1
|
Li W, Zhong X, Huang J, Bai X, Liang Y, Cheng L, Jin L, Tang HC, Lai Y, Guan BO. Wavelength-time-division multiplexed fiber-optic sensor array for wide-field photoacoustic microscopy. PHOTOACOUSTICS 2025; 43:100725. [PMID: 40331015 PMCID: PMC12051156 DOI: 10.1016/j.pacs.2025.100725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 04/07/2025] [Accepted: 04/09/2025] [Indexed: 05/08/2025]
Abstract
Photoacoustic microscopy (PAM) faces a fundamental trade-off between detection sensitivity and field of view (FOV). While optical ultrasound sensors offer high-sensitivity unfocused detection, implementing multichannel detection remains challenging. Here, we present a wavelength-time-division multiplexed (WTDM) fiber-optic sensor array that assigns distinct wavelengths to individual sensors and employs varying-length delay fibers for temporal separation, enabling efficient multichannel detection through a single photodetector. Using a 4-element sensor array, we achieved an expanded FOV of 5 × 8 mm² while maintaining high temporal resolution (160 kHz A-line rate, 0.25 Hz frame rate) and microscopic spatial resolution (10.7 μm). The system's capabilities were validated through comparative monitoring of cerebral and intestinal hemodynamics in mice during hypercapnia challenge, revealing distinct temporal patterns with notably delayed recovery in cerebral vascular response compared to intestinal vasculature. This WTDM approach establishes a promising platform for large-field, high-speed photoacoustic imaging in biomedical applications.
Collapse
Affiliation(s)
- Wei Li
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, China
| | - Xiaoxuan Zhong
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, China
| | - Jie Huang
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, China
| | - Xue Bai
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, China
| | - Yizhi Liang
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, China
| | - Linghao Cheng
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, China
| | - Long Jin
- MOE Key Laboratory of Laser Life Science, Guangdong Key Laboratory of Laser Life Science, School of Optoelectronic Science & Engineering, South China Normal University, Guangzhou, China
| | - Hao-Cheng Tang
- Department of Otorhinolaryngology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yinyan Lai
- Otorhinolaryngology Hospital, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - Bai-Ou Guan
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, China
| |
Collapse
|
2
|
Huynh NT, Zhang E, Francies O, Kuklis F, Allen T, Zhu J, Abeyakoon O, Lucka F, Betcke M, Jaros J, Arridge S, Cox B, Plumb AA, Beard P. A fast all-optical 3D photoacoustic scanner for clinical vascular imaging. Nat Biomed Eng 2025; 9:638-655. [PMID: 39349585 DOI: 10.1038/s41551-024-01247-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 07/28/2024] [Indexed: 10/25/2024]
Abstract
The clinical assessment of microvascular pathologies (in diabetes and in inflammatory skin diseases, for example) requires the visualization of superficial vascular anatomy. Photoacoustic tomography (PAT) scanners based on an all-optical Fabry-Perot ultrasound sensor can provide highly detailed 3D microvascular images, but minutes-long acquisition times have precluded their clinical use. Here we show that scan times can be reduced to a few seconds and even hundreds of milliseconds by parallelizing the optical architecture of the sensor readout, by using excitation lasers with high pulse-repetition frequencies and by exploiting compressed sensing. A PAT scanner with such fast acquisition minimizes motion-related artefacts and allows for the volumetric visualization of individual arterioles, venules, venous valves and millimetre-scale arteries and veins to depths approaching 15 mm, as well as for dynamic 3D images of time-varying tissue perfusion and other haemodynamic events. In exploratory case studies, we used the scanner to visualize and quantify microvascular changes associated with peripheral vascular disease, skin inflammation and rheumatoid arthritis. Fast all-optical PAT may prove useful in cardiovascular medicine, oncology, dermatology and rheumatology.
Collapse
Affiliation(s)
- N T Huynh
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London, UK
| | - E Zhang
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London, UK
| | - O Francies
- University College London Hospital NHS Foundation Trust, London, UK
- Imperial College Healthcare NHS Trust, London, UK
| | - F Kuklis
- Faculty of Information Technology, Brno University of Technology, Brno, Czech Republic
| | - T Allen
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - J Zhu
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - O Abeyakoon
- University College London Hospital NHS Foundation Trust, London, UK
| | - F Lucka
- Centrum Wiskunde & Informatica, Amsterdam, the Netherlands
| | - M Betcke
- Department of Computer Science, University College London, London, UK
| | - J Jaros
- Faculty of Information Technology, Brno University of Technology, Brno, Czech Republic
| | - S Arridge
- Department of Computer Science, University College London, London, UK
| | - B Cox
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - A A Plumb
- University College London Hospital NHS Foundation Trust, London, UK
| | - P Beard
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK.
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London, UK.
| |
Collapse
|
3
|
Xu Y, Song Y, Sun L, Chen Z, Xiang L. Non-contact electroacoustic tomography with optical interferometer for electroporation therapy monitoring. APPLIED PHYSICS LETTERS 2025; 126:023704. [PMID: 39845122 PMCID: PMC11748402 DOI: 10.1063/5.0244192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/04/2025] [Indexed: 01/24/2025]
Abstract
Electroacoustic imaging is an imaging modality used to detect electric field energy distribution during electroporation, offering valuable guidance for clinical procedures, particularly in deep tissues. Traditionally, single-element piezoelectric transducers or arrays have been employed for this purpose. However, these piezoelectric sensors are sensitive to electromagnetic interference and require physical contact with the sample through a coupling medium, raising concerns for both clinical and preclinical applications. To overcome these limitations, a multi-channel random quadrature ultrasonics system has been developed, enabling non-contact detection of electroacoustic signals. In this study, we demonstrated that this non-contact technique effectively detects electroacoustic signals, identifies electroporation regions, and reconstructs electric energy distribution, offering a promising approach for monitoring electroporation therapy.
Collapse
Affiliation(s)
- Yifei Xu
- Department of Biomedical Engineering, University of California, Irvine, California 92617, USA
| | | | - Leshan Sun
- Department of Biomedical Engineering, University of California, Irvine, California 92617, USA
| | | | | |
Collapse
|
4
|
Menozzi L, Yao J. Deep tissue photoacoustic imaging with light and sound. NPJ IMAGING 2024; 2:44. [PMID: 39525280 PMCID: PMC11541195 DOI: 10.1038/s44303-024-00048-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/23/2024] [Indexed: 11/16/2024]
Abstract
Photoacoustic computed tomography (PACT) can harvest diffusive photons to image the optical absorption contrast of molecules in a scattering medium, with ultrasonically-defined spatial resolution. PACT has been extensively used in preclinical research for imaging functional and molecular information in various animal models, with recent clinical translations. In this review, we aim to highlight the recent technical breakthroughs in PACT and the emerging preclinical and clinical applications in deep tissue imaging.
Collapse
Affiliation(s)
- Luca Menozzi
- Department of Biomedical Engineering, Duke University, Durham, NC 27708 USA
| | - Junjie Yao
- Department of Biomedical Engineering, Duke University, Durham, NC 27708 USA
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710 USA
| |
Collapse
|
5
|
La TA, Ülgen O, Shnaiderman R, Ntziachristos V. Bragg grating etalon-based optical fiber for ultrasound and optoacoustic detection. Nat Commun 2024; 15:7521. [PMID: 39214964 PMCID: PMC11364814 DOI: 10.1038/s41467-024-51497-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Abstract
Fiber-based interferometers receive significant interest as they lead to miniaturization of optoacoustic and ultrasound detectors without the quadratic loss of sensitivity common to piezoelectric elements. Nevertheless, in contrast to piezoelectric crystals, current fiber-based ultrasound detectors operate with narrow ultrasound bandwidth which limits the application range and spatial resolution achieved in imaging implementations. We port the concept of silicon waveguide etalon detection to optical fibers using a sub-acoustic reflection terminator to a Bragg grating embedded etalon resonator (EER), uniquely implementing direct and forward-looking access to incoming ultrasound waves. Precise fabrication of the terminator is achieved by continuously recording the EER spectrum during polishing and fitting the spectra to a theoretically calculated spectrum for the selected thickness. Characterization of the EER inventive design reveals a small aperture (10.1 µm) and an ultra-wide bandwidth (160 MHz) that outperforms other fiber resonators and enables an active detection area and overall form factor that is smaller by more than an order of magnitude over designs based on piezoelectric transducers. We discuss how the EER paves the way for the most adept fiber-based miniaturized sound detection today, circumventing the limitations of currently available designs.
Collapse
Affiliation(s)
- Tai Anh La
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Okan Ülgen
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Rami Shnaiderman
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Vasilis Ntziachristos
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany.
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine and Health, Technical University of Munich, Munich, Germany.
- Munich Institute of Biomedical Engineering (MIBE), Technical University of Munich, Garching b. München, Germany.
| |
Collapse
|
6
|
Cao X, Yang H, Wu ZL, Li BB. Ultrasound sensing with optical microcavities. LIGHT, SCIENCE & APPLICATIONS 2024; 13:159. [PMID: 38982066 PMCID: PMC11233744 DOI: 10.1038/s41377-024-01480-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/10/2024] [Accepted: 05/13/2024] [Indexed: 07/11/2024]
Abstract
Ultrasound sensors play an important role in biomedical imaging, industrial nondestructive inspection, etc. Traditional ultrasound sensors that use piezoelectric transducers face limitations in sensitivity and spatial resolution when miniaturized, with typical sizes at the millimeter to centimeter scale. To overcome these challenges, optical ultrasound sensors have emerged as a promising alternative, offering both high sensitivity and spatial resolution. In particular, ultrasound sensors utilizing high-quality factor (Q) optical microcavities have achieved unprecedented performance in terms of sensitivity and bandwidth, while also enabling mass production on silicon chips. In this review, we focus on recent advances in ultrasound sensing applications using three types of optical microcavities: Fabry-Perot cavities, π-phase-shifted Bragg gratings, and whispering gallery mode microcavities. We provide an overview of the ultrasound sensing mechanisms employed by these microcavities and discuss the key parameters for optimizing ultrasound sensors. Furthermore, we survey recent advances in ultrasound sensing using these microcavity-based approaches, highlighting their applications in diverse detection scenarios, such as photoacoustic imaging, ranging, and particle detection. The goal of this review is to provide a comprehensive understanding of the latest advances in ultrasound sensing with optical microcavities and their potential for future development in high-performance ultrasound imaging and sensing technologies.
Collapse
Affiliation(s)
- Xuening Cao
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hao Yang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zu-Lei Wu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bei-Bei Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Songshan Lake Materials Laboratory, Dongguan, 523808, Guangdong, China.
| |
Collapse
|
7
|
Kurnikov A, Sanin A, Ben XLD, Razansky D, Subochev P. Ultrawideband sub-pascal sensitivity piezopolymer detectors. ULTRASONICS 2024; 141:107349. [PMID: 38788335 DOI: 10.1016/j.ultras.2024.107349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/21/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024]
Abstract
Piezoelectric detectors are integral part of modern ultrasound imaging systems. Their utility has also been extended beyond the established methodologies into the emerging realm of hybrid optoacoustic imaging. Conventional piezoceramic detectors, however, struggle to combine high detection sensitivity with ultrawide bandwidth, both considered critical for attaining optimal optoacoustic imaging performance. Our research, both theoretical and empirical, unveils that damped piezopolymer detectors fabricated from PVDF-TrFE are markedly capable of achieving a synergistic blend between broad bandwidth and superb sensitivity. Experimental evaluations reflected an average sensitivity of 15.5 µV/Pa within a 1-10 MHz band for a 120 µm thick detector and 6.4 µV/Pa within a 1-30 MHz band for a 20 µm thick detector, thus outperforming conventional piezoelectric analogues. The resultant noise equivalent pressure (NEPs) values were 0.3 Pa and 1.2 Pa for the 20 µm and 120 µm detectors, respectively. Our findings herald a significant stride towards enhancing the efficacy of ultrawideband ultrasound and optoacoustic imaging systems.
Collapse
Affiliation(s)
- Alexey Kurnikov
- Institute of Applied Physics named after A.V. Gaponov-Grekhov, Russian Academy of Sciences, 46 Ulyanov Str., Nizhny Novgorod 603950, Russia; University of Nizhny Novgorod, Department of Radiophysics, Gagarin Ave. 23, Nizhny Novgorod 603022, Russia
| | - Anatoly Sanin
- Institute of Applied Physics named after A.V. Gaponov-Grekhov, Russian Academy of Sciences, 46 Ulyanov Str., Nizhny Novgorod 603950, Russia
| | - Xose Luis Dean Ben
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Wolfgang-Pauli-Strasse 27, CH-8093 Zurich, Switzerland
| | - Daniel Razansky
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Wolfgang-Pauli-Strasse 27, CH-8093 Zurich, Switzerland.
| | - Pavel Subochev
- Institute of Applied Physics named after A.V. Gaponov-Grekhov, Russian Academy of Sciences, 46 Ulyanov Str., Nizhny Novgorod 603950, Russia
| |
Collapse
|
8
|
Günther A, Deja Y, Kilic M, Tran K, Kotra P, Renz F, Kowalsky W, Roth B. Investigation of the molecular switching process between spin crossover states of triazole complexes as basis for optical sensing applications. Sci Rep 2024; 14:5897. [PMID: 38467722 PMCID: PMC11636798 DOI: 10.1038/s41598-024-56427-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/06/2024] [Indexed: 03/13/2024] Open
Abstract
With the advent of the first laser sources and suitable detectors, optical sensor applications immediately also came into focus. During the last decades, a huge variety of optical sensor concepts were developed, yet the forecast for the future application potential appears even larger. In this context, the development of new sensor probes at different scales down to the atomic or molecular level open new avenues for research and development. We investigated an iron based triazole molecular spin-crossover complex changing its absorption characteristics significantly by varying environmental parameters such as humidity, temperature, magnetic or electric field, respectively, with respect to its suitability for a new class of versatile molecular sensor probes. Hereby, besides the investigation of synthesized pure bulk material using different analyzing methods, we also studied amorphous micro particles which were applied in or onto optical waveguide structures. We found that significant changes of the reflection spectra can also be obtained after combining the particles with different types of optical waveguides.The obtained results demonstrate the suitability of the material complex for a broad field of future sensor applications.
Collapse
Affiliation(s)
- Axel Günther
- Hannover Centre for Optical Technologies, Leibniz University of Hannover, 30167, Hannover, Germany.
- Institute of High Frequency Technology, Technical University Braunschweig, 38106, Braunschweig, Germany.
- Cluster of Excellence PhoenixD (Photonics, Optics and Engineering-Innovation Across Disciplines), 30167, Hannover, Germany.
| | - Yves Deja
- Hannover Centre for Optical Technologies, Leibniz University of Hannover, 30167, Hannover, Germany
| | - Maximilian Kilic
- Institute of Inorganic Chemistry, Leibniz University Hannover, 30167, Hannover, Germany
| | - Kevin Tran
- Institute of Inorganic Chemistry, Leibniz University Hannover, 30167, Hannover, Germany
| | - Pavan Kotra
- Hannover Centre for Optical Technologies, Leibniz University of Hannover, 30167, Hannover, Germany
| | - Franz Renz
- Institute of Inorganic Chemistry, Leibniz University Hannover, 30167, Hannover, Germany
| | - Wolfgang Kowalsky
- Institute of High Frequency Technology, Technical University Braunschweig, 38106, Braunschweig, Germany
- Cluster of Excellence PhoenixD (Photonics, Optics and Engineering-Innovation Across Disciplines), 30167, Hannover, Germany
| | - Bernhard Roth
- Hannover Centre for Optical Technologies, Leibniz University of Hannover, 30167, Hannover, Germany
- Cluster of Excellence PhoenixD (Photonics, Optics and Engineering-Innovation Across Disciplines), 30167, Hannover, Germany
| |
Collapse
|
9
|
Herrera-Jordan K, Pennington P, Zea L. Reduced Pseudomonas aeruginosa Cell Size Observed on Planktonic Cultures Grown in the International Space Station. Microorganisms 2024; 12:393. [PMID: 38399797 PMCID: PMC10892763 DOI: 10.3390/microorganisms12020393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Bacterial growth and behavior have been studied in microgravity in the past, but little focus has been directed to cell size despite its impact on a myriad of processes, including biofilm formation, which is impactful regarding crew health. To interrogate this characteristic, supernatant aliquots of P. aeruginosa cultured on different materials and media on board the International Space Station (ISS) as part of the Space Biofilms Project were analyzed. For that experiment, P. aeruginosa was grown in microgravity-with matching Earth controls-in modified artificial urine medium (mAUMg-high Pi) or LB Lennox supplemented with KNO3, and its formation of biofilms on six different materials was assessed. After one, two, and three days of incubation, the ISS crew terminated subsets of the experiment by fixation in paraformaldehyde, and aliquots of the supernatant were used for the planktonic cell size study presented here. The measurements were obtained post-flight through the use of phase contrast microscopy under oil immersion, a Moticam 10+ digital camera, and the FIJI image analysis program. Statistical comparisons were conducted to identify which treatments caused significant differences in cell dimensions using the Kruskal-Wallis and Dunn tests. There were statistically significant differences as a function of material present in the culture in both LBK and mAUMg-high Pi. Along with this, the data were also grouped by gravitational condition, media, and days of incubation. Comparison of planktonic cells cultured in microgravity showed reduced cell length (from 4% to 10% depending on the material) and diameter (from 1% to 10% depending on the material) with respect to their matching Earth controls, with the caveat that the cultures may have been at different points in their growth curve at a given time. In conclusion, smaller cells were observed on the cultures grown in microgravity, and cell size changed as a function of incubation time and the material upon which the culture grew. We describe these changes here and possible implications for human space travel in terms of crew health and potential applications.
Collapse
Affiliation(s)
- Katherinne Herrera-Jordan
- Department of Biochemistry and Microbiology, Universidad del Valle de Guatemala, Guatemala City 01015, Guatemala;
| | - Pamela Pennington
- Research Institute, Universidad del Valle de Guatemala, Guatemala City 01015, Guatemala;
| | - Luis Zea
- Aerospace Engineering Sciences Department, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
10
|
Zhu L, Cao H, Ma J, Wang L. Optical ultrasound sensors for photoacoustic imaging: a review. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:S11523. [PMID: 38303991 PMCID: PMC10831871 DOI: 10.1117/1.jbo.29.s1.s11523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 02/03/2024]
Abstract
Significance Photoacoustic (PA) imaging is an emerging biomedical imaging modality that can map optical absorption contrast in biological tissues by detecting ultrasound signal. Piezoelectric transducers are commonly used in PA imaging to detect the ultrasound signals. However, piezoelectric transducers suffer from low sensitivity when the dimensions are reduced and are easily influenced by electromagnetic interference. To avoid these limitations, various optical ultrasound sensors have been developed and shown their great potential in PA imaging. Aim Our study aims to summarize recent progress in optical ultrasound sensor technologies and their applications in PA imaging. Approach The commonly used optical ultrasound sensing techniques and their applications in PA systems are reviewed. The technical advances of different optical ultrasound sensors are summarized. Results Optical ultrasound sensors can provide wide bandwidth and improved sensitivity with miniatured size, which enables their applications in PA imaging. Conclusions The optical ultrasound sensors are promising transducers in PA imaging to provide higher-resolution images and can be used in new applications with their unique advantages.
Collapse
Affiliation(s)
- Liying Zhu
- City University of Hong Kong, Department of Biomedical Engineering, Kowloon, Hong Kong, China
| | - Hongming Cao
- City University of Hong Kong, Department of Biomedical Engineering, Kowloon, Hong Kong, China
| | - Jun Ma
- Nanfang Hospital, Southern Medical University, Department of Burns, Guangzhou, China
| | - Lidai Wang
- City University of Hong Kong, Department of Biomedical Engineering, Kowloon, Hong Kong, China
| |
Collapse
|
11
|
Lee Y, Rong Q, Song KH, Czaplewski DA, Zhang HF, Yao J, Sun C. Theoretical and experimental study on the detection limit of the micro-ring resonator based ultrasound point detectors. PHOTOACOUSTICS 2023; 34:100574. [PMID: 38126078 PMCID: PMC10731384 DOI: 10.1016/j.pacs.2023.100574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/06/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023]
Abstract
Combining the diffusive laser excitation and the photoacoustic signals detection, photoacoustic computed tomography (PACT) is uniquely suited for deep tissue imaging. A diffraction-limited ultrasound point detector is highly desirable for maximizing the spatial resolution and the field-of-view of the reconstructed volumetric images. Among all the available ultrasound detectors, micro-ring resonator (MRR) based ultrasound detectors offer the lowest area-normalized limit of detection (nLOD) in a miniature form-factor, making it an ideal candidate as an ultrasound point detector. However, despite their wide adoption for photoacoustic imaging, the underlying signal transduction process has not been systematically studied yet. Here we report a comprehensive theoretical model capturing the transduction of incident acoustic signals into digital data, and the associated noise propagation process, using experimentally calibrated key process parameters. The theoretical model quantifies the signal-to-noise ratio (SNR) and the nLOD under the influence of the key process variables, including the quality factor (Q-factor) of the MRR and the driving wavelength. While asserting the need for higher Q-factors, the theoretical model further quantifies the optimal driving wavelength for optimizing the nLOD. Given the MRR with a Q-factor of 1 × 105, the theoretical model predicts an optimal SNR of 30.1 dB and a corresponding nLOD of 3.75 × 10-2 mPa mm2/Hz1/2, which are in good agreement with the experimental measurements of 31.0 dB and 3.39 × 10-2 mPa mm2/Hz1/2, respectively. The reported theoretical model can be used in guiding the optimization of MRR-based ultrasonic detectors and PA experimental conditions, in attaining higher imaging resolution and contrast. The optimized operating condition has been further validated by performing PACT imaging of a human hair phantom.
Collapse
Affiliation(s)
- Youngseop Lee
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Qiangzhou Rong
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Ki-Hee Song
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - David A Czaplewski
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Hao F Zhang
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Junjie Yao
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Cheng Sun
- Department of Mechanical Engineering, Northwestern University, Evanston IL 60208, USA
| |
Collapse
|
12
|
Lee Y, Zhang HF, Sun C. Highly sensitive ultrasound detection using nanofabricated polymer micro-ring resonators. NANO CONVERGENCE 2023; 10:30. [PMID: 37338745 DOI: 10.1186/s40580-023-00378-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/01/2023] [Indexed: 06/21/2023]
Abstract
Photoacoustic (PA) imaging enables noninvasive volumetric imaging of biological tissues by capturing the endogenous optical absorption contrast. Conventional ultrasound detectors using piezoelectric materials have been widely used for transducing ultrasound signals into the electrical signals for PA imaging reconstruction. However, their inherent limitations in detection bandwidth and sensitivity per unit area have unfortunately constrained the performance of PA imaging. Optical based ultrasound detection methods emerge to offer very promising solutions. In particular, polymer micro-ring resonators (MRRs) in the form of integrated photonic circuits (IPC) enable significant reduction for the sensing area to 80 μm in diameter, while maintaining highly sensitive ultrasound detection with noise equivalent pressure (NEP) of 0.49 Pa and a broad detection frequency range up to 250 MHz. The continued engineering innovation has further transformed MRRs to be transparent to the light and thus, opens up a wide range of applications, including multi-modality optical microscope with isometric resolution, PA endoscope, photoacoustic computed tomography (PACT), and more. This review article summarizes and discusses the evolution of polymer MRR design and the associated nanofabrication process for improving the performance of ultrasound detection. The resulting novel imaging applications will also be reviewed and discussed.
Collapse
Affiliation(s)
- Youngseop Lee
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Hao F Zhang
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Cheng Sun
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
13
|
Wang L, Zhao Y, Zheng B, Huo Y, Fan Y, Ma D, Gu Y, Wang P. Ultrawide-bandwidth high-resolution all-optical intravascular ultrasound using miniaturized photoacoustic transducer. SCIENCE ADVANCES 2023; 9:eadg8600. [PMID: 37294755 PMCID: PMC10256152 DOI: 10.1126/sciadv.adg8600] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/05/2023] [Indexed: 06/11/2023]
Abstract
Conventional intravascular ultrasound (IVUS) uses piezoelectric transducers to electrically generate and receive ultrasound. However, it remains a challenge to achieve large bandwidth for high resolution without compromising imaging depth. We report an all-optical IVUS (AO-IVUS) imaging system using picosecond laser pulse-pumped carbon composite for ultrasound excitation and π-phase-shifted fiber Bragg gratings for ultrasound detection. Using this all-optical technique, we achieved ultrawide-bandwidth (147%) and high-resolution (18.6 micrometers) IVUS imaging, which is unattainable by conventional technique. Imaging performance has been characterized in phantoms, presenting 18.6-micrometer axial resolution, 124-micrometer lateral resolution, and 7-millimeter imaging depth. Rotational pullback imaging scans are performed in rabbit iliac artery, porcine coronary artery, and rabbit arteries with drug-eluting metal stents, in parallel with commercial intravenous ultrasound scans as reference. Results demonstrated the advantages of high-resolution AO-IVUS in delineating details in vascular structures, showing great potential in clinical applications.
Collapse
Affiliation(s)
- Lei Wang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Institute of Medical Photonics, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Yongwen Zhao
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Institute of Medical Photonics, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Bo Zheng
- Institute of Cardiovascular Disease, Peking University First Hospital, Beijing 100034, China
| | - Yong Huo
- Institute of Cardiovascular Disease, Peking University First Hospital, Beijing 100034, China
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Institute of Medical Photonics, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Dinglong Ma
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Institute of Medical Photonics, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Ying Gu
- Department of Laser Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing 100039, China
| | - Pu Wang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Institute of Medical Photonics, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
14
|
Pan J, Li Q, Feng Y, Zhong R, Fu Z, Yang S, Sun W, Zhang B, Sui Q, Chen J, Shen Y, Li Z. Parallel interrogation of the chalcogenide-based micro-ring sensor array for photoacoustic tomography. Nat Commun 2023; 14:3250. [PMID: 37277353 DOI: 10.1038/s41467-023-39075-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 05/25/2023] [Indexed: 06/07/2023] Open
Abstract
Photoacoustic tomography (PAT), also known as optoacoustic tomography, is an attractive imaging modality that provides optical contrast with acoustic resolutions. Recent progress in the applications of PAT largely relies on the development and employment of ultrasound sensor arrays with many elements. Although on-chip optical ultrasound sensors have been demonstrated with high sensitivity, large bandwidth, and small size, PAT with on-chip optical ultrasound sensor arrays is rarely reported. In this work, we demonstrate PAT with a chalcogenide-based micro-ring sensor array containing 15 elements, while each element supports a bandwidth of 175 MHz (-6 dB) and a noise-equivalent pressure of 2.2 mPaHz-1/2. Moreover, by synthesizing a digital optical frequency comb (DOFC), we further develop an effective means of parallel interrogation to this sensor array. As a proof of concept, parallel interrogation with only one light source and one photoreceiver is demonstrated for PAT with this sensor array, providing images of fast-moving objects, leaf veins, and live zebrafish. The superior performance of the chalcogenide-based micro-ring sensor array and the effectiveness of the DOFC-enabled parallel interrogation offer great prospects for advancing applications in PAT.
Collapse
Affiliation(s)
- Jingshun Pan
- School of Electronics and Information Technology, Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, Sun Yat-sen University, Guangzhou, 510275, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou, 510006, China
| | - Qiang Li
- School of Electronics and Information Technology, Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yaoming Feng
- School of Electronics and Information Technology, Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, Sun Yat-sen University, Guangzhou, 510275, China
| | - Ruifeng Zhong
- School of Electronics and Information Technology, Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhihao Fu
- School of Electronics and Information Technology, Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shuixian Yang
- School of Electronics and Information Technology, Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, Sun Yat-sen University, Guangzhou, 510275, China
| | - Weiyuan Sun
- School of Electronics and Information Technology, Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, Sun Yat-sen University, Guangzhou, 510275, China
| | - Bin Zhang
- School of Electronics and Information Technology, Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, Sun Yat-sen University, Guangzhou, 510275, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
| | - Qi Sui
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
| | - Jun Chen
- School of Electronics and Information Technology, Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yuecheng Shen
- School of Electronics and Information Technology, Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, Sun Yat-sen University, Guangzhou, 510275, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.
| | - Zhaohui Li
- School of Electronics and Information Technology, Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, Sun Yat-sen University, Guangzhou, 510275, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.
| |
Collapse
|
15
|
Jiang X, Shen M, Lun DPK, Chen W, Somekh MG. A total-internal-reflection-based Fabry-Pérot resonator for ultra-sensitive wideband ultrasound and photoacoustic applications. PHOTOACOUSTICS 2023; 30:100466. [PMID: 36926115 PMCID: PMC10011501 DOI: 10.1016/j.pacs.2023.100466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/26/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
In photoacoustic and ultrasound imaging, optical transducers offer a unique potential to provide higher responsivity, wider bandwidths, and greatly reduced electrical and acoustic impedance mismatch when compared with piezoelectric transducers. In this paper, we propose a total-internal-reflection-based Fabry-Pérot resonator composed of a 12-nm-thick gold layer and a dielectric resonant cavity. The resonator uses the same Kretschmann configuration as surface plasmon resonators (SPR). The resonators were analyzed both theoretically and experimentally. The experimental results were compared with those for an SPR for benchmarking. The 1.9-μm-thick-PMMA- and 3.4-μm-thick-PDMS-based resonators demonstrated responsivities of 3.6- and 30-fold improvements compared with the SPR, respectively. The measured bandwidths for the PMMA, PDMS devices are 110 MHz and 75 MHz, respectively. Single-shot sensitivity of 160 Pa is obtained for the PDMS device. The results indicate that, with the proposed resonator in imaging applications, sensitivity and the signal-to-noise ratio can be improved significantly without compromising the bandwidth.
Collapse
Affiliation(s)
- Xiaoping Jiang
- Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Hong Kong, China
- Nanophotonics Research Centre, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Mengqi Shen
- Guangdong Laboratory of Machine Perception and Intelligent Computing, The Faculty of Engineering, Shenzhen MSU-BIT University, Shenzhen 518172, Guangdong, China
| | - Daniel Pak-Kong Lun
- Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Wen Chen
- Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Michael G. Somekh
- The Faculty of Engineering, University of Nottingham, Nottingham, UK
| |
Collapse
|
16
|
Ma J, Zhao J, Chen H, Sun LP, Li J, Guan BO. Transparent microfiber Fabry-Perot ultrasound sensor with needle-shaped focus for multiscale photoacoustic imaging. PHOTOACOUSTICS 2023; 30:100482. [PMID: 37025114 PMCID: PMC10070891 DOI: 10.1016/j.pacs.2023.100482] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/01/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
Photoacoustic tomography emerged as a promising tool for noninvasive biomedical imaging and diseases diagnosis. However, most of the current piezoelectric ultrasound transducers suffer optical opacity and tissue-mismatched acoustic impedance, hindering the miniaturization and integration of the system for multiscale and multimodal imaging. Here, a transparent polydimethylsiloxane (PDMS) encapsulated optical microfiber ultrasound sensor was demonstrated for photoacoustic imaging with scalable spatial resolution and penetration depth. The sensor comprised a microfiber loop sandwiched by a pair of in-line Bragg gratings, which formed an ultrasound-sensitive Fabry-Perot cavity allowing free delivery of ultrasound/light beams and unique needle-shaped ultrasound focusing along the penetration depth. The sensor with a detection limit of ∼ 700 Pa and a bandwidth of ∼ 10 MHz was applied for multiscale photoacoustic imaging of mouse ear and brain vasculatures. With advantages of flexibility, optical transparence and focusing capability, the sensor offers new opportunities for developing photoacoustic/ultrasound imaging devices for biomedical and clinic applications.
Collapse
|
17
|
Spytek J, Ambrozinski L, Pelivanov I. Non-contact detection of ultrasound with light - Review of recent progress. PHOTOACOUSTICS 2023; 29:100440. [PMID: 36582843 PMCID: PMC9792891 DOI: 10.1016/j.pacs.2022.100440] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/12/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
In this article, we present an overview of recent progress in non-contact remote optical detection of ultrasound in application to nondestructive testing and evaluation of materials. The focus of the review is on the latest advances in optical detection that offer mature and robust field-applicable solutions for diagnostics and imaging of engineered structures. We provide a detailed description of these solutions, including their operation principles, their evolution from the previously known designs to commercial devices, and their contribution to solving the most important problems associated with non-contact optical detection of ultrasound. Several application examples are presented to demonstrate the capabilities of optical detection and provide ideas to a reader on how it can be used in practice. We also discuss the main challenges of modern non-contact detectors which have not yet been addressed, as well as the directions and prospects for their development.
Collapse
Affiliation(s)
- Jakub Spytek
- AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, Krakow, Poland
| | - Lukasz Ambrozinski
- AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, Krakow, Poland
| | - Ivan Pelivanov
- University of Washington, Department of Bioengineering, Seattle, WA, United States
| |
Collapse
|
18
|
Barbosa RCS, Mendes PM. A Comprehensive Review on Photoacoustic-Based Devices for Biomedical Applications. SENSORS (BASEL, SWITZERLAND) 2022; 22:9541. [PMID: 36502258 PMCID: PMC9736954 DOI: 10.3390/s22239541] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
The photoacoustic effect is an emerging technology that has sparked significant interest in the research field since an acoustic wave can be produced simply by the incidence of light on a material or tissue. This phenomenon has been extensively investigated, not only to perform photoacoustic imaging but also to develop highly miniaturized ultrasound probes that can provide biologically meaningful information. Therefore, this review aims to outline the materials and their fabrication process that can be employed as photoacoustic targets, both biological and non-biological, and report the main components' features to achieve a certain performance. When designing a device, it is of utmost importance to model it at an early stage for a deeper understanding and to ease the optimization process. As such, throughout this article, the different methods already implemented to model the photoacoustic effect are introduced, as well as the advantages and drawbacks inherent in each approach. However, some remaining challenges are still faced when developing such a system regarding its fabrication, modeling, and characterization, which are also discussed.
Collapse
|
19
|
Menozzi L, Yang W, Feng W, Yao J. Sound out the impaired perfusion: Photoacoustic imaging in preclinical ischemic stroke. Front Neurosci 2022; 16:1055552. [PMID: 36532279 PMCID: PMC9751426 DOI: 10.3389/fnins.2022.1055552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/17/2022] [Indexed: 09/19/2023] Open
Abstract
Acoustically detecting the optical absorption contrast, photoacoustic imaging (PAI) is a highly versatile imaging modality that can provide anatomical, functional, molecular, and metabolic information of biological tissues. PAI is highly scalable and can probe the same biological process at various length scales ranging from single cells (microscopic) to the whole organ (macroscopic). Using hemoglobin as the endogenous contrast, PAI is capable of label-free imaging of blood vessels in the brain and mapping hemodynamic functions such as blood oxygenation and blood flow. These imaging merits make PAI a great tool for studying ischemic stroke, particularly for probing into hemodynamic changes and impaired cerebral blood perfusion as a consequence of stroke. In this narrative review, we aim to summarize the scientific progresses in the past decade by using PAI to monitor cerebral blood vessel impairment and restoration after ischemic stroke, mostly in the preclinical setting. We also outline and discuss the major technological barriers and challenges that need to be overcome so that PAI can play a more significant role in preclinical stroke research, and more importantly, accelerate its translation to be a useful clinical diagnosis and management tool for human strokes.
Collapse
Affiliation(s)
- Luca Menozzi
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Wei Yang
- Multidisciplinary Brain Protection Program, Department of Anesthesiology, Duke University, Durham, NC, United States
| | - Wuwei Feng
- Department of Neurology, Duke University School of Medicine, Durham, NC, United States
| | - Junjie Yao
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| |
Collapse
|
20
|
Song W, Dong Y, Shan Y, Yang F, Min C, Yuan X. Ultrasensitive broadband photoacoustic microscopy based on common-path interferometric surface plasmon resonance sensing. PHOTOACOUSTICS 2022; 28:100419. [PMID: 36339639 PMCID: PMC9634362 DOI: 10.1016/j.pacs.2022.100419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 09/15/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Ultrafast and sensitive response of surface plasmon polaritons to the ultrasonically-modulated changes in refractive index of the water allows photoacoustic impulses to be measured using surface plasmon resonance (SPR) sensors. However, the sensing modalities always suffer from either low sensitivity or instable signal output, possibly precluding imaging recovery. By exploiting that pressure transients can substantially produce phase shift in p-polarized optical reflection but have no impact on s-polarized component in SPR sensing, we develop a common-path interferometric SPR sensor for photoacoustic measurement, in which time-varying light interference between photoacoustically-perturbed p-polarized beam and its orthogonal s-polarized component of a single interrogation laser is monitored. Such configuration retains optimum photoacoustic measurement with concurrent very stable signal output, high sensitivity (noise-equivalent-pressure sensitivity of ∼95.6 Pa), and broad bandwidth (∼173 MHz). Volumetric microvascular imaging from mouse ear in vivo is obtained, suggesting that the novel sensing approach potentially advances biomedical photoacoustic applications.
Collapse
|
21
|
Meng JW, Tang SJ, Sun J, Shen K, Li C, Gong Q, Xiao YF. Dissipative Acousto-optic Interactions in Optical Microcavities. PHYSICAL REVIEW LETTERS 2022; 129:073901. [PMID: 36018697 DOI: 10.1103/physrevlett.129.073901] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
We propose and demonstrate experimentally the strong dissipative acousto-optic interaction between a suspended vibrating microfiber and a whispering-gallery microcavity. On the one hand, the dissipative response driven by an external stimulus of acoustic waves is found to be stronger than the dispersive response by 2 orders of magnitude. On the other hand, dead points emerge with the zero dissipative response at certain parameters, promising the potentials in physical sensing such as precise measurements of magnetic field and temperature. The strong dissipative acousto-optic interaction is then explored for ultrasensitive detection of broadband acoustic waves. A noise equivalent pressure as low as 0.81 Pa at 140 kHz in air is demonstrated experimentally, insensitive to cavity Q factors and does not rely on mechanical resonances.
Collapse
Affiliation(s)
- Jia-Wei Meng
- Frontiers Science Center for Nano-optoelectronics and State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Shui-Jing Tang
- Frontiers Science Center for Nano-optoelectronics and State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| | - Jialve Sun
- College of Future Technology, Peking University, Beijing 100871, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong 226010, China
| | - Ke Shen
- Frontiers Science Center for Nano-optoelectronics and State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| | - Changhui Li
- College of Future Technology, Peking University, Beijing 100871, China
- National Biomedical Imaging Center, Peking University, Beijing 100871, China
| | - Qihuang Gong
- Frontiers Science Center for Nano-optoelectronics and State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Yun-Feng Xiao
- Frontiers Science Center for Nano-optoelectronics and State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong 226010, China
- National Biomedical Imaging Center, Peking University, Beijing 100871, China
| |
Collapse
|
22
|
Jiang D, Xu Y, Lan H, Shen Y, Zhang Y, Gao F, Liu L, Gao F. Size-adjustable ring-shape photoacoustic tomography imager in vivo. JOURNAL OF BIOPHOTONICS 2022; 15:e202200070. [PMID: 35389530 DOI: 10.1002/jbio.202200070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/28/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
Photoacoustic tomography (PAT) has become a novel biomedical imaging modality for scientific research and clinical diagnosis. It combines the advantages of spectroscopic optical absorption contrast and acoustic resolution with deep penetration. In this article, an imaging size-adjustable PAT system is proposed for potential clinical applications such as breast cancer detection and screening, which can adapt to imaging targets with various sizes. Comparing with the conventional PAT setup with a fixed radius ring shape ultrasound transducer (UT) array, the proposed system is more flexible for imaging diverse size targets based on sectorial ultrasound transducer arrays (SUTAs). Four SUTAs form a 128-channel UT array for photoacoustic detection, where each SUTA has 32 elements. Such four SUTAs are controlled by four stepper motors, respectively, and can change their distribution layout position to adapt for various imaging applications. In this proposed system, the radius of the imaging region of interest (ROI) can be adjusted from 50 to 100 mm, which is much more flexible than the conventional PAT system with a full ring UT array. The simulation experiments using the MATLAB k-wave toolbox demonstrate the feasibility of the proposed system. To further validate the proposed system, imaging of pencil leads made phantom, ex-vivo pork breast with indocyanine green (ICG) injected, and in-vivo human wrist, finger and ankle are conducted to prove its feasibility for potential clinical applications.
Collapse
Affiliation(s)
- Daohuai Jiang
- Hybrid Imaging System Laboratory, School of Information Science and Technology, ShanghaiTech University, Shanghai, China
- Chinese Academy of Sciences, Shanghai Institute of Microsystem and Information Technology, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yifei Xu
- Hybrid Imaging System Laboratory, School of Information Science and Technology, ShanghaiTech University, Shanghai, China
| | - Hengrong Lan
- Hybrid Imaging System Laboratory, School of Information Science and Technology, ShanghaiTech University, Shanghai, China
- Chinese Academy of Sciences, Shanghai Institute of Microsystem and Information Technology, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuting Shen
- Hybrid Imaging System Laboratory, School of Information Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yifan Zhang
- Hybrid Imaging System Laboratory, School of Information Science and Technology, ShanghaiTech University, Shanghai, China
| | - Feng Gao
- Hybrid Imaging System Laboratory, School of Information Science and Technology, ShanghaiTech University, Shanghai, China
| | - Li Liu
- Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Fei Gao
- Hybrid Imaging System Laboratory, School of Information Science and Technology, ShanghaiTech University, Shanghai, China
- Shanghai Engineering Research Center of Energy Efficient and Custom AI IC, Shanghai, China
| |
Collapse
|
23
|
Ghavami M, Ilkhechi AK, Zemp R. Flexible transparent CMUT arrays for photoacoustic tomography. OPTICS EXPRESS 2022; 30:15877-15894. [PMID: 36221443 DOI: 10.1364/oe.455796] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/30/2022] [Indexed: 06/16/2023]
Abstract
This paper reports the fabrication and characterization of the first flexible transparent capacitive micromachined ultrasound transducer (CMUT) array for through-illumination photoacoustic tomography. Fabricated based on an adhesive wafer bonding technique and a PDMS backfill approach, the array has a maximum transparency of 67% in visible light range and can be bent to a radius of curvature of less than 5 mm without the structural layers being damaged. With a center frequency of 3.5 MHz, 80% fractional bandwidth, and noise equivalent pressure (NEP) of 62 mPa/H z, the array was successfully used in limited-view photoacoustic tomography of a 100 µm wire target, demonstrating lateral and axial resolutions of 293 µm and 382 µm, respectively, with 46 dB signal-to-noise ratio. Additionally, deep tissue photoacoustic tomography was also demonstrated on a blood tube within a chicken tissue using the fabricated CMUT arrays.
Collapse
|
24
|
Photoacoustic Imaging in Biomedicine and Life Sciences. Life (Basel) 2022; 12:life12040588. [PMID: 35455079 PMCID: PMC9028050 DOI: 10.3390/life12040588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/19/2022] [Indexed: 12/25/2022] Open
Abstract
Photo-acoustic imaging, also known as opto-acoustic imaging, has become a widely popular modality for biomedical applications. This hybrid technique possesses the advantages of high optical contrast and high ultrasonic resolution. Due to the distinct optical absorption properties of tissue compartments and main chromophores, photo-acoustics is able to non-invasively observe structural and functional variations within biological tissues including oxygenation and deoxygenation, blood vessels and spatial melanin distribution. The detection of acoustic waves produced by a pulsed laser source yields a high scaling range, from organ level photo-acoustic tomography to sub-cellular or even molecular imaging. This review discusses significant novel technical solutions utilising photo-acoustics and their applications in the fields of biomedicine and life sciences.
Collapse
|
25
|
Fu B, Cheng Y, Shang C, Li J, Wang G, Zhang C, Sun J, Ma J, Ji X, He B. Optical ultrasound sensors for photoacoustic imaging: a narrative review. Quant Imaging Med Surg 2022; 12:1608-1631. [PMID: 35111652 PMCID: PMC8739120 DOI: 10.21037/qims-21-605] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/23/2021] [Indexed: 11/06/2022]
Abstract
Optical ultrasound sensors have been increasingly employed in biomedical diagnosis and photoacoustic imaging (PAI) due to high sensitivity and resolution. PAI could visualize the distribution of ultrasound excited by laser pulses in biological tissues. The information of tissues is detected by ultrasound sensors in order to reconstruct structural images. However, traditional ultrasound transducers are made of piezoelectric films that lose sensitivity quadratically with the size reduction. In addition, the influence of electromagnetic interference limits further applications of traditional ultrasound transducers. Therefore, optical ultrasound sensors are developed to overcome these shortcomings. In this review, optical ultrasound sensors are classified into resonant and non-resonant ones in view of physical principles. The principles and basic parameters of sensors are introduced in detail. Moreover, the state of the art of optical ultrasound sensors and applications in PAI are also presented. Furthermore, the merits and drawbacks of sensors based on resonance and non-resonance are discussed in perspectives. We believe this review could provide researchers with a better understanding of the current status of optical ultrasound sensors and biomedical applications.
Collapse
Affiliation(s)
- Bo Fu
- BUAA-CCMU Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, China
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine, Ministry of Industry and Information Technology, Interdisciplinary Innovation Institute of Medicine and Engineering, Beihang University, Beijing, China
| | - Yuan Cheng
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China
| | - Ce Shang
- BUAA-CCMU Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Jing Li
- BUAA-CCMU Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Gang Wang
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China
| | - Chenghong Zhang
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China
| | - Jingxuan Sun
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China
| | - Jianguo Ma
- BUAA-CCMU Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, China
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine, Ministry of Industry and Information Technology, Interdisciplinary Innovation Institute of Medicine and Engineering, Beihang University, Beijing, China
| | - Xunming Ji
- Neurosurgery Department of Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Boqu He
- BUAA-CCMU Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, China
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China
| |
Collapse
|
26
|
Practical review on photoacoustic computed tomography using curved ultrasound array transducer. Biomed Eng Lett 2021; 12:19-35. [DOI: 10.1007/s13534-021-00214-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/15/2021] [Accepted: 12/05/2021] [Indexed: 12/26/2022] Open
|
27
|
Yang F, Guo G, Zheng S, Fang H, Min C, Song W, Yuan X. Broadband surface plasmon resonance sensor for fast spectroscopic photoacoustic microscopy. PHOTOACOUSTICS 2021; 24:100305. [PMID: 34956832 PMCID: PMC8674647 DOI: 10.1016/j.pacs.2021.100305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/16/2021] [Accepted: 09/15/2021] [Indexed: 06/14/2023]
Abstract
High-speed optical-resolution photoacoustic microscopy (OR-PAM), integrating the merits of high spatial resolution and fast imaging acquisition, can observe dynamic processes of the optical absorption-based molecular specificities. However, it remains challenging for the evaluation to morphological and physiological parameters that are closely associated with photoacoustic spectrum due to the inadequate ultrasonic frequency response of the routinely-employed piezoelectric transducer. By utilizing the galvanometer for fast optical scanning and our previously-developed surface plasmon resonance sensor as an unfocused broadband ultrasonic detector, high-speed spectroscopic photoacoustic imaging was accessed in the OR-PAM system, achieving an acoustic bandwidth of ∼125 MHz and B-scan rate at ∼200 Hz over a scanning range of ∼0.5 mm. Our system demonstrated the dynamic imaging of the moving phantoms' structures and the simultaneous characterization of their photoacoustic spectra over time. Further, fast volumetric imaging and spectroscopic analysis of microanatomic features of a zebrafish eye ex vivo was obtained label-freely.
Collapse
|
28
|
Su D, Zhai T, Ge K, Zhang S, Xu Z, Tong J, Li H, Sun S, Zhang Y, Wang X. WGM lasing in irregular cavities with arbitrary boundaries. NANOSCALE 2021; 13:18349-18355. [PMID: 34729576 DOI: 10.1039/d1nr03938e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Because of its limited light field mode and high Q value, the whispering-gallery-mode (WGM) cavity has been widely studied. In this study, we propose a simple, rapid, low-cost and no-manufacturing technology method that we call the drip-coating method to obtain an irregular cavity with arbitrary boundaries. By using polyvinyl alcohol (PVA) solution doped with rhodamine 6G, the irregular cavity with arbitrary boundaries was drip-coated on a high-reflection mirror, forming a WGM laser. The sample was pumped with a 532 nm pulsed laser, and the single-mode WGM and multi-WGM lasing were obtained. All WGMs are the vertical oscillation modes, which originate from both the total internal reflection of the PVA/air interface and vertical reflection of the PVA/mirror interface. The other boundaries of the cavity were not involved in the reflection and could have any shape. The mechanism of producing single-mode lasing is due to the action of the loss-gain cavity. Multi-WGM lasing is attributed to at least two groups of different WGMs existing in an irregular cavity. This can be confirmed by using a microsphere model and intensity correlation method. These results may provide an alternative for the design of WGM lasers.
Collapse
Affiliation(s)
- Dan Su
- College of Mechanical and Electronic Engineering, Beijing Polytechnic, Beijing 100176, China
| | - Tianrui Zhai
- Faculty of Science, Beijing University of Technology, Beijing 100124, China.
| | - Kun Ge
- Faculty of Science, Beijing University of Technology, Beijing 100124, China.
| | - Shuai Zhang
- Faculty of Science, Beijing University of Technology, Beijing 100124, China.
| | - Zhiyang Xu
- Faculty of Science, Beijing University of Technology, Beijing 100124, China.
| | - Junhua Tong
- Faculty of Science, Beijing University of Technology, Beijing 100124, China.
| | - Hongzhao Li
- College of Mechanical and Electronic Engineering, Beijing Polytechnic, Beijing 100176, China
| | - Shiju Sun
- College of Mechanical and Electronic Engineering, Beijing Polytechnic, Beijing 100176, China
| | - Ying Zhang
- College of Mechanical and Electronic Engineering, Beijing Polytechnic, Beijing 100176, China
| | - Xiaolei Wang
- Faculty of Science, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
29
|
Soman R, Wee J, Peters K. Optical Fiber Sensors for Ultrasonic Structural Health Monitoring: A Review. SENSORS 2021; 21:s21217345. [PMID: 34770651 PMCID: PMC8587794 DOI: 10.3390/s21217345] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 11/28/2022]
Abstract
Guided waves (GW) and acoustic emission (AE) -based structural health monitoring (SHM) have widespread applications in structures, as the monitoring of an entire structure is possible with a limited number of sensors. Optical fiber-based sensors offer several advantages, such as their low weight, small size, ability to be embedded, and immunity to electro-magnetic interference. Therefore, they have long been regarded as an ideal sensing solution for SHM. In this review, the different optical fiber technologies used for ultrasonic sensing are discussed in detail. Special attention has been given to the new developments in the use of FBG sensors for ultrasonic measurements, as they are the most promising and widely used of the sensors. The paper highlights the physics of the wave coupling to the optical fiber and explains the different phenomena such as directional sensitivity and directional coupling of the wave. Applications of the different sensors in real SHM applications have also been discussed. Finally, the review identifies the encouraging trends and future areas where the field is expected to develop.
Collapse
Affiliation(s)
- Rohan Soman
- Institute of Fluid Flow Machinery, Polish Academy of Science, 80-231 Gdansk, Poland
- Correspondence: ; Tel.: +48-58-5225-174
| | - Junghyun Wee
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA; (J.W.); (K.P.)
| | - Kara Peters
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA; (J.W.); (K.P.)
| |
Collapse
|
30
|
Abstract
Photoacoustic imaging is a new type of noninvasive, nonradiation imaging modality that combines the deep penetration of ultrasonic imaging and high specificity of optical imaging. Photoacoustic imaging systems employing conventional ultrasonic sensors impose certain constraints such as obstructions in the optical path, bulky sensor size, complex system configurations, difficult optical and acoustic alignment, and degradation of signal-to-noise ratio. To overcome these drawbacks, an ultrasonic sensor in the optically transparent form has been introduced, as it enables direct delivery of excitation light through the sensors. In recent years, various types of optically transparent ultrasonic sensors have been developed for photoacoustic imaging applications, including optics-based ultrasonic sensors, piezoelectric-based ultrasonic sensors, and microelectromechanical system-based capacitive micromachined ultrasonic transducers. In this paper, the authors review representative transparent sensors for photoacoustic imaging applications. In addition, the potential challenges and future directions of the development of transparent sensors are discussed.
Collapse
|
31
|
Ülgen O, Shnaiderman R, Zakian C, Ntziachristos V. Interferometric optical fiber sensor for optoacoustic endomicroscopy. JOURNAL OF BIOPHOTONICS 2021; 14:e202000501. [PMID: 33773073 DOI: 10.1002/jbio.202000501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/04/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
Optical fiber sensors can offer robust and miniaturized detection of wideband ultrasound, yielding high sensitivity and immunity to electromagnetic interference. However, the lack of cost-effective manufacturing methods prevents the disseminated use of these sensors in biomedical applications. In this study, we developed and optimized a simple method to create optical cavities with high-quality mirrors for acoustic sensing based on micro-manipulation of UV-curable optical adhesives and electroless chemical silver deposition. This approach enables the manufacturing of ultrasound sensors based on Fabry-Pérot interferometers on optical fiber tips with minimal production costs. Characterization and high-resolution optoacoustic imaging experiments show that the manufacturing process yielded a fiber sensor with a small NEP ( 11mPa/Hz ) over a broad detection bandwidth (25 MHz), generally outperforming conventional piezoelectric based transducers. We discuss how the new manufacturing process leads to a high-performance acoustic detector that, due to low cost, can be used as a disposable sensor.
Collapse
Affiliation(s)
- Okan Ülgen
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - Rami Shnaiderman
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - Christian Zakian
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - Vasilis Ntziachristos
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
32
|
Goldfain AM, Yung CS, Briggman KA, Hwang J. Optical phase contrast imaging for absolute, quantitative measurements of ultrasonic fields with frequencies up to 20 MHz. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2021; 149:4620. [PMID: 34241467 PMCID: PMC9889099 DOI: 10.1121/10.0005431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 06/03/2021] [Indexed: 06/13/2023]
Abstract
The technique of phase contrast imaging, combined with tomographic reconstructions, can rapidly measure ultrasonic fields propagating in water, including ultrasonic fields with complex wavefront shapes, which are difficult to characterize with standard hydrophone measurements. Furthermore, the technique can measure the absolute pressure amplitudes of ultrasonic fields without requiring a pressure calibration. Absolute pressure measurements have been previously demonstrated using optical imaging methods for ultrasonic frequencies below 2.5 MHz. The present work demonstrates that phase contrast imaging can accurately measure ultrasonic fields with frequencies up to 20 MHz and pressure amplitudes near 10 kPa. Accurate measurements at high ultrasonic frequencies are performed by tailoring the measurement conditions to limit optical diffraction as guided by a simple dimensionless parameter. In some situations, differences between high frequency measurements made with the phase contrast method and a calibrated hydrophone become apparent, and the reasons for these differences are discussed. Extending optical imaging measurements to high ultrasonic frequencies could facilitate quantitative applications of ultrasound measurements in nondestructive testing and medical therapeutics and diagnostics such as photoacoustic imaging.
Collapse
Affiliation(s)
- Aaron M Goldfain
- Applied Physics Division, National Institute of Standards and Technology, Boulder, Colorado 80305, USA
| | - Christopher S Yung
- Applied Physics Division, National Institute of Standards and Technology, Boulder, Colorado 80305, USA
| | - Kimberly A Briggman
- Applied Physics Division, National Institute of Standards and Technology, Boulder, Colorado 80305, USA
| | - Jeeseong Hwang
- Applied Physics Division, National Institute of Standards and Technology, Boulder, Colorado 80305, USA
| |
Collapse
|
33
|
Yang F, Song W, Zhang C, Fang H, Min C, Yuan X. A Phase-Shifted Surface Plasmon Resonance Sensor for Simultaneous Photoacoustic Volumetric Imaging and Spectroscopic Analysis. ACS Sens 2021; 6:1840-1848. [PMID: 33861572 DOI: 10.1021/acssensors.1c00029] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
For biomedical photoacoustic applications, an ongoing challenge in simultaneous volumetric imaging and spectroscopic analysis arises from ultrasonic detectors lacking high sensitivity to pressure transients over a broad spectral bandwidth. Photoacoustic impulses can be measured on the basis of the ultrafast temporal dynamics and highly sensitive response of surface plasmon polaritons to the refractive index changes. Taking advantage of the ultra-sensitive phase shift of surface plasmons caused by ultrasonic perturbations instead of the reflectivity change [as is the case for traditional surface plasmon resonance (SPR) sensors], a novel SPR sensor based on phase-shifted interrogation was developed for the broadband measurement of photoacoustically induced pressure transients with improved detection sensitivity. Specifically, by encoding the acoustically modulated phase change into time-varying interference intensity, our sensor achieved an almost five-fold sensitivity enhancement (∼98 Pa noise-equivalent pressure) compared with the reflectivity-mode SPR sensing technologies (∼470 Pa) while retaining a broadband acoustic response of ∼174 MHz. Incorporating our sensor into an optical-resolution photoacoustic microscope, we performed label-free imaging of a zebrafish eye in vivo, enabling simultaneous volumetric visualization and spectrally resolved discrimination of anatomical features. This novel sensing technology has potential for advancing biomedical ultrasonic and/or photoacoustic investigations.
Collapse
Affiliation(s)
- Fan Yang
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
- Nanophotonics Research Center, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Wei Song
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Chonglei Zhang
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Hui Fang
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Changjun Min
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Xiaocong Yuan
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
34
|
Wang Y, Xi L. Chronic cranial window for photoacoustic imaging: a mini review. Vis Comput Ind Biomed Art 2021; 4:15. [PMID: 34037873 PMCID: PMC8155166 DOI: 10.1186/s42492-021-00081-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 04/27/2021] [Indexed: 12/31/2022] Open
Abstract
Photoacoustic (PA) microscopy is being increasingly used to visualize the microcirculation of the brain cortex at the micron level in living rodents. By combining it with long-term cranial window techniques, vasculature can be monitored over a period of days extending to months through a field of view. To fulfill the requirements of long-term in vivo PA imaging, the cranial window must involve a simple and rapid surgical procedure, biological compatibility, and sufficient optical-acoustic transparency, which are major challenges. Recently, several cranial window techniques have been reported for longitudinal PA imaging. Here, the development of chronic cranial windows for PA imaging is reviewed and its technical details are discussed, including window installation, imaging quality, and longitudinal stability.
Collapse
Affiliation(s)
- Yongchao Wang
- School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China.,Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Lei Xi
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
35
|
Jin L, Liang Y. Fiber laser technologies for photoacoustic microscopy. Vis Comput Ind Biomed Art 2021; 4:11. [PMID: 33928461 PMCID: PMC8085136 DOI: 10.1186/s42492-021-00076-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 04/05/2021] [Indexed: 12/04/2022] Open
Abstract
Fiber laser technology has experienced a rapid growth over the past decade owing to increased applications in precision measurement and optical testing, medical care, and industrial applications, including laser welding, cleaning, and manufacturing. A fiber laser can output laser pulses with high energy, a high repetition rate, a controllable wavelength, low noise, and good beam quality, making it applicable in photoacoustic imaging. Herein, recent developments in fiber-laser-based photoacoustic microscopy (PAM) are reviewed. Multispectral PAM can be used to image oxygen saturation or lipid-rich biological tissues by applying a Q-switched fiber laser, a stimulated Raman scattering-based laser source, or a fiber-based supercontinuum source for photoacoustic excitation. PAM can also incorporate a single-mode fiber laser cavity as a high-sensitivity ultrasound sensor by measuring the acoustically induced lasing-frequency shift. Because of their small size and high flexibility, compact head-mounted, wearable, or hand-held imaging modalities and better photoacoustic endoscopes can be enabled using fiber-laser-based PAM.
Collapse
Affiliation(s)
- Long Jin
- Guangdong Provincial Key Laboratory of Fiber Optic Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 510632, China.
| | - Yizhi Liang
- Guangdong Provincial Key Laboratory of Fiber Optic Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
36
|
Sukkasem C, Sasivimolkul S, Suvarnaphaet P, Pechprasarn S. Analysis of Embedded Optical Interferometry in Transparent Elastic Grating for Optical Detection of Ultrasonic Waves. SENSORS (BASEL, SWITZERLAND) 2021; 21:2787. [PMID: 33921007 PMCID: PMC8071368 DOI: 10.3390/s21082787] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 01/15/2023]
Abstract
In this paper, we propose a theoretical framework to explain how the transparent elastic grating structure can be employed to enhance the mechanical and optical properties for ultrasonic detection. Incident ultrasonic waves can compress the flexible material, where the change in thickness of the elastic film can be measured through an optical interferometer. Herein, the polydimethylsiloxane (PDMS) was employed in the design of a thin film grating pattern. The PDMS grating with the grating period shorter than the ultrasound wavelength allowed the ultrasound to be coupled into surface acoustic wave (SAW) mode. The grating gaps provided spaces for the PDMS grating to be compressed when the ultrasound illuminated on it. This grating pattern can provide an embedded thin film based optical interferometer through Fabry-Perot resonant modes. Several optical thin film-based technologies for ultrasonic detection were compared. The proposed elastic grating gave rise to higher sensitivity to ultrasonic detection than a surface plasmon resonance-based sensor, a uniform PDMS thin film, a PDMS sensor with shearing interference, and a conventional Fabry-Perot-based sensor. The PDMS grating achieved the enhancement of sensitivity up to 1.3 × 10-5 Pa-1 and figure of merit of 1.4 × 10-5 Pa-1 which were higher than those of conventional Fabry-Perot structure by 7 times and 4 times, respectively.
Collapse
Affiliation(s)
| | | | | | - Suejit Pechprasarn
- College of Biomedical Engineering, Rangsit University, Pathum Thani 12000, Thailand; (C.S.); (S.S.); (P.S.)
| |
Collapse
|
37
|
Liao J, Yang L. Optical whispering-gallery mode barcodes for high-precision and wide-range temperature measurements. LIGHT, SCIENCE & APPLICATIONS 2021; 10:32. [PMID: 33547272 PMCID: PMC7862871 DOI: 10.1038/s41377-021-00472-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/20/2020] [Accepted: 01/12/2021] [Indexed: 05/11/2023]
Abstract
Temperature is one of the most fundamental physical properties to characterize various physical, chemical, and biological processes. Even a slight change in temperature could have an impact on the status or dynamics of a system. Thus, there is a great need for high-precision and large-dynamic-range temperature measurements. Conventional temperature sensors encounter difficulties in high-precision thermal sensing on the submicron scale. Recently, optical whispering-gallery mode (WGM) sensors have shown promise for many sensing applications, such as thermal sensing, magnetic detection, and biosensing. However, despite their superior sensitivity, the conventional sensing method for WGM resonators relies on tracking the changes in a single mode, which limits the dynamic range constrained by the laser source that has to be fine-tuned in a timely manner to follow the selected mode during the measurement. Moreover, we cannot derive the actual temperature from the spectrum directly but rather derive a relative temperature change. Here, we demonstrate an optical WGM barcode technique involving simultaneous monitoring of the patterns of multiple modes that can provide a direct temperature readout from the spectrum. The measurement relies on the patterns of multiple modes in the WGM spectrum instead of the changes of a particular mode. It can provide us with more information than the single-mode spectrum, such as the precise measurement of actual temperatures. Leveraging the high sensitivity of WGMs and eliminating the need to monitor particular modes, this work lays the foundation for developing a high-performance temperature sensor with not only superior sensitivity but also a broad dynamic range.
Collapse
Affiliation(s)
- Jie Liao
- Department of Electrical & Systems Engineering, Washington University in St. Louis, MO 63130, St. Louis, USA
| | - Lan Yang
- Department of Electrical & Systems Engineering, Washington University in St. Louis, MO 63130, St. Louis, USA.
- Department of Physics, Washington University in St. Louis, MO 63130, St. Louis, USA.
| |
Collapse
|
38
|
Das D, Sharma A, Rajendran P, Pramanik M. Another decade of photoacoustic imaging. Phys Med Biol 2020; 66. [PMID: 33361580 DOI: 10.1088/1361-6560/abd669] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/23/2020] [Indexed: 01/09/2023]
Abstract
Photoacoustic imaging - a hybrid biomedical imaging modality finding its way to clinical practices. Although the photoacoustic phenomenon was known more than a century back, only in the last two decades it has been widely researched and used for biomedical imaging applications. In this review we focus on the development and progress of the technology in the last decade (2010-2020). From becoming more and more user friendly, cheaper in cost, portable in size, photoacoustic imaging promises a wide range of applications, if translated to clinic. The growth of photoacoustic community is steady, and with several new directions researchers are exploring, it is inevitable that photoacoustic imaging will one day establish itself as a regular imaging system in the clinical practices.
Collapse
Affiliation(s)
- Dhiman Das
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, SINGAPORE
| | - Arunima Sharma
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, SINGAPORE
| | - Praveenbalaji Rajendran
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, SINGAPORE
| | - Manojit Pramanik
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, N1.3-B2-11, Singapore, 637457, SINGAPORE
| |
Collapse
|
39
|
Li M, Nyayapathi N, Kilian HI, Xia J, Lovell JF, Yao J. Sound Out the Deep Colors: Photoacoustic Molecular Imaging at New Depths. Mol Imaging 2020; 19:1536012120981518. [PMID: 33336621 PMCID: PMC7750763 DOI: 10.1177/1536012120981518] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Photoacoustic tomography (PAT) has become increasingly popular for molecular imaging due to its unique optical absorption contrast, high spatial resolution, deep imaging depth, and high imaging speed. Yet, the strong optical attenuation of biological tissues has traditionally prevented PAT from penetrating more than a few centimeters and limited its application for studying deeply seated targets. A variety of PAT technologies have been developed to extend the imaging depth, including employing deep-penetrating microwaves and X-ray photons as excitation sources, delivering the light to the inside of the organ, reshaping the light wavefront to better focus into scattering medium, as well as improving the sensitivity of ultrasonic transducers. At the same time, novel optical fluence mapping algorithms and image reconstruction methods have been developed to improve the quantitative accuracy of PAT, which is crucial to recover weak molecular signals at larger depths. The development of highly-absorbing near-infrared PA molecular probes has also flourished to provide high sensitivity and specificity in studying cellular processes. This review aims to introduce the recent developments in deep PA molecular imaging, including novel imaging systems, image processing methods and molecular probes, as well as their representative biomedical applications. Existing challenges and future directions are also discussed.
Collapse
Affiliation(s)
- Mucong Li
- Department of Biomedical Engineering, 3065Duke University, Durham, NC, USA
| | - Nikhila Nyayapathi
- Department of Biomedical Engineering, 12292University of Buffalo, NY, USA
| | - Hailey I Kilian
- Department of Biomedical Engineering, 12292University of Buffalo, NY, USA
| | - Jun Xia
- Department of Biomedical Engineering, 12292University of Buffalo, NY, USA
| | - Jonathan F Lovell
- Department of Biomedical Engineering, 12292University of Buffalo, NY, USA
| | - Junjie Yao
- Department of Biomedical Engineering, 3065Duke University, Durham, NC, USA
| |
Collapse
|
40
|
Zhou J, Jokerst JV. Photoacoustic imaging with fiber optic technology: A review. PHOTOACOUSTICS 2020; 20:100211. [PMID: 33163358 PMCID: PMC7606844 DOI: 10.1016/j.pacs.2020.100211] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/05/2020] [Accepted: 09/19/2020] [Indexed: 05/03/2023]
Abstract
Photoacoustic imaging (PAI) has achieved remarkable growth in the past few decades since it takes advantage of both optical and ultrasound (US) imaging. In order to better promote the wide clinical applications of PAI, many miniaturized and portable PAI systems have recently been proposed. Most of these systems utilize fiber optic technologies. Here, we overview the fiber optic technologies used in PAI. This paper discusses three different fiber optic technologies: fiber optic light transmission, fiber optic US transmission, and fiber optic US detection. These fiber optic technologies are analyzed in different PAI modalities including photoacoustic microscopy (PAM), photoacoustic computed tomography (PACT), and minimally invasive photoacoustic imaging (MIPAI).
Collapse
Affiliation(s)
- Jingcheng Zhou
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92092, USA
| | - Jesse V. Jokerst
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92092, USA
- Materials Science and Engineering Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92092, USA
- Department of Radiology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92092, USA
| |
Collapse
|
41
|
Tsang VT, Li X, Wong TT. A Review of Endogenous and Exogenous Contrast Agents Used in Photoacoustic Tomography with Different Sensing Configurations. SENSORS 2020; 20:s20195595. [PMID: 33003566 PMCID: PMC7582683 DOI: 10.3390/s20195595] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/18/2020] [Accepted: 09/26/2020] [Indexed: 12/17/2022]
Abstract
Optical-based sensing approaches have long been an indispensable way to detect molecules in biological tissues for various biomedical research and applications. The advancement in optical microscopy is one of the main drivers for discoveries and innovations in both life science and biomedical imaging. However, the shallow imaging depth due to the use of ballistic photons fundamentally limits optical imaging approaches’ translational potential to a clinical setting. Photoacoustic (PA) tomography (PAT) is a rapidly growing hybrid imaging modality that is capable of acoustically detecting optical contrast. PAT uniquely enjoys high-resolution deep-tissue imaging owing to the utilization of diffused photons. The exploration of endogenous contrast agents and the development of exogenous contrast agents further improve the molecular specificity for PAT. PAT’s versatile design and non-invasive nature have proven its great potential as a biomedical imaging tool for a multitude of biomedical applications. In this review, representative endogenous and exogenous PA contrast agents will be introduced alongside common PAT system configurations, including the latest advances of all-optical acoustic sensing techniques.
Collapse
|
42
|
Zhu X, Huang Z, Li Z, Li W, Liu X, Chen Z, Tian J, Li C. Resolution-matched reflection mode photoacoustic microscopy and optical coherence tomography dual modality system. PHOTOACOUSTICS 2020; 19:100188. [PMID: 32577377 PMCID: PMC7300161 DOI: 10.1016/j.pacs.2020.100188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/22/2020] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
Photoacoustic microscopy (PAM) and optical coherence tomography (OCT) are sensitive to optical absorption and scattering characteristics, respectively. As such, the integration of these two modalities in order to combine important complementary information has garnered much attention. Due to the relatively low axial resolution of PAM, PAM and OCT dual modality systems generally have a large resolution gap, especially for reflection mode systems. In this study, based on a wide-band transparent pure-optical ultrasonic detector, we developed a dual modality system (PAM-OCT system) in which PAM has a similar spatial resolution (i.e. several micrometers in both the lateral and axial directions) to OCT. In addition, due to the optical transparency advantage, the integrated system works in reflection mode, which is ideal for in vivo biomedical imaging. We successfully imaged the skin of a mouse hindlimb, which cannot be done by a transmission mode dual modality system. Our work demonstrates this dual modality system has potential in biomedical studies with complementary imaging contrasts.
Collapse
|
43
|
Chen R, He Y, Shi J, Yung C, Hwang J, Wang LV, Zhou Q. Transparent High-Frequency Ultrasonic Transducer for Photoacoustic Microscopy Application. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:1848-1853. [PMID: 32286968 PMCID: PMC7484980 DOI: 10.1109/tuffc.2020.2985369] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We report the development of an optically transparent high-frequency ultrasonic transducer using lithium niobate single-crystal and indium-tin-oxide electrodes with up to 90% optical transmission in the visible-to-near-infrared spectrum. The center frequency of the transducer was at 36.9 MHz with 33.9%, at -6 dB fractional bandwidth. The photoacoustic imaging capability of the fabricated transducer was also demonstrated by successfully imaging a resolution target and mouse-ear vasculatures in vivo, which were irradiated by a 532 nm pulse laser transmitted through the transducer.
Collapse
|
44
|
Manwar R, Kratkiewicz K, Avanaki K. Overview of Ultrasound Detection Technologies for Photoacoustic Imaging. MICROMACHINES 2020; 11:E692. [PMID: 32708869 PMCID: PMC7407969 DOI: 10.3390/mi11070692] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 12/15/2022]
Abstract
Ultrasound detection is one of the major components of photoacoustic imaging systems. Advancement in ultrasound transducer technology has a significant impact on the translation of photoacoustic imaging to the clinic. Here, we present an overview on various ultrasound transducer technologies including conventional piezoelectric and micromachined transducers, as well as optical ultrasound detection technology. We explain the core components of each technology, their working principle, and describe their manufacturing process. We then quantitatively compare their performance when they are used in the receive mode of a photoacoustic imaging system.
Collapse
Affiliation(s)
- Rayyan Manwar
- Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA;
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48201, USA;
| | - Karl Kratkiewicz
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48201, USA;
| | - Kamran Avanaki
- Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA;
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48201, USA;
- Department of Dermatology, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
45
|
Kang D. Signal magnitude nonlinearity to an absorption coefficient in photoacoustic imaging. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2020; 37:163-173. [PMID: 32118894 DOI: 10.1364/josaa.37.000163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
We investigate photoacoustic (PA) signal magnitude variation to an absorption coefficient of localized absorbing objects measured by spherically focused ultrasound transducers (US TDs). For this investigation, we develop the PA simulation method that directly calculates Green function solutions of the Helmholtz PA wave equation, considering grid-like elements on absorbing objects and US TDs. The simulation results show that the PA signal amplitude in the PA imaging is nonlinearly varied to the absorption coefficient of localized objects, which are distinct from the known PA saturation effect. For spherical objects especially, the PA amplitude shows a maximum value at a certain absorption coefficient, and decreases even though the absorption coefficient further increases from that point. We suggest conceptual and mathematical interpretations for this phenomenon by analyzing the characteristics of PA spectra combined with US TD transfer functions, which indicates that the combined effect of US TD spatial and temporal filtering plays a significant role in the PA signal magnitude nonlinearity.
Collapse
|
46
|
Dangi A, Agrawal S, Kothapalli SR. Lithium niobate-based transparent ultrasound transducers for photoacoustic imaging. OPTICS LETTERS 2019; 44:5326-5329. [PMID: 31674999 DOI: 10.1364/ol.44.005326] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
This Letter demonstrates lithium niobate (LiNbO3)-based transparent ultrasound transducers (TUTs) for photoacoustic imaging applications. The TUTs were fabricated by coating the top and bottom surfaces of a 0.25 mm thick LiNbO3wafer with transparent indium-tin-oxide (ITO) electrodes. The resulting transducers showed ∼80% optical transparency in the wavelength range of 690-970 nm. The TUTs had a resonant frequency of 14.5 MHz and ∼70% photoacoustic bandwidth. The versatility of the TUT approach is demonstrated by introducing two different transparent photoacoustic imaging (PAI) geometries. In one method, which suits endoscopy applications, an optical fiber of a laser diode is directly fixed on the backside of a 2.5 mm diameter TUT, and the fiber-TUT device is raster scanned to form 3D photoacoustic images. In the second method, which suits high-throughput applications, a free-space optical-only raster scanning of the laser fiber across a 1 cm×1 cm planar TUT yielded 3D photoacoustic images. The proposed TUT approach is low in cost, easy to manufacture, compatible with conventional clinical ultrasound electronics, and scalable for different configurations, including 2D TUT arrays to achieve real-time 3D high-throughput PAI.
Collapse
|
47
|
Song W, Guo G, Wang J, Zhu Y, Zhang C, Fang H, Min C, Zhu S, Yuan X. In Vivo Reflection-Mode Photoacoustic Microscopy Enhanced by Plasmonic Sensing with an Acoustic Cavity. ACS Sens 2019; 4:2697-2705. [PMID: 31556602 DOI: 10.1021/acssensors.9b01126] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Relying on high-sensitivity refractive index sensing and a highly constrained evanescent field of surface plasmon resonance (SPR), broadband photoacoustic (PA) pressure transients were measured using an SPR sensor instead of routinely used piezoelectric ultrasonic transducers. An acoustic cavity made from stainless steel and having a designed ellipsoidal inner surface redirected laser-induced PA waves from the PA excitation spot to the SPR sensor. By incorporating the SPR sensor with the acoustic cavity, we developed optical-resolution photoacoustic microscopy (OR-PAM) with multiple advantages, including reflection-mode signal capture, improved PA detection sensitivity, increased PA spectral bandwidth as broad as ∼98 MHz, and micrometer-scale lateral resolution. This allowed label-free volumetric PA imaging of vasculature in not only the thin ear but also the thick forelimb of living mice. With these combined advantages, our OR-PAM system potentially offers more opportunities for biomedical investigation, for example, when studying microcirculations in the eye and cortex.
Collapse
Affiliation(s)
- Wei Song
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology, Shenzhen University, Shenzhen 518060, China
| | - Guangdi Guo
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology, Shenzhen University, Shenzhen 518060, China
| | - Jing Wang
- Xi’an Additive Manufacturing National Institute, Xi’an JiaoTong University, Xi’an 710049, China
| | - Yan Zhu
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| | - Chonglei Zhang
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology, Shenzhen University, Shenzhen 518060, China
| | - Hui Fang
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology, Shenzhen University, Shenzhen 518060, China
| | - Changjun Min
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology, Shenzhen University, Shenzhen 518060, China
| | - Siwei Zhu
- Institute of Oncology, Tianjin Union Medical Centre, Tianjin 300121, China
| | - Xiaocong Yuan
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
48
|
Hazan Y, Rosenthal A. Simultaneous multi-channel ultrasound detection via phase modulated pulse interferometry. OPTICS EXPRESS 2019; 27:28844-28854. [PMID: 31684629 DOI: 10.1364/oe.27.028844] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/13/2019] [Indexed: 06/10/2023]
Abstract
In optical detection of ultrasound, resonators with high Q-factors are often used to maximize sensitivity. However, in order to perform parallel interrogation, conventional interferometric techniques require an overlap between the spectra of all the resonators, which is difficult to achieve with high Q-factor resonators. In this paper, a new method is developed for parallel interrogation of optical resonators with non-overlapping spectra. The method is based on a phase-modulation scheme for pulse interferometry (PM-PI) and requires only a single photodetector and sampling channel per ultrasound detector. Using PM-PI, parallel ultrasound detection is demonstrated with four high Q-factor resonators.
Collapse
|
49
|
Disposable ultrasound-sensing chronic cranial window by soft nanoimprinting lithography. Nat Commun 2019; 10:4277. [PMID: 31537800 PMCID: PMC6753120 DOI: 10.1038/s41467-019-12178-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 08/27/2019] [Indexed: 01/31/2023] Open
Abstract
Chronic cranial window (CCW) is an essential tool in enabling longitudinal imaging and manipulation of various brain activities in live animals. However, an active CCW capable of sensing the concealed in vivo environment while simultaneously providing longitudinal optical access to the brain is not currently available. Here we report a disposable ultrasound-sensing CCW (usCCW) featuring an integrated transparent nanophotonic ultrasonic detector fabricated using soft nanoimprint lithography process. We optimize the sensor design and the associated fabrication process to significantly improve detection sensitivity and reliability, which are critical for the intend longitudinal in vivo investigations. Surgically implanting the usCCW on the skull creates a self-contained environment, maintaining optical access while eliminating the need for external ultrasound coupling medium for photoacoustic imaging. Using this usCCW, we demonstrate photoacoustic microscopy of cortical vascular network in live mice over 28 days. This work establishes the foundation for integrating photoacoustic imaging with modern brain research. Chronic cranial windows (CCW) enable long-term imaging of brain activity, but usually they only provide passive optical access to the tissue. Here the authors develop an active CCW integrated with an ultrasound detector which enables long-term photoacoustic imaging of the cortical vasculature in live mice with higher image quality.
Collapse
|
50
|
Chan J, Zheng Z, Bell K, Le M, Reza PH, Yeow JTW. Photoacoustic Imaging with Capacitive Micromachined Ultrasound Transducers: Principles and Developments. SENSORS (BASEL, SWITZERLAND) 2019; 19:E3617. [PMID: 31434241 PMCID: PMC6720758 DOI: 10.3390/s19163617] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/15/2019] [Accepted: 08/18/2019] [Indexed: 12/14/2022]
Abstract
Photoacoustic imaging (PAI) is an emerging imaging technique that bridges the gap between pure optical and acoustic techniques to provide images with optical contrast at the acoustic penetration depth. The two key components that have allowed PAI to attain high-resolution images at deeper penetration depths are the photoacoustic signal generator, which is typically implemented as a pulsed laser and the detector to receive the generated acoustic signals. Many types of acoustic sensors have been explored as a detector for the PAI including Fabry-Perot interferometers (FPIs), micro ring resonators (MRRs), piezoelectric transducers, and capacitive micromachined ultrasound transducers (CMUTs). The fabrication technique of CMUTs has given it an edge over the other detectors. First, CMUTs can be easily fabricated into given shapes and sizes to fit the design specifications. Moreover, they can be made into an array to increase the imaging speed and reduce motion artifacts. With a fabrication technique that is similar to complementary metal-oxide-semiconductor (CMOS), CMUTs can be integrated with electronics to reduce the parasitic capacitance and improve the signal to noise ratio. The numerous benefits of CMUTs have enticed researchers to develop it for various PAI purposes such as photoacoustic computed tomography (PACT) and photoacoustic endoscopy applications. For PACT applications, the main areas of research are in designing two-dimensional array, transparent, and multi-frequency CMUTs. Moving from the table top approach to endoscopes, some of the different configurations that are being investigated are phased and ring arrays. In this paper, an overview of the development of CMUTs for PAI is presented.
Collapse
Affiliation(s)
- Jasmine Chan
- Department of Systems Design Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Zhou Zheng
- Department of Systems Design Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Kevan Bell
- Department of Systems Design Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Martin Le
- Department of Physics, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Parsin Haji Reza
- Department of Systems Design Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| | - John T W Yeow
- Department of Systems Design Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| |
Collapse
|