1
|
Plini ERG, Robertson IH, Brosnan MB, Dockree PM. Locus Coeruleus Is Associated with Higher Openness to Experience and IQ: Implications for the Noradrenergic System for Novelty Seeking in Daily Life. J Cogn Neurosci 2025; 37:767-790. [PMID: 39437153 DOI: 10.1162/jocn_a_02245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Novelty exposure and the upregulation of the noradrenergic (NA) system have been suggested as crucial for developing cognitive reserve and resilience against neurodegeneration. Openness to experience (OE), a personality trait associated with interest in novel experiences, may play a key role in facilitating this process. High-OE individuals tend to be more curious and encounter a wider range of novel stimuli throughout their lifespan. To investigate the relationship between OE and the main core of the NA system, the locus coeruleus (LC), as well as its potential mediation of IQ-a measure of cognitive reserve-MRI structural analyses were conducted on 135 healthy young adults. Compared with other neuromodulators' seeds, such as dorsal and median raphe-5-HT, ventral tegmental area-DA-, and nucleus basalis of Meynert-Ach-, the results indicated that higher LC signal intensity correlated with greater OE and IQ. Furthermore, mediation analyses revealed that only the LC played a mediating role between OE and IQ. These findings shed light on the neurobiology of personality and emphasize the importance of LC-NA system integrity in a novelty-seeking behavior. They provide a psychobiological explanation for how OE expression can contribute to the maintenance of the NA system, enhancing cognitive reserve and resilience against neurodegeneration.
Collapse
Affiliation(s)
| | | | - Méadhbh B Brosnan
- University of Oxford
- Monash University, Melbourne, Victoria, Australia
- University College Dublin
| | | |
Collapse
|
2
|
The role of maternal immune activation in the immunological and neurological pathogenesis of autism. JOURNAL OF NEURORESTORATOLOGY 2022. [DOI: 10.1016/j.jnrt.2022.100030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
3
|
Lee KS, Choi YJ, Cho JW, Moon SJ, Lim YH, Kim JI, Lee YA, Shin CH, Kim BN, Hong YC. Children's Greenness Exposure and IQ-Associated DNA Methylation: A Prospective Cohort Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:7429. [PMID: 34299878 PMCID: PMC8304819 DOI: 10.3390/ijerph18147429] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/29/2021] [Accepted: 07/05/2021] [Indexed: 12/11/2022]
Abstract
Epigenetics is known to be involved in regulatory pathways through which greenness exposure influences child development and health. We aimed to investigate the associations between residential surrounding greenness and DNA methylation changes in children, and further assessed the association between DNA methylation and children's intelligence quotient (IQ) in a prospective cohort study. We identified cytosine-guanine dinucleotide sites (CpGs) associated with cognitive abilities from epigenome- and genome-wide association studies through a systematic literature review for candidate gene analysis. We estimated the residential surrounding greenness at age 2 using a geographic information system. DNA methylation was analyzed from whole blood using the HumanMethylationEPIC array in 59 children at age 2. We analyzed the association between greenness exposure and DNA methylation at age 2 at the selected CpGs using multivariable linear regression. We further investigated the relationship between DNA methylation and children's IQ. We identified 8743 CpGs associated with cognitive ability based on the literature review. Among these CpGs, we found that 25 CpGs were significantly associated with greenness exposure at age 2, including cg26269038 (Bonferroni-corrected p ≤ 0.05) located in the body of SLC6A3, which encodes a dopamine transporter. DNA methylation at cg26269038 at age 2 was significantly associated with children's performance IQ at age 6. Exposure to surrounding greenness was associated with cognitive ability-related DNA methylation changes, which was also associated with children's IQ. Further studies are warranted to clarify the epigenetic pathways linking greenness exposure and neurocognitive function.
Collapse
Affiliation(s)
- Kyung-Shin Lee
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul 03080, Korea; (K.-S.L.); (Y.-J.C.); (S.-J.M.); (Y.-H.L.)
- Environmental Health Center, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Yoon-Jung Choi
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul 03080, Korea; (K.-S.L.); (Y.-J.C.); (S.-J.M.); (Y.-H.L.)
- Environmental Health Center, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Jin-Woo Cho
- Department of Statistics, University of Pittsburgh, Pittsburgh, PA 15260, USA;
| | - Sung-Ji Moon
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul 03080, Korea; (K.-S.L.); (Y.-J.C.); (S.-J.M.); (Y.-H.L.)
| | - Youn-Hee Lim
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul 03080, Korea; (K.-S.L.); (Y.-J.C.); (S.-J.M.); (Y.-H.L.)
- Section of Environmental Health, Department of Public Health, University of Copenhagen, 1014 Copenhagen, Denmark
| | - Johanna-Inhyang Kim
- Department of Psychiatry, Hanyang University Medical Center, Seoul 04763, Korea;
| | - Young-Ah Lee
- Department of Pediatrics, Seoul National University Children’s Hospital, Seoul National University College of Medicine, Seoul 03080, Korea; (Y.-A.L.); (C.-H.S.)
| | - Choong-Ho Shin
- Department of Pediatrics, Seoul National University Children’s Hospital, Seoul National University College of Medicine, Seoul 03080, Korea; (Y.-A.L.); (C.-H.S.)
| | - Bung-Nyun Kim
- Division of Children and Adolescent Psychiatry, Department of Psychiatry, Seoul National University Hospital, Seoul 03080, Korea
| | - Yun-Chul Hong
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul 03080, Korea; (K.-S.L.); (Y.-J.C.); (S.-J.M.); (Y.-H.L.)
- Environmental Health Center, Seoul National University College of Medicine, Seoul 03080, Korea
- Institute of Environmental Medicine, Seoul National University Medical Research Center, Seoul 03080, Korea
| |
Collapse
|
4
|
Wang T, Liu Y, Liu Q, Cummins S, Zhao M. Integrative proteomic analysis reveals potential high-frequency alternative open reading frame-encoded peptides in human colorectal cancer. Life Sci 2018; 215:182-189. [PMID: 30419281 DOI: 10.1016/j.lfs.2018.11.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/31/2018] [Accepted: 11/08/2018] [Indexed: 11/30/2022]
Abstract
Identification of alternative open reading frame-encoded peptides (AEPs) for the diagnosis of colorectal cancer at the proteome level is largely unexplored because of a lack of comprehensive proteomics data. Here, we performed a comprehensive integrative analysis of mass spectral data published by Clinical Proteomic Tumor Analysis Consortium and characterized 93 high-confident AEPs encoded within 75 genes. There are four cancer-related genes appeared to have AEPs identified frequently in >20 out of 95 colorectal cancer samples, including ABCF2, AR, RBM10 and NRG1. Further network analysis of the identified AEPs found the enrichment of novel AEPs within hormone androgen receptor and a highly-modularised network with 42 genes associated with patient survival. Our results not only suggested a mechanistic view of how AEPs work in cancer progression, but also shed light on somatic amino acid mutations in AEPs, which might be overlooked previously because of their low frequencies. In particular, potential high-frequency mutations in 77 samples associated with EDARADD may contribute to the discovery of new biomarkers and the development of innovative therapeutic approaches.
Collapse
Affiliation(s)
- Tianfang Wang
- School of Science and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland, 4558, Australia.
| | - Yining Liu
- The School of Public Health, Institute for Chemical Carcinogenesis, Guangzhou Medical University, 195 Dongfengxi Road, Guangzhou 510182, China
| | - Qi Liu
- Department of Biomedical Informatics, School of Medicine, Vanderbilt University, Nashville, TN 37232, United States; Center for Quantitative Sciences, School of Medicine, Vanderbilt University, Nashville, TN 37232, United States
| | - Scott Cummins
- School of Science and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland, 4558, Australia
| | - Min Zhao
- School of Science and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland, 4558, Australia.
| |
Collapse
|
5
|
Najafi H, Hosseini SM, Tavallaie M, Soltani BM. A Predicted Molecular Model for Development of Human Intelligence. NEUROCHEM J+ 2018. [DOI: 10.1134/s1819712418030091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Chen Y, Liu Y, Du M, Zhang W, Xu L, Gao X, Zhang L, Gao H, Xu L, Li J, Zhao M. Constructing a comprehensive gene co-expression based interactome in Bos taurus. PeerJ 2017; 5:e4107. [PMID: 29226034 PMCID: PMC5719962 DOI: 10.7717/peerj.4107] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 11/08/2017] [Indexed: 01/08/2023] Open
Abstract
Integrating genomic information into cattle breeding is an important approach to exploring genotype-phenotype relationships for complex traits related to diary and meat production. To assist with genomic-based selection, a reference map of interactome is needed to fully understand and identify the functional relevant genes. To this end, we constructed a co-expression analysis of 92 tissues and this represents the systematic exploration of gene-gene relationship in Bos taurus. By using robust WGCNA (Weighted Gene Correlation Network Analysis), we described the gene co-expression network of 5,000 protein-coding genes with majority variations in expression across 92 tissues. Further module identifications found 55 highly organized functional clusters representing diverse cellular activities. To demonstrate the re-use of our interaction for functional genomics analysis, we extracted a sub-network associated with DNA binding genes in Bos taurus. The subnetwork was enriched within regulation of transcription from RNA polymerase II promoter representing central cellular functions. In addition, we identified 28 novel linker genes associated with more than 100 DNA binding genes. Our WGCNA-based co-expression network reconstruction will be a valuable resource for exploring the molecular mechanisms of incompletely characterized proteins and for elucidating larger-scale patterns of functional modulization in the Bos taurus genome.
Collapse
Affiliation(s)
- Yan Chen
- Innovation Team of Cattle Genetics and Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yining Liu
- The School of Public Health, Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, China
| | - Min Du
- Department of Animal Science, Washington State University, Pullman, WA, United States of America
| | - Wengang Zhang
- Innovation Team of Cattle Genetics and Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ling Xu
- Innovation Team of Cattle Genetics and Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xue Gao
- Innovation Team of Cattle Genetics and Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lupei Zhang
- Innovation Team of Cattle Genetics and Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huijiang Gao
- Innovation Team of Cattle Genetics and Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lingyang Xu
- Innovation Team of Cattle Genetics and Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junya Li
- Innovation Team of Cattle Genetics and Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Min Zhao
- School of Engineering, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Queensland, Australia
| |
Collapse
|
7
|
Li X, Liu Y, Lu J, Zhao M. Integrative analysis to identify oncogenic gene expression changes associated with copy number variations of enhancer in ovarian cancer. Oncotarget 2017; 8:91558-91567. [PMID: 29207666 PMCID: PMC5710946 DOI: 10.18632/oncotarget.21227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/04/2017] [Indexed: 12/27/2022] Open
Abstract
Enhancers are short regulatory regions (50-1500 bp) of DNA that control the tissue-specific activation of gene expression by long distance interaction with targeting gene regions. Recently, genome-wide identification of enhancers in diverse tissues and cell lines was achieved using high-throughput sequencing. Enhancers have been associated with malfunctions in cancer development resulting from point mutations in regulatory regions. However, the potential impact of copy number variations (CNVs) on enhancer regions is unknown. To learn more about the relationship between enhancers and cancer, we integrated the CNVs data on enhancers and explored their targeting gene expression pattern in high-grade ovarian cancer. Using human enhancer-gene interaction data with 13,691 interaction pairs between 7,905 enhancers and 5,297 targeting genes, we found that the 2,910 copy number gain events of enhancer are significantly correlated with the up-regulation of targeting genes. We further identified that a number of highly mutated super-enhancers, with concordant gene expression change on their targeting genes. We also identified 18 targeting genes by super-enhancers with prognostic significance for ovarian cancer, such as the tumour suppressor CDKN1B. We are the first to report that abundant copy number variations on enhancers could change the expression of their targeting genes which would be valuable for the design of enhancer-based cancer treatment strategy.
Collapse
Affiliation(s)
- Xiaoyan Li
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung & Blood Vessel Disease, Beijing, China
| | - Yining Liu
- The School of Public Health, Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, China
| | - Jiachun Lu
- The School of Public Health, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Min Zhao
- School of Engineering, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Queensland, Australia
| |
Collapse
|
8
|
Zhao M, Zhao Z. Concordance of copy number loss and down-regulation of tumor suppressor genes: a pan-cancer study. BMC Genomics 2016; 17 Suppl 7:532. [PMID: 27556634 PMCID: PMC5001246 DOI: 10.1186/s12864-016-2904-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Background Tumor suppressor genes (TSGs) encode the guardian molecules to control cell growth. The genomic alteration of TSGs may cause tumorigenesis and promote cancer progression. So far, investigators have mainly studied the functional effects of somatic single nucleotide variants in TSGs. Copy number variation (CNV) is another important form of genetic variation, and is often involved in cancer biology and drug treatment, but studies of CNV in TSGs are less represented in literature. In addition, there is a lack of a combinatory analysis of gene expression and CNV in this important gene set. Such a study may provide more insights into the relationship between gene dosage and tumorigenesis. To meet this demand, we performed a systematic analysis of CNVs and gene expression in TSGs to provide a systematic view of CNV and gene expression change in TSGs in pan-cancer. Results We identified 1170 TSGs with copy number gain or loss in 5846 tumor samples. Among them, 207 TSGs tended to have copy number loss (CNL), from which fifteen CNL hotspot regions were identified. The functional enrichment analysis revealed that the 207 TSGs were enriched in cancer-related pathways such as P53 signaling pathway and the P53 interactome. We further performed integrative analyses of CNV with gene expression using the data from the matched tumor samples. We found 81 TSGs with concordant CNL events and decreased gene expression in the tumor samples we examined. Remarkably, seven TSGs displayed concordant CNL and gene down-regulation in at least 50 tumor samples: MTAP (212 samples), PTEN (139), MCPH1 (85), FBXO25 (67), SMAD4 (64), TRIM35 (57), and RB1 (54). Specifically to MTAP, this concordance was found in 14 cancer types, an observation that is not much reported in literature yet. Further network-based analysis revealed that these TSGs with concordant CNL and gene down-regulation were highly connected. Conclusions This study provides a draft landscape of CNV in pan-cancer. Our findings of systematic concordance between CNL and down-regulation of gene expression may help better understand the TSG biology in tumorigenesis and cancer progression. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2904-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Min Zhao
- School of Engineering, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, QLD, 4558, Australia
| | - Zhongming Zhao
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN, 37203, USA. .,Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA. .,Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, TN, 37212, USA. .,Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|