1
|
Lo CY, Koutsoukos KP, Nguyen DM, Wu Y, Angel Trujillo DA, Miller T, Shrestha T, Mackey E, Damani VS, Kanbur U, Opila R, Martin DC, Kaphan D, Kayser LV. Imidazolium-Based Sulfonating Agent to Control the Degree of Sulfonation of Aromatic Polymers and Enable Plastics-to-Electronics Upgrading. JACS AU 2024; 4:2596-2605. [PMID: 39055151 PMCID: PMC11267550 DOI: 10.1021/jacsau.4c00355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/13/2024] [Accepted: 06/24/2024] [Indexed: 07/27/2024]
Abstract
The accumulation of plastic waste in the environment is a growing environmental, economic, and societal challenge. Plastic upgrading, the conversion of low-value polymers to high-value materials, could address this challenge. Among upgrading strategies, the sulfonation of aromatic polymers is a powerful approach to access high-value materials for a range of applications, such as ion-exchange resins and membranes, electronic materials, and pharmaceuticals. While many sulfonation methods have been reported, achieving high degrees of sulfonation while minimizing side reactions that lead to defects in the polymer chains remains challenging. Additionally, sulfonating agents are most often used in large excess, which prevents precise control over the degree of sulfonation of aromatic polymers and their functionality. Herein, we address these challenges using 1,3-disulfonic acid imidazolium chloride ([Dsim]Cl), a sulfonic acid-based ionic liquid, to sulfonate aromatic polymers and upgrade plastic waste to electronic materials. We show that stoichiometric [Dsim]Cl can effectively sulfonate model polystyrene up to 92% in high yields, with minimal defects and high regioselectivity for the para position. Owing to its high reactivity, the use of substoichiometric [Dsim]Cl uniquely allows for precise control over the degree of sulfonation of polystyrene. This approach is also applicable to a wide range of aromatic polymers, including waste plastic. To prove the utility of our approach, samples of poly(styrene sulfonate) (PSS), obtained from either partially sulfonated polystyrene or expanded polystyrene waste, are used as scaffolds for poly(3,4-ethylenedioxythiophene) (PEDOT) to form the ubiquitous conductive material PEDOT:PSS. PEDOT:PSS from plastic waste is subsequently integrated into organic electrochemical transistors (OECTs) or as a hole transport layer (HTL) in a hybrid solar cell and shows the same performance as commercial PEDOT:PSS. This imidazolium-mediated approach to precisely sulfonating aromatic polymers provides a pathway toward upgrading postconsumer plastic waste to high-value electronic materials.
Collapse
Affiliation(s)
- Chun-Yuan Lo
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
| | - Kelsey P. Koutsoukos
- Department
of Materials Science and Engineering, University
of Delaware, Newark, Delaware 19716, United States
| | - Dan My Nguyen
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
| | - Yuhang Wu
- Department
of Materials Science and Engineering, University
of Delaware, Newark, Delaware 19716, United States
| | | | - Tabitha Miller
- Chemical
Sciences and Engineering Division, Argonne
National Laboratories, Lemont, Illinois 60439, United States
| | - Tulaja Shrestha
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
| | - Ethan Mackey
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
| | - Vidhika S. Damani
- Department
of Materials Science and Engineering, University
of Delaware, Newark, Delaware 19716, United States
| | - Uddhav Kanbur
- Chemical
Sciences and Engineering Division, Argonne
National Laboratories, Lemont, Illinois 60439, United States
| | - Robert Opila
- Department
of Materials Science and Engineering, University
of Delaware, Newark, Delaware 19716, United States
| | - David C. Martin
- Department
of Materials Science and Engineering, University
of Delaware, Newark, Delaware 19716, United States
- Department
of Biomedical Engineering, University of
Delaware, Newark, Delaware 19716, United States
| | - David Kaphan
- Chemical
Sciences and Engineering Division, Argonne
National Laboratories, Lemont, Illinois 60439, United States
| | - Laure V. Kayser
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
- Department
of Materials Science and Engineering, University
of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
2
|
Wang L, Gong T, Ming W, Qiao X, Ye W, Zhang L, Pan C. One step preparation of multifunctional poly (ether sulfone) thin films with potential for wound dressing. BIOMATERIALS ADVANCES 2022; 136:212758. [PMID: 35929327 DOI: 10.1016/j.bioadv.2022.212758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/21/2022] [Accepted: 03/10/2022] [Indexed: 06/15/2023]
Abstract
The increasing demand for higher-quality medical care has resulted in the obsolescence of traditional biomaterials. Medical care is currently transitioning from an era depending on single-functional biomaterials to one that is supported by multifunctional and stable biomaterials. Herein, long-lasting multifunctional poly(ether sulfone) thin films (MPFs) containing heparin-mimic groups and a quaternary ammonium compound (QAC) were prepared via semi-interpenetrating polymer network (SIPN) strategy. The MPFs, with rough surface and inner finger-like macrovoid, had better hydrophilicity and anti-protein fouling ability, as revealed by scanning electron microscopy (SEM), atomic force microscope (AFM) and water contact angle (WCA) and protein adsorption tests. The results of platelet adhesion and activation, and clotting time confirmed that the hemocompatibility of the MPFs was significantly improved. From cell culture and germ-culture test, it was noted that the overall trend of human umbilical vein endothelial cell (HUVEC) proliferation was enhanced by a combination of heparin-mimic groups and QAC, whereas the growth of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) was significantly prohibited. In addition, the MPFs were capable of modulating the expression level of basic fibroblast growth factor (bFGF) and transforming growth factor-beta1 (TGF-β1) in fibroblast, which was beneficial to controlling the formation of hypertrophic scar. In summary, the MPFs had potential to be used in the field of wound management and the study might help guide the design of surface structure of wound dressing.
Collapse
Affiliation(s)
- Lingren Wang
- Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huaian, China; Department of Chemistry and Biochemistry, Georgia Southern University, Statesboro, United States.
| | - Tao Gong
- Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huaian, China
| | - Weihua Ming
- Department of Chemistry and Biochemistry, Georgia Southern University, Statesboro, United States
| | - Xinglong Qiao
- Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huaian, China
| | - Wei Ye
- Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huaian, China
| | - Linna Zhang
- Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huaian, China
| | - ChangJiang Pan
- Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huaian, China.
| |
Collapse
|
3
|
Single-walled carbon nanotubes grafted with dextran as additive to improve separation performance of polymer membranes. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117584] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Mitchell SM, Niradha Sachinthani KA, Pulukkody R, Pentzer EB. 100th Anniversary of Macromolecular Science Viewpoint: Polymerization of Cumulated Bonds: Isocyanates, Allenes, and Ketenes as Monomers. ACS Macro Lett 2020; 9:1046-1059. [PMID: 35648600 DOI: 10.1021/acsmacrolett.0c00396] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Polymer chemistry offers exciting opportunities to tailor the properties of soft materials through control of the composition of the polymers and their interaction with each other, additives, and surfaces. Ongoing advances in the synthesis of polymeric materials demonstrate the drive for materials with tailored properties for enhanced performance in the next generation of materials and devices. One class of small molecules that can serve as monomers in chain growth polymerization are cumulated double bonds of the general form X═Y═Z. The three most common classes of these molecules are isocyanates (N═C═O), allenes (C═C═C), and ketenes (C═C═O), each of which has been explored as monomers under a variety of conditions. The orthogonality of the two pi bonds of the cumulated double bonds (i.e., lack of conjugation) enables the formation of different polymer backbones from a single monomer, provided the regioreactivity is controlled. This Viewpoint outlines the use of these three cumulated double bonds as monomers, illustrating success and current limitations to established polymerization methods. We then provide an outlook to the future of cumulated double bonds as monomers for the generation of tailored polymer compositions.
Collapse
Affiliation(s)
- Sarah M. Mitchell
- Department of Chemistry, Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77840, United States
| | - K. A. Niradha Sachinthani
- Department of Chemistry, Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77840, United States
| | - Randinu Pulukkody
- Department of Chemistry, Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77840, United States
| | - Emily B. Pentzer
- Department of Chemistry, Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77840, United States
| |
Collapse
|
5
|
He C, Li M, Zhang J, Yan B, Zhao W, Sun S, Zhao C. Amides and Heparin-Like Polymer Co-Functionalized Graphene Oxide Based Core @ Polyethersulfone Based Shell Beads for Bilirubin Adsorption. Macromol Biosci 2020; 20:e2000153. [PMID: 32583960 DOI: 10.1002/mabi.202000153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/08/2020] [Indexed: 11/10/2022]
Abstract
Excessive bilirubin in the body of patient with liver dysfunction or metabolic obstruction may cause jaundice with irreversible brain damage, and new type of adsorbent for bilirubin is under frequent investigation. Herein, graphene oxide based core @ polyethersulfone-based shell beads are fabricated by phase inversion method, amides and heparin-like polymer are introduced to functionalize the core-shell beads. The beads are successfully prepared with obvious core-shell structure, adequate thermostability and porous shell. Clotting times and protein adsorption are investigated to inspect the hemocompatibility property of the beads. The adsorption of bilirubin is systematically investigated by evaluating the effects of contacting time, initial concentration and temperature on the adsorption, which exhibits improved bilirubin adsorption amount for the beads with amides contained cores or/and shells. It is worth believing that the amides and heparin-like polymer co-functionalized core-shell beads may be utilized in the field of hemoperfusion for bilirubin adsorption.
Collapse
Affiliation(s)
- Chao He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Mingyuan Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Jue Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Bingqing Yan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Shudong Sun
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
6
|
Liu X, Li M, Han T, Cao B, Qiu Z, Li Y, Li Q, Hu Y, Liu Z, Lam JWY, Hu X, Tang BZ. In Situ Generation of Azonia-Containing Polyelectrolytes for Luminescent Photopatterning and Superbug Killing. J Am Chem Soc 2019; 141:11259-11268. [DOI: 10.1021/jacs.9b04757] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xiaolin Liu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering, Institute of Molecular Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st Road, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
| | - Mengge Li
- Ministry of Education Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Ting Han
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering, Institute of Molecular Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st Road, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
| | - Bing Cao
- Ministry of Education Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Zijie Qiu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering, Institute of Molecular Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st Road, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
| | - Yuanyuan Li
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering, Institute of Molecular Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st Road, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
| | - Qiyao Li
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering, Institute of Molecular Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st Road, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
| | - Yubing Hu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering, Institute of Molecular Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st Road, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
| | - Zhiyang Liu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering, Institute of Molecular Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st Road, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
| | - Jacky W. Y. Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering, Institute of Molecular Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st Road, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
| | - Xianglong Hu
- Ministry of Education Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering, Institute of Molecular Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st Road, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
- Center for Aggregation-Induced Emission, SCUT-HKUST Joint Research Institute, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
7
|
Chen S, Lv C, Hao K, Jin L, Xie Y, Zhao W, Sun S, Zhang X, Zhao C. Multifunctional negatively-charged poly (ether sulfone) nanofibrous membrane for water remediation. J Colloid Interface Sci 2018; 538:648-659. [PMID: 30572229 DOI: 10.1016/j.jcis.2018.12.038] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/09/2018] [Accepted: 12/10/2018] [Indexed: 01/09/2023]
Abstract
Multifunctional materials, which can effectively and simultaneously remove various water-soluble contaminants like dyes and heavy metal ions, and separate oil from water, are urgent to meet increasing challenges on wastewater remediation. Herein, a cross-linked poly (acrylic acid) (PAA) modified poly (ether sulfone) nanofibrous membrane (NFM) was fabricated by a facile in-situ pre-reaction followed by electrospinning. The as-prepared NFM showed excellent hydrophilicity and underwater lipophobicity, therefore expressed excellent water permeability with high water flux (about 5142 L m2 h-1). As a result, under solely driven by gravity, the NFM was capable to separate emulsified oil/water emulsion and a wide range of oil/water mixtures. Moreover, repeating separation tests indicated that the NFM had great long-term sustainability even after ten separation cycles. In addition, due to the introduction of PAA and the large surface-to-volume ratio, the NFM also expressed rapid adsorption capacity for cationic dyes as well as heavy metal ions; thus could simultaneously remove these contaminants during the oil/water separation process. Furthermore, the NFM could be also decorated by Ag NPs to endow the membranes with remarkable antibacterial ability against both E. coli and S. aureus. Our findings strongly suggested that the multifunctional NFM may have great potential in treating complicated wastewater.
Collapse
Affiliation(s)
- Shengqiu Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Chunyan Lv
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Kai Hao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Lunqiang Jin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China; School of Chemistry and Chemical Engineering, State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Yi Xie
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Shudong Sun
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Xiang Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China; National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
8
|
Huang Y, Dan N, Dan W, Zhao W, Bai Z, Chen Y, Yang C. Bilayered Antimicrobial Nanofiber Membranes for Wound Dressings via in Situ Cross-Linking Polymerization and Electrospinning. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b03122] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yanping Huang
- College of Light Industry & Textile & Food Engineering, Key Laboratory for Leather Chemistry and Engineering of the Education Ministry, Sichuan University, Chengdu 610065, China
| | - Nianhua Dan
- College of Light Industry & Textile & Food Engineering, Key Laboratory for Leather Chemistry and Engineering of the Education Ministry, Sichuan University, Chengdu 610065, China
| | - Weihua Dan
- College of Light Industry & Textile & Food Engineering, Key Laboratory for Leather Chemistry and Engineering of the Education Ministry, Sichuan University, Chengdu 610065, China
- Research Center of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Zhongxiang Bai
- College of Light Industry & Textile & Food Engineering, Key Laboratory for Leather Chemistry and Engineering of the Education Ministry, Sichuan University, Chengdu 610065, China
| | - Yining Chen
- College of Light Industry & Textile & Food Engineering, Key Laboratory for Leather Chemistry and Engineering of the Education Ministry, Sichuan University, Chengdu 610065, China
| | - Changkai Yang
- College of Light Industry & Textile & Food Engineering, Key Laboratory for Leather Chemistry and Engineering of the Education Ministry, Sichuan University, Chengdu 610065, China
| |
Collapse
|
9
|
Chen S, Du Y, Zhang X, Xie Y, Shi Z, Ji H, Zhao W, Zhao C. One-step electrospinning of negatively-charged polyethersulfone nanofibrous membranes for selective removal of cationic dyes. J Taiwan Inst Chem Eng 2018. [DOI: 10.1016/j.jtice.2017.11.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Liu D, Zheng J, Wang X, Lu X, Zhu J, He C. Low-fouling PES membranes fabricated via in situ copolymerization mediated surface zwitterionicalization. NEW J CHEM 2018. [DOI: 10.1039/c7nj03437g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PEGylated and zwitterionic PES membranes were fabricated during membrane formation, showing superior antifouling and anticoagulant properties.
Collapse
Affiliation(s)
- Dapeng Liu
- School of Environmental Science and Engineering
- Suzhou University of Science and Technology
- Suzhou
- P. R. China
| | - Junzhi Zheng
- Suzhou Institute of Inspection on Fiber
- Suzhou
- P. R. China
| | - Xin Wang
- Department of Vascular Surgery
- Shanghai Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai
- P. R. China
| | - Xinwu Lu
- Department of Vascular Surgery
- Shanghai Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai
- P. R. China
| | - Jing Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- Donghua University
- Shanghai
- P. R. China
| | - Chunju He
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- Donghua University
- Shanghai
- P. R. China
| |
Collapse
|
11
|
Xiang T, Lu T, Zhao WF, Zhao CS. Ionic strength- and thermo-responsive polyethersulfone composite membranes with enhanced antifouling properties. NEW J CHEM 2018. [DOI: 10.1039/c8nj00039e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Zwitterionic polymer modified membranes were prepared, which showed ionic strength- and thermo-responsive properties.
Collapse
Affiliation(s)
- Tao Xiang
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Ting Lu
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Wei-Feng Zhao
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Chang-Sheng Zhao
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| |
Collapse
|
12
|
Zhang X, Zhou J, Wei R, Zhao W, Sun S, Zhao C. Design of anion species/strength responsive membranes via in-situ cross-linked copolymerization of ionic liquids. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.04.044] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Xie Y, Wang R, Li S, Xiang T, Zhao CS. A robust way to prepare blood-compatible and anti-fouling polyethersulfone membrane. Colloids Surf B Biointerfaces 2016; 146:326-33. [DOI: 10.1016/j.colsurfb.2016.06.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 06/17/2016] [Accepted: 06/20/2016] [Indexed: 01/06/2023]
|
14
|
Zhao W, He C, Nie C, Sun S, Zhao C. Synthesis and Characterization of Ultrahigh Ion-Exchange Capacity Polymeric Membranes. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.6b02770] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Weifeng Zhao
- College
of Polymer Science and Engineering, State Key Laboratory of Polymer Materials
Engineering, Sichuan University, Chengdu 610065, People’s Republic of China
- Fiber and Polymer Technology, School of Chemical Science and Engineering, Royal Institute of Technology (KTH), Teknikringen 56-58, Stockholm SE-10044, Sweden
| | - Chao He
- College
of Polymer Science and Engineering, State Key Laboratory of Polymer Materials
Engineering, Sichuan University, Chengdu 610065, People’s Republic of China
| | - Chuanxiong Nie
- College
of Polymer Science and Engineering, State Key Laboratory of Polymer Materials
Engineering, Sichuan University, Chengdu 610065, People’s Republic of China
| | - Shudong Sun
- College
of Polymer Science and Engineering, State Key Laboratory of Polymer Materials
Engineering, Sichuan University, Chengdu 610065, People’s Republic of China
| | - Changsheng Zhao
- College
of Polymer Science and Engineering, State Key Laboratory of Polymer Materials
Engineering, Sichuan University, Chengdu 610065, People’s Republic of China
| |
Collapse
|
15
|
Xiang T, Lu T, Xie Y, Zhao WF, Sun SD, Zhao CS. Zwitterionic polymer functionalization of polysulfone membrane with improved antifouling property and blood compatibility by combination of ATRP and click chemistry. Acta Biomater 2016; 40:162-171. [PMID: 27039977 DOI: 10.1016/j.actbio.2016.03.044] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 02/26/2016] [Accepted: 03/30/2016] [Indexed: 11/15/2022]
Abstract
The chemical compositions are very important for designing blood-contacting membranes with good antifouling property and blood compatibility. In this study, we propose a method combining ATRP and click chemistry to introduce zwitterionic polymer of poly(sulfobetaine methacrylate) (PSBMA), negatively charged polymers of poly(sodium methacrylate) (PNaMAA) and/or poly(sodium p-styrene sulfonate) (PNaSS), to improve the antifouling property and blood compatibility of polysulfone (PSf) membranes. Attenuated total reflectance-Fourier transform infrared spectra, X-ray photoelectron spectroscopy and water contact angle results confirmed the successful grafting of the functional polymers. The antifouling property and blood compatibility of the modified membranes were systematically investigated. The zwitterionic polymer (PSBMA) grafted membranes showed good resistance to protein adsorption and bacterial adhesion; the negatively charged polymer (PNaSS or PNaMAA) grafted membranes showed improved blood compatibility, especially the anticoagulant property. Moreover, the PSBMA/PNaMAA modified membrane showed both antifouling property and anticoagulant property, and exhibited a synergistic effect in inhibiting blood coagulation. The functionalization of membrane surfaces by a combination of ATRP and click chemistry is demonstrated as an effective route to improve the antifouling property and blood compatibility of membranes in blood-contact.
Collapse
Affiliation(s)
- Tao Xiang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Ting Lu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yi Xie
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Wei-Feng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China; Fiber and Polymer Technology, School of Chemical Science and Engineering, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden.
| | - Shu-Dong Sun
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Chang-Sheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
16
|
Jiang X, Xiang T, Xie Y, Wang R, Zhao W, Sun S, Zhao CS. Functional polyethersulfone particles for the removal of bilirubin. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2016; 27:28. [PMID: 26704545 DOI: 10.1007/s10856-015-5642-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 11/27/2015] [Indexed: 06/05/2023]
Abstract
In this study, polyethersulfone/poly (glycidyl methacrylate) particles are prepared via in situ cross-linked polymerization coupled with a phase inversion technique. The surfaces of these particles are then further modified by grafting amino groups using tetraethylenepentamine, dethylenetriamine, ethylenediamine, or 1,6-hexanediamine for the removal of bilirubin. The particles are characterized by Flourier transform infrared spectroscopy, thermogravimetric analysis, and scanning electron microscopy. Batch adsorption experiments are performed to verify the adsorption capability, and the effect of bilirubin initial concentration, bovine serum albumin concentration, and solution ionic strength on the adsorption is also investigated. In addition, both adsorption kinetic and isotherm models are applied to analyze the adsorption process of bilirubin, and a particle column is used to further study the bilirubin removal ability.To prove that the method was a universal portal to prepare functional particles, polysulfone, polystyrene, and poly(vinylidene fluoride) based functional particles were also prepared and used for the removal of bilirubin. This study and the results indicated that the particles had a great potential to be used in hemoperfusion treatment for hyperbilirubinemia.
Collapse
Affiliation(s)
- Xin Jiang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Tao Xiang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Yi Xie
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Rui Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Shudong Sun
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
| | - Chang-Sheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People's Republic of China.
| |
Collapse
|
17
|
Li SS, Xie Y, Xiang T, Ma L, He C, Sun SD, Zhao CS. Heparin-mimicking polyethersulfone membranes – hemocompatibility, cytocompatibility, antifouling and antibacterial properties. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2015.09.054] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
He C, Cheng C, Nie SQ, Wang LR, Nie CX, Sun SD, Zhao CS. Graphene oxide linked sulfonate-based polyanionic nanogels as biocompatible, robust and versatile modifiers of ultrafiltration membranes. J Mater Chem B 2016; 4:6143-6153. [DOI: 10.1039/c6tb01855f] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A GO linked sulfonate-based polyanionic nanogel as a membrane modifier has application potential in clinical hemodialysis and other biomedical therapies.
Collapse
Affiliation(s)
- Chao He
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Chong Cheng
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Sheng-Qiang Nie
- Engineering Technology Research Center for Materials Protection of Wear and Corrosion of Guizhou Province
- University of Guizhou Province
- College of Chemistry and Materials Engineering
- Guiyang University
- China
| | - Ling-Ren Wang
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Chuan-Xiong Nie
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Shu-Dong Sun
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Chang-Sheng Zhao
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| |
Collapse
|
19
|
Zhao W, Liu L, Wang L, Li N. Functionalization of polyacrylonitrile with tetrazole groups for ultrafiltration membranes. RSC Adv 2016. [DOI: 10.1039/c6ra10322g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A series of tetrazole-functionalized polyacrylonitrile (TZ-PAN) copolymers were synthesized via a post-modification cycloaddition reaction of nitriles with azide for ultrafiltration (UF) membrane application.
Collapse
Affiliation(s)
- Wei Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes
- Tianjin Polytechnic University
- Tianjin 300387
- China
- School of Environmental and Chemical Engineering
| | - Lei Liu
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry
- Chinese Academy of Sciences
- Taiyuan
- China
| | - Liang Wang
- State Key Laboratory of Separation Membranes and Membrane Processes
- Tianjin Polytechnic University
- Tianjin 300387
- China
- School of Environmental and Chemical Engineering
| | - Nanwen Li
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry
- Chinese Academy of Sciences
- Taiyuan
- China
| |
Collapse
|
20
|
Deng J, Liu X, Zhang S, Cheng C, Nie C, Zhao C. Versatile and Rapid Postfunctionalization from Cyclodextrin Modified Host Polymeric Membrane Substrate. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:9665-9674. [PMID: 26301434 DOI: 10.1021/acs.langmuir.5b02038] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Surface modification has long been of great interest to impart desired functionalities to the bioimplants. However, due to the limitations of recent technologies in surface modification, it is highly desirable to explore novel protocols, which can advantageously and efficiently endow the inert material surfaces with versatile biofunctionalities. Herein, to achieve versatile and rapid postfunctionalization of polymeric membrane, we demonstrate a new strategy for the fabrication of β-cyclodextrin (β-CD) modified host membrane substrate that can recognize a series of well-designed guest macromolecules. The surface assembly procedure was driven by the host-guest interaction between adamantane (Ad) and β-CD. β-CD immobilized host membrane was fabricated via two steps: (1) epoxy groups enriched poly(ether sulfone) (PES) membrane was first prepared via in situ cross-linking polymerization and subsequently phase separation; (2) mono-6-deoxy-6-ethylenediamine-β-CD (EDA-β-CD) was then anchored onto the surface of the epoxy functionalized PES membrane to obtain PES-CD. Subsequently, three types of Ad-terminated polymers, including Ad-poly(styrenesulfonate-co-sodium acrylate) (Ad-PSA), Ad-methoxypoly(ethylene glycol) (Ad-PEG), and Ad-poly(methyl chloride-quaternized 2-(dimethylamino)ethyl methacrylate (Ad-PMT), were separately assembled onto the β-CD immobilized surfaces to endow the membranes with anticoagulant, antifouling, and antibacterial capability, respectively. Activated partial thromboplastin time (APTT), thrombin time (TT), and prothrombin time (PT) measurements were carried out to explore the anticoagulant activity. The antifouling capability was evaluated via protein adsorption and platelet adhesion measurements. Moreover, Staphyllococcous aureus (S. aureus) was selected as model bacteria to evaluate the antibacterial ability of the functionalized membranes. The results indicated that well-regulated blood compatibility, antifouling capability, and bactericidal activity could be achieved by the proposed rapid postfunctionalization on polymeric membranes. This approach of versatile and rapid postfunctionalization is promising for the preparation of multifunctional polymeric membrane materials to meet with various demands for the further applications.
Collapse
Affiliation(s)
- Jie Deng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu 610065, China
| | - Xinyue Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu 610065, China
| | - Shuqing Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu 610065, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu 610065, China
| | - Chuanxiong Nie
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu 610065, China
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu 610065, China
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu 610064, China
| |
Collapse
|
21
|
Bao J, Wu Q, Sun J, Zhou Y, Wang Y, Jiang X, Li L, Shi Y, Bu H. Hemocompatibility improvement of perfusion-decellularized clinical-scale liver scaffold through heparin immobilization. Sci Rep 2015; 5:10756. [PMID: 26030843 PMCID: PMC5377232 DOI: 10.1038/srep10756] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 04/27/2015] [Indexed: 02/05/2023] Open
Abstract
Whole-liver perfusion-decellularization is an attractive scaffold-preparation technique for producing clinical transplantable liver tissue. However, the scaffold's poor hemocompatibility poses a major obstacle. This study was intended to improve the hemocompatibility of perfusion-decellularized porcine liver scaffold via immobilization of heparin. Heparin was immobilized on decellularized liver scaffolds (DLSs) by electrostatic binding using a layer-by-layer self-assembly technique (/h-LBL scaffold), covalent binding via multi-point attachment (/h-MPA scaffold), or end-point attachment (/h-EPA scaffold). The effect of heparinization on anticoagulant ability and cytocompatibility were investigated. The result of heparin content and release tests revealed EPA technique performed higher efficiency of heparin immobilization than other two methods. Then, systematic in vitro investigation of prothrombin time (PT), thrombin time (TT), activated partial thromboplastin time (APTT), platelet adhesion and human platelet factor 4 (PF4, indicates platelet activation) confirmed the heparinized scaffolds, especially the /h-EPA counterparts, exhibited ultralow blood component activations and excellent hemocompatibility. Furthermore, heparin treatments prevented thrombosis successfully in DLSs with blood perfusion after implanted in vivo. Meanwhile, after heparin processes, both primary hepatocyte and endothelial cell viability were also well-maintained, which indicated that heparin treatments with improved biocompatibility might extend to various hemoperfusable whole-organ scaffolds' preparation.
Collapse
Affiliation(s)
- Ji Bao
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiong Wu
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiu Sun
- Department of General Surgery, The first people’s hospital of Yibin, Yibin, 644000, China
| | - Yongjie Zhou
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yujia Wang
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xin Jiang
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610041, China
| | - Li Li
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yujun Shi
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hong Bu
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
22
|
Deng X, Nikiforov AY, Coenye T, Cools P, Aziz G, Morent R, De Geyter N, Leys C. Antimicrobial nano-silver non-woven polyethylene terephthalate fabric via an atmospheric pressure plasma deposition process. Sci Rep 2015; 5:10138. [PMID: 25951432 PMCID: PMC4423426 DOI: 10.1038/srep10138] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 03/30/2015] [Indexed: 11/09/2022] Open
Abstract
An antimicrobial nano-silver non-woven polyethylene terephthalate (PET) fabric has been prepared in a three step process. The fabrics were first pretreated by depositing a layer of organosilicon thin film using an atmospheric pressure plasma system, then silver nano-particles (AgNPs) were incorporated into the fabrics by a dipping-dry process, and finally the nano-particles were covered by a second organosilicon layer of 10-50 nm, which acts as a barrier layer. Different surface characterization techniques like SEM and XPS have been implemented to study the morphology and the chemical composition of the nano-silver fabrics. Based on these techniques, a uniform immobilization of AgNPs in the PET matrix has been observed. The antimicrobial activity of the treated fabrics has also been tested using P. aeruginosa, S. aureus and C. albicans. It reveals that the thickness of the barrier layer has a strong effect on the bacterial reduction of the fabrics. The durability and stability of the AgNPs on the fabrics has also been investigated in a washing process. By doing so, it is confirmed that the barrier layer can effectively prevent the release of AgNPs and that the thickness of the barrier layer is an important parameter to control the silver ions release.
Collapse
Affiliation(s)
- Xiaolong Deng
- Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41B4, 9000 Gent, Belgium
| | - Anton Yu Nikiforov
- Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41B4, 9000 Gent, Belgium
| | - Tom Coenye
- Department of Pharmaceutical Analysis, Ghent University, 9000 Gent, Belgium
| | - Pieter Cools
- Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41B4, 9000 Gent, Belgium
| | - Gaelle Aziz
- Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41B4, 9000 Gent, Belgium
| | - Rino Morent
- Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41B4, 9000 Gent, Belgium
| | - Nathalie De Geyter
- Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41B4, 9000 Gent, Belgium
| | - Christophe Leys
- Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41B4, 9000 Gent, Belgium
| |
Collapse
|
23
|
Zwitterionic glycosyl modified polyethersulfone membranes with enhanced anti-fouling property and blood compatibility. J Colloid Interface Sci 2015; 443:36-44. [DOI: 10.1016/j.jcis.2014.11.053] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 11/07/2014] [Accepted: 11/07/2014] [Indexed: 11/23/2022]
|
24
|
Xiang T, Luo CD, Wang R, Han ZY, Sun SD, Zhao CS. Ionic-strength-sensitive polyethersulfone membrane with improved anti-fouling property modified by zwitterionic polymer via in situ cross-linked polymerization. J Memb Sci 2015. [DOI: 10.1016/j.memsci.2014.11.045] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
25
|
Xiang T, Lu T, Wang R, Wang C, Sun SD, He HB, Zhao CS. Improved antifouling properties and blood compatibility of 3-methacryloxypropyl trimethoxysilane – based zwitterionic copolymer modified composite membranes via in situ post-crosslinking copolymerization. RSC Adv 2015. [DOI: 10.1039/c4ra14755c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In the present study, a new method to prepare stable antifouling and blood compatible membranes is developed, i.e., in situ post-crosslinking copolymerization.
Collapse
Affiliation(s)
- Tao Xiang
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Ting Lu
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Rui Wang
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Cheng Wang
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Shu-Dong Sun
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Hong-Bo He
- West China Hospital
- Sichuan University
- Chengdu 610041
- China
| | - Chang-Sheng Zhao
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| |
Collapse
|
26
|
Cheng C, Sun S, Zhao C. Progress in heparin and heparin-like/mimicking polymer-functionalized biomedical membranes. J Mater Chem B 2014; 2:7649-7672. [DOI: 10.1039/c4tb01390e] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
27
|
Shi ZQ, Huang XL, Wang C, Li YF, He C, Zhao CS. In Situ Cross-Linked Polymerization toward Poly(ether sulfone)/Poly(sodium acrylate) Hybrid Particles for the Removal of Environmental Toxins. Ind Eng Chem Res 2014. [DOI: 10.1021/ie5028809] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhen-Qiang Shi
- College of Polymer Science
and Engineering, State Key Laboratory of Polymer Materials
Engineering, Sichuan University, Chengdu 610065, China
| | - Xue-Lian Huang
- College of Polymer Science
and Engineering, State Key Laboratory of Polymer Materials
Engineering, Sichuan University, Chengdu 610065, China
| | - Chen Wang
- College of Polymer Science
and Engineering, State Key Laboratory of Polymer Materials
Engineering, Sichuan University, Chengdu 610065, China
| | - Yi-Fan Li
- College of Polymer Science
and Engineering, State Key Laboratory of Polymer Materials
Engineering, Sichuan University, Chengdu 610065, China
| | - Chao He
- College of Polymer Science
and Engineering, State Key Laboratory of Polymer Materials
Engineering, Sichuan University, Chengdu 610065, China
| | - Chang-Sheng Zhao
- College of Polymer Science
and Engineering, State Key Laboratory of Polymer Materials
Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|