1
|
Garcia Cerqueira EM, de Medeiros RE, da Silva Fiorin F, de Arújo E Silva M, Hypolito Lima R, Azevedo Dantas AFO, Rodrigues AC, Delisle-Rodriguez D. Local field potential-based brain-machine interface to inhibit epileptic seizures by spinal cord electrical stimulation. Biomed Phys Eng Express 2024; 11:015016. [PMID: 39530641 DOI: 10.1088/2057-1976/ad9155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 11/12/2024] [Indexed: 11/16/2024]
Abstract
Objective.This study proposes a closed-loop brain-machine interface (BMI) based on spinal cord stimulation to inhibit epileptic seizures, applying a semi-supervised machine learning approach that learns from Local Field Potential (LFP) patterns acquired on the pre-ictal (preceding the seizure) condition.Approach.LFP epochs from the hippocampus and motor cortex are band-pass filtered from 1 to 13 Hz, to obtain the time-frequency representation using the continuous Wavelet transform, and successively calculate the phase lock values (PLV). As a novelty, theZ-score-based PLV normalization using both modifiedk-means and Davies-Bouldin's measure for clustering is proposed here. Consequently, a generic seizure's detector is calibrated for detecting seizures on the normalized PLV, and enables the spinal cord stimulation for periods of 30 s in a closed-loop, while the BMI system detects seizure events. To calibrate the proposed BMI, a dataset with LFP signals recorded on five Wistar rats during basal state and epileptic crisis was used. The epileptic crisis was induced by injecting pentylenetetrazol (PTZ). Afterwards, two experiments without/with our BMI were carried out, inducing epileptic crisis by PTZ in Wistar rats.Main results.Stronger seizure events of high LFP amplitudes and long time periods were observed in the rat, when the BMI system was not used. In contrast, short-time seizure events of relative low intensity were observed in the rat, using the proposed BMI. The proposed system detected on unseen data the synchronized seizure activity in the hippocampus and motor cortex, provided stimulation appropriately, and consequently decreased seizure symptoms.Significance.Low-frequency LFP signals from the hippocampus and motor cortex, and cord spinal stimulation can be used to develop accurate closed-loop BMIs for early epileptic seizures inhibition, as an alternative treatment.
Collapse
Affiliation(s)
- Erika Maria Garcia Cerqueira
- Edmond and Lily Safra International Institute of Neurosciences, Santos Dumont Institute, 59288-899 Macaiba, Brazil
| | - Raquel Emanuela de Medeiros
- Edmond and Lily Safra International Institute of Neurosciences, Santos Dumont Institute, 59288-899 Macaiba, Brazil
| | - Fernando da Silva Fiorin
- Edmond and Lily Safra International Institute of Neurosciences, Santos Dumont Institute, 59288-899 Macaiba, Brazil
| | - Mariane de Arújo E Silva
- Edmond and Lily Safra International Institute of Neurosciences, Santos Dumont Institute, 59288-899 Macaiba, Brazil
| | - Ramón Hypolito Lima
- Edmond and Lily Safra International Institute of Neurosciences, Santos Dumont Institute, 59288-899 Macaiba, Brazil
| | | | - Abner Cardoso Rodrigues
- Edmond and Lily Safra International Institute of Neurosciences, Santos Dumont Institute, 59288-899 Macaiba, Brazil
| | - Denis Delisle-Rodriguez
- Edmond and Lily Safra International Institute of Neurosciences, Santos Dumont Institute, 59288-899 Macaiba, Brazil
| |
Collapse
|
2
|
Fiorin FDS, de Araújo E Silva M, de Medeiros RE, Viana da Silva GH, Rodrigues AC, Morya E. Spinal Cord Stimulation Modulates Rat Cortico-Basal Ganglia Locomotor Circuit. Neuromodulation 2024:S1094-7159(24)00656-1. [PMID: 39140936 DOI: 10.1016/j.neurom.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/09/2024] [Accepted: 07/18/2024] [Indexed: 08/15/2024]
Abstract
OBJECTIVE The cortico-basal ganglia circuit is crucial to understanding locomotor behavior and movement disorders. Spinal cord stimulation modulates that circuit, which is a promising approach to restoring motor functions. However, the effects of electrical spinal cord stimulation in the healthy brain motor circuit in pre- and postgait are poorly understood. Thus, this report aims to evaluate, through electrophysiological analyses, the dynamic spectral features of motor networks underlying locomotor initiation with spinal cord stimulation. MATERIALS AND METHODS Wistar male rats underwent spinal cord stimulation (current 30-150 μA, frequency 100, 333, and 500 Hz) with the electrophysiological recording of the caudate and putamen nuclei, primary and secondary motor cortices, and primary somatosensory cortex. Video tracking recorded treadmill locomotion and extracted the motor planning and gait initiation. RESULTS Spectral analysis of segments of gait initiation (pre- and postgait), with stimulation off, showed increased low-frequency activity. Postgait initiation showed increased alpha and beta rhythms and decreased delta rhythm with the stimulation off. Overall, the stimulation frequencies reduced alpha and beta rhythms in all brain areas during movement initiation. Regarding movement planning, such an effect was observed in the sensorimotor area, comprising the delta and alpha rhythms. CONCLUSION This study showed a short-term effect of spinal cord stimulation on the brain areas of the motor circuit, suggesting possible facilitation of movement planning and starting through neuromodulation. Thus, the electrophysiological characterization of this study may contribute to understanding basal ganglia networks and developing new approaches to treat movement disorders in the gait initiation phase.
Collapse
Affiliation(s)
- Fernando da Silva Fiorin
- Graduate Program in Neuroengineering, Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Macaíba, Brazil.
| | - Mariane de Araújo E Silva
- Graduate Program in Neuroengineering, Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Macaíba, Brazil
| | - Raquel E de Medeiros
- Graduate Program in Neuroengineering, Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Macaíba, Brazil
| | - Guilherme H Viana da Silva
- Graduate Program in Neuroengineering, Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Macaíba, Brazil
| | - Abner Cardoso Rodrigues
- Graduate Program in Neuroengineering, Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Macaíba, Brazil
| | - Edgard Morya
- Graduate Program in Neuroengineering, Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Macaíba, Brazil
| |
Collapse
|
3
|
Hvingelby VS, Carra RB, Terkelsen MH, Hamani C, Capato T, Košutzká Z, Krauss JK, Moro E, Pavese N, Cury RG. A Pragmatic Review on Spinal Cord Stimulation Therapy for Parkinson's Disease Gait Related Disorders: Gaps and Controversies. Mov Disord Clin Pract 2024; 11:927-947. [PMID: 38899557 PMCID: PMC11329578 DOI: 10.1002/mdc3.14143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 05/30/2024] [Accepted: 06/01/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Parkinson's Disease (PD) is a progressive neurological disorder that results in potentially debilitating mobility deficits. Recently, spinal cord stimulation (SCS) has been proposed as a novel therapy for PD gait disorders. The highest levels of evidence remain limited for SCS. OBJECTIVES In this systematic review and narrative synthesis, the literature was searched using combinations of key phrases indicating spinal cord stimulation and PD. METHODS We included pre-clinical studies and all published clinical trials, case reports, conference abstracts as well as protocols for ongoing clinical trials. Additionally, we included trials of SCS applied to atypical parkinsonism. RESULTS A total of 45 human studies and trials met the inclusion criteria. Based on the narrative synthesis, a number of knowledge gaps and future avenues of potential research were identified. This review demonstrated that evidence for SCS is currently not sufficient to recommend it as an evidence-based therapy for PD related gait disorders. There remain challenges and significant barriers to widespread implementation, including issues regarding patient selection, effective outcome selection, stimulation location and mode, and in programming parameter optimization. Results of early randomized controlled trials are currently pending. SCS is prone to placebo, lessebo and nocebo as well as blinding effects which may impact interpretation of outcomes, particularly when studies are underpowered. CONCLUSION Therapies such as SCS may build on current evidence and be shown to improve specific gait features in PD. Early negative trials should be interpreted with caution, as more evidence will be required to develop effective methodologies in order to drive clinical outcomes.
Collapse
Affiliation(s)
- Victor S. Hvingelby
- Department of Clinical Medicine – Nuclear Medicine and PET CenterAarhus UniversityAarhusDenmark
| | - Rafael B. Carra
- Department of Neurology, School of MedicineUniversity of São PauloSão PauloBrazil
| | - Miriam H. Terkelsen
- Department of Clinical Medicine – Nuclear Medicine and PET CenterAarhus UniversityAarhusDenmark
| | - Clement Hamani
- Division of Neurosurgery, Sunnybrook Health Sciences CentreUniversity of TorontoTorontoOntarioCanada
| | - Tamine Capato
- Department of Neurology, School of MedicineUniversity of São PauloSão PauloBrazil
| | - Zuzana Košutzká
- Second Department of NeurologyComenius University BratislavaBratislavaSlovakia
| | - Joachim K. Krauss
- Department of Neurosurgery, Hannover Medical SchoolHannoverGermany
- Center for Systems NeuroscienceHannoverGermany
| | - Elena Moro
- Grenoble Alpes University, Division of Neurology, CHU of Grenoble, Grenoble Institute of NeurosciencesGrenobleFrance
| | - Nicola Pavese
- Clinical Ageing Research Unit Newcastle UniversityNewcastle upon TyneUK
| | | |
Collapse
|
4
|
Menezes JR, Nunes GA, Carra RB, da Silva Simões J, Solla DJF, Oliveira JR, Teixeira MJ, Marcolin MA, Barbosa ER, Tanaka C, de Andrade DC, Cury RG. Trans-Spinal Theta Burst Magnetic Stimulation in Parkinson's Disease and Gait Disorders. Mov Disord 2024; 39:1048-1053. [PMID: 38477413 DOI: 10.1002/mds.29776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Gait disorders in patients with Parkinson's disease (PD) can become disabling with disease progression without effective treatment. OBJECTIVES To investigate the efficacy of intermittent θ burst trans-spinal magnetic stimulation (TsMS) in PD patients with gait and balance disorders. METHODS This was a randomized, parallel, double-blind, controlled trial. Active or sham TsMS was applied at third thoracic vertebra with 100% of the trans-spinal motor threshold, during 5 consecutive days. Participants were evaluated at baseline, immediately after last session, 1 and 4 weeks after last session. Primary outcome was Total Timed Up and Go (TUG) values comparing active versus sham phases 1 week after intervention. The secondary outcome measurements consisted of motor, gait and balance scales, and questionnaires for quality of life and cognition. RESULTS Thirty-three patients were included, average age 68.5 (6.4) years in active group and 70.3 (6.3) years in sham group. In active group, Total TUG mean baseline was 107.18 (95% CI, 52.1-116.1), and 1 week after stimulation was 93.0 (95% CI, 50.7-135.3); sham group, Total TUG mean baseline was 101.2 (95% CI, 47.1-155.3) and 1 week after stimulation 75.2 (95% CI 34.0-116.4), P = 0.54. Similarly, intervention had no significant effects on secondary outcome measurements. During stimulation period, five patients presented with mild side effects (three in active group and two in sham group). DISCUSSION TsMS did not significantly improve gait or balance analysis in patients with PD and gait disorders. The protocol was safe and well tolerated. © 2024 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Janaína Reis Menezes
- Movement Disorders Center, Department of Neurology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Glaucia Aline Nunes
- Movement Disorders Center, Department of Neurology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Rafael Bernhart Carra
- Movement Disorders Center, Department of Neurology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Juliana da Silva Simões
- Movement Disorders Center, Department of Neurology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Davi Jorge Fontoura Solla
- Functional Neurosurgery Division, Department of Neurology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Jussan Rodrigues Oliveira
- Department of Phytotherapy, Speech Therapy and Occupational Therapy, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Manoel Jacobsen Teixeira
- Functional Neurosurgery Division, Department of Neurology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Marco Antônio Marcolin
- Movement Disorders Center, Department of Neurology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Egberto Reis Barbosa
- Movement Disorders Center, Department of Neurology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Clarice Tanaka
- Department of Phytotherapy, Speech Therapy and Occupational Therapy, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Daniel Ciampi de Andrade
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Rubens Gisbert Cury
- Movement Disorders Center, Department of Neurology, School of Medicine, University of São Paulo, São Paulo, Brazil
- Hospital Israelita Albert Einstein, São Paulo, Brazil
| |
Collapse
|
5
|
Slack JC, Zeiser SL, Yadav AP. The role of stimulus periodicity on spinal cord stimulation-induced artificial sensations in rodents. J Neural Eng 2024; 21:026003. [PMID: 38382104 PMCID: PMC10912903 DOI: 10.1088/1741-2552/ad2b89] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/26/2024] [Accepted: 02/21/2024] [Indexed: 02/23/2024]
Abstract
Objective.Sensory feedback is critical for effectively controlling brain-machine interfaces and neuroprosthetic devices. Spinal cord stimulation (SCS) is proposed as a technique to induce artificial sensory perceptions in rodents, monkeys, and humans. However, to realize the full potential of SCS as a sensory neuroprosthetic technology, a better understanding of the effect of SCS pulse train parameter changes on sensory detection and discrimination thresholds is necessary.Approach.Here we investigated whether stimulation periodicity impacts rats' ability to detect and discriminate SCS-induced perceptions at different frequencies.Main results.By varying the coefficient of variation (CV) of interstimulus pulse interval, we showed that at lower frequencies, rats could detect highly aperiodic SCS pulse trains at lower amplitudes (i.e. decreased detection thresholds). Furthermore, rats learned to discriminate stimuli with subtle differences in periodicity, and the just-noticeable differences from a highly aperiodic stimulus were smaller than those from a periodic stimulus.Significance.These results demonstrate that the temporal structure of an SCS pulse train is an integral parameter for modulating sensory feedback in neuroprosthetic applications.
Collapse
Affiliation(s)
- Jacob C Slack
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, United States of America
| | - Sidnee L Zeiser
- Department of Biomedical Engineering, Purdue University Indianapolis, Indianapolis, IN, United States of America
| | - Amol P Yadav
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, United States of America
- Department of Neurosurgery, UNC School of Medicine, Chapel Hill, NC, United States of America
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| |
Collapse
|
6
|
Ciocca M, Seemungal BM, Tai YF. Spinal Cord Stimulation for Gait Disorders in Parkinson's Disease and Atypical Parkinsonism: A Systematic Review of Preclinical and Clinical Data. Neuromodulation 2023; 26:1339-1361. [PMID: 37452800 DOI: 10.1016/j.neurom.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/15/2023] [Accepted: 06/11/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Falls in extrapyramidal disorders, particularly Parkinson's disease (PD), multisystem atrophy (MSA), and progressive supranuclear palsy (PSP), are key milestones affecting patients' quality of life, incurring increased morbidity/mortality and high healthcare costs. Unfortunately, gait and balance in parkinsonisms respond poorly to currently available treatments. A serendipitous observation of improved gait and balance in patients with PD receiving spinal cord stimulation (SCS) for back pain kindled an interest in using SCS to treat gait disorders in parkinsonisms. OBJECTIVES We reviewed preclinical and clinical studies of SCS to treat gait dysfunction in parkinsonisms, covering its putative mechanisms and efficacies. MATERIALS AND METHODS Preclinical studies in animal models of PD and clinical studies in patients with PD, PSP, and MSA who received SCS for gait disorders were included. The main outcome assessed was clinical improvement in gait, together with outcome measures used and possible mechanism of actions. RESULTS We identified 500 references, and 45 met the selection criteria and have been included in this study for analysis. Despite positive results in animal models, the outcomes in human studies are inconsistent. CONCLUSIONS The lack of blind and statistically powered studies, the heterogeneity in patient selection and study outcomes, and the poor understanding of the underlying mechanisms of action of SCS are some of the limiting factors in the field. Addressing these limitations will allow us to draw more reliable conclusions on the effects of SCS on gait and balance in extrapyramidal disorders.
Collapse
Affiliation(s)
- Matteo Ciocca
- Department of Brain Sciences, Imperial College London, London, UK
| | | | - Yen F Tai
- Department of Brain Sciences, Imperial College London, London, UK.
| |
Collapse
|
7
|
Streumer J, Selvaraj AK, Kurt E, Bloem BR, Esselink RAJ, Bartels RHMA, Georgiev D, Vinke RS. Does spinal cord stimulation improve gait in Parkinson's disease: A comprehensive review. Parkinsonism Relat Disord 2023; 109:105331. [PMID: 36868910 DOI: 10.1016/j.parkreldis.2023.105331] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/12/2023] [Accepted: 02/17/2023] [Indexed: 03/03/2023]
Abstract
INTRODUCTION Axial disability, including gait disturbances, is common in Parkinson's disease (PD), especially in advanced stages. Epidural spinal cord stimulation (SCS) has been investigated as a treatment option for gait disorders in PD. Here, we review the literature on SCS in PD and evaluate its efficacy, optimal stimulation parameters, optimal electrode locations, possible effects of concurrent deep brain stimulation, and possible working mechanisms on gait. METHODS Databases were searched for human studies involving PD patients who received an epidural SCS intervention and who had at least one gait-related outcome measure. The included reports were reviewed with respect to design and outcomes. Additionally, the possible mechanisms of action underlying SCS were reviewed. RESULTS Out of 433 records identified, 25 unique studies with in total 103 participants were included. Most studies included only a few participants. The gait disorders of most PD patients with concurrent pain complaints, mostly low back pain, improved with SCS in almost all cases, regardless of stimulation parameters or electrode location. Higher-frequency stimulation (>200 Hz) seemed to be more effective in pain-free PD patients, but the results were inconsistent. Heterogeneity in outcome measures and follow-up times hindered comparability. CONCLUSIONS SCS may improve gait in PD patients with neuropathic pain, but its efficacy in pain-free patients remains uncertain due to a lack of thorough double-blind studies. Apart from a well-powered, controlled, double-blind study design, future studies could further explore the initial hints that higher-frequency stimulation (>200 Hz) might be the best approach to improve gait outcomes in pain-free patients.
Collapse
Affiliation(s)
- Jesco Streumer
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Department of Neurosurgery, Nijmegen, the Netherlands
| | - Ashok K Selvaraj
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Department of Neurosurgery, Nijmegen, the Netherlands
| | - Erkan Kurt
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Department of Neurosurgery, Nijmegen, the Netherlands
| | - Bastiaan R Bloem
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Nijmegen, the Netherlands
| | - Rianne A J Esselink
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Nijmegen, the Netherlands
| | - Ronald H M A Bartels
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Department of Neurosurgery, Nijmegen, the Netherlands
| | - Dejan Georgiev
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana, Slovenia; Faculty of Computer and Information Sciences, University of Ljubljana, Ljubljana, Slovenia
| | - R Saman Vinke
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Department of Neurosurgery, Nijmegen, the Netherlands.
| |
Collapse
|
8
|
Mitsui T, Arii Y, Taniguchi K, Tsutsumi S, Takahara M, Mabuchi M, Sumitomo N, Matsuura M, Kuroda Y. Efficacy of Repetitive Trans-spinal Magnetic Stimulation for Patients with Parkinson's Disease: a Randomised Controlled Trial. Neurotherapeutics 2022; 19:1273-1282. [PMID: 35759108 PMCID: PMC9587186 DOI: 10.1007/s13311-022-01213-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2022] [Indexed: 12/18/2022] Open
Abstract
We evaluated the effect of repetitive trans-spinal magnetic stimulation (rTSMS) in patients with Parkinson's disease (PD) in a randomised, single-blind study. Participants were hospitalised and administered a single trial of rTSMS or sham treatment 2 days a week for 4 weeks. In addition, all participants underwent rehabilitation 5 days a week for 4 weeks. The primary outcome was the difference between the two groups in the mean change from baseline to post-training in the total score on the Unified Parkinson's Disease Rating Scale (UPDRS). Secondary endpoints included the differences between the two groups in the mean change on the UPDRS part III (motor) score and the Timed Up and Go (TUG) score. Eligible participants were randomly assigned to either the rTSMS group (n = 50) or sham group (n = 50). The between-group difference in mean change in the total UPDRS score was 10.28 (95% confidence interval (CI), 4.42 to 16.13; P = 0.014) immediately after intervention from baseline, 5.04 (95% CI, - 5.41 to 15.50; P = 0.024) 3 months after intervention from baseline and 2.38 (95% CI, 7.18 to 11.85; P = 0.045) 6 months after intervention from baseline. Significant differences between groups in UPDRS part III and TUG scores were maintained more strictly than those in the UPDRS total score. These results strongly indicate that rTSMS promotes the effect of rehabilitation on motor function in patients with PD.
Collapse
Affiliation(s)
- Takao Mitsui
- Department of Neurology, Tokushima National Hospital National Hospital Organization, 1354 Shikiji, Kamojima, Yoshinogawa, Tokushima, 776-0031, Japan.
- Department of Clinical Research, Tokushima National Hospital National Hospital Organization, 1354 Shikiji, Kamojima, Yoshinogawa, Tokushima, 776-0031, Japan.
| | - Yoshiharu Arii
- Department of Neurology, Tokushima National Hospital National Hospital Organization, 1354 Shikiji, Kamojima, Yoshinogawa, Tokushima, 776-0031, Japan
| | - Koichiro Taniguchi
- Department of Neurology, Tokushima National Hospital National Hospital Organization, 1354 Shikiji, Kamojima, Yoshinogawa, Tokushima, 776-0031, Japan
| | - Satoshi Tsutsumi
- Department of Neurology, Tokushima National Hospital National Hospital Organization, 1354 Shikiji, Kamojima, Yoshinogawa, Tokushima, 776-0031, Japan
| | - Mika Takahara
- Department of Neurology, Tokushima National Hospital National Hospital Organization, 1354 Shikiji, Kamojima, Yoshinogawa, Tokushima, 776-0031, Japan
| | - Masaru Mabuchi
- Department of Rehabilitation, Tokushima National Hospital National Hospital Organization, 1354 Shikiji, Kamojima, Yoshinogawa, Tokushima, 776-0031, Japan
| | - Nichika Sumitomo
- Department of Clinical Research, Tokushima National Hospital National Hospital Organization, 1354 Shikiji, Kamojima, Yoshinogawa, Tokushima, 776-0031, Japan
| | - Mieko Matsuura
- Department of Clinical Research, Tokushima National Hospital National Hospital Organization, 1354 Shikiji, Kamojima, Yoshinogawa, Tokushima, 776-0031, Japan
| | - Yukiko Kuroda
- Department of Clinical Research, Tokushima National Hospital National Hospital Organization, 1354 Shikiji, Kamojima, Yoshinogawa, Tokushima, 776-0031, Japan
| |
Collapse
|
9
|
di Biase L, Tinkhauser G, Martin Moraud E, Caminiti ML, Pecoraro PM, Di Lazzaro V. Adaptive, personalized closed-loop therapy for Parkinson's disease: biochemical, neurophysiological, and wearable sensing systems. Expert Rev Neurother 2021; 21:1371-1388. [PMID: 34736368 DOI: 10.1080/14737175.2021.2000392] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Motor complication management is one of the main unmet needs in Parkinson's disease patients. AREAS COVERED Among the most promising emerging approaches for handling motor complications in Parkinson's disease, adaptive deep brain stimulation strategies operating in closed-loop have emerged as pivotal to deliver sustained, near-to-physiological inputs to dysfunctional basal ganglia-cortical circuits over time. Existing sensing systems that can provide feedback signals to close the loop include biochemical-, neurophysiological- or wearable-sensors. Biochemical sensing allows to directly monitor the pharmacokinetic and pharmacodynamic of antiparkinsonian drugs and metabolites. Neurophysiological sensing relies on neurotechnologies to sense cortical or subcortical brain activity and extract real-time correlates of symptom intensity or symptom control during DBS. A more direct representation of the symptom state, particularly the phenomenological differentiation and quantification of motor symptoms, can be realized via wearable sensor technology. EXPERT OPINION Biochemical, neurophysiologic, and wearable-based biomarkers are promising technological tools that either individually or in combination could guide adaptive therapy for Parkinson's disease motor symptoms in the future.
Collapse
Affiliation(s)
- Lazzaro di Biase
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico Di Roma, Rome, Italy.,Brain Innovations Lab, Università Campus Bio-Medico Di Roma, Rome, Italy
| | - Gerd Tinkhauser
- Department of Neurology, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Eduardo Martin Moraud
- Department of Clinical Neurosciences, Lausanne University Hospital (Chuv) and University of Lausanne (Unil), Lausanne, Switzerland.,Defitech Center for Interventional Neurotherapies (.neurorestore), Lausanne University Hospital and Swiss Federal Institute of Technology (Epfl), Lausanne, Switzerland
| | - Maria Letizia Caminiti
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico Di Roma, Rome, Italy
| | - Pasquale Maria Pecoraro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico Di Roma, Rome, Italy
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico Di Roma, Rome, Italy
| |
Collapse
|
10
|
Cury RG, Moro E. New developments for spinal cord stimulation. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 159:129-151. [PMID: 34446244 DOI: 10.1016/bs.irn.2021.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Spinal cord stimulation (SCS) is a well-established therapy for the treatment of chronic neuropathic pain. Newer SCS waveforms have improved patient outcomes, leading to its increased utilization among many pain conditions. More recently, SCS has been used to treat some symptoms in several movement disorders because of its good profile tolerability and capacity to stimulate local and distant areas of the central nervous system. After the original experimental findings in animal models of Parkinson's disease (PD) in the late 2000s, several studies have reported the beneficial clinical effects of SCS stimulation on gait in PD patients. Additionally, the spinal cord has emerged as a potential therapeutic target to treat essential and orthostatic tremor, some forms of ataxia, and atypical parkinsonisms. In this chapter, we describe the most recent advances in SCS for pain and the rationale and potential mechanism of action of stimulating the spinal cord for treating movement disorders, focusing on its network modulation. We also summarize the main clinical studies performed to date as well as their limitations and future perspectives.
Collapse
Affiliation(s)
- Rubens Gisbert Cury
- Movement Disorders Center, Department of Neurology, School of Medicine, University of São Paulo, São Paulo, Brazil.
| | - Elena Moro
- Movement Disorders Unit, Division of Neurology, CHU of Grenoble, Grenoble Alpes University, Grenoble, France; INSERM U1216, Grenoble Institute of Neurosciences, Grenoble, France
| |
Collapse
|
11
|
Rahimpour S, Gaztanaga W, Yadav AP, Chang SJ, Krucoff MO, Cajigas I, Turner DA, Wang DD. Freezing of Gait in Parkinson's Disease: Invasive and Noninvasive Neuromodulation. Neuromodulation 2021; 24:829-842. [PMID: 33368872 PMCID: PMC8233405 DOI: 10.1111/ner.13347] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/01/2020] [Accepted: 12/01/2020] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Freezing of gait (FoG) is one of the most disabling yet poorly understood symptoms of Parkinson's disease (PD). FoG is an episodic gait pattern characterized by the inability to step that occurs on initiation or turning while walking, particularly with perception of tight surroundings. This phenomenon impairs balance, increases falls, and reduces the quality of life. MATERIALS AND METHODS Clinical-anatomical correlations, electrophysiology, and functional imaging have generated several mechanistic hypotheses, ranging from the most distal (abnormal central pattern generators of the spinal cord) to the most proximal (frontal executive dysfunction). Here, we review the neuroanatomy and pathophysiology of gait initiation in the context of FoG, and we discuss targets of central nervous system neuromodulation and their outcomes so far. The PubMed database was searched using these key words: neuromodulation, freezing of gait, Parkinson's disease, and gait disorders. CONCLUSION Despite these investigations, the pathogenesis of this process remains poorly understood. The evidence presented in this review suggests FoG to be a heterogenous phenomenon without a single unifying pathologic target. Future studies rigorously assessing targets as well as multimodal approaches will be essential to define the next generation of therapeutic treatments.
Collapse
Affiliation(s)
- Shervin Rahimpour
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | - Wendy Gaztanaga
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Amol P. Yadav
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Stephano J. Chang
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Max O. Krucoff
- Department of Neurosurgery, Medical College of Wisconsin, Wauwatosa, WI, USA
- Department of Biomedical Engineering, Marquette University & Medical College of Wisconsin, Milwaukee, WI, USA
| | - Iahn Cajigas
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Dennis A. Turner
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
- Departments of Neurobiology and Biomedical Engineering, Duke University, Durham, NC, USA
| | - Doris D. Wang
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| |
Collapse
|
12
|
Yadav AP, Li S, Krucoff MO, Lebedev MA, Abd-El-Barr MM, Nicolelis MAL. Generating artificial sensations with spinal cord stimulation in primates and rodents. Brain Stimul 2021; 14:825-836. [PMID: 34015518 DOI: 10.1016/j.brs.2021.04.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/01/2021] [Accepted: 04/30/2021] [Indexed: 11/17/2022] Open
Abstract
For patients who have lost sensory function due to a neurological injury such as spinal cord injury (SCI), stroke, or amputation, spinal cord stimulation (SCS) may provide a mechanism for restoring somatic sensations via an intuitive, non-visual pathway. Inspired by this vision, here we trained rhesus monkeys and rats to detect and discriminate patterns of epidural SCS. Thereafter, we constructed psychometric curves describing the relationship between different SCS parameters and the animal's ability to detect SCS and/or changes in its characteristics. We found that the stimulus detection threshold decreased with higher frequency, longer pulse-width, and increasing duration of SCS. Moreover, we found that monkeys were able to discriminate temporally- and spatially-varying patterns (i.e. variations in frequency and location) of SCS delivered through multiple electrodes. Additionally, sensory discrimination of SCS-induced sensations in rats obeyed Weber's law of just-noticeable differences. These findings suggest that by varying SCS intensity, temporal pattern, and location different sensory experiences can be evoked. As such, we posit that SCS can provide intuitive sensory feedback in neuroprosthetic devices.
Collapse
Affiliation(s)
- Amol P Yadav
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA; Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Shuangyan Li
- Department of Neurobiology, Duke University, Durham, NC, 27710, USA; State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Electrical Engineering, Tianjin, 300130, PR China; Tianjin Key Laboratory Bioelectromagnetic Technology and Intelligent Health, Hebei University of Technology, Tianjin, 300130, PR China
| | - Max O Krucoff
- Department of Neurosurgery, Medical College of Wisconsin & Froedtert Health, Wauwatosa, WI, 53226, USA; Department of Biomedical Engineering, Marquette University & Medical College of Wisconsin, Milwaukee, WI, 53233, USA
| | - Mikhail A Lebedev
- Center for Neuroengineering, Duke University, Durham, NC, 27710, USA; Skolkovo Institute of Science and Technology, 30 Bolshoy Bulvar, Moscow, 143026, Russia
| | | | - Miguel A L Nicolelis
- Department of Neurosurgery, Duke University, Durham, NC, 27710, USA; Center for Neuroengineering, Duke University, Durham, NC, 27710, USA; Department of Neurobiology, Duke University, Durham, NC, 27710, USA; Department of Biomedical Engineering, Duke University, Durham, NC, 27710, USA; Department of Psychology and Neuroscience, Duke University, Durham, NC, 27710, USA; Department of Neurology, Duke University, Durham, NC, 27710, USA; Edmond and Lily Safra International Institute of Neuroscience, Natal, 59066060, Brazil
| |
Collapse
|
13
|
Wang ZJ, Yasuhara T. An Examination of Mobile Spinal Cord Stimulators on Treating Parkinson Disease. Brain Circ 2021; 7:8-12. [PMID: 34084970 PMCID: PMC8057101 DOI: 10.4103/bc.bc_6_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/31/2020] [Accepted: 01/03/2021] [Indexed: 12/24/2022] Open
Abstract
In animal models of Parkinson disease (PD), spinal cord stimulation (SCS) exhibits neuroprotective effects. Recent advancements in SCS technology, most importantly mobile stimulators, allow for the conventional limitations of SCS such as limited stimulation time and restricted animal movements to be bypassed, offering potential avenues for improved clinical translation to PD patients. Small devices that could deliver continuous SCS to freely moving parkinsonian rats were shown to significantly improve behavior, preserve neurons and fibers in the substantia Nigra/striatum, reduce microglia infiltration, and increase laminin-positive area of the cerebral cortex. Through possible anti-inflammatory and angiogenic mechanisms, it has been demonstrated that there are behavioral and histological benefits to continuous SCS in a time-dependent manner. This review will discuss the benefits of this technology as well as focus on the limitations of current animal models.
Collapse
Affiliation(s)
- Zhen-Jie Wang
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Takao Yasuhara
- Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
14
|
Cintra RR, Lins LCRF, Medeiros KAAL, Souza MF, Gois AM, Bispo JMM, Melo MS, Leal PC, Meurer YSR, Ribeiro AM, Silva RH, Marchioro M, Santos JR. Nociception alterations precede motor symptoms in a progressive model of parkinsonism induced by reserpine in middle-aged rats. Brain Res Bull 2021; 171:1-9. [PMID: 33675933 DOI: 10.1016/j.brainresbull.2021.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 10/22/2022]
Abstract
Nociception alterations are frequent non-motor symptoms of the prodromal phase of Parkinson's disease (PD). The period for the onset of symptoms and the pathophysiological mechanisms underlying these alterations remain unclear. We investigated the course of nociception alterations in a progressive model of parkinsonism induced by reserpine (RES) in rats. Male Wistar rats (6-7 months) received 5 or 10 subcutaneous injections of RES (0.1 mg/kg) or vehicle daily for 20 days. Motor evaluation and nociceptive assessment were performed throughout the treatment. At the end of the treatment rats were euthanized, the brains removed and processed for immunohistochemical analysis (TH and c-Fos). The RES-treated rats exhibited an increased nociceptive response to mechanical and chemical stimulation in the electronic von Frey and formalin tests, respectively. Moreover, these alterations preceded the motor impairment observed in the catalepsy test. In addition, the RES treatment reduced the TH-immunoreactivity in the ventral tegmental area (VTA) and increased the c-Fos expression in the ventral-lateral periaqueductal gray (vlPAG), rostral ventral medulla (RVM) and dorsal raphe nucleus (DRN) after noxious stimuli induced by formalin. Taken together, our results reinforce that nociceptive changes are one of the early signs of PD and monoamine depletion in basal ganglia can be involved in the abnormal processing of nociceptive information in PD.
Collapse
Affiliation(s)
- Rachel R Cintra
- Laboratory of Neurophysiology, Department of Physiology, Federal University of Sergipe, São Cristovão, SE, Brazil
| | - Lívia C R F Lins
- Department of Health Education, Federal University of Sergipe, Lagarto, SE, Brazil
| | - Katty A A L Medeiros
- Laboratory of Neurophysiology, Department of Physiology, Federal University of Sergipe, São Cristovão, SE, Brazil
| | - Marina F Souza
- Laboratory of Behavioral and Evolutionary Neurobiology, Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil
| | - Auderlan M Gois
- Laboratory of Behavioral and Evolutionary Neurobiology, Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil
| | - José M M Bispo
- Laboratory of Behavioral and Evolutionary Neurobiology, Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil
| | - Mônica S Melo
- Department of Health Education, Federal University of Sergipe, Lagarto, SE, Brazil
| | - Pollyana C Leal
- Post-graduate Program of Dentistry, Federal University of Sergipe, Aracaju, SE, Brazil
| | - Ywlliane S R Meurer
- Laboratory of Behavioral and Molecular Neuroscience, Department of Pharmacology, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Alessandra M Ribeiro
- Laboratory of Neuroscience and Bioprospecting of Natural Products, Department of Biosciences, Federal University of São Paulo, Santos, SP, Brazil
| | - Regina H Silva
- Laboratory of Behavioral and Molecular Neuroscience, Department of Pharmacology, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Murilo Marchioro
- Laboratory of Neurophysiology, Department of Physiology, Federal University of Sergipe, São Cristovão, SE, Brazil
| | - José R Santos
- Laboratory of Behavioral and Evolutionary Neurobiology, Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil.
| |
Collapse
|
15
|
Kulkarni NP, Vaidya B, Narula AS, Sharma SS. Neuroprotective Potential of Caffeic Acid Phenethyl Ester (CAPE) in CNS Disorders: Mechanistic and Therapeutic Insights. Curr Neuropharmacol 2021; 19:1401-1415. [PMID: 34102977 PMCID: PMC8762179 DOI: 10.2174/1570159x19666210608165509] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 04/27/2021] [Accepted: 05/10/2021] [Indexed: 12/02/2022] Open
Abstract
Neurological disorders like Alzheimer's disease (AD), Parkinson's disease (PD), stroke, amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), epilepsy, traumatic brain injury (TBI), depression, and anxiety are responsible for thousands of deaths worldwide every year. With the increase in life expectancy, there has been a rise in the prevalence of these disorders. Age is one of the major risk factors for these neurological disorders, and with the aged population set to rise to 1.25 billion by 2050, there is a growing concern to look for new therapeutic molecules to treat age-related diseases. Caffeic acid phenethyl ester (CAPE) is a molecule obtained from a number of botanical sources, such as the bark of conifer trees as well as propolis which is extracted from beehives. Though CAPE remains relatively unexplored in human trials, it possesses antioxidant, anti-inflammatory, antimitogenic, and anti-cancer activities, as shown by preclinical studies. Apart from this, it also exhibits tremendous potential for the treatment of neurological disorders through the modulation of multiple molecular pathways and attenuation of behavioural deficits. In the present article, we have reviewed the therapeutic potential of CAPE and its mechanisms in the treatment of neurological disorders.
Collapse
Affiliation(s)
| | | | | | - Shyam Sunder Sharma
- Address correspondence to this author at the Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Mohali, Punjab, India; E-mail:
| |
Collapse
|
16
|
Lobine D, Sadeer N, Jugreet S, Suroowan S, Keenoo BS, Imran M, Venugopala KN, Ibrahim FM, Zengin G, Mahomoodally MF. Potential of Medicinal Plants as Neuroprotective and Therapeutic Properties Against Amyloid-β-Related Toxicity, and Glutamate-Induced Excitotoxicity in Human Neural Cells. Curr Neuropharmacol 2021; 19:1416-1441. [PMID: 33845746 PMCID: PMC8762182 DOI: 10.2174/1570159x19666210412095251] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/10/2021] [Accepted: 04/03/2021] [Indexed: 11/30/2022] Open
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are notorious neurodegenerative diseases amongst the general population. Being age-associated diseases, the prevalence of AD and PD is forecasted to rapidly escalate with the progressive aging population of the world. These diseases are complex and multifactorial. Among different events, amyloid β peptide (Aβ) induced toxicity is a well-established pathway of neuronal cell death, which plays a vital function in AD. Glutamate, the major excitatory transmitter, acts as a neurotoxin when present in excess at the synapses; this latter mechanism is termed excitotoxicity. It is hypothesised that glutamate-induced excitotoxicity contributes to the pathogenesis of AD and PD. No cure for AD and PD is currently available and the currently approved drugs available to treat these diseases have limited effectiveness and pose adverse effects. Indeed, plants have been a major source for the discovery of novel pharmacologically active compounds for distinct pathological conditions. Diverse plant species employed for brain-related disorders in traditional medicine are being explored to determine the scientific rationale behind their uses. Herein, we present a comprehensive review of plants and their constituents that have shown promise in reversing the (i) amyloid-β -related toxicity in AD models and (ii) glutamate-induced excitotoxicity in AD and PD models. This review summarizes information regarding the phytochemistry, biological and cellular activities, and clinical trials of several plant species in view to provide adequate scientific baseline information that could be used in the drug development process, thereby providing effective leads for AD and PD.
Collapse
Affiliation(s)
- Devina Lobine
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Reduit, Mauritius
| | - Nabeelah Sadeer
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Reduit, Mauritius
| | - Sharmeen Jugreet
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Reduit, Mauritius
| | - Shanoo Suroowan
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Reduit, Mauritius
| | - Bibi Sumera Keenoo
- Department of Medicine, Faculty of Medicine and Health Sciences, University of Mauritius, Reduit, Mauritius
| | - Muhammad Imran
- Faculty of Allied Health Sciences, University Institute of Diet and Nutritional Sciences, The University of Lahore, Pakistan
| | - Katharigatta N Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Faten Mohamed Ibrahim
- Medicinal and Aromatic Plants Research Dept., National Research Center, 33 El Bohouth St., Dokki, Giza, P.O.12622, Egypt
| | - Gokhan Zengin
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
| | - Mohamad Fawzi Mahomoodally
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Reduit, Mauritius
| |
Collapse
|
17
|
Cury RG, Carra RB, Capato TTC, Teixeira MJ, Barbosa ER. Spinal Cord Stimulation for Parkinson's Disease: Dynamic Habituation as a Mechanism of Failure? Mov Disord 2020; 35:1882-1883. [PMID: 33068473 DOI: 10.1002/mds.28271] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 05/18/2020] [Indexed: 11/11/2022] Open
Affiliation(s)
- Rubens G Cury
- Movement Disorders Center, Department of Neurology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Rafael B Carra
- Movement Disorders Center, Department of Neurology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Tamine T C Capato
- Movement Disorders Center, Department of Neurology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Manoel J Teixeira
- Functional Neurosurgery, Department of Neurology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Egberto R Barbosa
- Movement Disorders Center, Department of Neurology, School of Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
18
|
Troncoso-Escudero P, Sepulveda D, Pérez-Arancibia R, Parra AV, Arcos J, Grunenwald F, Vidal RL. On the Right Track to Treat Movement Disorders: Promising Therapeutic Approaches for Parkinson's and Huntington's Disease. Front Aging Neurosci 2020; 12:571185. [PMID: 33101007 PMCID: PMC7497570 DOI: 10.3389/fnagi.2020.571185] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/17/2020] [Indexed: 12/17/2022] Open
Abstract
Movement disorders are neurological conditions in which patients manifest a diverse range of movement impairments. Distinct structures within the basal ganglia of the brain, an area involved in movement regulation, are differentially affected for every disease. Among the most studied movement disorder conditions are Parkinson's (PD) and Huntington's disease (HD), in which the deregulation of the movement circuitry due to the loss of specific neuronal populations in basal ganglia is the underlying cause of motor symptoms. These symptoms are due to the loss principally of dopaminergic neurons of the substantia nigra (SN) par compacta and the GABAergic neurons of the striatum in PD and HD, respectively. Although these diseases were described in the 19th century, no effective treatment can slow down, reverse, or stop disease progression. Available pharmacological therapies have been focused on preventing or alleviating motor symptoms to improve the quality of life of patients, but these drugs are not able to mitigate the progressive neurodegeneration. Currently, considerable therapeutic advances have been achieved seeking a more efficacious and durable therapeutic effect. Here, we will focus on the new advances of several therapeutic approaches for PD and HD, starting with the available pharmacological treatments to alleviate the motor symptoms in both diseases. Then, we describe therapeutic strategies that aim to restore specific neuronal populations or their activity. Among the discussed strategies, the use of Neurotrophic factors (NTFs) and genetic approaches to prevent the neuronal loss in these diseases will be described. We will highlight strategies that have been evaluated in both Parkinson's and Huntington's patients, and also the ones with strong preclinical evidence. These current therapeutic techniques represent the most promising tools for the safe treatment of both diseases, specifically those aimed to avoid neuronal loss during disease progression.
Collapse
Affiliation(s)
- Paulina Troncoso-Escudero
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
- Faculty of Medicine, Biomedical Neuroscience Institute, University of Chile, Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health, and Metabolism, University of Chile, Santiago, Chile
| | - Denisse Sepulveda
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
- Faculty of Medicine, Biomedical Neuroscience Institute, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health, and Metabolism, University of Chile, Santiago, Chile
| | - Rodrigo Pérez-Arancibia
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
- Faculty of Medicine, Biomedical Neuroscience Institute, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health, and Metabolism, University of Chile, Santiago, Chile
| | - Alejandra V. Parra
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
- Faculty of Medicine, Biomedical Neuroscience Institute, University of Chile, Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health, and Metabolism, University of Chile, Santiago, Chile
| | - Javiera Arcos
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
- Faculty of Medicine, Biomedical Neuroscience Institute, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health, and Metabolism, University of Chile, Santiago, Chile
| | - Felipe Grunenwald
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
- Faculty of Medicine, Biomedical Neuroscience Institute, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health, and Metabolism, University of Chile, Santiago, Chile
| | - Rene L. Vidal
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
- Faculty of Medicine, Biomedical Neuroscience Institute, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health, and Metabolism, University of Chile, Santiago, Chile
| |
Collapse
|
19
|
Kuwahara K, Sasaki T, Yasuhara T, Kameda M, Okazaki Y, Hosomoto K, Kin I, Okazaki M, Yabuno S, Kawauchi S, Tomita Y, Umakoshi M, Kin K, Morimoto J, Lee JY, Tajiri N, Borlongan CV, Date I. Long-Term Continuous Cervical Spinal Cord Stimulation Exerts Neuroprotective Effects in Experimental Parkinson's Disease. Front Aging Neurosci 2020; 12:164. [PMID: 32612523 PMCID: PMC7309445 DOI: 10.3389/fnagi.2020.00164] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 05/12/2020] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Spinal cord stimulation (SCS) exerts neuroprotective effects in animal models of Parkinson's disease (PD). Conventional stimulation techniques entail limited stimulation time and restricted movement of animals, warranting the need for optimizing the SCS regimen to address the progressive nature of the disease and to improve its clinical translation to PD patients. OBJECTIVE Recognizing the limitations of conventional stimulation, we now investigated the effects of continuous SCS in freely moving parkinsonian rats. METHODS We developed a small device that could deliver continuous SCS. At the start of the experiment, thirty female Sprague-Dawley rats received the dopamine (DA)-depleting neurotoxin, 6-hydroxydopamine, into the right striatum. The SCS device was fixed below the shoulder area of the back of the animal, and a line from this device was passed under the skin to an electrode that was then implanted epidurally over the dorsal column. The rats were divided into three groups: control, 8-h stimulation, and 24-h stimulation, and behaviorally tested then euthanized for immunohistochemical analysis. RESULTS The 8- and 24-h stimulation groups displayed significant behavioral improvement compared to the control group. Both SCS-stimulated groups exhibited significantly preserved tyrosine hydroxylase (TH)-positive fibers and neurons in the striatum and substantia nigra pars compacta (SNc), respectively, compared to the control group. Notably, the 24-h stimulation group showed significantly pronounced preservation of the striatal TH-positive fibers compared to the 8-h stimulation group. Moreover, the 24-h group demonstrated significantly reduced number of microglia in the striatum and SNc and increased laminin-positive area of the cerebral cortex compared to the control group. CONCLUSIONS This study demonstrated the behavioral and histological benefits of continuous SCS in a time-dependent manner in freely moving PD animals, possibly mediated by anti-inflammatory and angiogenic mechanisms.
Collapse
Affiliation(s)
- Ken Kuwahara
- Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Tatsuya Sasaki
- Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Takao Yasuhara
- Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Masahiro Kameda
- Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yosuke Okazaki
- Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kakeru Hosomoto
- Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Ittetsu Kin
- Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Mihoko Okazaki
- Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Satoru Yabuno
- Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Satoshi Kawauchi
- Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yousuke Tomita
- Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Michiari Umakoshi
- Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kyohei Kin
- Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Jun Morimoto
- Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Jea-Young Lee
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Naoki Tajiri
- Department of Neurophysiology and Brain Science, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Cesar V. Borlongan
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Isao Date
- Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
20
|
Yadav AP, Li S, Krucoff MO, Lebedev MA, Abd-el-barr MM, Nicolelis MA. Generating Artificial Sensations with Spinal Cord Stimulation in Primates and Rodents.. [DOI: 10.1101/2020.05.09.085647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
AbstractFor patients who have lost sensory function due to a neurological injury such as spinal cord injury (SCI), stroke, or amputation, spinal cord stimulation (SCS) may provide a mechanism for restoring somatic sensations via an intuitive, non-visual pathway. Inspired by this vision, here we trained rhesus monkeys and rats to detect and discriminate patterns of epidural SCS. Thereafter, we constructed psychometric curves describing the relationship between different SCS parameters and the animal’s ability to detect SCS and/or changes in its characteristics. We found that the stimulus detection threshold decreased with higher frequency, longer pulse-width, and increasing duration of SCS. Moreover, we found that monkeys were able to discriminate temporally- and spatially-varying patterns (i.e. variations in frequency and location) of SCS delivered through multiple electrodes. Additionally, sensory discrimination of SCS-induced sensations in rats obeyed Weber’s law of just noticeable differences. These findings suggest that by varying SCS intensity, temporal pattern, and location different sensory experiences can be evoked. As such, we posit that SCS can provide intuitive sensory feedback in neuroprosthetic devices.
Collapse
|
21
|
A Brain to Spine Interface for Transferring Artificial Sensory Information. Sci Rep 2020; 10:900. [PMID: 31964948 PMCID: PMC6972753 DOI: 10.1038/s41598-020-57617-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 01/03/2020] [Indexed: 12/13/2022] Open
Abstract
Lack of sensory feedback is a major obstacle in the rapid absorption of prosthetic devices by the brain. While electrical stimulation of cortical and subcortical structures provides unique means to deliver sensory information to higher brain structures, these approaches require highly invasive surgery and are dependent on accurate targeting of brain structures. Here, we propose a semi-invasive method, Dorsal Column Stimulation (DCS) as a tool for transferring sensory information to the brain. Using this new approach, we show that rats can learn to discriminate artificial sensations generated by DCS and that DCS-induced learning results in corticostriatal plasticity. We also demonstrate a proof of concept brain-to-spine interface (BTSI), whereby tactile and artificial sensory information are decoded from the brain of an “encoder” rat, transformed into DCS pulses, and delivered to the spinal cord of a second “decoder” rat while the latter performs an analog-to-digital conversion during a sensory discrimination task. These results suggest that DCS can be used as an effective sensory channel to transmit prosthetic information to the brain or between brains, and could be developed as a novel platform for delivering tactile and proprioceptive feedback in clinical applications of brain-machine interfaces.
Collapse
|
22
|
Zhong H, Zhu C, Minegishi Y, Richter F, Zdunowski S, Roy RR, Vissel B, Gad P, Gerasimenko Y, Chesselet MF, Edgerton VR. Epidural Spinal Cord Stimulation Improves Motor Function in Rats With Chemically Induced Parkinsonism. Neurorehabil Neural Repair 2019; 33:1029-1039. [PMID: 31684831 DOI: 10.1177/1545968319876891] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background. Epidural stimulation of the spinal cord can reorganize and change the excitability of the neural circuitry to facilitate stepping in rats with a complete spinal cord injury. Parkinson's disease results in abnormal supraspinal signals from the brain to the spinal cord that affect the functional capacity of the spinal networks. Objective. The objective was to determine whether epidural stimulation (electrical enabling motor control, eEmc) of the lumbosacral spinal cord can reorganize the spinal networks to facilitate hindlimb stepping of rats with parkinsonism. Methods. A unilateral 6-OHDA (6-hydroxydopamine) lesion of the nigrostriatal pathway was used to induce parkinsonism. Sham rats (N = 4) were injected in the same region with 0.1% of ascorbic acid. Stimulation electrodes were implanted epidurally at the L2 and S1 (N = 5) or L2 (N = 5) spinal levels. Results. The 6-OHDA rats showed severe parkinsonism in cylinder and adjusting step tests and were unable to initiate stepping when placed in a running wheel and dragged their toes on the affected side during treadmill stepping. During eEmc, the 6-OHDA rats initiated stepping in the running wheel and demonstrated improved stepping quality. Conclusion. Stepping was facilitated in rats with parkinsonism with spinal cord stimulation. The underlying assumption is that the normal functional capacity of spinal networks is affected by supraspinal pathology associated with Parkinson's disease, which either generates insufficient or abnormal descending input to spinal networks and that eEmc can appropriately modulate spinal and supraspinal networks to improve the motor deficits.
Collapse
Affiliation(s)
- Hui Zhong
- University of California Los Angeles, Los Angeles, CA, USA
| | - Chunni Zhu
- University of California Los Angeles, Los Angeles, CA, USA
| | | | | | | | - Roland R Roy
- University of California Los Angeles, Los Angeles, CA, USA
| | - Bryce Vissel
- University of Technology Sydney, Ultimo, New South Wales, Australia.,St. Vincent's Centre for Applied Medical Research, Sydney, New South Wales, Australia
| | - Parag Gad
- University of California Los Angeles, Los Angeles, CA, USA.,University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Yury Gerasimenko
- University of California Los Angeles, Los Angeles, CA, USA.,Pavlov Institute of Physiology, Russian Academy of Sciences, St Petersburg, Russia
| | | | - V Reggie Edgerton
- University of California Los Angeles, Los Angeles, CA, USA.,University of Technology Sydney, Ultimo, New South Wales, Australia.,Institut Universitari adscrit a la Universitat Autònoma de Barcelona, Barcelona, Badalona, Spain
| |
Collapse
|
23
|
High Cervical Spinal Cord Stimulation: A One Year Follow-Up Study on Motor and Non-Motor Functions in Parkinson's Disease. Brain Sci 2019; 9:brainsci9040078. [PMID: 30987170 PMCID: PMC6523357 DOI: 10.3390/brainsci9040078] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/20/2019] [Accepted: 04/02/2019] [Indexed: 01/24/2023] Open
Abstract
Background: The present study investigated the effectiveness of stimulation applied at cervical levels on pain and Parkinson’s disease (PD) symptoms using either tonic or burst stimulation mode. Methods: Tonic high cervical spinal cord stimulation (T-HCSCS) was applied on six PD patients suffering from low back pain and failed back surgery syndrome, while burst HCSCS (B-HCSCS) was applied in twelve PD patients to treat primarily motor deficits. Stimulation was applied percutaneously with quadripolar or octapolar electrodes. Clinical evaluation was assessed by the Unified Parkinson’s Disease Rating Scale (UPDRS) and the Hoehn and Yahr (H&Y) scale. Pain was evaluated by a visual analog scale. Evaluations of gait and of performance in a cognitive motor task were performed in some patients subjected to B-HCSCS. One patient who also suffered from severe autonomic cardiovascular dysfunction was investigated to evaluate the effectiveness of B-HCSCS on autonomic functions. Results: B-HCSCS was more effective and had more consistent effects than T-HCSCS in reducing pain. In addition, B-HCSCS improved UPDRS scores, including motor sub-items and tremor and H&Y score. Motor benefits appeared quickly after the beginning of B-HCSCS, in contrast to long latency improvements induced by T-HCSCS. A slight decrease of effectiveness was observed 12 months after implantation. B-HCSCS also improved gait and ability of patients to correctly perform a cognitive–motor task requiring inhibition of a prepared movement. Finally, B-HCSCS ameliorated autonomic control in the investigated patient. Conclusions: The results support a better usefulness of B-HCSCS compared to T-HCSCS in controlling pain and specific aspects of PD motor and non-motor deficits for at least one year.
Collapse
|
24
|
Vidal PM, Pacheco R. Targeting the Dopaminergic System in Autoimmunity. J Neuroimmune Pharmacol 2019; 15:57-73. [PMID: 30661214 DOI: 10.1007/s11481-019-09834-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 01/08/2019] [Indexed: 02/06/2023]
Abstract
Dopamine has emerged as a fundamental regulator of inflammation. In this regard, it has been shown that dopaminergic signalling pathways are key players promoting homeostasis between the central nervous system and the immune system. Dysregulation in the dopaminergic system affects both innate and adaptive immunity, contributing to the development of numerous autoimmune and inflammatory pathologies. This makes dopamine receptors interesting therapeutic targets for either the development of new treatments or repurposing of already available pharmacological drugs. Dopamine receptors are broadly expressed on different immune cells with multifunctional effects depending on the dopamine concentration available and the pattern of expression of five dopamine receptors displaying different affinities for dopamine. Thus, impaired dopaminergic signalling through different dopamine receptors may result in altered behaviour of immunity, contributing to the development and progression of autoimmune pathologies. In this review we discuss the current evidence involving the dopaminergic system in inflammatory bowel disease, multiple sclerosis and Parkinson's disease. In addition, we summarise and analyse the therapeutic approaches designed to attenuate disease development and progression by targeting the dopaminergic system. Graphical Abstract Targetting the dopaminergic system in autoimmunity. Effector T-cells (Teff) orchestrate inflamamtion involved in autoimmunity, whilst regulatory T-cells (Tregs) suppress Teff activity promoting tolerance to self-constituents. Dopamine has emerged as a key regulator of Teff and Tregs function, thereby dopamine receptors have becoming important therapeutic targets in autoimmune disorders, especially in those affecting the brain and the gut, where dopamine levels strongly change with inflammation.
Collapse
Affiliation(s)
- Pia M Vidal
- Laboratorio de Neuroinmunología, Fundación Ciencia & Vida, Av. Zañartu 1482, Ñuñoa, 7780272, Santiago, Chile
| | - Rodrigo Pacheco
- Laboratorio de Neuroinmunología, Fundación Ciencia & Vida, Av. Zañartu 1482, Ñuñoa, 7780272, Santiago, Chile. .,Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, 8370146, Santiago, Chile.
| |
Collapse
|
25
|
Andreoli L, Simplício H, Morya E. Egg Model Training Protocol for Stereotaxic Neurosurgery and Microelectrode Implantation. World Neurosurg 2018; 111:243-250. [DOI: 10.1016/j.wneu.2017.12.099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 12/12/2017] [Accepted: 12/14/2017] [Indexed: 10/18/2022]
|
26
|
Yadav AP, Nicolelis MAL. Electrical stimulation of the dorsal columns of the spinal cord for Parkinson's disease. Mov Disord 2017; 32:820-832. [PMID: 28497877 DOI: 10.1002/mds.27033] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 03/07/2017] [Accepted: 04/10/2017] [Indexed: 11/10/2022] Open
Abstract
Spinal cord stimulation has been used for the treatment of chronic pain for decades. In 2009, our laboratory proposed, based on studies in rodents, that electrical stimulation of the dorsal columns of the spinal cord could become an effective treatment for motor symptoms associated with Parkinson's disease (PD). Since our initial report in rodents and a more recent study in primates, several clinical studies have now described beneficial effects of dorsal column stimulation in parkinsonian patients. In primates, we have shown that dorsal column stimulation activates multiple structures along the somatosensory pathway and desynchronizes the pathological cortico-striatal oscillations responsible for the manifestation of PD symptoms. Based on recent evidence, we argue that neurological disorders such as PD can be broadly classified as diseases emerging from abnormal neuronal timing, leading to pathological brain states, and that the spinal cord could be used as a "channel" to transmit therapeutic electrical signals to disrupt these abnormalities. © 2017 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Amol P Yadav
- Department of Neurobiology, Duke University, Durham, North Carolina, USA.,Duke Center for Neuroengineering, Duke University, Durham, North Carolina, USA
| | - Miguel A L Nicolelis
- Department of Neurobiology, Duke University, Durham, North Carolina, USA.,Duke Center for Neuroengineering, Duke University, Durham, North Carolina, USA.,Department of Psychology and Neuroscience, Duke University, Durham, North Carolina, USA.,Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA.,Department of Neurology, Duke University, Durham, North Carolina, USA.,Edmond and Lily Safra International Institute of Neuroscience of Natal, Natal, Brazil
| |
Collapse
|
27
|
Silva-dos-Santos A. The Hypothesis of Connecting Two Spinal Cords as a Way of Sharing Information between Two Brains and Nervous Systems. Front Psychol 2017; 8:105. [PMID: 28197119 PMCID: PMC5281600 DOI: 10.3389/fpsyg.2017.00105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 01/16/2017] [Indexed: 11/18/2022] Open
Abstract
Direct communication between different nervous systems has been recently reported through Brain-to-Brain-Interfaces and brainet. Closed loops systems between the brain and the spinal cord from the same individual have also been demonstrated. However, the connection between different nervous systems through the spinal cord has not yet been considered. This paper raises the hypothesis that connecting two spinal cords (spinal cord - spinal cord connection) is an indirect mean for communication of two brains and a direct way of communication between two nervous systems. A concept of electrical fingerprint of a drug is introduced. The notion of connection between two parts of the same spinal cord to treat a paraplegic patient is also introduced. Possible applications of this technique are discussed in the context of psychology, psychiatry and mental health. Also, it is discussed that external information injected to a spinal cord as well as spinal cord - spinal cord connection can become new tools to (1) study the physiology of the nervous system, (2) model specific behaviors, (3) study and model disease traits (4) treat neuropsychiatric disorders and (5) share information between two nervous systems.
Collapse
Affiliation(s)
- Amílcar Silva-dos-Santos
- Department of Psychiatry, Hospital Vila Franca de XiraVila Franca de Xira, Portugal
- Institute of Pharmacology and Neurosciences, Faculty of Medicine, University of LisbonLisbon, Portugal
- Unit of Neurosciences, Institute of Molecular Medicine, University of LisbonLisbon, Portugal
| |
Collapse
|
28
|
Pais-Vieira M, Yadav AP, Moreira D, Guggenmos D, Santos A, Lebedev M, Nicolelis MAL. A Closed Loop Brain-machine Interface for Epilepsy Control Using Dorsal Column Electrical Stimulation. Sci Rep 2016; 6:32814. [PMID: 27605389 PMCID: PMC5015048 DOI: 10.1038/srep32814] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 08/11/2016] [Indexed: 11/08/2022] Open
Abstract
Although electrical neurostimulation has been proposed as an alternative treatment for drug-resistant cases of epilepsy, current procedures such as deep brain stimulation, vagus, and trigeminal nerve stimulation are effective only in a fraction of the patients. Here we demonstrate a closed loop brain-machine interface that delivers electrical stimulation to the dorsal column (DCS) of the spinal cord to suppress epileptic seizures. Rats were implanted with cortical recording microelectrodes and spinal cord stimulating electrodes, and then injected with pentylenetetrazole to induce seizures. Seizures were detected in real time from cortical local field potentials, after which DCS was applied. This method decreased seizure episode frequency by 44% and seizure duration by 38%. We argue that the therapeutic effect of DCS is related to modulation of cortical theta waves, and propose that this closed-loop interface has the potential to become an effective and semi-invasive treatment for refractory epilepsy and other neurological disorders.
Collapse
Affiliation(s)
- Miguel Pais-Vieira
- Department of Neurobiology Duke University, Durham, NC 27710, USA
- Centro de Investigação Interdisciplinar em Saúde, Instituto de Ciências da Saúde, Universidade Católica Portuguesa, Porto, Portugal
- Instituto de Ciências da Vida e da Saúde, Universidade do Minho, Braga, Portugal
| | - Amol P. Yadav
- Department of Neurobiology Duke University, Durham, NC 27710, USA
- Department of Biomedical Engineering Duke University, Durham, NC 27710, USA
| | - Derek Moreira
- Department of Neurobiology Duke University, Durham, NC 27710, USA
| | - David Guggenmos
- Department of Neurobiology Duke University, Durham, NC 27710, USA
| | - Amílcar Santos
- Department of Neurobiology Duke University, Durham, NC 27710, USA
| | - Mikhail Lebedev
- Department of Biomedical Engineering Duke University, Durham, NC 27710, USA
- Duke Center for Neuroengineering Duke University, Durham, NC 27710, USA
| | - Miguel A. L. Nicolelis
- Department of Neurobiology Duke University, Durham, NC 27710, USA
- Department of Biomedical Engineering Duke University, Durham, NC 27710, USA
- Duke Center for Neuroengineering Duke University, Durham, NC 27710, USA
- Department of Psychology and Neuroscience Duke University, Durham, NC 27710, USA
- Edmond and Lily Safra International Institute of Neuroscience of Natal, Natal, Brazil
| |
Collapse
|
29
|
Embedding a Panoramic Representation of Infrared Light in the Adult Rat Somatosensory Cortex through a Sensory Neuroprosthesis. J Neurosci 2016; 36:2406-24. [PMID: 26911689 DOI: 10.1523/jneurosci.3285-15.2016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Can the adult brain assimilate a novel, topographically organized, sensory modality into its perceptual repertoire? To test this, we implemented a microstimulation-based neuroprosthesis that rats used to discriminate among infrared (IR) light sources. This system continuously relayed information from four IR sensors that were distributed to provide a panoramic view of IR sources, into primary somatosensory cortex (S1). Rats learned to discriminate the location of IR sources in <4 d. Animals in which IR information was delivered in spatial register with whisker topography learned the task more quickly. Further, in animals that had learned to use the prosthesis, altering the topographic mapping from IR sensor to stimulating electrode had immediate deleterious effects on discrimination performance. Multielectrode recordings revealed that S1 neurons had multimodal (tactile/IR) receptive fields, with clear preferences for those stimuli most likely to be delivered during the task. Neuronal populations predicted, with high accuracy, which stimulation pattern was present in small (75 ms) time windows. Surprisingly, when identical microstimulation patterns were delivered during an unrelated task, cortical activity in S1 was strongly suppressed. Overall, these results show that the adult mammalian neocortex can readily absorb completely new information sources into its representational repertoire, and use this information in the production of adaptive behaviors.
Collapse
|
30
|
Brys I, Bobela W, Schneider BL, Aebischer P, Fuentes R. Spinal cord stimulation improves forelimb use in an alpha-synuclein animal model of Parkinson's disease. Int J Neurosci 2016; 127:28-36. [PMID: 26856727 DOI: 10.3109/00207454.2016.1138296] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Neuromodulation by spinal cord stimulation has been proposed as a symptomatic treatment for Parkinson's disease. We tested the chronic effects of spinal cord stimulation in a progressive model of Parkinson's based on overexpression of alpha-synuclein in the substantia nigra. Adult Sprague Dawley rats received unilateral injections of adeno-associated virus serotype 6 (AAV6) in the substantia nigra to express alpha-synuclein. Locomotion and forepaw use of the rats were evaluated during the next 10 weeks. Starting on week 6, a group of AAV6-injected rats received spinal cord stimulation once a week. At the end of the experiment, tyrosine hydroxylase and alpha-synuclein immunostaining were performed. Rats with unilateral alpha-synuclein expression showed a significant decrease in the use of the contralateral forepaw, which was mildly but significantly reverted by spinal cord stimulation applied once a week from the 6th to the 10th week after the AAV6 injection. Long-term spinal cord stimulation proved to be effective to suppress or delay motor symptoms in a sustained and progressive model of Parkinson's and might become an alternative, less invasive neuromodulation option to treat this disease.
Collapse
Affiliation(s)
- Ivani Brys
- a Department of Psychobiology , Federal University of Rio Grande do Norte , Natal , Brazil.,b Edmond and Lily Safra Institute of Neuroscience of Natal , 590660 , Brazil
| | - Wojciech Bobela
- c Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Lausanne , Switzerland
| | - Bernard L Schneider
- c Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Lausanne , Switzerland
| | - Patrick Aebischer
- c Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Lausanne , Switzerland
| | - Romulo Fuentes
- b Edmond and Lily Safra Institute of Neuroscience of Natal , 590660 , Brazil .,d Facultad de Medicina, Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas , Universidad de Chile , Santiago , Chile
| |
Collapse
|
31
|
Brundin P, Atkin G, Lamberts JT. Basic science breaks through: New therapeutic advances in Parkinson's disease. Mov Disord 2015; 30:1521-7. [PMID: 26177603 DOI: 10.1002/mds.26332] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 06/13/2015] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease and is typically associated with progressive motor dysfunction, although PD patients also exhibit a variety of non-motor symptoms. The neuropathological hallmark of PD is intraneuronal inclusions containing primarily α-Synuclein (α-Syn), and several lines of evidence point to α-Syn as a key contributor to disease progression. Thus, basic research in the field of PD is largely focused on understanding the pathogenic properties of α-Syn. Over the past 2 y, these studies helped to identify several novel therapeutic strategies that have the potential to slow PD progression; such strategies include sequestration of extracellular α-Syn through immunotherapy, reduction of α-Syn multimerization or intracellular toxicity, and attenuation of the neuroinflammatory response. This review describes these and other putative therapeutic strategies, together with the basic science research that led to their identification. The current breadth of novel targets for the treatment of PD warrants cautious optimism in the fight against this devastating disease.
Collapse
Affiliation(s)
- Patrik Brundin
- Laboratory of Translational Parkinson's Disease Research, Van Andel Research Institute, Grand Rapids, Michigan, USA
| | - Graham Atkin
- Laboratory of Translational Parkinson's Disease Research, Van Andel Research Institute, Grand Rapids, Michigan, USA
| | - Jennifer T Lamberts
- Laboratory of Translational Parkinson's Disease Research, Van Andel Research Institute, Grand Rapids, Michigan, USA.,College of Pharmacy, Ferris State University, Big Rapids, Michigan, USA
| |
Collapse
|
32
|
Respiratory deficits in a rat model of Parkinson’s disease. Neuroscience 2015; 297:194-204. [DOI: 10.1016/j.neuroscience.2015.03.048] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 03/11/2015] [Accepted: 03/19/2015] [Indexed: 11/19/2022]
|
33
|
Tousson E, Salama AF, Ibrahim W, Sakr S, Masoud A, Akela MA, El-Rahman MAA. Epigenetic Study of Parkinson's Disease in Experimental Animal Model. PHARMACOLOGIA 2015; 6:52-62. [DOI: 10.5567/pharmacologia.2015.52.62] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
34
|
Shinko A, Agari T, Kameda M, Yasuhara T, Kondo A, Tayra JT, Sato K, Sasaki T, Sasada S, Takeuchi H, Wakamori T, Borlongan CV, Date I. Spinal cord stimulation exerts neuroprotective effects against experimental Parkinson's disease. PLoS One 2014; 9:e101468. [PMID: 25009993 PMCID: PMC4092020 DOI: 10.1371/journal.pone.0101468] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 06/05/2014] [Indexed: 01/19/2023] Open
Abstract
In clinical practice, deep brain stimulation (DBS) is effective for treatment of motor symptoms in Parkinson’s disease (PD). However, the mechanisms have not been understood completely. There are some reports that electrical stimulation exerts neuroprotective effects on the central nervous system diseases including cerebral ischemia, head trauma, epilepsy and PD, although there are a few reports on neuroprotective effects of spinal cord stimulation (SCS). We investigated the neuroprotective effects of high cervical SCS on PD model of rats. Adult female Sprague-Dawley rats received hour-long SCS (2, 50 or 200 Hz) with an epidural electrode at C1–2 level for 16 consecutive days. At 2 days after initial SCS, 6-hydroxydopamine (6-OHDA) was injected into the right striatum of rats. Behavioral evaluations of PD symptoms were employed, including cylinder test and amphetamine-induced rotation test performed at 1 and 2 weeks after 6-OHDA injection. Animals were subsequently euthanized for immunohistochemical investigations. In order to explore neurotrophic and growth factor upregulation induced by SCS, another cohort of rats that received 50 Hz SCS was euthanized at 1 and 2 weeks after lesion for protein assays. Behavioral tests revealed that the number of amphetamine-induced rotations decreased in SCS groups. Immunohistochemically, tyrosine hydroxylase (TH)-positive fibers in the striatum were significantly preserved in SCS groups. TH-positive neurons in the substantia nigra pars compacta were significantly preserved in 50 Hz SCS group. The level of vascular endothelial growth factor (VEGF) was upregulated by SCS at 1 week after the lesion. These results suggest that high cervical SCS exerts neuroprotection in PD model of rats, at least partially by upregulation of VEGF. SCS is supposed to suppress or delay PD progression and might become a less invasive option for PD patients, although further preclinical and clinical investigations are needed to confirm the effectiveness and safety.
Collapse
Affiliation(s)
- Aiko Shinko
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Takashi Agari
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Okayama, Japan
- * E-mail:
| | - Masahiro Kameda
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Takao Yasuhara
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Akihiko Kondo
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Judith Thomas Tayra
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Kenichiro Sato
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Tatsuya Sasaki
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Susumu Sasada
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Hayato Takeuchi
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Takaaki Wakamori
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Cesario V. Borlongan
- Department of Neurosurgery, University of South Florida College of Medicine, Tampa, Florida, United States of America
| | - Isao Date
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Okayama, Japan
| |
Collapse
|
35
|
Thiriez C, Gurruchaga JM, Goujon C, Fénelon G, Palfi S. Spinal stimulation for movement disorders. Neurotherapeutics 2014; 11:543-52. [PMID: 25015323 PMCID: PMC4121450 DOI: 10.1007/s13311-014-0291-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Epidural spinal cord stimulation (SCS) is currently proposed to treat intractable neuropathic pain. Since the 1970s, isolated cases and small cohorts of patients suffering from dystonia, tremor, painful leg and moving toes (PLMT), or Parkinson’s disease were also treated with SCS in the context of exploratory clinical studies. Despite the safety profile of SCS observed in these various types of movement disorders, the degree of improvement of abnormal movements following SCS has been heterogeneous among patients and across centers in open-label trials, stressing the need for larger, randomized, double-blind studies. This article provides a comprehensive review of both experimental and clinical studies of SCS application in movement disorders.
Collapse
Affiliation(s)
- Claire Thiriez
- />AP-HP, Department of Neurology, Groupe Hospitalier Henri Mondor, Créteil, France
| | | | - Colette Goujon
- />Department of Neurosurgery, Groupe Hospitalier Henri Mondor, Créteil, France
| | - Gilles Fénelon
- />AP-HP, Department of Neurology, Groupe Hospitalier Henri Mondor, Créteil, France
| | - Stéphane Palfi
- />Department of Neurosurgery, Groupe Hospitalier Henri Mondor, Créteil, France
- />Université Paris Est-Créteil, Faculté de Médecine, 94010 Créteil, Cedex France
| |
Collapse
|