1
|
Gupta R, Bhasin C, Joshi A, Agarwal N, Aggarwal A, Mudgal P. Transcriptome analysis of Berberine induced accelerated tail fin regeneration in Zebrafish larvae. Gene Expr Patterns 2025; 55:119390. [PMID: 39933633 DOI: 10.1016/j.gep.2025.119390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/27/2025] [Accepted: 02/08/2025] [Indexed: 02/13/2025]
Abstract
Humans have limited capacity to regenerate lost tissues post injury. The ability to modulate regenerative repair of tissues offers possibilities for restoring loss of tissue (organ) structure and function. Zebrafish (Danio rerio) larvae fin fold regeneration model is a simple system to study the process of regeneration and associated cellular mechanisms. Berberine, a plant alkaloid which is known to have wound healing properties shows potential to modulate regeneration. The present study aimed to explore the modulating influence of berberine on the signaling pathways involved in zebrafish larvae transected tail fin fold regeneration. Tail fin fold transection was performed on 3 dpf (days post fertilization) zebrafish larvae treated with Berberine (0.01%) and untreated control (System water (SW)). The larvae were observed under a microscope at 0, 1, 2, 3, 4, 5, hours post transection (hpt). RNA was extracted from Berberine treated and untreated (control) tail fin transected larvae at 4 hpt to perform RNA-seq analysis. PPI (protein-protein interaction) network, Shiny GO functional enrichment and topology analysis of DEGs (differentially expressed genes) was performed. Berberine treated larvae showed an accelerated regeneration growth in their transected tail fin by 4 hpt. Berberine induced accelerated regeneration is associated with the involvement of Insulin, IGF, stress response, jak-stat, cytokine, and cellular reprogramming signaling pathways as per RNA-seq analysis and String PPI network, and Shiny GO functional enrichment analysis of DEGs. Topological analysis using Cytohubba revealed tnfa, stat3, jak2b, igf1, jak1, hsp90aa1.1, stat1a, stat1b, bag3, hsp70, and fosl1a as the key Hub genes in the PPI network. The present study identifies the pathways and the Hub proteins involved in berberine induced accelerated regeneration process in zebrafish larvae.
Collapse
Affiliation(s)
- Radhika Gupta
- Department of Biochemistry, Daulat Ram College, University of Delhi, Delhi, 110007, India.
| | - Chitra Bhasin
- Department of Zoology, Daulat Ram College, University of Delhi, Delhi, 110007, India
| | | | - Nisheeth Agarwal
- Translational Health Science and Technology Institute, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
| | | | - Padmshree Mudgal
- Department of Biochemistry, Daulat Ram College, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
2
|
Campillo N, Ireland D, Patel Y, Collins EMS. A Simple Method for Quantifying Blastema Growth in Regenerating Planarians. Curr Protoc 2023; 3:e684. [PMID: 36877155 PMCID: PMC10558012 DOI: 10.1002/cpz1.684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Due to their strong regenerative capabilities, freshwater planarians are a well-suited model system for studying the effects of chemicals on stem cell biology and regeneration. After amputation, a planarian will regenerate the missing body parts within 1 to 2 weeks. Because planarians have a distinct head morphology that can be easily identified, head and eye regeneration has been a popular qualitative measure of toxicity. However, qualitative measures can only detect strong defects. Here, we present protocols for quantifying the rate of blastema growth to measure regeneration defects for assessment of chemical toxicity. Following amputation, a regenerative blastema forms at the wound site. Over the course of several days, the blastema grows and subsequently re-forms the missing anatomical structures. This growth can be measured by imaging the regenerating planarian. As the blastema tissue is unpigmented, it can be easily distinguished from the remaining pigmented body using standard image analysis techniques. Basic Protocol 1 provides a step-by-step guide for imaging regenerating planarians over several days of regeneration. Basic Protocol 2 describes the necessary steps for the quantification of blastema size using freeware. It is accompanied by video tutorials to facilitate adaptation. Basic Protocol 3 shows how to calculate the growth rate using linear curve fitting in a spreadsheet. The ease of implementation and low cost make this procedure suitable for an undergraduate laboratory teaching setting, in addition to typical research settings. Although we focus on head regeneration in Dugesia japonica, these protocols are adaptable to other wound sites and planarian species. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Imaging planarians during regeneration Basic Protocol 2: Quantitative analysis of blastema size with ImageJ Basic Protocol 3: Quantification of blastema growth rate.
Collapse
Affiliation(s)
- Natali Campillo
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania
- These authors contributed equally to this work
| | - Danielle Ireland
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania
- These authors contributed equally to this work
| | - Yashvi Patel
- Department of Physics and Astronomy, Swarthmore College, Swarthmore, Pennsylvania
| | - Eva-Maria S. Collins
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania
- Department of Physics and Astronomy, Swarthmore College, Swarthmore, Pennsylvania
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Center of Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Physics, University of California San Diego, La Jolla, California
| |
Collapse
|
3
|
Abstract
Traditional mammalian testing is too time- and cost-intensive to keep up with the large number of environmental chemicals needing assessment. This has led to a dearth of information about the potential adverse effects of these chemicals, especially on the developing brain. Thus, there is an urgent need for rapid and cost-effective neurotoxicity and developmental neurotoxicity testing. Because of the complexity of the brain, metabolically competent organismal models are necessary to understand the effects of chemicals on nervous system development and function on a systems level. In this overview, we showcase asexual freshwater planarians as an alternative invertebrate ("non-animal") organismal model for neurotoxicology research. Planarians have long been used to study the effects of chemicals on regeneration and behavior. But they have only recently moved back into the spotlight because modern molecular and computational approaches now enable quantitative high-content and high-throughput toxicity studies. Here, we present a short history of the use of planarians in toxicology research, highlight current techniques to measure toxicity qualitatively and quantitatively in planarians, and discuss how to further promote this non-animal organismal system into mainstream toxicology research. The articles in this collection will help work towards this goal by providing detailed protocols that can be adopted by the community to standardize planarian toxicity testing. © 2022 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Danielle Ireland
- Department of Biology, Swarthmore College, Swarthmore, PA, United States of America
| | - Eva-Maria S. Collins
- Department of Biology, Swarthmore College, Swarthmore, PA, United States of America
- Department of Physics, University of California San Diego, La Jolla, CA, United States of America
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- Center of Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, PA, United States of America
| |
Collapse
|
4
|
Gambino G, Falleni A, Nigro M, Salvetti A, Cecchettini A, Ippolito C, Guidi P, Rossi L. Dynamics of interaction and effects of microplastics on planarian tissue regeneration and cellular homeostasis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 218:105354. [PMID: 31734615 DOI: 10.1016/j.aquatox.2019.105354] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 10/21/2019] [Accepted: 11/01/2019] [Indexed: 06/10/2023]
Abstract
Increasing microplastics pollution of marine and terrestrial water is a concerning issue for ecosystems and human health. Nevertheless, the interaction of microplastics with freshwater biota is still a poorly explored field. In order to achieve information concerning the uptake, distribution and effect of microplastics in planarians, Dugesia japonica specimens have been fed with mixtures of food and differently shaped and sized plastic particles. Feeding activity and food intake were non-altered by the presence of high concentrations of different types of plastic particles. However, the persistence of microplastic within the planarian body was a function of size/shape, being small spheres (<10 μm in diameter) and short fibers (14 μm large and 5/6 μm length) more persisting than larger spheres and longer fibers which were eliminated almost entirely by ejection in a few hours. Transmission electron microscopy analysis demonstrated that at least part of microplastics was phagocytized by the enterocytes. Chronic exposure to small plastic did not alter the regenerative ability but caused a significant reduction of the gut epithelium thickness and lipid content of enterocytes, together with the induction of apoptotic cell death, modulation of Djgata 4/5/6 expression and reduced growth rate. The ability of microplastic to perturb planarian homeostasis is concerning being them extremely resilient against mechanical and chemical insults and suggests possible harmful effects upon other more susceptible species in freshwater ecosystems.
Collapse
Affiliation(s)
- Gaetana Gambino
- Department of Clinical and Experimental Medicine, University of Pisa, Via Volta 4, 56126, Pisa, Italy
| | - Alessandra Falleni
- Department of Clinical and Experimental Medicine, University of Pisa, Via Volta 4, 56126, Pisa, Italy
| | - Marco Nigro
- Department of Clinical and Experimental Medicine, University of Pisa, Via Volta 4, 56126, Pisa, Italy
| | - Alessandra Salvetti
- Department of Clinical and Experimental Medicine, University of Pisa, Via Volta 4, 56126, Pisa, Italy
| | - Antonella Cecchettini
- Department of Clinical and Experimental Medicine, University of Pisa, Via Volta 4, 56126, Pisa, Italy
| | - Chiara Ippolito
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 55, 56126, Pisa, Italy
| | - Patrizia Guidi
- Department of Clinical and Experimental Medicine, University of Pisa, Via Volta 4, 56126, Pisa, Italy
| | - Leonardo Rossi
- Department of Clinical and Experimental Medicine, University of Pisa, Via Volta 4, 56126, Pisa, Italy.
| |
Collapse
|
5
|
Zhang S, Hagstrom D, Hayes P, Graham A, Collins EMS. Multi-Behavioral Endpoint Testing of an 87-Chemical Compound Library in Freshwater Planarians. Toxicol Sci 2019; 167:26-44. [PMID: 29893936 PMCID: PMC6657585 DOI: 10.1093/toxsci/kfy145] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
There is an increased recognition in the field of toxicology of the value of medium-to-high-throughput screening methods using in vitro and alternative animal models. We have previously introduced the asexual freshwater planarian Dugesia japonica as a new alternative animal model and proposed that it is particularly well-suited for the study of developmental neurotoxicology. In this article, we discuss how we have expanded and automated our screening methodology to allow for fast screening of multiple behavioral endpoints, developmental toxicity, and mortality. Using an 87-compound library provided by the National Toxicology Program, consisting of known and suspected neurotoxicants, including drugs, flame retardants, industrial chemicals, polycyclic aromatic hydrocarbons (PAHs), pesticides, and presumptive negative controls, we further evaluate the benefits and limitations of the system for medium-throughput screening, focusing on the technical aspects of the system. We show that, in the context of this library, planarians are the most sensitive to pesticides with 16/16 compounds causing toxicity and the least sensitive to PAHs, with only 5/17 causing toxicity. Furthermore, while none of the presumptive negative controls were bioactive in adult planarians, 2/5, acetaminophen and acetylsalicylic acid, were bioactive in regenerating worms. Notably, these compounds were previously reported as developmentally toxic in mammalian studies. Through parallel screening of adults and developing animals, planarians are thus a useful model to detect such developmental-specific effects, which was observed for 13 chemicals in this library. We use the data and experience gained from this screen to propose guidelines for best practices when using planarians for toxicology screens.
Collapse
Affiliation(s)
| | | | | | | | - Eva-Maria S Collins
- Division of Cell and Developmental Biology
- Department of Physics, University of California San Diego, La Jolla California 92093
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania 19081
| |
Collapse
|
6
|
Tunes LG, Allen JM, Zayas RM, do Monte-Neto RL. Planarians as models to investigate the bioactivity of gold(I) complexes in vivo. Sci Rep 2018; 8:16180. [PMID: 30385794 PMCID: PMC6212559 DOI: 10.1038/s41598-018-34558-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 10/18/2018] [Indexed: 02/02/2023] Open
Abstract
Gold(I)-containing complexes are used in drug discovery research for rheumatoid arthritis, cancer, and parasitic infections. In this study, we tested the bioactivity of gold(I) complexes in vivo using planarians. The planarian Schmidtea mediterranea possesses orthologues of tumor suppressor genes, such as p53, that, when silenced, cause deregulation of cell proliferation and apoptosis. In this context, we tested two triethylphosphine-gold(I) complexes (AdO and AdT) to determine if they can attenuate phenotypes that result from p53 inhibition. First, we identified the drug concentration that did not affect survival or regeneration and evaluated the drug's effect on cell division and apoptosis. We found that AdT treatment decreased the number of mitotic cells and that all drug treatments increased the number of apoptotic cells. We then performed p53(RNAi) and drug treatments concomitantly and observed the phenotype progression. Drug treatment increased survival three-fold and decreased apoptosis, which resulted in an attenuated phenotype. Our results indicate that planarians can be treated with gold(I) complexes, and that this treatment can diminish the p53(RNAi) phenotype and extend survival. In this work we show that planarians can be used as a model to study the in vivo effect of gold(I) complexes and to further investigate their mechanisms of action.
Collapse
Affiliation(s)
- Luiza G Tunes
- Instituto René Rachou - Fiocruz Minas, Belo Horizonte, Minas Gerais, Brazil
- Department of Biology, San Diego State University, San Diego, California, USA
| | - John M Allen
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Ricardo M Zayas
- Department of Biology, San Diego State University, San Diego, California, USA.
| | | |
Collapse
|
7
|
Duval R, Duplais C. Fluorescent natural products as probes and tracers in biology. Nat Prod Rep 2017; 34:161-193. [DOI: 10.1039/c6np00111d] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Fluorescence is a remarkable property of many natural products in addition to their medicinal and biological value. Herein, we provide a review of these peculiar secondary metabolites to stimulate prospecting of them as original fluorescent tracers, endowed with unique photophysical properties and with applications in most fields of biology.
Collapse
Affiliation(s)
- Romain Duval
- IRD
- UMR 216 IRD MERIT (Mère et Enfant face aux Infections Tropicales)
- Université Paris-Descartes
- 75006 Paris
- France
| | - Christophe Duplais
- CNRS
- UMR 8172 EcoFoG (Ecologie des Forêts de Guyane)
- AgroParisTech
- Cirad
- INRA
| |
Collapse
|
8
|
Role of Berberine in the Treatment of Methicillin-Resistant Staphylococcus aureus Infections. Sci Rep 2016; 6:24748. [PMID: 27103062 PMCID: PMC4840435 DOI: 10.1038/srep24748] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 04/04/2016] [Indexed: 12/23/2022] Open
Abstract
Berberine is an isoquinoline alkaloid widely used in the treatment of microbial infections. Recent studies have shown that berberine can enhance the inhibitory efficacy of antibiotics against clinical multi-drug resistant isolates of methicillin-resistant Staphylococcus aureus (MRSA). However, the underlying mechanisms are poorly understood. Here, we demonstrated that sub-minimum inhibitory concentrations (MICs) of berberine exhibited no bactericidal activity against MRSA, but affected MRSA biofilm development in a dose dependent manner within the concentration ranging from 1 to 64 μg/mL. Further study indicated that berberine inhibited MRSA amyloid fibrils formation, which consist of phenol-soluble modulins (PSMs). Molecular dynamics simulation revealed that berberine could bind with the phenyl ring of Phe19 in PSMα2 through hydrophobic interaction. Collectively, berberine can inhibit MRSA biofilm formation via affecting PSMs’ aggregation into amyloid fibrils, and thereby enhance bactericidal activity of antibiotics. These findings will provide new insights into the multiple pharmacological properties of berberine in the treatment of microbial-generated amyloid involved diseases.
Collapse
|
9
|
Hagstrom D, Cochet-Escartin O, Collins EMS. Planarian brain regeneration as a model system for developmental neurotoxicology. ACTA ACUST UNITED AC 2016; 3:65-77. [PMID: 27499880 PMCID: PMC4895328 DOI: 10.1002/reg2.52] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 01/14/2016] [Accepted: 01/18/2016] [Indexed: 12/12/2022]
Abstract
Freshwater planarians, famous for their regenerative prowess, have long been recognized as a valuable in vivo animal model to study the effects of chemical exposure. In this review, we summarize the current techniques and tools used in the literature to assess toxicity in the planarian system. We focus on the planarian's particular amenability for neurotoxicology and neuroregeneration studies, owing to the planarian's unique ability to regenerate a centralized nervous system. Zooming in from the organismal to the molecular level, we show that planarians offer a repertoire of morphological and behavioral readouts while also being amenable to mechanistic studies of compound toxicity. Finally, we discuss the open challenges and opportunities for planarian brain regeneration to become an important model system for modern toxicology.
Collapse
Affiliation(s)
- Danielle Hagstrom
- Division of Biological Sciences University of California San Diego, La Jolla California 92093 USA
| | | | - Eva-Maria S Collins
- Division of Biological Sciences University of California San Diego, La Jolla California 92093 USA; Department of Physics University of California San Diego, La Jolla California 92093 USA
| |
Collapse
|
10
|
Abstract
The growth and patterning of anatomical structures from specific cellular fields in developing organisms relies on organizing centers that instruct surrounding cells to modify their behavior, namely migration, proliferation, and differentiation. We discuss here how organizers can form in adult organisms, a process of utmost interest for regenerative medicine. Animals like Hydra and planarians, which maintain their shape and fitness thanks to a highly dynamic homeostasis, offer a useful paradigm to study adult organizers in steady-state conditions. Beside the homeostatic context, these model systems also offer the possibility to study how organizers form de novo from somatic adult tissues. Both extracellular matrix remodeling and caspase activation play a key role in this transition, acting as promoters of organizer formation in the vicinity of the wound. Their respective roles and the crosstalk between them just start to be deciphered.
Collapse
Affiliation(s)
- Matthias C Vogg
- Department of Genetics and Evolution, Institute of Genetics and Genomics in Geneva (IGe3), Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Yvan Wenger
- Department of Genetics and Evolution, Institute of Genetics and Genomics in Geneva (IGe3), Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Brigitte Galliot
- Department of Genetics and Evolution, Institute of Genetics and Genomics in Geneva (IGe3), Faculty of Sciences, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
11
|
Abstract
Regeneration involves interactions between multiple signaling pathways acting in a spatially and temporally complex manner. As signaling pathways are highly conserved, understanding how regeneration is controlled in animal models exhibiting robust regenerative capacities should aid efforts to stimulate repair in humans. One way to discover molecular regulators of regeneration is to alter gene/protein function and quantify effect(s) on the regenerative process: dedifferentiation/reprograming, stem/progenitor proliferation, migration/remodeling, progenitor cell differentiation and resolution. A powerful approach for applying this strategy to regenerative biology is chemical genetics, the use of small-molecule modulators of specific targets or signaling pathways. Here, we review advances that have been made using chemical genetics for hypothesis-focused and discovery-driven studies aimed at furthering understanding of how regeneration is controlled.
Collapse
|