gray matter have not been studied in fibromyalgia (FM). This study evaluates the effects of a 24-week exergame-based intervention on the gray matter volume of different brain structures in patients with FM through magnetic resonance imaging (MRI). METHODS A total of 25 FM patients completed 24 weeks of intervention program, and another 25 FM patients did not receive any intervention. T1-weighted MRI was used to assess brain volume, and FreeSurfer software was used to segment the brain regions. RESULTS No significant effects on gray matter volume of different structures and total gray matter were found. CONCLUSIONS FM patients did not show significant changes in gray matter brain volume between the control and experimental groups after 24 weeks. FM patients showed significant relationships between peak oxygen consumption (pVO2) and the left and right regions of the hippocampus and the left and right regions of the amygdala.
Collapse
Affiliation(s)
| | | | - Alvaro Murillo-Garcia
- Physical Activity and Quality of Life Research Group (AFYCAV), Faculty of Sport Science, University of Extremadura, 10003 Cáceres, Spain; (J.L.L.-L.); (S.V.); (F.J.D.-M.); (N.G.)
| | | | | |
Collapse
|
33
|
Wittfeld K, Jochem C, Dörr M, Schminke U, Gläser S, Bahls M, Markus MRP, Felix SB, Leitzmann MF, Ewert R, Bülow R, Völzke H, Janowitz D, Baumeister SE, Grabe HJ. Cardiorespiratory Fitness and Gray Matter Volume in the Temporal, Frontal, and Cerebellar Regions in the General Population. Mayo Clin Proc 2020; 95:44-56. [PMID: 31902428 DOI: 10.1016/j.mayocp.2019.05.030] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 05/10/2019] [Accepted: 05/29/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To analyze the association between cardiorespiratory fitness (CRF) and global and local brain volumes. PARTICIPANTS AND METHODS We studied 2103 adults (21-84 years old) from 2 independent population-based cohorts (Study of Health in Pomerania, examinations from June 25, 2008, through September 30, 2012). Cardiorespiratory fitness was measured using peak oxygen uptake (VO2peak), oxygen uptake at the anaerobic threshold (VO2@AT), and maximal power output from cardiopulmonary exercise testing on a bicycle ergometer. Magnetic resonance imaging brain data were analyzed by voxel-based morphometry using regression models with adjustment for age, sex, education, smoking, body weight, systolic blood pressure, glycated hemoglobin level, and intracranial volume. RESULTS Volumetric analyses revealed associations of CRF with gray matter (GM) volume and total brain volume. After multivariable adjustment, a 1-standard deviation increase in VO2peak was related to a 5.31 cm³ (95% CI, 3.27 to 7.35 cm³) higher GM volume. Whole-brain voxel-based morphometry analyses revealed significant positive relations between CRF and local GM volumes. The VO2peak was strongly associated with GM volume of the left middle temporal gyrus (228 voxels), the right hippocampal gyrus (146 voxels), the left orbitofrontal cortex (348 voxels), and the bilateral cingulate cortex (68 and 43 voxels). CONCLUSION Cardiorespiratory fitness was positively associated with GM volume, total brain volume, and specific GM and white matter clusters in brain areas not primarily involved in movement processing. These results, from a representative population sample, suggest that CRF might contribute to improved brain health and might, therefore, decelerate pathology-specific GM decrease.
Collapse
Affiliation(s)
- Katharina Wittfeld
- German Center for Neurodegenerative Disease, Site Rostock/Greifswald, Germany; Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Germany.
| | - Carmen Jochem
- Department of Epidemiology and Preventive Medicine, University of Regensburg, Germany
| | - Marcus Dörr
- Department of Internal Medicine B, University Medicine Greifswald, Germany; German Centre for Cardiovascular Research, Partner Site Greifswald, Germany
| | - Ulf Schminke
- Department of Neurology, University Medicine Greifswald, Germany
| | - Sven Gläser
- Department of Internal Medicine B, University Medicine Greifswald, Germany
| | - Martin Bahls
- Department of Internal Medicine B, University Medicine Greifswald, Germany; German Centre for Cardiovascular Research, Partner Site Greifswald, Germany
| | - Marcello R P Markus
- Department of Internal Medicine B, University Medicine Greifswald, Germany; German Centre for Cardiovascular Research, Partner Site Greifswald, Germany; German Center for Diabetes Research, Partner Site Greifswald, Germany
| | - Stephan B Felix
- Department of Internal Medicine B, University Medicine Greifswald, Germany; German Centre for Cardiovascular Research, Partner Site Greifswald, Germany
| | - Michael F Leitzmann
- Department of Epidemiology and Preventive Medicine, University of Regensburg, Germany
| | - Ralf Ewert
- Department of Internal Medicine B, University Medicine Greifswald, Germany
| | - Robin Bülow
- Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Germany
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Germany; German Centre for Cardiovascular Research, Partner Site Greifswald, Germany; German Center for Diabetes Research, Partner Site Greifswald, Germany
| | - Deborah Janowitz
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Germany
| | - Sebastian E Baumeister
- Institute for Community Medicine, University Medicine Greifswald, Germany; Chair of Epidemiology, Ludwig-Maximilians-Universität München, UNIKA-T Augsburg, Germany; Independent Research Group Clinical Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Hans Jörgen Grabe
- German Center for Neurodegenerative Disease, Site Rostock/Greifswald, Germany; Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Germany
| |
Collapse
|
34
|
Bajaj S, Killgore WDS. Sex differences in limbic network and risk-taking propensity in healthy individuals. J Neurosci Res 2019; 98:371-383. [PMID: 31373060 DOI: 10.1002/jnr.24504] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/19/2019] [Accepted: 07/15/2019] [Indexed: 01/26/2023]
Abstract
Little is known about the structural neural substrates that may contribute to sex differences in risk-taking propensity (RTP). A close association between risk-seeking behavior and the emotional-regulation network led us to hypothesize that the sex differences in RTP would be associated with sex differences in brain morphometry of the limbic network (LN). We collected RTP scores using the bubble sheet version of the evaluation of risk (EVAR) scale and neuroanatomical data from 57 healthy individuals (29 males). The EVAR scale included sub-scales measuring recklessness/impulsivity, self-confidence, and need for control (NFC). We observed significant sex differences in NFC showing greater desire for control and dominance in males than females (multivariate analysis of covariance, MANCOVAN: p = .01). Morphometry analysis showed that it was only the right LN, which showed significant sex differences in normalized surface area, normalized cortical volume, and adjusted mean curvature index (females > males) at p < .01 (MANCOVAN, corrected for multiple comparisons). Correlation analysis showed that greater curvature of the right LN was significantly associated with lower desire for control in high-risk events (r = -.31, p = .02 at 95% CI of [-0.53, -0.05]). Our findings suggest that the normalized cortical measures could indicate specific sex differences in brain morphometry, particularly within the LN. The curvature index was the only differentiating factor for greater/lower propensity for risk-taking behavior in overall sample. Therefore, the LN and the curvature measures could be key biomarkers, which play an important role in predicting risk-taking behavior.
Collapse
Affiliation(s)
- Sahil Bajaj
- Social, Cognitive and Affective Neuroscience Laboratory (SCAN Lab), Department of Psychiatry, College of Medicine, University of Arizona, Tucson, Arizona
| | - William D S Killgore
- Social, Cognitive and Affective Neuroscience Laboratory (SCAN Lab), Department of Psychiatry, College of Medicine, University of Arizona, Tucson, Arizona
| |
Collapse
|
35
|
Bajaj S, Raikes AC, Smith R, Vanuk JR, Killgore WDS. The Role of Prefrontal Cortical Surface Area and Volume in Preclinical Suicidal Ideation in a Non-Clinical Sample. Front Psychiatry 2019; 10:445. [PMID: 31312146 PMCID: PMC6613495 DOI: 10.3389/fpsyt.2019.00445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 06/05/2019] [Indexed: 01/08/2023] Open
Abstract
Suicidal ideation (SUI) can occur in the absence of concomitant psychiatric diagnoses, and even normal levels can be problematic among individuals experiencing excess stress or lack of social support. The objective of this study was to investigate the neuroanatomical basis of SUI in non-clinical human populations who are within the normal limits of SUI, after accounting for elevated stress and perceived lack of social support. Neuroanatomical data were collected from 55 healthy individuals (mean age 30.9 ± 8.1 years, 27 females) whose depression severity levels were below the Diagnostic and Statistical Manual of Mental Disorders criteria. Measures of SUI, aggression, stress, non-support, and treatment rejection were collected from the treatment-consideration scales (TCS) of the Personality Assessment Inventory (PAI). Correlations between standardized SUI scores and three brain morphometry measures, including vertex wise cortical thickness (CT), cortical surface area (CSA), and cortical volume (CV), were estimated for each participant, controlling for age, sex, intracranial volume, and the remaining TCS measures. We observed a significant negative association between scores on SUI and both CSA and CV (cluster-forming threshold of p < 0.005, clusterwise threshold of p < 0.05, FDR corrected for multiple comparisons) within the left rostral middle frontal gyrus. Our findings suggest that greater CSA and CV within the dorsolateral prefrontal cortex are associated with reduced SUI in a non-clinical population with mild levels of stress and perceived lack of social support. Because the dorsolateral prefrontal cortex has been broadly linked to cognitive reappraisal, self-critical thoughts, and emotional regulation, greater CSA and CV within these regions may lead to better mental health by protecting healthy individuals from engaging in SUI during periods of stress and perceived insufficient social support. As our data consisted of only healthy individuals with non-clinical levels of SUI, further investigation will be necessary to explore the neural basis of SUI in populations who may be at greater risk of future suicidal behavior.
Collapse
Affiliation(s)
- Sahil Bajaj
- Social, Cognitive and Affective Neuroscience Laboratory (SCAN Lab), Department of Psychiatry, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Adam C Raikes
- Social, Cognitive and Affective Neuroscience Laboratory (SCAN Lab), Department of Psychiatry, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Ryan Smith
- The Laureate Institute for Brain Research (LIBR), Tulsa, OK, United States
| | - John R Vanuk
- Social, Cognitive and Affective Neuroscience Laboratory (SCAN Lab), Department of Psychiatry, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - William D S Killgore
- Social, Cognitive and Affective Neuroscience Laboratory (SCAN Lab), Department of Psychiatry, College of Medicine, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
36
|
Wang R, Holsinger RMD. Exercise-induced brain-derived neurotrophic factor expression: Therapeutic implications for Alzheimer's dementia. Ageing Res Rev 2018; 48:109-121. [PMID: 30326283 DOI: 10.1016/j.arr.2018.10.002] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 09/26/2018] [Accepted: 10/08/2018] [Indexed: 01/01/2023]
Abstract
Emerging evidence indicates that moderate intensity aerobic exercise is positively correlated with cognitive function and memory. However, the exact mechanisms underlying such improvements remain unclear. Recent research in animal models allows proposition of a pathway in which brain-derived neurotrophic factor (BDNF) is a key mediator. This perspective draws upon evidence from animal and human studies to highlight such a mechanism whereby exercise drives synthesis and accumulation of neuroactive metabolites such as myokines and ketone bodies in the periphery and in the hippocampus to enhance BDNF expression. BDNF is a neurotrophin with well-established properties of promoting neuronal survival and synaptic integrity, while its influence on energy transduction may provide the crucial link between inherent vascular and metabolic benefits of exercise with enhanced brain function. Indeed, BDNF mRNA and protein is robustly elevated in rats following periods of voluntary exercise. This was also correlated with improved spatial memory, while such benefits were abolished upon inhibition of BDNF signaling. Similarly, both BDNF and cardiovascular fitness arising from aerobic exercise have been positively associated with hippocampal volume and function in humans. We postulate that exercise will attenuate cortical atrophy and synaptic loss inherent to neurodegenerative disorders - many of which also exhibit aberrant down-regulation of BDNF. Thus, the proposed link between BDNF, exercise and cognition may have critical therapeutic implications for the prevention and amelioration of memory loss and cognitive impairment in Alzheimer's disease and associated dementias.
Collapse
|
37
|
Eyme KM, Domin M, Gerlach FH, Hosten N, Schmidt CO, Gaser C, Flöel A, Lotze M. Physically active life style is associated with increased grey matter brain volume in a medial parieto-frontal network. Behav Brain Res 2018; 359:215-222. [PMID: 30408511 DOI: 10.1016/j.bbr.2018.10.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/29/2018] [Accepted: 10/31/2018] [Indexed: 12/30/2022]
Abstract
To examine the association between the amount of sports activity performed during leisure time and gray matter volume (GMV) of the brain we investigated differences in GMV in a large cohort study of community-dwelling older adults. 967 individuals indicated their average weekly sports activity via a questionnaire, and underwent high resolution T1-weighted structural imaging of the brain. We used voxel based morphometry (CAT 12) in a region of interest approach for (1) comparing participants with higher versus lower sports activity (median split) and (2) calculating a linear regression on GMV and sports activity. We carefully corrected for other factors known to have an impact on GMV (sex, age, total brain volume, education, cigarettes and alcohol consumption, body mass index) and excluded pathology (history of psychiatric or neurological disease; visual inspection of brain scans). Those participants who spend more time performing sports activity per week (median split with > 1 h/week) showed higher GMV in the dorsomedial frontal lobe, the superior parietal lobe, and the precuneus/cuneus area. When splitting participants by their median (55.5 years) into two groups we found a stronger protective effect of sports against age related GMV decline for the older part of the cohort. Overall, a more active lifestyle was associated with increased GMV in areas associated with self-awareness and working memory. These cohort data support data on the protective role of sports activity for the GMV.
Collapse
Affiliation(s)
- K M Eyme
- Functional Imaging Unit, Center for Diagnostic Radiology, University Medicine Greifswald, Germany
| | - M Domin
- Functional Imaging Unit, Center for Diagnostic Radiology, University Medicine Greifswald, Germany
| | - F H Gerlach
- Functional Imaging Unit, Center for Diagnostic Radiology, University Medicine Greifswald, Germany
| | - N Hosten
- Center for Diagnostic Radiology, University Medicine Greifswald, Germany
| | - C O Schmidt
- Community Medicine Greifswald, University Medicine Greifswald, Germany
| | - C Gaser
- Departments of Psychiatry and Neurology, Jena University Hospital, Germany
| | - A Flöel
- Neurology, University Medicine Greifswald, Germany
| | - M Lotze
- Functional Imaging Unit, Center for Diagnostic Radiology, University Medicine Greifswald, Germany.
| |
Collapse
|
38
|
Köhncke Y, Papenberg G, Jonasson L, Karalija N, Wåhlin A, Salami A, Andersson M, Axelsson JE, Nyberg L, Riklund K, Bäckman L, Lindenberger U, Lövdén M. Self-rated intensity of habitual physical activities is positively associated with dopamine D2/3 receptor availability and cognition. Neuroimage 2018; 181:605-616. [DOI: 10.1016/j.neuroimage.2018.07.036] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 07/13/2018] [Accepted: 07/14/2018] [Indexed: 12/30/2022] Open
|
39
|
Dowd S, Mustroph ML, Romanova EV, Southey BR, Pinardo H, Rhodes JS, Sweedler JV. Exploring Exercise- and Context-Induced Peptide Changes in Mice by Quantitative Mass Spectrometry. ACS OMEGA 2018; 3:13817-13827. [PMID: 30411050 PMCID: PMC6210063 DOI: 10.1021/acsomega.8b01713] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/08/2018] [Indexed: 06/08/2023]
Abstract
Recent research suggests that exercise may help facilitate abstinence from cocaine addiction, though the mechanisms are not well understood. In mice, wheel running accelerates the extinction of conditioned place preference (CPP) for cocaine, providing an animal model for evaluating potential neurological mechanisms. The objective of this study was to quantify dynamic changes in endogenous peptides in the amygdala and dentate gyrus of the hippocampus in mice exposed to a context paired with the effects of cocaine, and in response to exercise. Male C57BL/6J mice conditioned to cocaine were housed with or without running wheels for 30 days. Following a CPP test and final exposure to either a cocaine- or saline-associated context, peptides were measured in brain tissue extracts using label-free matrix-assisted laser desorption/ionization mass spectrometry (MS) and stable isotopic labeling with liquid chromatography and electrospray ionization MS. CPP in mice was significantly reduced with running, which correlated to decreased myelin basic protein derivatives in the dentate gyrus extracts, possibly reflecting increased unmyelinated granule neuron density. Exposure to a cocaine-paired context increased hemoglobin-derived peptides in runners and decreased an actin-derived peptide in sedentary animals. These results allowed us to characterize a novel set of biomarkers that are responsive to exercise in the hippocampus and in a cocaine-paired context in the amygdala.
Collapse
Affiliation(s)
- Sarah
E. Dowd
- Department
of Chemistry, Neuroscience Program, Beckman Institute, Department of Animal Sciences, and Department of
Psychology, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, 63-5, Urbana, Illinois 61801, United States
| | - Martina L. Mustroph
- Department
of Chemistry, Neuroscience Program, Beckman Institute, Department of Animal Sciences, and Department of
Psychology, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, 63-5, Urbana, Illinois 61801, United States
| | - Elena V. Romanova
- Department
of Chemistry, Neuroscience Program, Beckman Institute, Department of Animal Sciences, and Department of
Psychology, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, 63-5, Urbana, Illinois 61801, United States
| | - Bruce R. Southey
- Department
of Chemistry, Neuroscience Program, Beckman Institute, Department of Animal Sciences, and Department of
Psychology, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, 63-5, Urbana, Illinois 61801, United States
| | - Heinrich Pinardo
- Department
of Chemistry, Neuroscience Program, Beckman Institute, Department of Animal Sciences, and Department of
Psychology, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, 63-5, Urbana, Illinois 61801, United States
| | - Justin S. Rhodes
- Department
of Chemistry, Neuroscience Program, Beckman Institute, Department of Animal Sciences, and Department of
Psychology, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, 63-5, Urbana, Illinois 61801, United States
| | - Jonathan V. Sweedler
- Department
of Chemistry, Neuroscience Program, Beckman Institute, Department of Animal Sciences, and Department of
Psychology, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, 63-5, Urbana, Illinois 61801, United States
| |
Collapse
|
40
|
Cahill SP, Cole JD, Yu RQ, Clemans-Gibbon J, Snyder JS. Differential Effects of Extended Exercise and Memantine Treatment on Adult Neurogenesis in Male and Female Rats. Neuroscience 2018; 390:241-255. [PMID: 30176321 DOI: 10.1016/j.neuroscience.2018.08.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/13/2018] [Accepted: 08/26/2018] [Indexed: 11/19/2022]
Abstract
Adult neurogenesis has potential to ameliorate a number of disorders that negatively impact the hippocampus, including age-related cognitive decline, depression, and schizophrenia. A number of treatments enhance adult neurogenesis including exercise, NMDA receptor antagonism, antidepressant drugs and environmental enrichment. Despite the chronic nature of many disorders, most animal studies have only examined the efficacy of neurogenic treatments over short timescales (≤1 month). Also, studies of neurogenesis typically include only 1 sex, even though many disorders differentially impact males and females. We tested whether two known neurogenic treatments, running and the NMDA receptor antagonist, memantine, could cause sustained increases in neurogenesis in male and female rats. We found that continuous access to a running wheel (cRUN) initially increased neurogenesis, but effects were minimal after 1 month and completely absent after 5 months. Similarly, a single injection of memantine (sMEM) transiently increased neurogenesis before returning to baseline at 1 month. To determine whether neurogenesis could be increased over a 2-month timeframe, we next subjected rats to interval running (iRUN), multiple memantine injections (mMEM), or alternating blocks of iRUN and mMEM. Two months of iRUN increased DCX+ cells in females and iRUN followed by mMEM increased DCX+ cells in males, indicating that neurogenesis was increased in the later stages of the treatments. However, thymidine analogs revealed that neurogenesis was minimally increased during the initial stages of the treatments. These findings highlight temporal limitations and sex differences in the efficacy of neurogenic manipulations, which may be relevant for designing plasticity-promoting treatments.
Collapse
Affiliation(s)
- Shaina P Cahill
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - John Darby Cole
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Ru Qi Yu
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Jack Clemans-Gibbon
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Jason S Snyder
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
41
|
de Frutos-Lucas J, López-Sanz D, Zuluaga P, Rodríguez-Rojo IC, Luna R, López ME, Delgado-Losada ML, Marcos A, Barabash A, López-Higes R, Maestú F, Fernández A. Physical activity effects on the individual alpha peak frequency of older adults with and without genetic risk factors for Alzheimer’s Disease: A MEG study. Clin Neurophysiol 2018; 129:1981-1989. [DOI: 10.1016/j.clinph.2018.06.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/29/2018] [Accepted: 06/25/2018] [Indexed: 11/30/2022]
|
42
|
Bajaj S, Raikes A, Smith R, Dailey NS, Alkozei A, Vanuk JR, Killgore WDS. The Relationship Between General Intelligence and Cortical Structure in Healthy Individuals. Neuroscience 2018; 388:36-44. [PMID: 30012372 DOI: 10.1016/j.neuroscience.2018.07.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/26/2018] [Accepted: 07/05/2018] [Indexed: 11/29/2022]
Abstract
Considerable work in recent years has examined the relationship between cortical thickness (CT) and general intelligence (IQ) in healthy individuals. It is not known whether specific IQ variables (i.e., perceptual reasoning [PIQ], verbal comprehension IQ [VIQ], and full-scale IQ [FSIQ]) are associated with multiple cortical measures (i.e., CT, cortical volume (CV), cortical surface area (CSA) and cortical gyrification (CG)) within the same individuals. Here we examined the association between these neuroimaging metrics and IQ in 56 healthy adults. At a cluster-forming threshold (CFT) of p < 0.05, we observed significant positive relationships between CT and all three IQ variables in regions within the posterior frontal and superior parietal lobes. Regions within the temporal and posterior frontal lobes exhibited positive relationships between CV and two IQ variables (PIQ and FSIQ) and regions within the inferior parietal lobe exhibited positive relationships between CV and PIQ. Additionally, CV was positively associated with VIQ in the left insula and with FSIQ within the inferior frontal gyrus. At a more stringent CFT (p < 0.01), the CT-PIQ, CT-VIQ, CT-FSIQ, and CV-PIQ relationships remained significant within the posterior frontal lobe, as did the CV-PIQ relationship within the temporal and inferior parietal lobes. We did not observe statistically significant relationships between IQ and either CSA or CG. Our findings suggest that the neural basis of IQ extends beyond previously observed relationships with fronto-parietal regions. We also conclude that CT and CV may be more useful metrics than CSA or CG in the study of intellectual abilities.
Collapse
Affiliation(s)
- Sahil Bajaj
- Social, Cognitive and Affective Neuroscience Laboratory (SCAN Lab), Department of Psychiatry, College of Medicine, University of Arizona, Tucson, AZ 85724, USA.
| | - Adam Raikes
- Social, Cognitive and Affective Neuroscience Laboratory (SCAN Lab), Department of Psychiatry, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Ryan Smith
- Social, Cognitive and Affective Neuroscience Laboratory (SCAN Lab), Department of Psychiatry, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Natalie S Dailey
- Social, Cognitive and Affective Neuroscience Laboratory (SCAN Lab), Department of Psychiatry, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Anna Alkozei
- Social, Cognitive and Affective Neuroscience Laboratory (SCAN Lab), Department of Psychiatry, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - John R Vanuk
- Social, Cognitive and Affective Neuroscience Laboratory (SCAN Lab), Department of Psychiatry, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - William D S Killgore
- Social, Cognitive and Affective Neuroscience Laboratory (SCAN Lab), Department of Psychiatry, College of Medicine, University of Arizona, Tucson, AZ 85724, USA; McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, USA
| |
Collapse
|
43
|
Sex-specific regional grey matter volume correlates of daily activities. Sci Rep 2018; 8:9935. [PMID: 29967465 PMCID: PMC6028590 DOI: 10.1038/s41598-018-28252-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/19/2018] [Indexed: 12/21/2022] Open
Abstract
The human brain is plastic and continuously modified throughout life by our daily experiences and behaviours. However, no reports have comprehensively investigated structural brain correlates of our daily activities, including possible sex differences. In this study, we examined the relationship between a self-reported 24-hour Life-Log and regional brain volume measured by structural magnetic resonance imaging. We analysed brain volumes of 64 males and 53 females that were obtained from multiple scanning sites. We found several sex-specific correlations, including a positive correlation between superior frontal gyrus (Brodmann area 8) volume and domestic work hours, and a negative correlation between volume in the same region and job-work hours. Despite being a cross-sectional study, this study provides empirical evidence for how and to what extent brain structure is correlated with everyday activity.
Collapse
|
44
|
Long-term moderate exercise enhances specific proteins that constitute neurotrophin signaling pathway: A TMT-based quantitative proteomic analysis of rat plasma. J Proteomics 2018; 185:39-50. [PMID: 29953961 DOI: 10.1016/j.jprot.2018.06.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/15/2018] [Accepted: 06/17/2018] [Indexed: 12/15/2022]
Abstract
Physical exercise has been reported to increase neurotrophin in brain tissues as hippocampus as well as increased neurotrophic level peripherally in blood plasma and might have an effect on/or affect molecular processes of energy metabolism (and homeostasis). In this study, using quantitative proteomic analysis, we obtained a plasma protein profile from the rat with long-term moderate exercise. A total of 752 proteins were identified in the plasma. Among them, 54 proteins were significant up-regulated and 47 proteins were down-regulated in the plasma of exercise group compared with the control group. Bioinformatic analyses showed that these altered proteins are widely involved in multiple biological processes, molecular functions and cellular components, which connect with 11 signaling pathways. Interestingly, 5 up-regulated proteins Rap1b, PTPN11, ARHGDIA, Cdc42 and YWHAE, confirmed by Western blots, are involved in the neurotrophin signaling pathway which shows the lowest P value among the identified pathways. Further analyses showed that the 5 neurotrophin-signaling-pathway-related proteins participate in two important protein-protein interaction networks associated to cell survival and apoptosis, axonal development, synapse formation and plasticity. This study provides an exercise-induced plasma protein profile, suggesting that long-term exercise enhances the proteins involved in neurotrophin signaling pathway which may contribute to health benefit. SIGNIFICANCE Physical activity contributes to myriad benefits on body health across the lifespan. The changes in plasma proteins after chronic moderate exercise may be used as biomarkers for health and may also play important roles in increase of cardiovascular fitness, enhancement of immune competence, prevention of obesity, decrease of risk for neurological disorders, cancer, stroke, diabetes and other metabolic disorders. Using a TMT-based proteomic method, this study identified 101 altered proteins in the plasma of rats after long-term moderate treadmill running, which may provide novel biomarkers for further investigation of the underlying mechanism of physical exercise. We confirmed that exercise enhances 5 proteins of the neurotrophin signaling pathway that may contribute to health benefits.
Collapse
|
45
|
Tao J, Liu J, Liu W, Huang J, Xue X, Chen X, Wu J, Zheng G, Chen B, Li M, Sun S, Jorgenson K, Lang C, Hu K, Chen S, Chen L, Kong J. Tai Chi Chuan and Baduanjin Increase Grey Matter Volume in Older Adults: A Brain Imaging Study. J Alzheimers Dis 2018; 60:389-400. [PMID: 28869478 DOI: 10.3233/jad-170477] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The aim of this study is to investigate and compare how 12-weeks of Tai Chi Chuan and Baduanjin exercise can modulate brain structure and memory function in older adults. Magnetic resonance imaging and memory function measurements (Wechsler Memory Scale-Chinese revised, WMS-CR) were applied at both the beginning and end of the study. Results showed that both Tai Chi Chuan and Baduanjin could significantly increase grey matter volume (GMV) in the insula, medial temporal lobe, and putamen after 12-weeks of exercise. No significant differences were observed in GMV between the Tai Chi Chuan and Baduanjin groups. We also found that compared to healthy controls, Tai Chi Chuan and Baduanjin significantly improved visual reproduction subscores on the WMS-CR. Baduanjin also improved mental control, recognition, touch, and comprehension memory subscores of the WMS-CR compared to the control group. Memory quotient and visual reproduction subscores were both associated with GMV increases in the putamen and hippocampus. Our results demonstrate the potential of Tai Chi Chuan and Baduanjin exercise for the prevention of memory deficits in older adults.
Collapse
Affiliation(s)
- Jing Tao
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Fujian Key Laboratory of Rehabilitation Technology, Fuzhou, China.,Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Jiao Liu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Fujian Key Laboratory of Rehabilitation Technology, Fuzhou, China
| | - Weilin Liu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Fujian Key Laboratory of Rehabilitation Technology, Fuzhou, China
| | - Jia Huang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Fujian Key Laboratory of Rehabilitation Technology, Fuzhou, China
| | - Xiehua Xue
- Fujian Key Laboratory of Rehabilitation Technology, Fuzhou, China.,Affiliated Rehabilitation Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xiangli Chen
- Department of Rehabilitation Psychology and Special Education, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jinsong Wu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Guohua Zheng
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Bai Chen
- Affiliated Rehabilitation Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Ming Li
- Affiliated Rehabilitation Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Sharon Sun
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Kristen Jorgenson
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Courtney Lang
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Kun Hu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Shanjia Chen
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Lidian Chen
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Fujian Key Laboratory of Rehabilitation Technology, Fuzhou, China
| | - Jian Kong
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
46
|
Hasan KM, Mwangi B, Keser Z, Riascos R, Sargsyan AE, Kramer LA. Brain Quantitative MRI Metrics in Astronauts as a Unique Professional Group. J Neuroimaging 2018; 28:256-268. [DOI: 10.1111/jon.12501] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 01/04/2018] [Accepted: 01/16/2018] [Indexed: 11/28/2022] Open
Affiliation(s)
- Khader M. Hasan
- Medical SchoolDepartment of Diagnostic and Interventional ImagingThe University of Texas Health Science Center Houston TX
| | - Benson Mwangi
- Medical SchoolDepartment of PsychiatryThe University of Texas Health Science Center Houston TX
| | - Zafer Keser
- Medical SchoolDepartment of NeurologyThe University of Texas Health Science Center Houston TX
| | - Roy Riascos
- Medical SchoolDepartment of Diagnostic and Interventional ImagingThe University of Texas Health Science Center Houston TX
| | | | - Larry A. Kramer
- Medical SchoolDepartment of Diagnostic and Interventional ImagingThe University of Texas Health Science Center Houston TX
| |
Collapse
|
47
|
Stillman CM, Uyar F, Huang H, Grove GA, Watt JC, Wollam ME, Erickson KI. Cardiorespiratory fitness is associated with enhanced hippocampal functional connectivity in healthy young adults. Hippocampus 2018; 28:239-247. [PMID: 29341303 DOI: 10.1002/hipo.22827] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 01/08/2018] [Accepted: 01/13/2018] [Indexed: 01/01/2023]
Abstract
Consistent associations have been found between higher cardiorespiratory fitness (CRF) and indices of enhanced brain health and function, including behavioral measures of cognition as well as neuroimaging indicators such as regional brain volume. Several studies have reported that higher CRF levels are associated with a larger hippocampus, yet associations between volume and memory or functional connectivity metrics remain poorly understood. Using a multi-modal framework, we hierarchically examine the association between CRF and hippocampal volume and resting state functional connectivity (rsFC) in younger adults, as well as their relationship between with memory function. We conducted theoretically-driven analyses with seeds in the anterior and posterior hippocampus, as well as control seeds in the caudate nucleus. We tested whether (1) hippocampal connectivity with prefrontal cortical regions was associated with CRF in an adult sample much younger than traditionally tested, (2) associations between CRF and rsFC remain significant after adjusting for volume, and (3) volume and rsFC are related to memory. We found that higher CRF levels were associated with larger anterior hippocampal volume and more positive rsFC of the anterior hippocampus to several regions including the prefrontal cortex. rsFC also accounted for significant variance in CRF, above and beyond volume. CRF can thus be independently linked to increased anterior hippocampal volume, as well as stronger hippocampal rsFC in a population much younger than those typically tested, suggesitng it is critical to maintainig multiple aspects of brain health.
Collapse
Affiliation(s)
- Chelsea M Stillman
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Fatma Uyar
- Department of Psychology, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Haiqing Huang
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - George A Grove
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jennifer C Watt
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Mariegold E Wollam
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kirk I Erickson
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
48
|
Bajaj S, Alkozei A, Dailey NS, Killgore WDS. Brain Aging: Uncovering Cortical Characteristics of Healthy Aging in Young Adults. Front Aging Neurosci 2017; 9:412. [PMID: 29321739 PMCID: PMC5732192 DOI: 10.3389/fnagi.2017.00412] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 11/28/2017] [Indexed: 11/13/2022] Open
Abstract
Despite extensive research in the field of aging neuroscience, it still remains unclear whether age related cortical changes can be detected in different functional networks of younger adults and whether these networks respond identically to healthy aging. We collected high-resolution brain anatomical data from 56 young healthy adults (mean age = 30.8 ± 8.1 years, 29 males). We performed whole brain parcellation into seven functional networks, including visual, somatomotor, dorsal attention, ventral attention, limbic, frontoparietal and default mode networks. We estimated intracranial volume (ICV) and averaged cortical thickness (CT), cortical surface area (CSA) and cortical volume (CV) over each hemisphere as well as for each network. Averaged cortical measures over each hemisphere, especially CT and CV, were significantly lower in older individuals compared to younger ones (one-way ANOVA, p < 0.05, corrected for multiple comparisons). There were negative correlations between age and averaged CT and CV over each hemisphere (p < 0.05, corrected for multiple comparisons) as well as between age and ICV (p = 0.05). Network level analysis showed that age was negatively correlated with CT for all functional networks (p < 0.05, corrected for multiple comparisons), apart from the limbic network. While age was unrelated to CSA, it was negatively correlated with CV across several functional networks (p < 0.05, corrected for multiple comparisons). We also showed positive associations between CV and CT and between CV and CSA for all networks (p < 0.05, corrected for multiple comparisons). We interpret the lack of association between age and CT of the limbic network as evidence that the limbic system may be particularly resistant to age-related declines during this period of life, whereas the significant age-related declines in averaged CT over each hemisphere as well as in all other six networks suggests that CT may serve as a reliable biomarker to capture the effect of normal aging. Due to the simultaneous dependence of CV on CT and CSA, CV was unable to identify such effects of normal aging consistently for the other six networks, but there were negative associations observed between age and averaged CV over each hemisphere as well as between age and ICV. Our findings suggest that the identification of early cortical changes within various functional networks during normal aging might be useful for predicting the effect of aging on the efficiency of functional performance even during early adulthood.
Collapse
Affiliation(s)
- Sahil Bajaj
- Social, Cognitive, and Affective Neuroscience Laboratory, Department of Psychiatry, University of Arizona, Tucson, AZ, United States
| | - Anna Alkozei
- Social, Cognitive, and Affective Neuroscience Laboratory, Department of Psychiatry, University of Arizona, Tucson, AZ, United States
| | - Natalie S Dailey
- Social, Cognitive, and Affective Neuroscience Laboratory, Department of Psychiatry, University of Arizona, Tucson, AZ, United States
| | - William D S Killgore
- Social, Cognitive, and Affective Neuroscience Laboratory, Department of Psychiatry, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
49
|
Is hippocampal neurogenesis modulated by the sensation of self-motion encoded by the vestibular system? Neurosci Biobehav Rev 2017; 83:489-495. [DOI: 10.1016/j.neubiorev.2017.09.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 09/10/2017] [Accepted: 09/10/2017] [Indexed: 01/26/2023]
|
50
|
Tao J, Chen X, Liu J, Egorova N, Xue X, Liu W, Zheng G, Li M, Wu J, Hu K, Wang Z, Chen L, Kong J. Tai Chi Chuan and Baduanjin Mind-Body Training Changes Resting-State Low-Frequency Fluctuations in the Frontal Lobe of Older Adults: A Resting-State fMRI Study. Front Hum Neurosci 2017; 11:514. [PMID: 29163096 PMCID: PMC5670503 DOI: 10.3389/fnhum.2017.00514] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 10/10/2017] [Indexed: 01/07/2023] Open
Abstract
Age-related cognitive decline is a significant public health concern. Recently, non-pharmacological methods, such as physical activity and mental training practices, have emerged as promising low-cost methods to slow the progression of age-related memory decline. In this study, we investigated if Tai Chi Chuan (TCC) and Baduanjin modulated the fractional amplitude of low-frequency fluctuations (fALFF) in different frequency bands (low-frequency: 0.01-0.08 Hz; slow-5: 0.01-0.027 Hz; slow-4: 0.027-0.073 Hz) and improved memory function. Older adults were recruited for the randomized study. Participants in the TCC and Baduanjin groups received 12 weeks of training (1 h/day for 5 days/week). Participants in the control group received basic health education. Each subject participated in memory tests and fMRI scans at the beginning and end of the experiment. We found that compared to the control group: (1) TCC and Baduanjin groups demonstrated significant improvements in memory function; (2) TCC increased fALFF in the dorsolateral prefrontal cortex (DLPFC) in the slow-5 and low-frequency bands; and (3) Baduanjin increased fALFF in the medial PFC in the slow-5 and low-frequency bands. This increase was positively associated with memory function improvement in the slow-5 and low-frequency bands across the TCC and Baduanjin groups. Our results suggest that TCC and Baduanjin may work through different brain mechanisms to prevent memory decline due to aging.
Collapse
Affiliation(s)
- Jing Tao
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Key Laboratory of Rehabilitation Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| | - Xiangli Chen
- Department of Rehabilitation Psychology and Special Education, University of Wisconsin-Madison, Madison, WI, United States
| | - Jiao Liu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Natalia Egorova
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| | - Xiehua Xue
- Affiliated Rehabilitation Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Weilin Liu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Key Laboratory of Rehabilitation Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Guohua Zheng
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Ming Li
- Affiliated Rehabilitation Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jinsong Wu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Kun Hu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Zengjian Wang
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
- Developmental and Educational Psychology, South China Normal University, Guangzhou, China
| | - Lidian Chen
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Key Laboratory of Rehabilitation Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jian Kong
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| |
Collapse
|