1
|
Lei Q, Xu L, Tang KY, Yu JL, Chen XF, Wu SX, Wang JJ, Jiang HB. An Antenna-Enriched Chemosensory Protein Plays Important Roles in the Perception of Host Plant Volatiles in Bactrocera dorsalis (Diptera: Tephritidae). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2888-2897. [PMID: 38294413 DOI: 10.1021/acs.jafc.3c06890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Olfaction plays indispensable roles in insect behavior such as host location, foraging, oviposition, and avoiding predators. Chemosensory proteins (CSPs) can discriminate the hydrophobic odorants and transfer them to the odorant receptors. Presently, CSPs have been identified in many insect species. However, their presence and functions remain unknown in Bactrocera dorsalis, a destructive and invasive insect pest in the fruit and vegetable industry. Here, we annotated eight CSP genes in the genome of B. dorsalis. The results of quantitative real-time polymerase chain reaction (RT-qPCR) showed that BdorCSP3 was highly expressed in the antennae. Molecular docking and in vitro binding assays showed that BdorCSP3 had a good binding ability to host volatiles methyl eugenol (ME, male-specific attractant) and β-caryophyllene (potential female attractant). Subsequently, CRISPR/Cas9 was used to generate BdorCSP3-/- mutants. Electroantennograms (EAGs) and behavioral assays revealed that male mutants significantly reduced the preference for ME, while female mutants lost their oviposition preference to β-caryophyllene. Our data indicated that BdorCSP3 played important roles in the perception of ME and β-caryophyllene. The results not only expanded our knowledge of the olfaction perception mechanism of insect CSPs but also provided a potential molecular target for the control of B. dorsalis.
Collapse
Affiliation(s)
- Quan Lei
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Li Xu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Kai-Yue Tang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Jie-Ling Yu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Xiao-Feng Chen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Shuang-Xiong Wu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Hong-Bo Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| |
Collapse
|
2
|
Yu H, Wang K, Yang Z, Li X, Liu S, Wang L, Zhang H. A ferritin protein is involved in the development and reproduction of the whitefly, Bemisia tabaci. ENVIRONMENTAL ENTOMOLOGY 2023; 52:750-758. [PMID: 37318359 DOI: 10.1093/ee/nvad056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/06/2023] [Accepted: 06/01/2023] [Indexed: 06/16/2023]
Abstract
Ferritins are conserved iron-binding proteins that exist in most living organisms and play an essential role in the maintenance of cellular iron homeostasis. Although ferritin has been studied in many species, little is known about its role in the whitefly, Bemisia tabaci. In this study, we identified an iron-binding protein from B. tabaci and named it BtabFer1. The full-length cDNA of BtabFer1 is 1,043 bp and encodes a protein consisting of 224 amino acids with a deduced molecular weight of 25.26 kDa, and phylogenetic analysis shows that BtabFer1 is conserved among Hemiptera insects. The expression levels of BtabFer1 in different developmental stages and tissues were analyzed by real-time PCR, and results showed that BtabFer1 was ubiquitously expressed at all developmental stages and in all examined tissues. The RNAi-mediated knockdown of BtabFer1 caused a significant reduction in survival rate, egg production, and egg hatching rate of whiteflies. Knockdown of BtabFer1 also inhibited the transcription of genes in the juvenile hormone signal transduction pathway. Taken together, these results suggest that BtabFer1 plays a critical role in the development and reproduction of whiteflies. This study can broaden our understanding of ferritin in insect fecundity and development, as well as provide baseline data for future studies.
Collapse
Affiliation(s)
- Hao Yu
- Department of Natural Resources, Henan Institute of Science and Technology, Xinxiang, Henan Province 453003, China
| | - Kui Wang
- Department of Natural Resources, Henan Institute of Science and Technology, Xinxiang, Henan Province 453003, China
| | - Zhifang Yang
- Department of Natural Resources, Henan Institute of Science and Technology, Xinxiang, Henan Province 453003, China
| | - Xiang Li
- Department of Natural Resources, Henan Institute of Science and Technology, Xinxiang, Henan Province 453003, China
| | - Shunxiao Liu
- Department of Natural Resources, Henan Institute of Science and Technology, Xinxiang, Henan Province 453003, China
- College of Agrarian Technology and Natural Resources, Sumy National Agrarian University, Sumy 40021, Ukraine
| | - Liuhao Wang
- Department of Natural Resources, Henan Institute of Science and Technology, Xinxiang, Henan Province 453003, China
| | - Hongwei Zhang
- Department of Natural Resources, Henan Institute of Science and Technology, Xinxiang, Henan Province 453003, China
| |
Collapse
|
3
|
Zeidan RS, Han SM, Leeuwenburgh C, Xiao R. Iron homeostasis and organismal aging. Ageing Res Rev 2021; 72:101510. [PMID: 34767974 DOI: 10.1016/j.arr.2021.101510] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/02/2021] [Accepted: 11/02/2021] [Indexed: 12/21/2022]
Abstract
Iron is indispensable for normal body functions across species because of its critical roles in red blood cell function and many essential proteins and enzymes required for numerous physiological processes. Regulation of iron homeostasis is an intricate process involving multiple modulators at the systemic, cellular, and molecular levels. Interestingly, emerging evidence has demonstrated that many modulators of iron homeostasis contribute to organismal aging and longevity. On the other hand, the age-related dysregulation of iron homeostasis is often associated with multiple age-related pathologies including bone resorption and neurodegenerative diseases such as Alzheimer's disease. Thus, a thorough understanding on the interconnections between systemic and cellular iron balance and organismal aging may help decipher the etiologies of multiple age-related diseases, which could ultimately lead to developing therapeutic strategies to delay aging and treat various age-related diseases. Here we present the current understanding on the mechanisms of iron homeostasis. We also discuss the impacts of aging on iron homeostatic processes and how dysregulated iron metabolism may affect aging and organismal longevity.
Collapse
|
4
|
Shen Y, Chen YZ, Zhang CX. RNAi-mediated silencing of ferritin genes in the brown planthopper Nilaparvata lugens affects survival, growth and female fecundity. PEST MANAGEMENT SCIENCE 2021; 77:365-377. [PMID: 32741141 DOI: 10.1002/ps.6026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/24/2020] [Accepted: 08/01/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The brown planthopper (BPH), Nilaparvata lugens, is the most destructive rice insect pest. To exploit potential target genes for applications in transgenic rice to control this sap-sucking insect pest, three ferritin genes were functionally characterized in this study. RESULTS In this study, three ferritin genes, that is, ferritin 1 Heavy Chain (NlFer1), ferritin 2 Light Chain (NlFer2) and soma ferritin (Nlsoma-Fer), were identified from BPH. Tissue-specific analyses showed that all three genes were highly expressed in the gut. Although double-stranded RNA injection-mediated RNA inference (RNAi) of Nlsoma-Fer expression resulted in only < 14% mortality in BPH, knockdown of NlFer1 or NlFer2 led to retarded growth and 100% mortality in young nymphs, and downregulation of NlFer1 and NlFer2 in newly emerged female adults caused undeveloped ovaries and severely inhibited oocyte growth, resulting in extremely low fecundity and a zero hatching rate. Knockdown of NlFer1 and NlFer2 caused similar phenotypes in BPH, indicating that they function together, as in many other animals. The results demonstrated that NlFer1 and NlFer2 were essential for BPH development and reproduction. BPHs showed high sensitivity to both dsNlFer1 and dsNlFer2, and injection of only 0.625 ng dsNlFer1 per BPH resulted in 100% mortality. Additionally, the effectiveness of feeding dsNlFer1 and dsNlFer2 to BPH nymphs was further proven. CONCLUSION NlFer1 and NlFer2 are essential for BPH development and reproduction, and the insect is highly sensitive to their depletion, suggesting that the two gut-highly-expressed genes are promising candidates for application in RNAi-based control of this destructive pest.
Collapse
Affiliation(s)
- Yan Shen
- Institute of Insect Science, Zhejiang University, Hangzhou, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Yuan-Zhi Chen
- Institute of Insect Science, Zhejiang University, Hangzhou, China
| | - Chuan-Xi Zhang
- Institute of Insect Science, Zhejiang University, Hangzhou, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| |
Collapse
|
5
|
Cao X, Li Y, Li S, Tang T, Liu F. Two ferritin genes (MdFerH and MdFerL) are involved in iron homeostasis, antioxidation and immune defense in housefly Musca domestica. JOURNAL OF INSECT PHYSIOLOGY 2020; 124:104073. [PMID: 32526234 DOI: 10.1016/j.jinsphys.2020.104073] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
Ferritin is a ubiquitous multi-subunit iron storage protein, made up of heavy chain and light chain subunits. In recent years, invertebrate ferritins have emerged as an important, yet largely underappreciated, component of host defense and antioxidant system. Here, two alternatively spliced transcripts encoding for a unique ferritin heavy chain homolog (MdFerH), and a transcript encoding for a light chain homolog (MdFerL) are cloned and characterized from Musca domestica. Comparing with MdFerH1, a fragment is absent at the 5' untranslated region of MdFerH2, where a putative iron response element is present. Amino acid sequence analysis shows that MdFerH possesses a strictly conserved ferroxidase site, while MdFerL has a putative atypical active center. Tissue distribution analysis indicates that MdFers are enriched expressed in gut. When the larvae receive diverse stimulations, including challenge by bacteria, exposure to excess Fe2+, doxorubicin or ultraviolet, the expression of MdFers is positively up-regulated in different degrees and different temporal patterns, indicating their potential roles in oxidative stress. The two mRNA isoforms of MdFerH appear to be differentially expressed in different tissues, but seem to show the similar expression patterns under diverse stress conditions. Further investigation reveals that silencing MdFers can alter the redox homeostasis, leading elevated mortalities of larvae following bacterial infection. Inspiringly, recombinant MdFerL produced in Pichia pastoris shows significant iron-chelating activity in vitro. These results suggest a pivotal role of ferritins from housefly in iron homeostasis, antibacterial immunity and redox balance.
Collapse
Affiliation(s)
- Xinru Cao
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, Hebei 071002, China
| | - Yongbao Li
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, Hebei 071002, China
| | - Shuangshuang Li
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, Hebei 071002, China
| | - Ting Tang
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, Hebei 071002, China; Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, China.
| | - Fengsong Liu
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, Hebei 071002, China; Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, China.
| |
Collapse
|
6
|
|
7
|
Wei D, Liu YW, Zhang YX, Wang JJ. Characterization and Function of Two Short Peptidoglycan Recognition Proteins Involved in the Immunity of Bactrocera dorsalis (Hendel). INSECTS 2019; 10:E79. [PMID: 30893923 PMCID: PMC6468497 DOI: 10.3390/insects10030079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/13/2019] [Accepted: 03/15/2019] [Indexed: 11/16/2022]
Abstract
Peptidoglycans (PGNs) are major bacterial components recognized by the immune systems of insects and mammals. PGN recognition proteins (PGRPs) are widely distributed and highly conserved in vertebrates and invertebrates. PGRPs are a family of pattern recognition receptors that recognize peptidoglycan and regulate immune responses. In this study, we cloned two PGRP genes (BdPGRP-SA and BdPGRP-SD) from Bactrocera dorsalis (Hendel), which encode 192 and 196 amino acid residues, respectively. Both genes were highly expressed in adults, especially in the fat body and midgut. These two genes were up-regulated when challenged by the immune triggers, PGN-EB (Escherichia coli O111:B4) and PGN-SA (Staphylococcus aureus). The suppression of transcriptional expression of either gene by RNA interference (RNAi) resulted in increased sensitivities to Gram-negative E. coli and Gram-positive S. aureus PGNs. Suppression of BdPGRP-SA and -SD expression by RNAi resulted in weak expressions of four antimicrobial peptides (AMPs) upon injected with E. coli or S. aureus. BdPGRP-SA and -SD are involved in recognizing both Gram-negative and Gram-positive bacteria independently to activate the downstream AMP's response to bacterial infection.
Collapse
Affiliation(s)
- Dong Wei
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China.
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
| | - Yu-Wei Liu
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China.
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
| | - Ying-Xin Zhang
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China.
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
| | - Jin-Jun Wang
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China.
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
8
|
Fei DQ, Yu HZ, Xu JP, Zhang SZ, Wang J, Li B, Yang LA, Hu P, Xu X, Zhao K, Shahzad T. Isolation of ferritin and its interaction with BmNPV in the silkworm, Bombyx mori. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 86:130-137. [PMID: 29793044 DOI: 10.1016/j.dci.2018.05.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/08/2018] [Accepted: 05/08/2018] [Indexed: 06/08/2023]
Abstract
Ferritin is a ubiquitous iron storage protein that plays an important role in host defence against pathogen infections. In the present study, native ferritin was isolated from the hemolymph of Bombyx mori using native-polyacrylamide gel electrophoresis (native-PAGE) and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The results revealed that ferritin consisted of two subunits, designated as BmFerHCH and BmFerLCH. Previously integrated previous transcriptome and iTRAQ data showed that the two subunits were down-regulated in resistant silkworm strain BC9 and there was no obvious change in the expression levels of the subunits in susceptible silkworm strain P50 after BmNPV infection. Virus overlay assays revealed that B. mori ferritin as the form of heteropolymer had an interaction with B. mori nucleopolyhedrovirus (BmNPV), but it can't interact with BmNPV after depolymerisation. What's more, reverse transcription quantitative PCR (RT-qPCR) analysis suggested that BmFerHCH and BmFerLCH could be induced by bacteria, virus and iron. This is the first study to extract B. mori ferritin successfully and confirms their roles in the process of BmNPV infection. All these results will lay a foundation for further research the function of B. mori ferritin.
Collapse
Affiliation(s)
- Dong-Qiong Fei
- School of Life Sciences, Anhui Agricultural University, Hefei, China; Anhui International Joint Research and Development Center of Sericulture Resources Utilization, China
| | - Hai-Zhong Yu
- School of Life Sciences, Anhui Agricultural University, Hefei, China; Anhui International Joint Research and Development Center of Sericulture Resources Utilization, China; National Navel Orange Engineering and Technology Research Center, Gannan Normal University, Ganzhou, China
| | - Jia-Ping Xu
- School of Life Sciences, Anhui Agricultural University, Hefei, China; Anhui International Joint Research and Development Center of Sericulture Resources Utilization, China.
| | - Shang-Zhi Zhang
- School of Life Sciences, Anhui Agricultural University, Hefei, China; Anhui International Joint Research and Development Center of Sericulture Resources Utilization, China
| | - Jie Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, China; Anhui International Joint Research and Development Center of Sericulture Resources Utilization, China
| | - Bing Li
- School of Life Sciences, Anhui Agricultural University, Hefei, China; Anhui International Joint Research and Development Center of Sericulture Resources Utilization, China
| | - Li-Ang Yang
- School of Life Sciences, Anhui Agricultural University, Hefei, China; Anhui International Joint Research and Development Center of Sericulture Resources Utilization, China
| | - Pei Hu
- School of Life Sciences, Anhui Agricultural University, Hefei, China; Anhui International Joint Research and Development Center of Sericulture Resources Utilization, China
| | - Xin Xu
- School of Life Sciences, Anhui Agricultural University, Hefei, China; Anhui International Joint Research and Development Center of Sericulture Resources Utilization, China
| | - Kang Zhao
- School of Life Sciences, Anhui Agricultural University, Hefei, China; Anhui International Joint Research and Development Center of Sericulture Resources Utilization, China
| | - Toufeeq Shahzad
- School of Life Sciences, Anhui Agricultural University, Hefei, China; Anhui International Joint Research and Development Center of Sericulture Resources Utilization, China
| |
Collapse
|
9
|
Liu SH, Li HF, Yang Y, Wei D, Jiang HB, Dou W, Yuan GR, Wang JJ. Antimicrobial peptide gene BdPho responds to peptidoglycan infection and mating stimulation in oriental fruit fly, Bactrocera dorsalis (Hendel). AMB Express 2018; 8:5. [PMID: 29327267 PMCID: PMC5764898 DOI: 10.1186/s13568-017-0533-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 12/29/2017] [Indexed: 11/10/2022] Open
Abstract
Phormicins belong to defensin family, which are important antimicrobial peptides (AMPs) in insects. These AMPs are inducible upon challenging by immune triggers. In the present study, we identified the cDNA of a phormicin gene (BdPho) in the oriental fruit fly, Bactrocera dorsalis (Hendel), a ruinous agricultural pest causing great economic losses to fruits and vegetables. The cDNA of BdPho contains a 282 bp open reading frame encoding 93 amino acid residues, and the predicted molecular weight and isoelectric point of BdPho peptide were 9.83 kDa and 7.54, respectively. Quantitative real-time PCR analyses showed that the transcription level of BdPho was the highest in adult during different developmental stages and was the highest in abdomen among adult tagmata. Moreover, BdPho was highly expressed in fat body among different tissues, both in female and male adult. The mRNA level of BdPho was significantly up-regulated to 7.46- and 14.53-fold at 3 and 6 h after the insects were challenged with peptidoglycans from Escherichia coli (PGN-EB), respectively, suggesting its antimicrobial activity against Gram-negative microorganisms. Furthermore, the expression level of BdPho was significantly up-regulated to 3.83-fold after mating, suggesting that female adults might enhance their immunity by up-regulating the expression level of BdPho during mating. These results firstly describe the basic properties of the phormicin gene from B. dorsalis, and lay the foundation for investigating functional properties of AMPs and exploring the molecular mechanisms in the immune system.
Collapse
|
10
|
Xie YF, Niu JZ, Jiang XZ, Yang WJ, Shen GM, Wei D, Smagghe G, Wang JJ. Influence of various stressors on the expression of core genes of the small interfering RNA pathway in the oriental fruit fly, Bactrocera dorsalis. INSECT SCIENCE 2017; 24:418-430. [PMID: 28547890 DOI: 10.1111/1744-7917.12311] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/02/2015] [Indexed: 06/07/2023]
Abstract
RNA interference (RNAi)-based technology has emerged as a potential tool for controlling insect pests, however, previous studies found that the efficiency of RNAi in Bactrocera dorsalis was variable. In nature, insects often meet various challenges, such as pathogen infections, extreme temperatures, lack of nutrition and heavy metals. To better understand the association of the stressors with efficiency of RNAi, in the current study we tested the expression of three core genes, dicer2 (Bddcr2), r2d2 (Bdr2d2) and argonaute2 (Bdago2), of the small interfering RNA (siRNA) pathway of B. dorsalis upon various stressors. Our results showed that all three genes were upregulated by the infection of invertebrate iridescent virus 6, which suggested a function of the siRNA pathway against viral infection. The loading of FeCl3 could also increase the expression of Bddcr2. The treatments of Escherichia coli, extremely high (40°C) and low (0°C) temperatures, as well as starvation, could negatively influence the expression of Bddcr2 and/or Bdago2. In total, our results showed that various stressors could influence the expression of core components of B. dorsalis siRNA pathway. This highlights further speculation on the RNAi efficiency upon these stressors. Considering the complexity and variation of RNAi efficiency in different conditions, these results provide initial aspects in possible environmental stressors to influence the activity of the siRNA pathway, but the real impact of RNAi efficiency posed by these stressors requires further studies.
Collapse
Affiliation(s)
- Yi-Fei Xie
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Hunan Academy of Forestry, Changsha, China
| | - Jin-Zhi Niu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Xuan-Zhao Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Wen-Jia Yang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Guang-Mao Shen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Dong Wei
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Guy Smagghe
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| |
Collapse
|
11
|
Gui SH, Jiang HB, Liu XQ, Xu L, Wang JJ. Molecular characterizations of natalisin and its roles in modulating mating in the oriental fruit fly, Bactrocera dorsalis (Hendel). INSECT MOLECULAR BIOLOGY 2017; 26:103-112. [PMID: 27862548 DOI: 10.1111/imb.12274] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Initially, natalisin (NTL) was identified from three holometabolous insect species, Drosophila melanogaster, Tribolium castaneum and Bombyx mori, and was documented to regulate reproductive behaviours in D. melanogaster and T. castaneum. In this study, we report the sequences of the NTL precursor and its receptor (NTLR) from an important agricultural pest, Bactrocera dorsalis (Hendel). NTLR is a typical G-protein coupled receptor and phylogenetic analysis showed that B. dorsalis NTLR was closely related to insect natalisin receptors from other species. A functional assay of NTLR transiently expressed in Chinese hamster ovary cells showed that it was activated by putative natalisin mature peptides in a concentration-dependent manner, with 50% effective concentrations (EC50 ) at nanomolar or micromolar levels. As indicated by quantitative real-time PCR, both NTL and NTLR had the highest expression in the central nervous system of B. dorsalis compared with the other tested tissues. Three pairs of adult brain neurones of B. dorsalis were identified with immunohistochemical antibody staining against D. melanogaster NTL4, and in situ hybridization with specific DNA probes. Moreover, RNA interference mediated by double-stranded RNA injection in adults provided evidence for the important roles of NTL in regulating both male and female mating frequencies in this fly.
Collapse
Affiliation(s)
- S-H Gui
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - H-B Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - X-Q Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - L Xu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - J-J Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| |
Collapse
|
12
|
Gui SH, Jiang HB, Xu L, Pei YX, Liu XQ, Smagghe G, Wang JJ. Role of a tachykinin-related peptide and its receptor in modulating the olfactory sensitivity in the oriental fruit fly, Bactrocera dorsalis (Hendel). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 80:71-78. [PMID: 27923683 DOI: 10.1016/j.ibmb.2016.12.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/24/2016] [Accepted: 12/03/2016] [Indexed: 06/06/2023]
Abstract
Insect tachykinin-related peptide (TRP), an ortholog of tachykinin in vertebrates, has been linked with regulation of diverse physiological processes, such as olfactory perception, locomotion, aggression, lipid metabolism and myotropic activity. In this study, we investigated the function of TRP (BdTRP) and its receptor (BdTRPR) in an important agricultural pest, the oriental fruit fly Bactrocera dorsalis. BdTRPR is a typical G-protein coupled-receptor (GPCR), and it could be activated by the putative BdTRP mature peptides with the effective concentrations (EC50) at the nanomolar range when expressed in Chinese hamster ovary cells. Consistent with its role as a neuromodulator, expression of BdTRP was detected in the central nervous system (CNS) of B. dorsalis, specifically in the local interneurons with cell bodies lateral to the antennal lobe. BdTRPR was found in the CNS, midgut and hindgut, but interestingly also in the antennae. To investigate the role of BdTRP and BdTRPR in olfaction behavior, adult flies were subjected to RNA interference, which led to a reduction in the antennal electrophysiological response and sensitivity to ethyl acetate in the Y-tube assay. Taken together, we demonstrate the impact of TRP/TRPR signaling on the modulation of the olfactory sensitivity in B. dorsalis. The result improve our understanding of olfactory processing in this agriculturally important pest insect.
Collapse
Affiliation(s)
- Shun-Hua Gui
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Hong-Bo Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Li Xu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Yu-Xia Pei
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Xiao-Qiang Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Guy Smagghe
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Department of Crop Protection, Ghent University, Ghent, Belgium
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
| |
Collapse
|
13
|
Wang J, Xiong KC, Liu YH. De novo Transcriptome Analysis of Chinese Citrus Fly, Bactrocera minax (Diptera: Tephritidae), by High-Throughput Illumina Sequencing. PLoS One 2016; 11:e0157656. [PMID: 27331903 PMCID: PMC4917245 DOI: 10.1371/journal.pone.0157656] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 06/02/2016] [Indexed: 12/30/2022] Open
Abstract
The Chinese citrus fly, Bactrocera minax (Enderlein), is one of the most devastating pests of citrus in the temperate areas of Asia. So far, studies involving molecular biology and physiology of B. minax are still scarce, partly because of the lack of genomic information and inability to rear this insect in laboratory. In this study, de novo assembly of a transcriptome was performed using Illumina sequencing technology. A total of 20,928,907 clean reads were obtained and assembled into 33,324 unigenes, with an average length of 908.44 bp. Unigenes were annotated by alignment against NCBI non-redundant protein (Nr), Swiss-Prot, Clusters of Orthologous Groups (COG), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes Pathway (KEGG) database. Genes potentially involved in stress tolerance, including 20 heat shock protein (Hsps) genes, 26 glutathione S-transferases (GSTs) genes, and 2 ferritin subunit genes, were identified. These genes may play roles in stress tolerance in B. minax diapause stage. It has previously been found that 20E application on B. minax pupae could avert diapause, but the underlying mechanisms remain unknown. Thus, genes encoding enzymes in 20E biosynthesis pathway, including Neverland, Spook, Phantom, Disembodied, Shadow, Shade, and Cyp18a1, and genes encoding 20E receptor proteins, ecdysone receptor (EcR) and ultraspiracle (USP), were identified. The expression patterns of 20E-related genes among developmental stages and between 20E-treated and untreated pupae demonstrated their roles in diapause program. In addition, 1,909 simple sequence repeats (SSRs) were detected, which will contribute to molecular marker development. The findings in this study greatly improve our genetic understanding of B. minax, and lay the foundation for future studies on this species.
Collapse
Affiliation(s)
- Jia Wang
- Institute of Entomology, College of Plant Protection, Southwest University, Chongqing, P. R. China
- * E-mail:
| | - Ke-Cai Xiong
- Institute of Entomology, College of Plant Protection, Southwest University, Chongqing, P. R. China
| | - Ying-Hong Liu
- Institute of Entomology, College of Plant Protection, Southwest University, Chongqing, P. R. China
| |
Collapse
|
14
|
Abstract
Ferritins, the main intracellular iron storage proteins, have been studied for over 60 years, mainly focusing on the mammalian ones. This allowed the elucidation of the structure of these proteins and the mechanisms regulating their iron incorporation and mineralization. However, ferritin is present in most, although not all, eukaryotic cells, comprising monocellular and multicellular invertebrates and vertebrates. The aim of this review is to provide an update on the general properties of ferritins that are common to various eukaryotic phyla (except plants), and to give an overview on the structure, function and regulation of ferritins. An update on the animal models that were used to characterize H, L and mitochondrial ferritins is also provided. The data show that ferritin structure is highly conserved among different phyla. It exerts an important cytoprotective function against oxidative damage and plays a role in innate immunity, where it also contributes to prevent parenchymal tissue from the cytotoxicity of pro-inflammatory agonists released by the activation of the immune response activation. Less clear are the properties of the secretory ferritins expressed by insects and molluscs, which may be important for understanding the role played by serum ferritin in mammals.
Collapse
|
15
|
Ferritin Assembly in Enterocytes of Drosophila melanogaster. Int J Mol Sci 2016; 17:27. [PMID: 26861293 PMCID: PMC4783870 DOI: 10.3390/ijms17020027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 12/04/2015] [Accepted: 12/11/2015] [Indexed: 11/30/2022] Open
Abstract
Ferritins are protein nanocages that accumulate inside their cavity thousands of oxidized iron atoms bound to oxygen and phosphates. Both characteristic types of eukaryotic ferritin subunits are present in secreted ferritins from insects, but here dimers between Ferritin 1 Heavy Chain Homolog (Fer1HCH) and Ferritin 2 Light Chain Homolog (Fer2LCH) are further stabilized by disulfide-bridge in the 24-subunit complex. We addressed ferritin assembly and iron loading in vivo using novel transgenic strains of Drosophila melanogaster. We concentrated on the intestine, where the ferritin induction process can be controlled experimentally by dietary iron manipulation. We showed that the expression pattern of Fer2LCH-Gal4 lines recapitulated iron-dependent endogenous expression of the ferritin subunits and used these lines to drive expression from UAS-mCherry-Fer2LCH transgenes. We found that the Gal4-mediated induction of mCherry-Fer2LCH subunits was too slow to effectively introduce them into newly formed ferritin complexes. Endogenous Fer2LCH and Fer1HCH assembled and stored excess dietary iron, instead. In contrast, when flies were genetically manipulated to co-express Fer2LCH and mCherry-Fer2LCH simultaneously, both subunits were incorporated with Fer1HCH in iron-loaded ferritin complexes. Our study provides fresh evidence that, in insects, ferritin assembly and iron loading in vivo are tightly regulated.
Collapse
|
16
|
Proteome analysis of male accessory gland secretions in oriental fruit flies reveals juvenile hormone-binding protein, suggesting impact on female reproduction. Sci Rep 2015; 5:16845. [PMID: 26582577 PMCID: PMC4652233 DOI: 10.1038/srep16845] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 10/21/2015] [Indexed: 01/14/2023] Open
Abstract
In insects, the accessory gland proteins (Acps) secreted by male accessory glands (MAGs) account for the majority of seminal fluids proteins. Mixed with sperm, they are transferred to the female at mating and so impact reproduction. In this project, we identified 2,927 proteins in the MAG secretions of the oriental fruit fly Bactrocera dorsalis, an important agricultural pest worldwide, using LC-MS analysis, and all sequences containing open reading frames were analyzed using signalP. In total, 90 Acps were identified. About one third (26) of these 90 Acps had a specific functional description, while the other two thirds (64) had no functional description including dozens of new classes of proteins. Hence, several of these novel Acps were abundant in the MAG secretions, and we confirmed their MAG-specific expression by qPCR. Finally and interestingly, one of these novel proteins was functionally predicted as juvenile hormone-binding protein, suggesting the impact of Acps with reproductive events in the female. Our results will aid in the development of an experimental method to identify Acps in insects, and in turn this information with new Acps in B. dorsalis will pave the way of further exploration their function in reproduction and potential development as new insecticide targets.
Collapse
|
17
|
Wei D, Li HM, Yang WJ, Wei DD, Dou W, Huang Y, Wang JJ. Transcriptome profiling of the testis reveals genes involved in spermatogenesis and marker discovery in the oriental fruit fly, Bactrocera dorsalis. INSECT MOLECULAR BIOLOGY 2015; 24:41-57. [PMID: 25255964 DOI: 10.1111/imb.12134] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The testis is a highly specialized tissue that plays a vital role in ensuring fertility by producing spermatozoa, which are transferred to the female during mating. Spermatogenesis is a complex process, resulting in the production of mature sperm, and involves significant structural and biochemical changes in the seminiferous epithelium of the adult testis. The identification of genes involved in spermatogenesis of Bactrocera dorsalis (Hendel) is critical for a better understanding of its reproductive development. In this study, we constructed a cDNA library of testes from male B. dorsalis adults at different ages, and performed de novo transcriptome sequencing to produce a comprehensive transcript data set, using Illumina sequencing technology. The analysis yielded 52 016 732 clean reads, including a total of 4.65 Gb of nucleotides. These reads were assembled into 47 677 contigs (average 443 bp) and then clustered into 30 516 unigenes (average 756 bp). Based on BLAST hits with known proteins in different databases, 20 921 unigenes were annotated with a cut-off E-value of 10(-5). The transcriptome sequences were further annotated using the Clusters of Orthologous Groups, Gene Orthology and the Kyoto Encyclopedia of Genes and Genomes databases. Functional genes involved in spermatogenesis were analysed, including cell cycle proteins, metalloproteins, actin, and ubiquitin and antihyperthermia proteins. Several testis-specific genes were also identified. The transcripts database will help us to understand the molecular mechanisms underlying spermatogenesis in B. dorsalis. Furthermore, 2913 simple sequence repeats and 151 431 single nucleotide polymorphisms were identified, which will be useful for investigating the genetic diversity of B. dorsalis in the future.
Collapse
Affiliation(s)
- D Wei
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | | | | | | | | | | | | |
Collapse
|
18
|
Rempoulakis P, Afshar N, Osorio B, Barajas-Aceves M, Szular J, Ahmad S, Dammalage T, Tomas US, Nemny-Lavy E, Salomon M, Vreysen MJB, Nestel D, Missirlis F. Conserved metallomics in two insect families evolving separately for a hundred million years. Biometals 2014; 27:1323-35. [PMID: 25298233 PMCID: PMC4223573 DOI: 10.1007/s10534-014-9793-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 09/14/2014] [Indexed: 12/14/2022]
Abstract
Μetal cofactors are required for enzymatic catalysis and structural stability of many proteins. Physiological metal requirements underpin the evolution of cellular and systemic regulatory mechanisms for metal uptake, storage and excretion. Considering the role of metal biology in animal evolution, this paper asks whether metal content is conserved between different fruit flies. A similar metal homeostasis was previously observed in Drosophilidae flies cultivated on the same larval medium. Each species accumulated in the order of 200 µg iron and zinc and approximately ten-fold less manganese and copper per gram dry weight of the adult insect. In this paper, data on the metal content in fourteen species of Tephritidae, which are major agricultural pests worldwide, are presented. These fruit flies can be polyphagous (e.g., Ceratitis capitata) or strictly monophagous (e.g., Bactrocera oleae) or oligophagous (e.g., Anastrepha grandis) and were maintained in the laboratory on five distinct diets based on olive oil, carrot, wheat bran, zucchini and molasses, respectively. The data indicate that overall metal content and distribution between the Tephritidae and Drosophilidae species was similar. Reduced metal concentration was observed in B. oleae. Feeding the polyphagous C. capitata with the diet of B. oleae resulted in a significant quantitative reduction of all metals. Thus, dietary components affect metal content in some Tephritidae. Nevertheless, although the evidence suggests some fruit fly species evolved preferences in the use or storage of particular metals, no metal concentration varied in order of magnitude between these two families of Diptera that evolved independently for over 100 million years.
Collapse
Affiliation(s)
- Polychronis Rempoulakis
- IAEA Laboratories, Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Seibersdorf, Austria
- Department of Entomology, Institute of Plant Protection, Agricultural Research Organization (ARO), The Volcani Center, Beit Dagan, Israel
| | - Negar Afshar
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, UK
| | - Beatriz Osorio
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, Zacatenco, Mexico City, Mexico
| | - Martha Barajas-Aceves
- Departamento de Biotecnología y Bioingenería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, Zacatenco, Mexico City, Mexico
| | - Joanna Szular
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, UK
| | - Sohel Ahmad
- IAEA Laboratories, Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Seibersdorf, Austria
| | - Thilakasiri Dammalage
- IAEA Laboratories, Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Seibersdorf, Austria
| | - Ulysses Sto Tomas
- IAEA Laboratories, Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Seibersdorf, Austria
| | - Esther Nemny-Lavy
- Department of Entomology, Institute of Plant Protection, Agricultural Research Organization (ARO), The Volcani Center, Beit Dagan, Israel
| | - Mor Salomon
- Citrus Division, The Israel Cohen Institute for Biological Control, Plants Production and Marketing Board, Beit Dagan, Israel
| | - Marc J. B. Vreysen
- IAEA Laboratories, Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Seibersdorf, Austria
| | - David Nestel
- Department of Entomology, Institute of Plant Protection, Agricultural Research Organization (ARO), The Volcani Center, Beit Dagan, Israel
| | - Fanis Missirlis
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, Zacatenco, Mexico City, Mexico
| |
Collapse
|