1
|
Nawaz S, Kulyar MFEA, Mo Q, Yao W, Iqbal M, Li J. Homeostatic Regulation of Pro-Angiogenic and Anti-Angiogenic Proteins via Hedgehog, Notch Grid, and Ephrin Signaling in Tibial Dyschondroplasia. Animals (Basel) 2023; 13:3750. [PMID: 38136788 PMCID: PMC10740744 DOI: 10.3390/ani13243750] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Precise coupling of two fundamental mechanisms, chondrogenesis and osteogenesis via angiogenesis, plays a crucial role during rapid proliferation of growth plates, and alteration in their balance might lead to pathogenic conditions. Tibial dyschondroplasia (TD) is characterized by an avascular, non-mineralized, jade-white "cartilaginous wedge" with impaired endochondral ossification and chondrocyte proliferation at the proximal end of a tibial bone in rapidly growing poultry birds. Developing vascular structures are dynamic with cartilage growth and are regulated through homeostatic balance among pro and anti-angiogenic proteins and cytokines. Pro-angiogenic factors involves a wide spectrum of multifactorial mitogens, such as vascular endothelial growth factors (VEGF), platelet-derived growth factors (PDGF), basic fibroblast growth factor (bFGF), placental growth factors, transforming growth factor-β (TGF-β), and TNF-α. Considering their regulatory role via the sonic hedgehog, notch-gridlock, and ephrin-B2/EphB4 pathways and inhibition through anti-angiogenic proteins like angiostatin, endostatin, decoy receptors, vasoinhibin, thrombospondin, PEX, and troponin, their possible role in persisting inflammatory conditions like TD was studied in the current literature review. Balanced apoptosis and angiogenesis are vital for physiological bone growth. Any homeostatic imbalance among apoptotic, angiogenetic, pro-angiogenic, or anti-angiogenic proteins ultimately leads to pathological bone conditions like TD and osteoarthritis. The current review might substantiate solid grounds for developing innovative therapeutics for diseases governed by the disproportion of angiogenesis and anti-angiogenesis proteins.
Collapse
Affiliation(s)
- Shah Nawaz
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.N.); (M.F.-e.-A.K.); (W.Y.); (M.I.)
| | - Muhammad Fakhar-e-Alam Kulyar
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.N.); (M.F.-e.-A.K.); (W.Y.); (M.I.)
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Quan Mo
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.N.); (M.F.-e.-A.K.); (W.Y.); (M.I.)
| | - Wangyuan Yao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.N.); (M.F.-e.-A.K.); (W.Y.); (M.I.)
| | - Mudassar Iqbal
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.N.); (M.F.-e.-A.K.); (W.Y.); (M.I.)
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.N.); (M.F.-e.-A.K.); (W.Y.); (M.I.)
| |
Collapse
|
2
|
Keller KE, Peters DM. Pathogenesis of glaucoma: Extracellular matrix dysfunction in the trabecular meshwork-A review. Clin Exp Ophthalmol 2022; 50:163-182. [PMID: 35037377 DOI: 10.1111/ceo.14027] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/19/2021] [Accepted: 11/26/2021] [Indexed: 12/11/2022]
Abstract
The trabecular meshwork regulates aqueous humour outflow from the anterior chamber of the eye. It does this by establishing a tunable outflow resistance, defined by the interplay between cells and their extracellular matrix (ECM) milieu, and the molecular interactions between ECM proteins. During normal tissue homeostasis, the ECM is remodelled and trabecular cell behaviour is modified, permitting increased aqueous fluid outflow to maintain intraocular pressure (IOP) within a relatively narrow physiological pressure. Dysfunction in the normal homeostatic process leads to increased outflow resistance and elevated IOP, which is a primary risk factor for glaucoma. This review delineates some of the changes in the ECM that lead to gross as well as some more subtle changes in the structure and function of the ECM, and their impact on trabecular cell behaviour. These changes are discussed in the context of outflow resistance and glaucoma.
Collapse
Affiliation(s)
- Kate E Keller
- Casey Eye Institute, Oregon Health &Science University, Portland, Oregon, USA
| | - Donna M Peters
- Department of Pathology & Laboratory Medicine, University of Wisconsin School of Medicine & Public Health, Madison, Wisconsin, USA
| |
Collapse
|
3
|
Gong C, Sun K, Xiong HH, Sneh T, Zhang J, Zhou X, Yan P, Wang JH. Expression of CXCR4 and MMP-2 is associated with poor prognosis in patients with osteosarcoma. Histol Histopathol 2020; 35:863-870. [PMID: 32314796 DOI: 10.14670/hh-18-219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Osteosarcoma is a primary malignant tumor with a high tendency to form metastasis and poor prognosis. Consequently, finding effective early indicators of metastases is crucial for identifying and treating high-risk patients. CXCR4 and MMP-2 have been found to strongly correlate with invasion and metastasis of malignant tumors, including osteosarcoma. MATERIALS AND METHODS Our study evaluated CXCR4 in conjunction with MMP-2 as an important clinicopathological prognostic predictor for metastasis and overall survival of osteosarcoma. 73 patients' clinical data and pathological samples were retrieved for the study. A median time of 36 months follow-up was performed to evaluate for tumor metastasis and patient survival. CXCR4 and MMP-2 proteins in tumor tissues were detected by immunohistochemistry on paraffin-embedded tissue sections. RESULTS The positive expression rate of CXCR4 and MMP-2 was 68.5% and 54.8% respectively, and of the 45 patients who developed distal metastasis, 33 and 28 patients had positive expression of CXCR4 and MMP-2 respectively. The median metastasis-free survival was 72.00 months in the CXCR4-negative group and 14.00 months in the CXCR4 positive group. Furthermore, median overall survival was 73.77 and 24.00 months in these same two groups. Further, the median metastasis-free survival was 66.51 months in the MMP-2 negative group and 9.00 months in the MMP-2 positive group. The median overall survival was 75.07 and 19.00 months in these same two groups. MMP2 and metastasis remained the significant and independent prognostic factors for metastasis-free survival and overall survival by using the COX regression model adjusted for the multivariate predictors of survival. CONCLUSION Our results suggest that metastasis and MMP-2 are both independent prognostic indicators for metastasis-free and overall survival of osteosarcoma patients.
Collapse
Affiliation(s)
- Chen Gong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Kai Sun
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Hui-Hua Xiong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Tal Sneh
- Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Jing Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Xiao Zhou
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Peng Yan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Jian-Hua Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.
| |
Collapse
|
4
|
Liu S, Li H, Wu S, Li L, Ge R, Cheng CY. NC1-peptide regulates spermatogenesis through changes in cytoskeletal organization mediated by EB1. FASEB J 2020; 34:3105-3128. [PMID: 31909540 DOI: 10.1096/fj.201901968rr] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/20/2019] [Accepted: 12/19/2019] [Indexed: 12/11/2022]
Abstract
During the epithelial cycle of spermatogenesis, different sets of cellular events take place across the seminiferous epithelium in the testis. For instance, remodeling of the blood-testis barrier (BTB) that facilitates the transport of preleptotene spermatocytes across the immunological barrier and the release of sperms at spermiation take place at the opposite ends of the epithelium simultaneously at stage VIII of the epithelial cycle. These cellular events are tightly coordinated via locally produced regulatory biomolecules. Studies have shown that collagen α3 (IV) chains, a major constituent component of the basement membrane, release the non-collagenous (NC) 1 domain, a 28-kDa peptide, designated NC1-peptide, from the C-terminal region, via the action of MMP-9 (matrix metalloproteinase 9). NC1-peptide was found to be capable of inducing BTB remodeling and spermatid release across the epithelium. As such, the NC1-peptide is an endogenously produced biologically active peptide which coordinates these cellular events across the epithelium in stage VIII tubules. Herein, we used an animal model, wherein NC1-peptide cloned into the pCI-neo mammalian expression vector was overexpressed in the testis, to better understanding the molecular mechanism by which NC1-peptide regulated spermatogenic function. It was shown that NC1-peptide induced considerable downregulation on a number of cell polarity and planar cell polarity (PCP) proteins, and studies have shown these polarity and PCP proteins modulate spermatid polarity and adhesion via their effects on microtubule (MT) and F-actin cytoskeletal organization across the epithelium. More important, NC1-peptide exerted its effects by downregulating the expression of microtubule (MT) plus-end tracking protein (+TIP) called EB1 (end-binding protein 1). We cloned the full-length EB1 cDNA for its overexpression in the testis, which was found to block the NC1-peptide-mediated disruptive effects on cytoskeletal organization in Sertoli cell epithelium and pertinent Sertoli cell functions. These findings thus illustrate that NC1-peptide is working in concert with EB1 to support spermatogenesis.
Collapse
Affiliation(s)
- Shiwen Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - Huitao Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - Siwen Wu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - Linxi Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - Renshan Ge
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - C Yan Cheng
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| |
Collapse
|
5
|
Kisling A, Lust RM, Katwa LC. What is the role of peptide fragments of collagen I and IV in health and disease? Life Sci 2019; 228:30-34. [DOI: 10.1016/j.lfs.2019.04.042] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/10/2019] [Accepted: 04/16/2019] [Indexed: 12/20/2022]
|
6
|
Vijayanathan Y, Lim FT, Lim SM, Long CM, Tan MP, Majeed ABA, Ramasamy K. 6-OHDA-Lesioned Adult Zebrafish as a Useful Parkinson's Disease Model for Dopaminergic Neuroregeneration. Neurotox Res 2017; 32:496-508. [PMID: 28707266 DOI: 10.1007/s12640-017-9778-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 06/14/2017] [Accepted: 06/28/2017] [Indexed: 12/16/2022]
Abstract
Conventional mammalian models of neurodegeneration are often limited by futile axonogenesis with minimal functional recuperation of severed neurons. The emergence of zebrafish, a non-mammalian model with excellent neuroregenerative properties, may address these limitations. This study aimed to establish an adult zebrafish-based, neurotoxin-induced Parkinson's disease (PD) model and subsequently validate the regenerative capability of dopaminergic neurons (DpN). The DpN of adult male zebrafish (Danio rerio) were lesioned by microinjecting 6-hydroxydopamine (6-OHDA) neurotoxin (6.25, 12.5, 18.75, 25, 37.5, 50 and 100 mg/kg) into the ventral diencephalon (Dn). This was facilitated by an optimised protocol that utilised 1,1'-dioctadecyl-3,3,3',3'-tetramethyl-indocarbocyanineperchlorate (DiI) dye to precisely identify the injection site. Immunostaining was utilised to identify the number of tyrosine hydroxylase immunoreactive (TH-ir) DpN in brain regions of interest (i.e. olfactory bulb, telencephalon, preoptic area, posterior tuberculum and hypothalamus). Open tank video recordings were performed for locomotor studies. The Dn was accessed by setting the injection angle of the microinjection capillary to 60° and injection depth to 1200 μm (from the exposed brain surface). 6-OHDA (25 mg/kg) successfully ablated >85% of the Dn DpN (preoptic area, posterior tuberculum and hypothalamus) whilst maintaining a 100% survival. Locomotor analysis of 5-min recordings revealed that 6-OHDA-lesioned adult zebrafish were significantly (p < 0.0001) reduced in speed (cm/s) and distance travelled (cm). Lesioned zebrafish showed full recovery of Dn DpN 30 days post-lesion. This study had successfully developed a stable 6-OHDA-induced PD zebrafish model using a straightforward and reproducible approach. Thus, this developed teleost model poses exceptional potentials to study DpN regeneration.
Collapse
Affiliation(s)
- Yuganthini Vijayanathan
- Collaborative Drug Discovery Research (CDDR) Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), 42300, Puncak Alam, Selangor Darul Ehsan, Malaysia.,Division of Geriatric Medicine, Department of Medicine, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Fei Tieng Lim
- Collaborative Drug Discovery Research (CDDR) Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), 42300, Puncak Alam, Selangor Darul Ehsan, Malaysia
| | - Siong Meng Lim
- Collaborative Drug Discovery Research (CDDR) Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), 42300, Puncak Alam, Selangor Darul Ehsan, Malaysia
| | - Chiau Ming Long
- School of Pharmacy, KPJ Healthcare University College, 71800, Nilai, Negeri Sembilan, Malaysia
| | - Maw Pin Tan
- Division of Geriatric Medicine, Department of Medicine, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Abu Bakar Abdul Majeed
- Collaborative Drug Discovery Research (CDDR) Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), 42300, Puncak Alam, Selangor Darul Ehsan, Malaysia
| | - Kalavathy Ramasamy
- Collaborative Drug Discovery Research (CDDR) Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), 42300, Puncak Alam, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
7
|
Isolation of a methylated mannose-binding protein from terrestrial worm Enchytraeus japonensis. Glycoconj J 2017; 34:591-601. [PMID: 28577071 DOI: 10.1007/s10719-017-9778-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/12/2017] [Accepted: 05/24/2017] [Indexed: 12/21/2022]
Abstract
To elucidate a biological role of the methylated mannose residues found in N-glycans of terrestrial worm Enchytraeus japonensis, we first synthesized 3-O-methyl mannose- and 4-O-methyl mannose-derivatives and immobilized them to Sepharose 4B beads in order to isolate the sugar-binding protein. When whole protein extracts from the worms was applied to a series of the columns immobilized with the modified and unmodified mannose-derivatives, respectively, a protein with a molecular weight of 25,000 was isolated by 4-O-methyl mannose-immobilized column chromatography, and termed as a methylated mannose-binding protein (mMBP). mMBP bound weakly to a mannose-immobilized column and moderately to a 3-O-methyl mannose-immobilized column. The N-terminal amino acid sequences of mMBP and its endoprotease-digested peptides were determined. Using the degenerate first primers synthesized based on the primary sequence, a genomic DNA fragment was isolated. Then, the second primers were synthesized based on the genomic DNA fragment, and with use of them two cDNA fragments were obtained by the 3'- and 5'-RACE methods. Finally, the third primers were synthesized based on the sequences of the two cDNA fragments and one genomic DNA fragment, and with use of them a full-length cDNA of mMBP was isolated and shown to comprise a putative 633 bp open reading frame encoding 210 amino acid residues. BLAST analysis revealed that mMBP has identities by 26 ~ 55% to several proteins including the regeneration-upregulated protein 3 from the same species. Whether mMBP is involved in the regeneration of the worm is under investigation.
Collapse
|
8
|
Carey SP, Martin KE, Reinhart-King CA. Three-dimensional collagen matrix induces a mechanosensitive invasive epithelial phenotype. Sci Rep 2017; 7:42088. [PMID: 28186196 PMCID: PMC5301232 DOI: 10.1038/srep42088] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 01/04/2017] [Indexed: 11/28/2022] Open
Abstract
A critical step in breast cancer progression is local tissue invasion, during which cells pass from the epithelial compartment to the stromal compartment. We recently showed that malignant leader cells can promote the invasion of otherwise non-invasive epithelial follower cells, but the effects of this induced-invasion phenomenon on follower cell phenotype remain unclear. Notably, this process can expose epithelial cells to the stromal extracellular matrix (ECM), which is distinct from the ECM within the normal epithelial microenvironment. Here, we used a 3D epithelial morphogenesis model in which cells were cultured in biochemically and mechanically defined matrices to examine matrix-mediated gene expression and the associated phenotypic response. We found that 3D collagen matrix promoted expression of mesenchymal genes including MT1-MMP, which was required for collagen-stimulated invasive behavior. Epithelial invasion required matrix anchorage as well as signaling through Src, PI3K, and Rac1, and increasingly stiff collagen promoted dispersive epithelial cell invasion. These results suggest that leader cell-facilitated access to the stromal ECM may trigger an invasive phenotype in follower epithelial cells that could enable them to actively participate in local tissue invasion.
Collapse
Affiliation(s)
- Shawn P Carey
- Department of Biomedical Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Karen E Martin
- Department of Biomedical Engineering, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
9
|
Mechanisms Underlying the Absence of Cancers of the Human Crystalline Lens. Int Ophthalmol Clin 2016; 57:49-56. [PMID: 27898613 DOI: 10.1097/iio.0000000000000159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
MMP-2 Isoforms in Aortic Tissue and Serum of Patients with Ascending Aortic Aneurysms and Aortic Root Aneurysms. PLoS One 2016; 11:e0164308. [PMID: 27802285 PMCID: PMC5089694 DOI: 10.1371/journal.pone.0164308] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/22/2016] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE The need for biological markers of aortic wall stress and risk of rupture or dissection of ascending aortic aneurysms is obvious. To date, wall stress cannot be related to a certain biological marker. We analyzed aortic tissue and serum for the presence of different MMP-2 isoforms to find a connection between serum and tissue MMP-2 and to evaluate the potential of different MMP-2 isoforms as markers of high wall stress. METHODS Serum and aortic tissue from n = 24 patients and serum from n = 19 healthy controls was analyzed by ELISA and gelatin zymography. 24 patients had ascending aortic aneurysms, 10 of them also had aortic root aneurysms. Three patients had normally functioning valves, 12 had regurgitation alone, eight had regurgitation and stenosis and one had only stenosis. Patients had bicuspid and tricuspid aortic valves (9/15). Serum samples were taken preoperatively, and the aortic wall specimen collected during surgical aortic repair. RESULTS Pro-MMP-2 was identified in all serum and tissue samples. Pro-MMP-2 was detected in all tissue and serum samples from patients with ascending aortic/aortic root aneurysms, irrespective of valve morphology or other clinical parameters and in serum from healthy controls. We also identified active MMP-2 in all tissue samples from patients with ascending aortic/aortic root aneurysms. None of the analyzed serum samples revealed signals relatable to active MMP-2. No correlation between aortic tissue total MMP-2 or tissue pro-MMP-2 or tissue active MMP-2 and serum MMP-2 was found and tissue MMP-2/pro-MMP-2/active MMP-2 did not correlate with aortic diameter. This evidence shows that pro-MMP-2 is the predominant MMP-2 species in serum of patients and healthy individuals and in aneurysmatic aortic tissue, irrespective of aortic valve configuration. Active MMP-2 species are either not released into systemic circulation or not detectable in serum. There is no reliable connection between aortic tissue-and serum MMP-2 isoforms, nor any indication that pro-MMP-2 functions as a common marker of high aortic wall stress.
Collapse
|
11
|
Chi C, Zhang Q, Mao Y, Kou D, Qiu J, Ye J, Wang J, Wang Z, Du Y, Tian J. Increased precision of orthotopic and metastatic breast cancer surgery guided by matrix metalloproteinase-activatable near-infrared fluorescence probes. Sci Rep 2015; 5:14197. [PMID: 26395067 PMCID: PMC4585795 DOI: 10.1038/srep14197] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 08/21/2015] [Indexed: 02/07/2023] Open
Abstract
Advanced medical imaging technology has allowed the use of fluorescence molecular imaging-guided breast cancer surgery (FMI-guided BCS) to specifically label tumour cells and to precisely distinguish tumour margins from normal tissues intra-operatively, a major challenge in the medical field. Here, we developed a surgical navigation system for real-time FMI-guided BCS. Tumours derived from highly metastatic 4T1-luc breast cancer cells, which exhibit high expression of matrix metalloproteinase (MMP) and human epidermal growth factor receptor 2 (HER2), were established in nude mice; these mice were injected with smart MMP-targeting and “always-on” HER2-targeting near-infrared (NIR) fluorescent probes. The fluorescence signal was imaged to assess in vivo binding of the probes to the tumour and metastatic sites. Then, orthotopic and metastatic breast tumours were precisely removed under the guidance of our system. The post-operative survival rate of mice was improved by 50% with the new method. Hematoxylin and eosin staining and immunohistochemical staining for MMP2 and CD11b further confirmed the precision of tumour dissection. Our method facilitated the accurate detection and complete removal of breast cancer tumours and provided a method for defining the molecular classification of breast cancer during surgery, thereby improving prognoses and survival rates.
Collapse
Affiliation(s)
- Chongwei Chi
- Key Laboratory of Molecular Imaging of Chinese Academy of Sciences, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Qian Zhang
- School of Life Science and Technology, Xidian University, Xi'an 710071, China
| | - Yamin Mao
- Key Laboratory of Molecular Imaging of Chinese Academy of Sciences, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Deqiang Kou
- Department of General Surgery, General Hospital of People's Liberation Army, Beijing 100853, China
| | - Jingdan Qiu
- Department of General Surgery, General Hospital of People's Liberation Army, Beijing 100853, China
| | - Jinzuo Ye
- Key Laboratory of Molecular Imaging of Chinese Academy of Sciences, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Jiandong Wang
- Department of General Surgery, General Hospital of People's Liberation Army, Beijing 100853, China
| | - Zhongliang Wang
- School of Life Science and Technology, Xidian University, Xi'an 710071, China
| | - Yang Du
- Key Laboratory of Molecular Imaging of Chinese Academy of Sciences, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Jie Tian
- Key Laboratory of Molecular Imaging of Chinese Academy of Sciences, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
12
|
Ricard-Blum S, Vallet SD. Proteases decode the extracellular matrix cryptome. Biochimie 2015; 122:300-13. [PMID: 26382969 DOI: 10.1016/j.biochi.2015.09.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 09/11/2015] [Indexed: 12/24/2022]
Abstract
The extracellular matrix is comprised of 1100 core-matrisome and matrisome-associated proteins and of glycosaminoglycans. This structural scaffold contributes to the organization and mechanical properties of tissues and modulates cell behavior. The extracellular matrix is dynamic and undergoes constant remodeling, which leads to diseases if uncontrolled. Bioactive fragments, called matricryptins, are released from the extracellular proteins by limited proteolysis and have biological activities on their own. They regulate numerous physiological and pathological processes such as angiogenesis, cancer, diabetes, wound healing, fibrosis and infectious diseases and either improve or worsen the course of diseases depending on the matricryptins and on the molecular and biological contexts. Several protease families release matricryptins from core-matrisome and matrisome-associated proteins both in vitro and in vivo. The major proteases, which decrypt the extracellular matrix, are zinc metalloproteinases of the metzincin superfamily (matrixins, adamalysins and astacins), cysteine proteinases and serine proteases. Some matricryptins act as enzyme inhibitors, further connecting protease and matricryptin fates and providing intricate regulation of major physiopathological processes such as angiogenesis and tumorigenesis. They strengthen the role of the extracellular matrix as a key player in tissue failure and core-matrisome and matrisome-associated proteins as important therapeutic targets.
Collapse
Affiliation(s)
- Sylvie Ricard-Blum
- UMR 5086 CNRS - Université Lyon 1, 7 Passage du Vercors, 69367 Lyon Cedex 07, France.
| | - Sylvain D Vallet
- UMR 5086 CNRS - Université Lyon 1, 7 Passage du Vercors, 69367 Lyon Cedex 07, France.
| |
Collapse
|
13
|
Yong HEJ, Murthi P, Wong MH, Kalionis B, Brennecke SP, Keogh RJ. Anti-angiogenic collagen fragment arresten is increased from 16 weeks' gestation in pre-eclamptic plasma. Placenta 2015; 36:1300-9. [PMID: 26343951 DOI: 10.1016/j.placenta.2015.08.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 08/24/2015] [Accepted: 08/26/2015] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Arresten and canstatin are endogenous anti-angiogenic factors derived from type IV collagen α-chains COL4A1 and COL4A2 respectively. While their functions are explored in cancer studies, little is known about their role in pregnancy. Pre-eclampsia (PE) is a common, serious hypertensive disorder of pregnancy that is characterised by systemic endothelial dysfunction. COL4A1 and COL4A2 are maternal PE susceptibility genes that have increased mRNA expression in PE decidua. Our study aim was to determine the levels of arresten and canstatin in plasma and decidua from PE and gestational age matched normotensive patients. METHODS Plasma was collected from normotensive (n = 44) and PE (n = 39) women during the second and third trimesters of pregnancy. Third trimester decidua was collected at delivery from normotensive and PE women (n = 4 each). Levels of arresten and canstatin were determined by Western immunoblotting. RESULTS Arresten levels were significantly increased in second and third trimester PE plasma, and in third trimester PE decidua (p < 0.05). Third trimester PE plasma arresten levels also significantly correlated with the need for MgSO4 treatment, where a 1.7 fold increase was observed in patients requiring MgSO4 treatment (p < 0.05). No significant change in canstatin levels was observed between normotensive and PE patients. DISCUSSION This is the first study to report significant increases in the levels of collagen fragment arresten in PE plasma and decidua. Given its significant increase before the onset of clinical disease and associations with clinical severity in the third trimester, arresten may be a useful biomarker for predicting PE and monitoring its severity.
Collapse
Affiliation(s)
- Hannah E J Yong
- Department of Perinatal Medicine Pregnancy Research Centre and The University of Melbourne Department of Obstetrics and Gynaecology, The Royal Women's Hospital, Parkville 3052, Victoria, Australia.
| | - Padma Murthi
- Department of Perinatal Medicine Pregnancy Research Centre and The University of Melbourne Department of Obstetrics and Gynaecology, The Royal Women's Hospital, Parkville 3052, Victoria, Australia
| | - May H Wong
- Department of Perinatal Medicine Pregnancy Research Centre and The University of Melbourne Department of Obstetrics and Gynaecology, The Royal Women's Hospital, Parkville 3052, Victoria, Australia
| | - Bill Kalionis
- Department of Perinatal Medicine Pregnancy Research Centre and The University of Melbourne Department of Obstetrics and Gynaecology, The Royal Women's Hospital, Parkville 3052, Victoria, Australia
| | - Shaun P Brennecke
- Department of Perinatal Medicine Pregnancy Research Centre and The University of Melbourne Department of Obstetrics and Gynaecology, The Royal Women's Hospital, Parkville 3052, Victoria, Australia
| | - Rosemary J Keogh
- Department of Perinatal Medicine Pregnancy Research Centre and The University of Melbourne Department of Obstetrics and Gynaecology, The Royal Women's Hospital, Parkville 3052, Victoria, Australia
| |
Collapse
|
14
|
Gaffney J, Solomonov I, Zehorai E, Sagi I. Multilevel regulation of matrix metalloproteinases in tissue homeostasis indicates their molecular specificity in vivo. Matrix Biol 2015; 44-46:191-9. [PMID: 25622911 DOI: 10.1016/j.matbio.2015.01.012] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 01/18/2015] [Accepted: 01/18/2015] [Indexed: 11/16/2022]
Abstract
The matrix metalloproteinases (MMPs) play a crucial role in irreversible remodeling of the extracellular matrix (ECM) in normal homeostasis and pathological states. Accumulating data from various studies strongly suggest that MMPs are tightly regulated, starting from the level of gene expression all the way to zymogen activation and endogenous inhibition, with each level controlled by multiple factors. Recent in vivo findings indicate that cell-ECM and cell-cell interactions, as well as ECM bio-active products, contribute an additional layer of regulation at all levels, indicating that individual MMP expression and activity in vivo are highly coordinated and tissue specific processes.
Collapse
Affiliation(s)
- Jean Gaffney
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel; Department of Natural Sciences, Baruch College, New York, NY, USA
| | - Inna Solomonov
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Eldar Zehorai
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Irit Sagi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|