1
|
Cortez‐Jugo C, Czuba‐Wojnilowicz E, Tan A, Caruso F. A Focus on "Bio" in Bio-Nanoscience: The Impact of Biological Factors on Nanomaterial Interactions. Adv Healthc Mater 2021; 10:e2100574. [PMID: 34170631 DOI: 10.1002/adhm.202100574] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/18/2021] [Indexed: 12/17/2022]
Abstract
Bio-nanoscience research encompasses studies on the interactions of nanomaterials with biological structures or what is commonly referred to as the biointerface. Fundamental studies on the influence of nanomaterial properties, including size, shape, composition, and charge, on the interaction with the biointerface have been central in bio-nanoscience to assess nanomaterial efficacy and safety for a range of biomedical applications. However, the state of the cells, tissues, or biological models can also influence the behavior of nanomaterials at the biointerface and their intracellular processing. Focusing on the "bio" in bio-nano, this review discusses the impact of biological properties at the cellular, tissue, and whole organism level that influences nanomaterial behavior, including cell type, cell cycle, tumor physiology, and disease states. Understanding how the biological factors can be addressed or exploited to enhance nanomaterial accumulation and uptake can guide the design of better and suitable models to improve the outcomes of materials in nanomedicine.
Collapse
Affiliation(s)
- Christina Cortez‐Jugo
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Ewa Czuba‐Wojnilowicz
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Abigail Tan
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering The University of Melbourne Parkville Victoria 3010 Australia
| |
Collapse
|
2
|
Popescu RC, Straticiuc M, Mustăciosu C, Temelie M, Trușcă R, Vasile BȘ, Boldeiu A, Mirea D, Andrei RF, Cenușă C, Mogoantă L, Mogoșanu GD, Andronescu E, Radu M, Veldwijk MR, Savu DI. Enhanced Internalization of Nanoparticles Following Ionizing Radiation Leads to Mitotic Catastrophe in MG-63 Human Osteosarcoma Cells. Int J Mol Sci 2020; 21:ijms21197220. [PMID: 33007844 PMCID: PMC7583846 DOI: 10.3390/ijms21197220] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 12/13/2022] Open
Abstract
This study aims to investigate whether ionizing radiation combined with doxorubicin-conjugated iron oxide nanoparticles (NP-DOX) improves the internalization and cytotoxic effects of the nano-carrier-mediated drug delivery in MG-63 human osteosarcoma cells. NP-DOX was designed and synthesized using the co-precipitation method. Highly stable and crystalline nanoparticles conjugated with DOX were internalized in MG-63 cells through macropinocytosis and located in the perinuclear area. Higher nanoparticles internalization in MG-63 cells previously exposed to 1 Gy X-rays was correlated with an early accumulation of cells in G2/M, starting at 12 h after treatment. After 48 h, the application of the combined treatment led to higher cytotoxic effects compared to the individual treatment, with a reduction in the metabolic capacity and unrepaired DNA breaks, whilst a low percent of arrested cells, contributing to the commitment of mitotic catastrophe. NP-DOX showed hemocompatibility and no systemic cytotoxicity, nor histopathological alteration of the main organs.
Collapse
Affiliation(s)
- Roxana Cristina Popescu
- Department of Life and Environmental Physics, “Horia Hulubei” National Insitute of Physics and Nuclear Engineering (IFIN-HH), 30 Reactorului Street, 077125 Magurele, Romania; (R.C.P.); (C.M.); (M.T.); (M.R.)
- Department of Science and Engineering of Oxide Materials and Nanomaterials, “Politehnica” University of Bucharest (UPB), 1-7 Polizu Street, 011061 Bucharest, Romania;
| | - Mihai Straticiuc
- Department of Applied Nuclear Physics, “Horia Hulubei” National Insitute of Physics and Nuclear Engineering (IFIN-HH), 30 Reactorului Street, 077125 Magurele, Romania; (M.S.); (D.M.); (R.F.A.)
| | - Cosmin Mustăciosu
- Department of Life and Environmental Physics, “Horia Hulubei” National Insitute of Physics and Nuclear Engineering (IFIN-HH), 30 Reactorului Street, 077125 Magurele, Romania; (R.C.P.); (C.M.); (M.T.); (M.R.)
- Department of Science and Engineering of Oxide Materials and Nanomaterials, “Politehnica” University of Bucharest (UPB), 1-7 Polizu Street, 011061 Bucharest, Romania;
| | - Mihaela Temelie
- Department of Life and Environmental Physics, “Horia Hulubei” National Insitute of Physics and Nuclear Engineering (IFIN-HH), 30 Reactorului Street, 077125 Magurele, Romania; (R.C.P.); (C.M.); (M.T.); (M.R.)
| | - Roxana Trușcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National Research Center for Micro and Nanomaterials, “Politehnica” University of Bucharest (UPB), 313 Splaiul Independenţei, 060042 Bucharest, Romania; (R.T.); (B.Ș.V.)
| | - Bogdan Ștefan Vasile
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National Research Center for Micro and Nanomaterials, “Politehnica” University of Bucharest (UPB), 313 Splaiul Independenţei, 060042 Bucharest, Romania; (R.T.); (B.Ș.V.)
| | - Adina Boldeiu
- Laboratory of Nanobiotechnology, National Institute for Research and Development in Microtechnologies (IMT), 12A Erou Iancu Nicolae Street, 077190 Bucharest, Romania;
| | - Dragoş Mirea
- Department of Applied Nuclear Physics, “Horia Hulubei” National Insitute of Physics and Nuclear Engineering (IFIN-HH), 30 Reactorului Street, 077125 Magurele, Romania; (M.S.); (D.M.); (R.F.A.)
| | - Radu Florin Andrei
- Department of Applied Nuclear Physics, “Horia Hulubei” National Insitute of Physics and Nuclear Engineering (IFIN-HH), 30 Reactorului Street, 077125 Magurele, Romania; (M.S.); (D.M.); (R.F.A.)
- Department of Physics, Applied Science Faculty, “Politehnica” University of Bucharest (UPB), 303 Splaiul Independentei, 060042 Bucharest, Romania
| | - Constantin Cenușă
- Radioisotopes and Radiation Metrology Department, “Horia Hulubei” National Insitute of Physics and Nuclear Engineering (IFIN-HH), 30 Reactorului Street, 077125 Magurele, Romania;
| | - Laurenţiu Mogoantă
- Research Center for Microscopic Morphology and Immunology, University of Medicine and Pharmacy of Craiova (UMFCV), 2 Petru Rareș Street, 200349 Craiova, Romania;
| | - George Dan Mogoșanu
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova (UMFCV), 2 Petru Rareș Street, 200349 Craiova, Romania;
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, “Politehnica” University of Bucharest (UPB), 1-7 Polizu Street, 011061 Bucharest, Romania;
| | - Mihai Radu
- Department of Life and Environmental Physics, “Horia Hulubei” National Insitute of Physics and Nuclear Engineering (IFIN-HH), 30 Reactorului Street, 077125 Magurele, Romania; (R.C.P.); (C.M.); (M.T.); (M.R.)
| | - Marlon R. Veldwijk
- Department of Radiation Oncology, Universitätsmedizin Mannheim (UMM), Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
- Correspondence: (M.R.V.); (D.I.S.); Tel.: +49-621-383-3750 (M.R.V.); +40-214-046-134 (D.I.S.)
| | - Diana Iulia Savu
- Department of Life and Environmental Physics, “Horia Hulubei” National Insitute of Physics and Nuclear Engineering (IFIN-HH), 30 Reactorului Street, 077125 Magurele, Romania; (R.C.P.); (C.M.); (M.T.); (M.R.)
- Correspondence: (M.R.V.); (D.I.S.); Tel.: +49-621-383-3750 (M.R.V.); +40-214-046-134 (D.I.S.)
| |
Collapse
|
3
|
Khang MK, Zhou J, Co CM, Li S, Tang L. A pretargeting nanoplatform for imaging and enhancing anti-inflammatory drug delivery. Bioact Mater 2020; 5:1102-1112. [PMID: 32695939 PMCID: PMC7365982 DOI: 10.1016/j.bioactmat.2020.06.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/28/2020] [Accepted: 06/28/2020] [Indexed: 01/18/2023] Open
Abstract
This work details a newly developed “sandwich” nanoplatform via neutravidin-biotin system for the detection and treatment of inflammation. First, biotinylated- and folate-conjugated optical imaging micelles targeted activated macrophages via folate/folate receptor interactions. Second, multivalent neutravidin proteins in an optimal concentration accumulated on the biotinylated macrophages. Finally, biotinylated anti-inflammatory drug-loaded micelles delivered drugs effectively at the inflammatory sites via a highly specific neutravidin-biotin affinity. Both in vitro and in vivo studies have shown that the “sandwich” pretargeting platform was able to diagnose inflammation by targeting activated macrophages as well as improve the therapeutic efficacy by amplifying the drug delivery to the inflamed tissue. The overall results support that our new pretargeting platform has the potential for inflammatory disease diagnosis and treatment. A “sandwich” nanoplatform system is developed for the improved detection and treatment of inflammation. Biotinylated- and folate-conjugated optical imaging micelles are designed to pre-target activated macrophages. Multivalent neutravidins accumulate on the biotinylated macrophages via neutravidin-biotin reactions. Biotinylated micelles can deliver drugs effectively at the inflammatory sites via specific neutravidin/biotin affinity.
Collapse
Affiliation(s)
- Min Kyung Khang
- Department of Chemistry and Biochemistry, University of Texas at Arlington, 700 Planetarium Place, Chemistry Physics Building Room 130, Arlington, TX, 76019-0065, USA.,Department of Bioengineering, University of Texas at Arlington, Engineering Research Building, Room 226, Box 19138, Arlington, TX, 76010, USA
| | - Jun Zhou
- Department of Bioengineering, University of Texas at Arlington, Engineering Research Building, Room 226, Box 19138, Arlington, TX, 76010, USA
| | - Cynthia M Co
- Department of Bioengineering, University of Texas at Arlington, Engineering Research Building, Room 226, Box 19138, Arlington, TX, 76010, USA
| | - Shuxin Li
- Department of Bioengineering, University of Texas at Arlington, Engineering Research Building, Room 226, Box 19138, Arlington, TX, 76010, USA
| | - Liping Tang
- Department of Bioengineering, University of Texas at Arlington, Engineering Research Building, Room 226, Box 19138, Arlington, TX, 76010, USA
| |
Collapse
|
4
|
Yan GH, Song ZM, Liu YY, Su Q, Liang W, Cao A, Sun YP, Wang H. Effects of carbon dots surface functionalities on cellular behaviors - Mechanistic exploration for opportunities in manipulating uptake and translocation. Colloids Surf B Biointerfaces 2019; 181:48-57. [PMID: 31121381 DOI: 10.1016/j.colsurfb.2019.05.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 04/23/2019] [Accepted: 05/14/2019] [Indexed: 12/23/2022]
Abstract
Carbon dots (CDots) for their excellent optical and other properties have been widely pursued for potential biomedical applications, in which a more comprehensive understanding on the cellular behaviors and mechanisms of CDots is required. For such a purpose, two kinds of CDots with surface passivation by 3-ethoxypropylamine (EPA-CDots) and oligomeric polyethylenimine (PEI-CDots) were selected for evaluations on their uptakes by human cervical carcinoma HeLa cells at three cell cycle phases (G0/G1, S and G2/M), and on their different internalization pathways and translocations in cells. The results show that HeLa cells could internalize both CDots by different pathways, with an overall slightly higher internalization efficiency for PEI-CDots. The presence of serum in culture media could have major effects, significantly enhancing the cellular uptake of EPA-CDots, yet markedly inhibiting that of PEI-CDots. The HeLa cells at different cell cycle phases have different behaviors in taking up the CDots, which are also affected by the different dot surface moieties and serum in culture media. Mechanistic implications of the results and the opportunities associated with an improved understanding on the cellular behaviors of CDots for potentially the manipulation and control of their cellular uptakes and translocations are discussed.
Collapse
Affiliation(s)
- Gui-Hua Yan
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Zheng-Mei Song
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Yuan-Yuan Liu
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Qianqian Su
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Weixiong Liang
- Department of Chemistry and Laboratory for Emerging Materials and Technology, Clemson University, Clemson, SC, 29634, USA
| | - Aoneng Cao
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Ya-Ping Sun
- Department of Chemistry and Laboratory for Emerging Materials and Technology, Clemson University, Clemson, SC, 29634, USA.
| | - Haifang Wang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
5
|
Fan P, Yang D, Wu J, Yang Y, Guo X, Tu J, Zhang D. Cell-cycle-dependences of membrane permeability and viability observed for HeLa cells undergoing multi-bubble-cell interactions. ULTRASONICS SONOCHEMISTRY 2019; 53:178-186. [PMID: 30642802 DOI: 10.1016/j.ultsonch.2019.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/30/2018] [Accepted: 01/05/2019] [Indexed: 05/07/2023]
Abstract
Microbubble-mediated sonoporation is a promising strategy for intracellular gene/drug delivery, but the biophysical mechanisms involved in the interactions between microbubbles and cells are not well understood. Here, HeLa cells were synchronized in individual cycle phases, then the cell-cycle-dependences of the membrane permeability and viability of HeLa cells undergoing multi-bubble sonoporation were evaluated using focused ultrasound exposure apparatus coupled passive cavitation detection system. The results indicated that: (1) the microbubble cavitation activity should be independent on cell cycle phases; (2) G1-phase cells with the largest Young's modulus were the most robust against microbubble-mediated sonoporation; (3) G2/M-phase cells exhibited the greatest accumulated FITC uptake with the lowest viability, which should be mainly attributed to the chemical effect of synchronization drugs; and (4) more important, S-phase cells with the lowest stiffness seemed to be the most susceptible to the mechanical effect generated by microbubble cavitation activity, which resulted in the greatest enhancement in sonoporation-facilitated membrane permeabilization without further scarifying their viability. The current findings may benefit ongoing efforts aiming to pursue rational utilization of microbubble-mediated sonoporation in cell-cycle-targeted gene/drug delivery for cancer therapy.
Collapse
Affiliation(s)
- Pengfei Fan
- Key Laboratory of Modern Acoustics (MOE), School of Physics, Nanjing University, Nanjing 210093, China
| | - Dongxin Yang
- Key Laboratory of Modern Acoustics (MOE), School of Physics, Nanjing University, Nanjing 210093, China
| | - Jun Wu
- The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yanye Yang
- Key Laboratory of Modern Acoustics (MOE), School of Physics, Nanjing University, Nanjing 210093, China
| | - Xiasheng Guo
- Key Laboratory of Modern Acoustics (MOE), School of Physics, Nanjing University, Nanjing 210093, China
| | - Juan Tu
- Key Laboratory of Modern Acoustics (MOE), School of Physics, Nanjing University, Nanjing 210093, China.
| | - Dong Zhang
- Key Laboratory of Modern Acoustics (MOE), School of Physics, Nanjing University, Nanjing 210093, China; The State Key Laboratory of Acoustics, Chinese Academy of Science, Beijing 10080, China.
| |
Collapse
|
6
|
Yu Q, Qiu Y, Chen X, Wang X, Mei L, Wu H, Liu K, Liu Y, Li M, Zhang Z, He Q. Chemotherapy priming of the Pancreatic Tumor Microenvironment Promotes Delivery and Anti-Metastasis Efficacy of Intravenous Low-Molecular-Weight Heparin-Coated Lipid-siRNA Complex. Am J Cancer Res 2019; 9:355-368. [PMID: 30809279 PMCID: PMC6376180 DOI: 10.7150/thno.29137] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 11/19/2018] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a type of malignant tumor with high lethality. Its high tumor cell-density and large variety of extracellular matrix (ECM) components present major barriers for drug delivery. Methods: Paclitaxel-loaded PEGylated liposomes (PTX-Lip) were used as a tumor-priming agent to induce tumor cell apoptosis and decrease the abundance of ECM to promote cellular uptake and tumor delivery of nanodrugs. Paclitaxel exerts anti-cancer effects but, paradoxically, exacerbates cancer metastasis and drug resistance by increasing the expression of apoptotic B-cell lymphoma-2 protein (BCL-2). Thus, low-molecular-weight heparin-coated lipid-siRNA complex (LH-Lip/siBCL-2) was constructed to inhibit cancer metastasis and silence BCL-2 by BCL-2 siRNA (siBCL-2). Results: Significant tumor growth inhibition efficacy was observed, accompanied by obvious inhibition of cancer metastasis in vivo. Conclusion: These results suggested our sequential delivery of PTX-Lip and LH-Lip/siBCL-2 might provide a practical approach for PDAC or other ECM-rich tumors.
Collapse
|
7
|
Li L, Yang J, Wang J, Kopeček J. Drug-free macromolecular therapeutics exhibit amplified apoptosis in G2/M phase arrested cells. J Drug Target 2018; 27:566-572. [PMID: 30198798 DOI: 10.1080/1061186x.2018.1521414] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Drug-free macromolecular therapeutics (DFMT) have been recently developed to treat non-Hodgkin lymphoma (NHL). It is a consecutive delivery of two nanoconjugates: (1) bispecific engager that pretargets surface CD20, and (2) multivalent effector polymer that hybridises with CD20-bound engagers. Without the need of low molecular weight drug, the hybridisation of morpholino oligonucleotide containing DFMT at NHL cell surface triggers CD20 crosslinking and subsequent apoptosis. We have previously determined various factors that affect the efficacy of DFMT regarding the synthetic structures. Here, we show that DFMT-mediated apoptosis is also influenced by the state of cells. Compared with other cell cycle states, cells arrested at G2/M phase exhibit enhanced CD20 expression, and have more sustainable CD20 binding by DFMT, resulting in a higher degree of DFMT-mediated CD20 crosslinking. Moreover, the anti-apoptotic Bcl-2 protein was phosphorylated in G2/M phase, thereby increasing the cell susceptibility to DFMT. As a result, DFMT mediated augmented apoptosis in G2/M phase cells. When DFMT was combined with a polymer-docetaxel conjugate that triggered G2/M blockage, a combinatorial apoptotic effect was achieved to induce programmed cell death. Our findings suggest the co-delivery of DFMT and G2/M inhibiting drug combinations may present a therapeutic advantage in NHL treatment.
Collapse
Affiliation(s)
- Lian Li
- a Department of Pharmaceutics and Pharmaceutical Chemistry, Center for Controlled Chemical Delivery , University of Utah , Salt Lake City , UT , USA
| | - Jiyuan Yang
- a Department of Pharmaceutics and Pharmaceutical Chemistry, Center for Controlled Chemical Delivery , University of Utah , Salt Lake City , UT , USA
| | - Jiawei Wang
- a Department of Pharmaceutics and Pharmaceutical Chemistry, Center for Controlled Chemical Delivery , University of Utah , Salt Lake City , UT , USA
| | - Jindřich Kopeček
- a Department of Pharmaceutics and Pharmaceutical Chemistry, Center for Controlled Chemical Delivery , University of Utah , Salt Lake City , UT , USA.,b Department of Biomedical Engineering , University of Utah , Salt Lake City , UT , USA
| |
Collapse
|
8
|
Yu J, Chen Z, Yan F. Advances in mechanism studies on ultrasonic gene delivery at cellular level. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 142:1-9. [PMID: 30031881 DOI: 10.1016/j.pbiomolbio.2018.07.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/15/2018] [Accepted: 07/19/2018] [Indexed: 01/23/2023]
Abstract
Ultrasound provides a means for intracellular gene delivery, contributing to a noninvasive and spatiotemporally controllable strategy suitable for clinical applications. Many studies have been done to provide mechanisms of ultrasound-mediated gene delivery at the cellular level. This review summarizes the studies on the important aspects of the mechanisms, providing an overview of recent progress in cellular experiment of ultrasound-mediated gene delivery.
Collapse
Affiliation(s)
- Jinsui Yu
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, PR China
| | - Zhiyi Chen
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, PR China.
| | - Fei Yan
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China.
| |
Collapse
|
9
|
Fan P, Zhang Y, Guo X, Cai C, Wang M, Yang D, Li Y, Tu J, Crum LA, Wu J, Zhang D. Cell-cycle-specific Cellular Responses to Sonoporation. Am J Cancer Res 2017; 7:4894-4908. [PMID: 29187912 PMCID: PMC5706108 DOI: 10.7150/thno.20820] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 10/04/2017] [Indexed: 12/22/2022] Open
Abstract
Microbubble-mediated sonoporation has shown its great potential in facilitating intracellular uptake of gene/drugs and other therapeutic agents that are otherwise difficult to enter cells. However, the biophysical mechanisms underlying microbubble-cell interactions remain unclear. Particularly, it is still a major challenge to get a comprehensive understanding of the impact of cell cycle phase on the cellular responses simultaneously occurring in cell membrane and cytoskeleton induced by microbubble sonoporation. Methods: Here, efficient synchronizations were performed to arrest human cervical epithelial carcinoma (HeLa) cells in individual cycle phases. The, topography and stiffness of synchronized cells were examined using atomic force microscopy. The variations in cell membrane permeabilization and cytoskeleton arrangement induced by sonoporation were analyzed simultaneously by a real-time fluorescence imaging system. Results: The results showed that G1-phase cells typically had the largest height and elastic modulus, while S-phase cells were generally the flattest and softest ones. Consequently, the S-Phase was found to be the preferred cycle for instantaneous sonoporation treatment, due to the greatest enhancement of membrane permeability and the fastest cytoskeleton disassembly at the early stage after sonoporation. Conclusion: The current findings may benefit ongoing efforts aiming to pursue rational utilization of microbubble-mediated sonoporation in cell cycle-targeted gene/drug delivery for cancer therapy.
Collapse
|
10
|
Nanoformulation-based sequential combination cancer therapy. Adv Drug Deliv Rev 2017; 115:57-81. [PMID: 28412324 DOI: 10.1016/j.addr.2017.04.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 04/06/2017] [Accepted: 04/10/2017] [Indexed: 01/07/2023]
Abstract
Although combining two or more treatments is regarded as an indispensable approach for effectively treating cancer, the traditional cocktail-based combination therapies are seriously limited by coordination issues that fail to account for differences in the pharmacokinetics and action sites of each drug. The careful manipulation of dosing regimens, such as by the sequential application of combination treatments, may satisfy the temporal and spatial needs of each drug and achieve successful combination antitumor therapy. Nanotechnology-based carriers might be the best tools for sequential combination therapy, as they can be loaded with multiple cargos and may provide targeted and sustained delivery to target tumor cells. Single nanoformulations capable of sequentially releasing drugs have shown synergistic anticancer activity, such as by sensitizing tumor cells through cascaded drug delivery or remodeling the tumor vasculature and microenvironment to enhance the tumor distribution of nanotherapeutics. This review highlights the use of nanotechnology-based multistage drug delivery for cancer treatment, focusing on the ability of such formulations to enhance antitumor efficacy by applying sequential treatment and modulating dosing regimens, which are challenges currently being faced in the clinic.
Collapse
|
11
|
Gao Z, Niu X, Zhang Q, Chen H, Gao A, Qi S, Xiang R, Belting M, Zhang S. Mitochondria chaperone GRP75 moonlighting as a cell cycle controller to derail endocytosis provides an opportunity for nanomicrosphere intracellular delivery. Oncotarget 2017; 8:58536-58552. [PMID: 28938577 PMCID: PMC5601673 DOI: 10.18632/oncotarget.17234] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 03/27/2017] [Indexed: 12/15/2022] Open
Abstract
Understanding how cancer cells regulate endocytosis during the cell cycle could lead us to capitalize this event pharmacologically. Although certain endocytosis pathways are attenuated during mitosis, the endocytosis shift and regulation during the cell cycle have not been well clarified. The conventional concept of glucose-regulated proteins (GRPs) as protein folding chaperones was updated by discoveries that translocated GRPs assume moonlighting functions that modify the immune response, regulate viral release, and control intracellular trafficking. In this study, GRP75, a mitochondria matrix chaperone, was discovered to be highly expressed in mitotic cancer cells. Using synchronized cell models and the GRP75 gene knockdown and ectopic overexpression strategy, we showed that: (1) clathrin-mediated endocytosis (CME) was inhibited whereas clathrin-independent endocytosis (CIE) was unchanged or even up-regulated in the cell cycle M-phase; (2) GRP75 inhibited CME but promoted CIE in the M-phase, which is largely due to its high expression in cancer cell mitochondria; (3) GRP75 targeting by its small molecular inhibitor MKT-077 enhanced cell cycle G1 phase-privileged CME, which provides an opportunity for intracellular delivery of nanomicrospheres sized from 40 nm to 100 nm. Together, our results revealed that GRP75 moonlights as a cell cycle controller and endocytosis regulator in cancer cells, and thus has potential as a novel interference target for nanoparticle drugs delivery into dormant cancer cells.
Collapse
Affiliation(s)
- Zhihui Gao
- Department of Biochemistry & Cell Biology, School of Medicine, Nankai University, Tianjin, China
| | - Xiuran Niu
- Department of Biochemistry & Cell Biology, School of Medicine, Nankai University, Tianjin, China
| | - Qing Zhang
- Department of Clinical Laboratory, Cancer Hospital of Tianjin Medical University, Tianjin, China
| | - Hang Chen
- Department of Biochemistry & Cell Biology, School of Medicine, Nankai University, Tianjin, China
| | - Aiai Gao
- Department of Biochemistry & Cell Biology, School of Medicine, Nankai University, Tianjin, China
| | - Shanshan Qi
- Department of Biochemistry & Cell Biology, School of Medicine, Nankai University, Tianjin, China
| | - Rong Xiang
- Department of Biochemistry & Cell Biology, School of Medicine, Nankai University, Tianjin, China
| | - Mattias Belting
- Department of Clinical Sciences, Section of Oncology, Lund University, Lund, Sweden
| | - Sihe Zhang
- Department of Biochemistry & Cell Biology, School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
12
|
Zhang D, Zou Z, Ren W, Qian H, Cheng Q, Ji L, Liu B, Liu Q. Gambogic acid-loaded PEG–PCL nanoparticles act as an effective antitumor agent against gastric cancer. Pharm Dev Technol 2017; 23:33-40. [PMID: 29069711 DOI: 10.1080/10837450.2017.1295068] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Dinghu Zhang
- The Comprehensive Cancer Centre of Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhengyun Zou
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Wei Ren
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Hanqing Qian
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Qianfeng Cheng
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Liulian Ji
- The Comprehensive Cancer Centre of Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Baorui Liu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Qin Liu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| |
Collapse
|
13
|
Hu G, Cun X, Ruan S, Shi K, Wang Y, Kuang Q, Hu C, Xiao W, He Q, Gao H. Utilizing G2/M retention effect to enhance tumor accumulation of active targeting nanoparticles. Sci Rep 2016; 6:27669. [PMID: 27273770 PMCID: PMC4897711 DOI: 10.1038/srep27669] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/23/2016] [Indexed: 11/21/2022] Open
Abstract
In recent years, active targeting strategies by ligand modification have emerged to enhance tumor accumulation of NP, but their clinical application was strictly restricted due to the complex preparation procedures, poor stability and serious toxicity. An effective and clinical translational strategy is required to satisfy the current problems. Interestingly, the internalization of NP is intimately related with cell cycle and the expression of receptors is not only related with cancer types but also cell cycle progression. So the cellular uptake of ligand modified NP may be related with cell cycle. However, few investigations were reported about the relationship between cell cycle and the internalization of ligand modified NP. Herein, cellular uptake of folic acid (FA) modified NP after utilizing chemotherapeutic to retain the tumor cells in G2/M phase was studied and a novel strategy was designed to enhance the active targeting effect. In our study, docetaxel (DTX) notably synchronized cells in G2/M phase and pretreatment with DTX highly improved in vitro and in vivo tumor cell targeting effect of FA decorated NP (FANP). Since FA was a most common used tumor active targeting ligand, we believe that this strategy possesses broader prospects in clinical application for its simplicity and effectiveness.
Collapse
Affiliation(s)
- Guanlian Hu
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, China
| | - Xingli Cun
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, China
| | - Shaobo Ruan
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, China
| | - Kairong Shi
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, China
| | - Yang Wang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, China
| | - Qifang Kuang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, China
| | - Chuan Hu
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, China
| | - Wei Xiao
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, China
| | - Qin He
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, China
| | - Huile Gao
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, China
| |
Collapse
|
14
|
Li L, Sun W, Zhang Z, Huang Y. Time-staggered delivery of docetaxel and H1-S6A,F8A peptide for sequential dual-strike chemotherapy through tumor priming and nuclear targeting. J Control Release 2016; 232:62-74. [PMID: 27098443 DOI: 10.1016/j.jconrel.2016.04.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 03/11/2016] [Accepted: 04/09/2016] [Indexed: 11/25/2022]
Abstract
While highly effective for slowing cancer progression in principle, the c-Myc inhibitor peptide H1-S6A,F8A (H1) has not performed well in tumor studies, in part because it does not pass efficiently through the nuclear envelope. Here we describe a dual-strike strategy in which tumor cells were treated first with N-(2-hydroxypropyl) methacrylamide (HPMA) copolymer-docetaxel (DTX) conjugates (P-DTX), which arrested cells in the G2/M phase and prolonged the period when the nuclear membrane was disassembled. In the second strike, the cells were then treated with P-H1 conjugates, which entered the nucleus and efficiently inhibited c-Myc. The in vitro studies demonstrated that the combination of P-DTX and P-H1 conjugates was sequence-dependent, and P-DTX followed by P-H1 had synergism, which was significantly more effective than reverse sequential delivery, simultaneous co-delivery or monotherapy with P-DTX or P-H1 alone. The in vivo studies showed that sequential delivery of P-DTX followed by P-H1 remarkably slowed the tumor growth and improved the animal survival. This sequential, dual-strike approach provides new opportunities for nuclear-targeted anticancer drug delivery.
Collapse
Affiliation(s)
- Lian Li
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, PR China
| | - Wei Sun
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, PR China
| | - Zhirong Zhang
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, PR China
| | - Yuan Huang
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, PR China.
| |
Collapse
|
15
|
Patel P, Kansara K, Senapati VA, Shanker R, Dhawan A, Kumar A. Cell cycle dependent cellular uptake of zinc oxide nanoparticles in human epidermal cells. Mutagenesis 2016; 31:481-90. [PMID: 27034448 DOI: 10.1093/mutage/gew014] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Metal oxide nanoparticles (NPs), including zinc oxide (ZnO) NPs have shown success for use as vehicles for drug delivery and targeting gene delivery in many diseases like cancer. Current anticancer chemotherapeutics fail to effectively differentiate between cancerous and normal cells. There is an urgent need to develop novel drug delivery system that can better target cancer cells while sparing normal cells and tissues. Particularly, ZnO NPs exhibit a high degree of cancer cell selectivity and induce cell death, oxidative stress, interference with the cell cycle progression and genotoxicity in cancerous cells. In this scenario, effective cellular uptake of NP seems to be crucial, which is shown to be affected by cell cycle progression. In the present study, the cytotoxic potential of ZnO NPs and the effect of different cell cycle phases on the uptake of ZnO NPs were examined in A431 cells. It is shown that the ZnO NPs led to cell death and reactive oxygen species generation and were able to induce cell cycle arrest in S and G2/M phase with the higher uptake in G2/M phase compared with other phases.
Collapse
Affiliation(s)
- Pal Patel
- Institute of Life Sciences, School of Science and Technology, Ahmedabad University, University Road, Ahmedabad 380009, Gujarat, India and
| | - Krupa Kansara
- Institute of Life Sciences, School of Science and Technology, Ahmedabad University, University Road, Ahmedabad 380009, Gujarat, India and
| | - Violet Aileen Senapati
- Institute of Life Sciences, School of Science and Technology, Ahmedabad University, University Road, Ahmedabad 380009, Gujarat, India and
| | - Rishi Shanker
- Institute of Life Sciences, School of Science and Technology, Ahmedabad University, University Road, Ahmedabad 380009, Gujarat, India and
| | - Alok Dhawan
- Institute of Life Sciences, School of Science and Technology, Ahmedabad University, University Road, Ahmedabad 380009, Gujarat, India and CSIR-Indian Institute of Toxicology Research, Mahatma Gandhi Marg, PO Box 80, Lucknow 226001, Uttar Pradesh, India
| | - Ashutosh Kumar
- Institute of Life Sciences, School of Science and Technology, Ahmedabad University, University Road, Ahmedabad 380009, Gujarat, India and
| |
Collapse
|
16
|
Wang L, Xie X, Liu D, Fang XB, Li P, Wan JB, He CW, Chen MW. iRGD-mediated reduction-responsive DSPE–PEG/LA–PLGA–TPGS mixed micelles used in the targeted delivery and triggered release of docetaxel in cancer. RSC Adv 2016. [DOI: 10.1039/c5ra19814c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Reduction-sensitive micelles with crosslinked cores were developed to load the lipophilic chemotherapeutic drug docetaxel (DTX) in order to overcome the issues of toxicity, water insolubility, and rapid metabolism of DTX.
Collapse
Affiliation(s)
- Lu Wang
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Macao 999078
- China
| | - Xi Xie
- School of Chemistry and Chemical Engineering
- Sun Yat-Sen University
- Guangzhou 510275
- China
| | - Di Liu
- School of Mathematics
- University of Minnesota
- Minneapolis
- USA
| | - Xiao-Bin Fang
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Macao 999078
- China
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Macao 999078
- China
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Macao 999078
- China
| | - Cheng-Wei He
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Macao 999078
- China
| | - Mei-Wan Chen
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Macao 999078
- China
| |
Collapse
|
17
|
Ruan S, Qian J, Shen S, Chen J, Cun X, Zhu J, Jiang X, He Q, Gao H. Non-invasive imaging of breast cancer using RGDyK functionalized fluorescent carbonaceous nanospheres. RSC Adv 2015. [DOI: 10.1039/c5ra00099h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
RGD functionalized carbonaceous dots were prepared and utilized for non-invasive breast cancer imaging.
Collapse
Affiliation(s)
- Shaobo Ruan
- Key Laboratory of Drug Targeting and Drug Delivery Systems
- West China School of Pharmacy
- Sichuan University
- Chengdu
- China
| | - Jun Qian
- Key Laboratory of Smart Drug Delivery (Fudan University)
- Ministry of Education
- School of Pharmacy
- Fudan University
- Shanghai
| | - Shun Shen
- Key Laboratory of Smart Drug Delivery (Fudan University)
- Ministry of Education
- School of Pharmacy
- Fudan University
- Shanghai
| | - Jiantao Chen
- Key Laboratory of Drug Targeting and Drug Delivery Systems
- West China School of Pharmacy
- Sichuan University
- Chengdu
- China
| | - Xingli Cun
- Key Laboratory of Drug Targeting and Drug Delivery Systems
- West China School of Pharmacy
- Sichuan University
- Chengdu
- China
| | - Jianhua Zhu
- Key Laboratory of Smart Drug Delivery (Fudan University)
- Ministry of Education
- School of Pharmacy
- Fudan University
- Shanghai
| | - Xinguo Jiang
- Key Laboratory of Smart Drug Delivery (Fudan University)
- Ministry of Education
- School of Pharmacy
- Fudan University
- Shanghai
| | - Qin He
- Key Laboratory of Drug Targeting and Drug Delivery Systems
- West China School of Pharmacy
- Sichuan University
- Chengdu
- China
| | - Huile Gao
- Key Laboratory of Drug Targeting and Drug Delivery Systems
- West China School of Pharmacy
- Sichuan University
- Chengdu
- China
| |
Collapse
|
18
|
Ruan S, Qian J, Shen S, Chen J, Zhu J, Jiang X, He Q, Yang W, Gao H. Fluorescent carbonaceous nanodots for noninvasive glioma imaging after angiopep-2 decoration. Bioconjug Chem 2014; 25:2252-9. [PMID: 25387274 DOI: 10.1021/bc500474p] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Fluorescent carbonaceous nanodots (CDs) have attracted much attention due to their unique properties. However, their application in noninvasive imaging of diseased tissues was restricted by the short excitation/emission wavelengths and the low diseased tissue accumulation efficiency. In this study, CDs were prepared from glucose and glutamic acid with a particle size of 4 nm. Obvious emission could be observed at 600 to 700 nm when CDs were excited at around 500 nm. This property enabled CDs with capacity for deep tissue imaging with low background adsorption. Angiopep-2, a ligand which could target glioma cells, was anchored onto CDs after PEGylation. The product, An-PEG-CDs, could target C6 glioma cells with higher intensity than PEGylated CDs (PEG-CDs), and endosomes were involved in the uptake process. In vivo, An-PEG-CDs could accumulate in the glioma site at higher intensity, as the glioma/normal brain ratio for An-PEG-CDs was 1.73. The targeting effect of An-PEG-CDs was further demonstrated by receptor staining, which showed An-PEG-CDs colocalized well with the receptors expressed in glioma. In conclusion, An-PEG-CDs could be successfully used for noninvasive glioma imaging.
Collapse
Affiliation(s)
- Shaobo Ruan
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University , No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, China
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Qian J, Chen J, Ruan S, Shen S, He Q, Jiang X, Zhu J, Gao H. Preparation and biological evaluation of photoluminescent carbonaceous nanospheres. J Colloid Interface Sci 2014; 429:77-82. [DOI: 10.1016/j.jcis.2014.05.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 05/10/2014] [Accepted: 05/13/2014] [Indexed: 11/15/2022]
|
20
|
Giri K, Shameer K, Zimmermann M, Saha S, Chakraborty PK, Sharma A, Arvizo RR, Madden BJ, Mccormick DJ, Kocher JPA, Bhattacharya R, Mukherjee P. Understanding protein-nanoparticle interaction: a new gateway to disease therapeutics. Bioconjug Chem 2014; 25:1078-90. [PMID: 24831101 PMCID: PMC4128259 DOI: 10.1021/bc500084f] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 05/14/2014] [Indexed: 02/08/2023]
Abstract
Molecular identification of protein molecules surrounding nanoparticles (NPs) may provide useful information that influences NP clearance, biodistribution, and toxicity. Hence, nanoproteomics provides specific information about the environment that NPs interact with and can therefore report on the changes in protein distribution that occurs during tumorigenesis. Therefore, we hypothesized that characterization and identification of protein molecules that interact with 20 nm AuNPs from cancer and noncancer cells may provide mechanistic insights into the biology of tumor growth and metastasis and identify new therapeutic targets in ovarian cancer. Hence, in the present study, we systematically examined the interaction of the protein molecules with 20 nm AuNPs from cancer and noncancerous cell lysates. Time-resolved proteomic profiles of NP-protein complexes demonstrated electrostatic interaction to be the governing factor in the initial time-points which are dominated by further stabilization interaction at longer time-points as determined by ultraviolet-visible spectroscopy (UV-vis), dynamic light scattering (DLS), ζ-potential measurements, transmission electron microscopy (TEM), and tandem mass spectrometry (MS/MS). Reduction in size, charge, and number of bound proteins were observed as the protein-NP complex stabilized over time. Interestingly, proteins related to mRNA processing were overwhelmingly represented on the NP-protein complex at all times. More importantly, comparative proteomic analyses revealed enrichment of a number of cancer-specific proteins on the AuNP surface. Network analyses of these proteins highlighted important hub nodes that could potentially be targeted for maximal therapeutic advantage in the treatment of ovarian cancer. The importance of this methodology and the biological significance of the network proteins were validated by a functional study of three hubs that exhibited variable connectivity, namely, PPA1, SMNDC1, and PI15. Western blot analysis revealed overexpression of these proteins in ovarian cancer cells when compared to normal cells. Silencing of PPA1, SMNDC1, and PI15 by the siRNA approach significantly inhibited proliferation of ovarian cancer cells and the effect correlated with the connectivity pattern obtained from our network analyses.
Collapse
Affiliation(s)
- Karuna Giri
- Department of Biochemistry and Molecular Biology, Division of Biomedical Statistics
and Informatics, Department of Health Sciences Research, Molecular Medicine
Program, and Proteomics
Research Center, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Khader Shameer
- Department of Biochemistry and Molecular Biology, Division of Biomedical Statistics
and Informatics, Department of Health Sciences Research, Molecular Medicine
Program, and Proteomics
Research Center, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Michael
T. Zimmermann
- Department of Biochemistry and Molecular Biology, Division of Biomedical Statistics
and Informatics, Department of Health Sciences Research, Molecular Medicine
Program, and Proteomics
Research Center, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Sounik Saha
- Stanton
L. Young Biomedical Research Center, University
of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104, United States
| | - Prabir K. Chakraborty
- Stanton
L. Young Biomedical Research Center, University
of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104, United States
| | - Anirudh Sharma
- Department
of Biomedical Engineering, The University
of Texas, Austin, Texas 78712, United
States
| | - Rochelle R. Arvizo
- Department of Biochemistry and Molecular Biology, Division of Biomedical Statistics
and Informatics, Department of Health Sciences Research, Molecular Medicine
Program, and Proteomics
Research Center, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Benjamin J. Madden
- Department of Biochemistry and Molecular Biology, Division of Biomedical Statistics
and Informatics, Department of Health Sciences Research, Molecular Medicine
Program, and Proteomics
Research Center, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Daniel J. Mccormick
- Department of Biochemistry and Molecular Biology, Division of Biomedical Statistics
and Informatics, Department of Health Sciences Research, Molecular Medicine
Program, and Proteomics
Research Center, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Jean-Pierre A. Kocher
- Department of Biochemistry and Molecular Biology, Division of Biomedical Statistics
and Informatics, Department of Health Sciences Research, Molecular Medicine
Program, and Proteomics
Research Center, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Resham Bhattacharya
- Stanton
L. Young Biomedical Research Center, University
of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104, United States
| | - Priyabrata Mukherjee
- Stanton
L. Young Biomedical Research Center, University
of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104, United States
| |
Collapse
|