1
|
Kopeć M, Beton-Mysur K, Surmacki J, Brożek-Płuska B. Hypoxic conditions by Raman microspectroscopy - Reprogramming of fatty acids and glucose metabolism during colon cancer progression. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 339:126275. [PMID: 40273771 DOI: 10.1016/j.saa.2025.126275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 04/17/2025] [Accepted: 04/18/2025] [Indexed: 04/26/2025]
Abstract
Cellular respiration is the primary metabolic process for producing the energy (ATP) needed for survival. Disruptions in this process can lead to various diseases, including colon cancer. This paper reviews the current understanding of how excess fatty acids (FAs) and glucose (Glc) alter metabolic pathways. We focused on the impact of unsaturated fatty acids (UFAs) (eicosapentaenoic acid (EPA), linoleic acid (LA)), saturated fatty acid (SFA) (palmitic acid (PA)), and glucose on healthy human colon cells (CCD-18 Co) and cancerous colon cells (Caco-2) using Raman microspectroscopy. Our study examined the metabolic abnormalities in mitochondria and lipid droplets caused by the external intake of FAs and glucose. The results indicate that the peaks at 750 cm-1, 1004 cm-1, 1256 cm-1, 1444 cm-1, and 1656 cm-1 can serve as Raman biomarkers for monitoring metabolic pathways in colon cancer. We proved that oxidative metabolism towards glycolysis allows maintaining redox homeostasis and enables the survival and proliferation of cancer cells in hypoxic conditions. Our findings show that comparing control cells with cells supplemented with UFAs, SFA, and glucose can help detect metabolic abnormalities. Specifically, supplementation with UFAs reduces the intensity of the bands at 750 cm-1 and 1004 cm-1, while SFA and glucose increase their intensity. For the bands at 1256 cm-1, 1444 cm-1, and 1656 cm-1, palmitic acid and glucose decrease the intensity, whereas linoleic acid increases it. This paper introduces new experimental techniques, such as Raman microspectroscopy and imaging, to track and understand the metabolic changes in colon cells caused by FAs and glucose under hypoxic conditions.
Collapse
Affiliation(s)
- Monika Kopeć
- Lodz University of Technology, Institute of Applied Radiation Chemistry, Laboratory of Laser Molecular Spectroscopy, Wroblewskiego 15, 93-590 Lodz, Poland.
| | - Karolina Beton-Mysur
- Lodz University of Technology, Institute of Applied Radiation Chemistry, Laboratory of Laser Molecular Spectroscopy, Wroblewskiego 15, 93-590 Lodz, Poland
| | - Jakub Surmacki
- Lodz University of Technology, Institute of Applied Radiation Chemistry, Laboratory of Laser Molecular Spectroscopy, Wroblewskiego 15, 93-590 Lodz, Poland
| | - Beata Brożek-Płuska
- Lodz University of Technology, Institute of Applied Radiation Chemistry, Laboratory of Laser Molecular Spectroscopy, Wroblewskiego 15, 93-590 Lodz, Poland
| |
Collapse
|
2
|
García-Giménez JL, Cánovas-Cervera I, Nacher-Sendra E, Dolz-Andrés E, Sánchez-Bernabéu Á, Agúndez AB, Hernández-Gil J, Mena-Mollá S, Pallardó FV. Oxidative stress and central metabolism pathways impact epigenetic modulation in inflammation and immune response. Free Radic Biol Med 2025; 233:378-399. [PMID: 40185167 DOI: 10.1016/j.freeradbiomed.2025.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/16/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Oxidative stress, metabolism, and epigenetics are deeply interconnected processes that collectively influence cellular function, health status, and contribute to disease progression. This review highlights the critical role of metabolic intermediates in epigenetic regulation, focusing on lactate, glutathione (GSH), and S-adenosylmethionine (SAM). Beyond its traditional role in energy metabolism, lactate modulates epigenetic mechanisms, influencing gene expression and cellular adaptation. Meanwhile, GSH and SAM serve as key regulators of DNA methylation and histone post-translational modifications, maintaining epigenetic homeostasis. These processes are tightly controlled by redox balance and oxidative stress, underscoring the intricate interplay between metabolism and epigenetic regulation. GSH depletion disrupts methylation homeostasis, while oxidative post-translational modifications (oxPTMs) on histones-including S-glutathionylation, carbonylation, and nitrosylation-alter chromatin architecture and transcriptional regulation. Additionally, we focus on histone lactylation, particularly its role in regulating innate and adaptive immune responses. We also explore how GSH and oxidative stress influence lactate levels, potentially inducing histone lactylation or S-glutathionylation through S,D-lactoylglutathione (LGSH), thereby impacting epigenetic regulation. By integrating insights into metabolic-epigenetic crosstalk, this review underscores the role of oxidative stress and central metabolic pathways in regulating epigenetic mechanisms, a concept known as "redox epigenetics." Understanding these intricate interactions offers new perspectives for therapeutic strategies aimed at restoring redox homeostasis and metabolic integrity to counteract disturbances in the epigenetic landscape.
Collapse
Affiliation(s)
- José Luis García-Giménez
- Faculty of Medicine and Dentistry, Department of Physiology, University of Valencia, Av/Blasco Ibañez, 15. Valencia, 46010, Spain; INCLIVA Biomedical Research Institute. Av/Menéndez Pelayo. 4acc. Valencia, 46010, Spain; CIBERER, The Centre for Biomedical Network Research on Rare Diseases, ISCIII, C. de Melchor Fernández Almagro, 3, 28029, Madrid, Spain.
| | - Irene Cánovas-Cervera
- Faculty of Medicine and Dentistry, Department of Physiology, University of Valencia, Av/Blasco Ibañez, 15. Valencia, 46010, Spain; INCLIVA Biomedical Research Institute. Av/Menéndez Pelayo. 4acc. Valencia, 46010, Spain; CIBERER, The Centre for Biomedical Network Research on Rare Diseases, ISCIII, C. de Melchor Fernández Almagro, 3, 28029, Madrid, Spain
| | - Elena Nacher-Sendra
- Faculty of Medicine and Dentistry, Department of Physiology, University of Valencia, Av/Blasco Ibañez, 15. Valencia, 46010, Spain; INCLIVA Biomedical Research Institute. Av/Menéndez Pelayo. 4acc. Valencia, 46010, Spain; CIBERER, The Centre for Biomedical Network Research on Rare Diseases, ISCIII, C. de Melchor Fernández Almagro, 3, 28029, Madrid, Spain
| | - Enric Dolz-Andrés
- Faculty of Medicine and Dentistry, Department of Physiology, University of Valencia, Av/Blasco Ibañez, 15. Valencia, 46010, Spain; INCLIVA Biomedical Research Institute. Av/Menéndez Pelayo. 4acc. Valencia, 46010, Spain
| | - Álvaro Sánchez-Bernabéu
- EpiDisease S.L. Parc Científic de la Universitat de València, Paterna, 46980, Valencia, Spain
| | - Ana Belén Agúndez
- EpiDisease S.L. Parc Científic de la Universitat de València, Paterna, 46980, Valencia, Spain
| | - Javier Hernández-Gil
- INCLIVA Biomedical Research Institute. Av/Menéndez Pelayo. 4acc. Valencia, 46010, Spain
| | - Salvador Mena-Mollá
- Faculty of Medicine and Dentistry, Department of Physiology, University of Valencia, Av/Blasco Ibañez, 15. Valencia, 46010, Spain; INCLIVA Biomedical Research Institute. Av/Menéndez Pelayo. 4acc. Valencia, 46010, Spain
| | - Federico V Pallardó
- Faculty of Medicine and Dentistry, Department of Physiology, University of Valencia, Av/Blasco Ibañez, 15. Valencia, 46010, Spain; INCLIVA Biomedical Research Institute. Av/Menéndez Pelayo. 4acc. Valencia, 46010, Spain; CIBERER, The Centre for Biomedical Network Research on Rare Diseases, ISCIII, C. de Melchor Fernández Almagro, 3, 28029, Madrid, Spain.
| |
Collapse
|
3
|
Jafary F, Moradi A, Ganjalikhany MR, Hassanpour Dehnavi A, Seifati SM, Khodarahmi A, Hemati M. Investigation of the inhibitory peptide effect as novel strategy in cancer treatment: Targeting the tetramerization of lactate dehydrogenase A. Int J Biol Macromol 2025; 306:140878. [PMID: 39988151 DOI: 10.1016/j.ijbiomac.2025.140878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 02/02/2025] [Accepted: 02/08/2025] [Indexed: 02/25/2025]
Abstract
The Warburg effect is detected in numerous types of solid tumors and is characterized by the enhancement of glucose consumption and an increase in the rate of glycolysis in cancer cells. Lactate dehydrogenase A (LDHA) plays a critical role in the Warburg effect and to date, a number of LDHA inhibitors have been identified that act as competitive inhibitors of both the substrate pyruvate and the coenzyme NADH. In our previous study, a set of novel peptides were designed using in silico structure-based method with the aim of inhibiting the activity of LDHA by disrupting the interaction between its enzyme subunits. In the present study employed in vitro and in vivo techniques, to explore the influence of these peptides on the induction of cytotoxicity effect on cancer cell lines. Our findings revealed that the designed peptide effectively inhibits LDHA, leading to the induction of apoptosis and G2/M cell cycle arrest. Finally, we also analyzed the impact of the designed peptide on Balb/c mice, confirming the results of in silico and in vitro studies. Ultimately, the designed peptide had the ability to induce apoptosis in cancer cells by LDHA inhibition.
Collapse
Affiliation(s)
- Farzaneh Jafary
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran; Clinical Research Development Center, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Ali Moradi
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran.
| | - Mohamad Reza Ganjalikhany
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Azam Hassanpour Dehnavi
- Department of Anatomical Sciences, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran; Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyed Mohammad Seifati
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ameneh Khodarahmi
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Mahdie Hemati
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran; Medical Nanotechnology and Tissue Engineering Research Center, Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
4
|
Wang M, Xu S, Xu J, Wei J, Wu Y. WTAP contributes to platinum resistance in high-grade serous ovarian cancer by up-regulating malic acid: insights from liquid chromatography and mass spectrometry analysis. Cancer Metab 2025; 13:14. [PMID: 40098185 PMCID: PMC11916999 DOI: 10.1186/s40170-025-00383-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 03/04/2025] [Indexed: 03/19/2025] Open
Abstract
High-grade serous cancer (HGSC) is the most prevalent and aggressive subtype of ovarian cancer. In this study, we utilized liquid chromatography and mass spectrometry analysis to investigate metabolic alterations in HGSC. Among the 1353 metabolites identified, 140 were significantly differed between HGSC and normal ovarian tissue. KEGG pathway enrichment analysis revealed 23 distinct metabolic pathways, including the alanine/aspartate/glutamate metabolism, pyruvate metabolism, biosynthesis of amino acids, and citrate cycle, etc. Of the significantly differentiated metabolites, malic acid, fumarate, and phosphoenolpyruvate were found in the citrate cycle and glycolysis. In further analysis, 22 differentially expressed genes (DEGs) of glucose metabolism were found between HGSC and normal controls. Multivariate Cox analysis of the 22 DEGs showed that ME1, ALDOC, and RANBP2 were associated with overall survival in the TCGA cohort.Bioinformatic analysis indicated WTAP is strongly correlated to the expression of ME1, which is a rate-limiting enzyme that regulates the shuttle of malic acid in mitochondria and cytoplasm. After the knockdown of WTAP in A2780 and OVCAR-3 cells, the activity of the malic enzyme decreased which led to the accumulation of malic acid and citric acid, and the reduction of pyruvate and lactic acid. In A2780 and OVCAR-3 cells, the IC50 to platinum was increased after the knockdown of WTAP. After the knockdown of WTAP, the expression of ME1 was down-regulated and the m6A modification was down-regulated in ovarian cell lines. On the SRAMP website, there were two binding sites with high m6A scores at the 5 '-UTR 177 and 970 of ME1 mRNA. WTAP contributes to the platinum resistance through regulating the conversion from aerobic glycolysis to OXPHOS by upregulating the expression of ME1.
Collapse
Affiliation(s)
- Ming Wang
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, 17 Qihelou St, Dongcheng District, Beijing, 100006, China
| | - Shuiqing Xu
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, 17 Qihelou St, Dongcheng District, Beijing, 100006, China
| | - Jianqing Xu
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, 17 Qihelou St, Dongcheng District, Beijing, 100006, China
| | - Jiahui Wei
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, 17 Qihelou St, Dongcheng District, Beijing, 100006, China
| | - Yumei Wu
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, 17 Qihelou St, Dongcheng District, Beijing, 100006, China.
| |
Collapse
|
5
|
Spampinato M, Giallongo C, Giallongo S, Spina EL, Duminuco A, Longhitano L, Caltabiano R, Salvatorelli L, Broggi G, Pricoco EP, Del Fabro V, Dulcamare I, DI Mauro AM, Romano A, Di Raimondo F, Li Volti G, Palumbo GA, Tibullo D. Lactate accumulation promotes immunosuppression and fibrotic transformation of bone marrow microenvironment in myelofibrosis. J Transl Med 2025; 23:69. [PMID: 39810250 PMCID: PMC11734442 DOI: 10.1186/s12967-025-06083-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/06/2025] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Clonal myeloproliferation and fibrotic transformation of the bone marrow (BM) are the pathogenetic events most commonly occurring in myelofibrosis (MF). There is great evidence indicating that tumor microenvironment is characterized by high lactate levels, acting not only as an energetic source, but also as a signaling molecule. METHODS To test the involvement of lactate in MF milieu transformation, we measured its levels in MF patients' sera, eventually finding a massive accumulation of this metabolite, which we showed to promote the expansion of immunosuppressive subsets. Therefore, to assess the significance of its trafficking, we inhibited monocarboxylate transporter 1 (MCT1) by its selective antagonist, AZD3965, eventually finding a mitigation of lactate-mediated immunosuppressive subsets expansion. To further dig into the impact of lactate in tumor microenvironment, we evaluated the effect of this metabolite on mesenchymal stromal cells (MSCs) reprogramming. RESULTS Our results show an activation of a cancer-associated phenotype (CAF) related to mineralized matrix formation and early fibrosis development. Strikingly, MF serum, enriched in lactate, causes a strong deposition of collagen in healthy stromal cells, which was restrained by AZD3965. To corroborate these outcomes, we therefore generated for the first time a TPOhigh zebrafish model for the establishment of experimental fibrosis. By adopting this model, we were able to unveil a remarkable increase in lactate concentration and monocarboxylate transporter 1 (MCT1) expression in the site of hematopoiesis, associated with a strong downregulation of lactate export channel MCT4. Notably, exploiting MCTs expression in biopsy specimens from patients with myeloproliferative neoplasms, we found a loss of MCT4 expression in PMF, corroborating changes in MCT expression during BM fibrosis establishment. CONCLUSIONS In conclusion, our results unveil lactate as a key regulator of immune escape and BM fibrotic transformation in MF patients, suggesting MCT1 blocking as a novel antifibrotic strategy.
Collapse
Affiliation(s)
- Mariarita Spampinato
- Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, Catania, Italy
| | - Cesarina Giallongo
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Division of Hematology, University of Catania, Catania, Italy
| | - Sebastiano Giallongo
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Division of Hematology, University of Catania, Catania, Italy
| | - Enrico La Spina
- Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, Catania, Italy
| | - Andrea Duminuco
- Hematology Unit with BMT, A.O.U. Policlinico "G. Rodolico-San Marco", Catania, Italy
| | - Lucia Longhitano
- Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, Catania, Italy
| | - Rosario Caltabiano
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Division of Anatomic Pathology, University of Catania, Catania, Italy
| | - Lucia Salvatorelli
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Division of Anatomic Pathology, University of Catania, Catania, Italy
| | - Giuseppe Broggi
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Division of Anatomic Pathology, University of Catania, Catania, Italy
| | | | - Vittorio Del Fabro
- Hematology Unit with BMT, A.O.U. Policlinico "G. Rodolico-San Marco", Catania, Italy
| | - Ilaria Dulcamare
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | | | - Alessandra Romano
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
| | - Francesco Di Raimondo
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
| | - Giovanni Li Volti
- Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, Catania, Italy.
| | - Giuseppe A Palumbo
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Division of Hematology, University of Catania, Catania, Italy
| | - Daniele Tibullo
- Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, Catania, Italy
| |
Collapse
|
6
|
Yan J, Goncalves CFL, Saha PS, Furdui CM, Zhu C. Optical imaging provides flow-cytometry-like single-cell level analysis of HIF-1 α-mediated metabolic changes in radioresistant head and neck squamous carcinoma cells. BIOPHOTONICS DISCOVERY 2025; 2:012702. [PMID: 39917319 PMCID: PMC11801402 DOI: 10.1117/1.bios.2.1.012702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
Abstract
Significance Radioresistance remains a significant problem for head and neck squamous cell carcinoma (HNSCC) patients. To mitigate this, the cellular and molecular pathways used by radioresistant HNSCC that drive recurrence must be studied. Aim We aim to demonstrate optical imaging strategies to provide flow cytometry-like single-cell level analysis of hypoxia-inducible factor 1-alpha (HIF-1α)-mediated metabolic changes in the radioresistant and radiosensitive HNSCC cells but in a more efficient, cost-effective, and non-destructive manner. Through both optical imaging and flow cytometry studies, we will reveal the role of radiation-induced HIF-1α overexpression and the following metabolic changes in the radioresistance development for HNSCC. Approach We optimized the use of two metabolic probes: 2-[N-(7-nitrobenz-2-oxa-1, 3-diazol-4-yl) amino]-2-deoxy-D-glucose (2-NBDG) (to report glucose uptake) and Tetramethylrhodamine ethyl ester (TMRE) (to report mitochondrial membrane potential) with both a standard fluorescence microscope and a flow cytometry device, to report the changes in metabolism between radioresistant (rSCC-61) and radiosensitive (SCC-61) HNSCC cell lines under radiation stresses with or without HIF-1α inhibition. Results We found that the matched HNSCC cell lines had different baseline metabolic phenotypes, and their metabolism responded differently to radiation stress along with significantly enhanced HIF-1α expressions in the rSCC-61 cells. HIF-1α inhibition during the radiation treatment modulates the metabolic changes and radio-sensitizes the rSCC-61 cells. Through these studies, we demonstrated that a standard fluorescence microscope along with proper image processing methods can provide flow cytometry-like single-cell level analysis of HIF-1α-mediated metabolic changes in the radioresistant and radiosensitive HNSCC cells. Conclusions Our reported optical imaging strategies may enable one to study the role of metabolism reprogramming in cancer therapeutic resistance development at the single-cell level in a more efficient, cost-effective, and non-destructive manner. Our understanding of radiation resistance mechanisms using our imaging methods will offer opportunities to design targeted radiotherapy for improved treatment outcomes for HNSCC patients.
Collapse
Affiliation(s)
- Jing Yan
- University of Kentucky, Department of Biomedical Engineering, Lexington, Kentucky, United States
| | | | - Pranto Soumik Saha
- University of Kentucky, Department of Biomedical Engineering, Lexington, Kentucky, United States
| | - Cristina M. Furdui
- Wake Forest University, Department of Internal Medicine, Winston-Salem, North Carolina, United States
| | - Caigang Zhu
- University of Kentucky, Department of Biomedical Engineering, Lexington, Kentucky, United States
| |
Collapse
|
7
|
Trosset JY, Bernot G. A Systemic View of Target Identification: Modeling the Warburg Effect. Methods Mol Biol 2025; 2905:1-16. [PMID: 40163295 DOI: 10.1007/978-1-0716-4418-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The dynamics of the cell signaling network is highly regulated to adapt to temporal fluctuations and spatial heterogeneity of the microenvironment. Formal modeling of biological regulatory networks is an approach to identify which key components of this biological network, sometimes individual therapeutic targets, have a long-term influence on a disease-related phenotype of interest. We present an in silico formal screening strategy in the context of cancer metabolism to identify key hot spots in the metabolic network that could induce a systemic change of pathological cell phenotype such as the reversal of the Warburg effect.
Collapse
Affiliation(s)
| | - Gilles Bernot
- Université Côte d'Azur, CNRS, I3S, Sophia Antipolis, France
| |
Collapse
|
8
|
Khan ZF, Rathi A, Khan A, Anjum F, Chaudhury A, Taiyab A, Shamsi A, Hassan MI. Exploring PDK3 inhibition in lung cancer through drug repurposing for potential therapeutic interventions. Sci Rep 2024; 14:29672. [PMID: 39613779 DOI: 10.1038/s41598-024-78022-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/28/2024] [Indexed: 12/01/2024] Open
Abstract
The pyruvate dehydrogenase kinase-3 (PDK3) plays an important role in the regulation of a variety of cancers, including lung, by inhibiting the pyruvate dehydrogenase complex (PDC), shifting energy production towards glycolysis necessary for cancer metabolism. In this study, we aimed to identify potential PDK3 inhibitors using a computer-based drug design approach. Virtual screening of the FDA-approved library of 3839 compounds was carried out, from which Bagrosin and Dehydrocholic acid appeared best due to their strong binding affinity, specific interactions, and potential biological characteristics, and thus were selected for further investigations. Both compounds show strong interactions with functionally important residues of the PDK3 with a binding affinity of - 10.6 and - 10.5 kcal/mol for Bagrosin and Dehydrocholic acid, respectively. MD simulation studies for 100 ns suggest the formation of stable complexes, which is evident from RMSD, RMSF, Rg, and SASA parameters. The PCA and FEL analysis suggested admirable global energy minima for the bagrosin-PDK3 and dehydrocholic acid-PDK3 complexes. Finally, we identified FDA-approved drugs, Bagrosin and Dehydrocholic acid, that offer valuable resources and potential therapeutic molecules for targeting lung cancer. Further clinical investigations are required to validate the clinical utility of selected molecules.
Collapse
Affiliation(s)
- Zeba Firdos Khan
- Department of Biosciences, Faculty of Life Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Aanchal Rathi
- Department of Biotechnology, Faculty of Life Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Afreen Khan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Farah Anjum
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, PO Box 11099, 21944, Taif, Saudi Arabia
| | - Arunabh Chaudhury
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Aaliya Taiyab
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Anas Shamsi
- Center of Medical and Bio-Allied Health Sciences Research (CMBHSR), Ajman University, Ajman, United Arab Emirates.
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India.
| |
Collapse
|
9
|
Choi EJ, Oh HT, Lee SH, Zhang CS, Li M, Kim SY, Park S, Chang TS, Lee BH, Lin SC, Jeon SM. Metabolic stress induces a double-positive feedback loop between AMPK and SQSTM1/p62 conferring dual activation of AMPK and NFE2L2/NRF2 to synergize antioxidant defense. Autophagy 2024; 20:2490-2510. [PMID: 38953310 PMCID: PMC11572134 DOI: 10.1080/15548627.2024.2374692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 07/04/2024] Open
Abstract
Co-occurring mutations in KEAP1 in STK11/LKB1-mutant NSCLC activate NFE2L2/NRF2 to compensate for the loss of STK11-AMPK activity during metabolic adaptation. Characterizing the regulatory crosstalk between the STK11-AMPK and KEAP1-NFE2L2 pathways during metabolic stress is crucial for understanding the implications of co-occurring mutations. Here, we found that metabolic stress increased the expression and phosphorylation of SQSTM1/p62, which is essential for the activation of NFE2L2 and AMPK, synergizing antioxidant defense and tumor growth. The SQSTM1-driven dual activation of NFE2L2 and AMPK was achieved by inducing macroautophagic/autophagic degradation of KEAP1 and facilitating the AXIN-STK11-AMPK complex formation on the lysosomal membrane, respectively. In contrast, the STK11-AMPK activity was also required for metabolic stress-induced expression and phosphorylation of SQSTM1, suggesting a double-positive feedback loop between AMPK and SQSTM1. Mechanistically, SQSTM1 expression was increased by the PPP2/PP2A-dependent dephosphorylation of TFEB and TFE3, which was induced by the lysosomal deacidification caused by low glucose metabolism and AMPK-dependent proton reduction. Furthermore, SQSTM1 phosphorylation was increased by MAP3K7/TAK1, which was activated by ROS and pH-dependent secretion of lysosomal Ca2+. Importantly, phosphorylation of SQSTM1 at S24 and S226 was critical for the activation of AMPK and NFE2L2. Notably, the effects caused by metabolic stress were abrogated by the protons provided by lactic acid. Collectively, our data reveal a novel double-positive feedback loop between AMPK and SQSTM1 leading to the dual activation of AMPK and NFE2L2, potentially explaining why co-occurring mutations in STK11 and KEAP1 happen and providing promising therapeutic strategies for lung cancer.Abbreviations: AMPK: AMP-activated protein kinase; BAF1: bafilomycin A1; ConA: concanamycin A; DOX: doxycycline; IP: immunoprecipitation; KEAP1: kelch like ECH associated protein 1; LN: low nutrient; MAP3K7/TAK1: mitogen-activated protein kinase kinase kinase 7; MCOLN1/TRPML1: mucolipin TRP cation channel 1; MEFs: mouse embryonic fibroblasts; MTORC1: mechanistic target of rapamycin kinase complex 1; NAC: N-acetylcysteine; NFE2L2/NRF2: NFE2 like bZIP transcription factor 2; NSCLC: non-small cell lung cancer; PRKAA/AMPKα: protein kinase AMP-activated catalytic subunit alpha; PPP2/PP2A: protein phosphatase 2; ROS: reactive oxygen species; PPP3/calcineurin: protein phosphatase 3; RPS6KB1/p70S6K: ribosomal protein S6 kinase B1; SQSTM1/p62: sequestosome 1; STK11/LKB1: serine/threonine kinase 11; TCL: total cell lysate; TFEB: transcription factor EB; TFE3: transcription factor binding to IGHM enhancer 3; V-ATPase: vacuolar-type H+-translocating ATPase.
Collapse
Affiliation(s)
- Eun-Ji Choi
- Research Institute of Pharmaceutical Sciences and College of Pharmacy, Seoul National University, Seoul, Korea
- College of Pharmacy, Ajou University, Suwon, Gyeonggi-do, Korea
| | - Hyun-Taek Oh
- Research Institute of Pharmaceutical Sciences and College of Pharmacy, Seoul National University, Seoul, Korea
- Department of BioHealth Regulatory Science, Graduate School of Ajou University, Suwon, Gyeonggi-do, Korea
| | - Seon-Hyeong Lee
- Division of Cancer Biology, Research Institute, National Cancer Center, Goyang, Gyeonggi-do, Korea
| | - Chen-Song Zhang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, Xiamen, China
| | - Mengqi Li
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, Xiamen, China
| | - Soo-Youl Kim
- Division of Cancer Biology, Research Institute, National Cancer Center, Goyang, Gyeonggi-do, Korea
| | - Sunghyouk Park
- Natural Products Research Institute and College of Pharmacy, Seoul National University, Seoul, Korea
| | - Tong-Shin Chang
- Research Institute of Pharmaceutical Sciences and College of Pharmacy, Seoul National University, Seoul, Korea
| | - Byung-Hoon Lee
- Research Institute of Pharmaceutical Sciences and College of Pharmacy, Seoul National University, Seoul, Korea
| | - Sheng-Cai Lin
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, Xiamen, China
| | - Sang-Min Jeon
- Research Institute of Pharmaceutical Sciences and College of Pharmacy, Seoul National University, Seoul, Korea
- College of Pharmacy, Ajou University, Suwon, Gyeonggi-do, Korea
- Department of BioHealth Regulatory Science, Graduate School of Ajou University, Suwon, Gyeonggi-do, Korea
| |
Collapse
|
10
|
Arias-Betancur A, Fontova P, Alonso-Carrillo D, Carreira-Barral I, Duis J, García-Valverde M, Soto-Cerrato V, Quesada R, Pérez-Tomás R. Deregulation of lactate permeability using a small-molecule transporter (Lactrans-1) disturbs intracellular pH and triggers cancer cell death. Biochem Pharmacol 2024; 229:116469. [PMID: 39117009 DOI: 10.1016/j.bcp.2024.116469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Due to the relevance of lactic acidosis in cancer, several therapeutic strategies have been developed targeting its production and/or regulation. In this matter, inhibition approaches of key proteins such as lactate dehydrogenase or monocarboxylate transporters have showed promising results, however, metabolic plasticity and tumor heterogeneity limits their efficacy. In this study, we explored the anticancer potential of a new strategy based on disturbing lactate permeability independently of monocarboxylate transporters activity using a small molecule ionophore named Lactrans-1. Derived from click-tambjamines, Lactrans-1 facilitates transmembrane lactate transportation in liposome models and reduces cancer cell viability. The results showed that Lactrans-1 triggered both apoptosis and necrosis depending on the cell line tested, displaying a synergistic effect in combination with first-line standard chemotherapeutic cisplatin. The ability of this compound to transport outward lactate anions was confirmed in A549 and HeLa cells, two cancer cell lines having distinct rates of lactate production. In addition, through cell viability reversion experiments it was possible to establish a correlation between the amount of lactate transported and the cytotoxic effect exhibited. The movement of lactate anions was accompanied with intracellular pH disturbances that included basification of lysosomes and acidification of the cytosol and mitochondria. We also observed mitochondrial swelling, increased ROS production and activation of oxidative stress signaling pathways p38-MAPK and JNK/SAPK. Our findings provide evidence that enhancement of lactate permeability is critical for cellular pH homeostasis and effective to trigger cancer cell death, suggesting that Lactrans-1 may be a promising anticancer therapy.
Collapse
Affiliation(s)
- Alain Arias-Betancur
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Universitat de Barcelona, 08907, L'Hospitalet de Llobregat, Barcelona, Spain; Molecular Signalling, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), 08908, L'Hospitalet de Llobregat, Barcelona, Spain; Department of Integral Adult Dentistry, Research Centre for Dental Sciences (CICO), Dental School, Universidad de La Frontera, 4811230 Temuco, Chile
| | - Pere Fontova
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Universitat de Barcelona, 08907, L'Hospitalet de Llobregat, Barcelona, Spain; Departamento de Química, Facultad de Ciencias, Universidad de Burgos, 09001 Burgos, Spain
| | - Daniel Alonso-Carrillo
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, 09001 Burgos, Spain
| | - Israel Carreira-Barral
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, 09001 Burgos, Spain
| | - Janneke Duis
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Universitat de Barcelona, 08907, L'Hospitalet de Llobregat, Barcelona, Spain; Avans University of Applied Science, 4818 AJ Breda, the Netherlands
| | - María García-Valverde
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, 09001 Burgos, Spain
| | - Vanessa Soto-Cerrato
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Universitat de Barcelona, 08907, L'Hospitalet de Llobregat, Barcelona, Spain; Molecular Signalling, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Roberto Quesada
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, 09001 Burgos, Spain.
| | - Ricardo Pérez-Tomás
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Universitat de Barcelona, 08907, L'Hospitalet de Llobregat, Barcelona, Spain; Molecular Signalling, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), 08908, L'Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
11
|
Justus CR, Marie MA, Sanderlin EJ, Yang LV. The Roles of Proton-Sensing G-Protein-Coupled Receptors in Inflammation and Cancer. Genes (Basel) 2024; 15:1151. [PMID: 39336742 PMCID: PMC11431078 DOI: 10.3390/genes15091151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
The precise regulation of pH homeostasis is crucial for normal physiology. However, in tissue microenvironments, it can be impacted by pathological conditions such as inflammation and cancer. Due to the overproduction and accumulation of acids (protons), the extracellular pH is characteristically more acidic in inflamed tissues and tumors in comparison to normal tissues. A family of proton-sensing G-protein-coupled receptors (GPCRs) has been identified as molecular sensors for cells responding to acidic tissue microenvironments. Herein, we review the current research progress pertaining to these proton-sensing GPCRs, including GPR4, GPR65 (TDAG8), and GPR68 (OGR1), in inflammation and cancer. Growing evidence suggests that GPR4 and GPR68 are mainly pro-inflammatory, whereas GPR65 is primarily anti-inflammatory, in various inflammatory disorders. Both anti- and pro-tumorigenic effects have been reported for this family of receptors. Moreover, antagonists and agonists targeting proton-sensing GPCRs have been developed and evaluated in preclinical models. Further research is warranted to better understand the roles of these proton-sensing GPCRs in pathophysiology and is required in order to exploit them as potential therapeutic targets for disease treatment.
Collapse
Affiliation(s)
- Calvin R Justus
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Mona A Marie
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Edward J Sanderlin
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Li V Yang
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| |
Collapse
|
12
|
Jin C, Hu W, Wang Y, Wu H, Zeng S, Ying M, Hu X. Deciphering the interaction between PKM2 and the built-in thermodynamic properties of the glycolytic pathway in cancer cells. J Biol Chem 2024; 300:107648. [PMID: 39121998 PMCID: PMC11402776 DOI: 10.1016/j.jbc.2024.107648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/24/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Most cancer cells exhibit high glycolysis rates under conditions of abundant oxygen. Maintaining a stable glycolytic rate is critical for cancer cell growth as it ensures sufficient conversion of glucose carbons to energy, biosynthesis, and redox balance. Here we deciphered the interaction between PKM2 and the thermodynamic properties of the glycolytic pathway. Knocking down or knocking out PKM2 induced a thermodynamic equilibration in the glycolytic pathway, characterized by the reciprocal changes of the Gibbs free energy (ΔG) of the reactions catalyzed by PFK1 and PK, leading to a less exergonic PFK1-catalyzed reaction and a more exergonic PK-catalyzed reaction. The changes in the ΔGs of the two reactions cause the accumulation of intermediates, including the substrate PEP (the substrate of PK), in the segment between PFK1 and PK. The increased concentration of PEP in turn increased PK activity in the glycolytic pathway. Thus, the interaction between PKM2 and the thermodynamic properties of the glycolytic pathway maintains the reciprocal relationship between PK concentration and its substrate PEP concentration, by which, PK activity in the glycolytic pathway can be stabilized and effectively counteracts the effect of PKM2 KD or KO on glycolytic rate. In line with our previous reports, this study further validates the roles of the thermodynamics of the glycolytic pathway in stabilizing glycolysis in cancer cells. Deciphering the interaction between glycolytic enzymes and the thermodynamics of the glycolytic pathway will promote a better understanding of the flux control of glycolysis in cancer cells.
Collapse
Affiliation(s)
- Chengmeng Jin
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang Province Key Laboratory of Molecular Biology in Medical Sciences, Hangzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, Zhejiang, China; Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Hu
- Center for Nutrition & Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Saint Lucia, Queensland, Australia
| | - Yuqi Wang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hao Wu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang Province Key Laboratory of Molecular Biology in Medical Sciences, Hangzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, Zhejiang, China; Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
| | - Siying Zeng
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Minfeng Ying
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang Province Key Laboratory of Molecular Biology in Medical Sciences, Hangzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, Zhejiang, China; Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
| | - Xun Hu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang Province Key Laboratory of Molecular Biology in Medical Sciences, Hangzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, Zhejiang, China; Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
13
|
Degitz C, Reime S, Baumbach CM, Rauschner M, Thews O. Modulation of mitochondrial function by extracellular acidosis in tumor cells and normal fibroblasts: Role of signaling pathways. Neoplasia 2024; 52:100999. [PMID: 38631214 PMCID: PMC11036092 DOI: 10.1016/j.neo.2024.100999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024]
Abstract
In many tumors pronounced extracellular acidosis resulting from glycolytic metabolism is found. Since several environmental stress factors affect the mitochondrial activity the aim of the study was to analyze the impact of acidosis on cellular oxygen consumption and which signaling pathways may be involved in the regulation. In two tumor cell lines and normal fibroblasts cellular oxygen consumption rate (OCR) and mitochondrial function were measured after 3 h at pH 6.6. Besides the activation of ERK1/2, p38 and PI3K signaling in the cytosolic and mitochondrial compartment, the mitochondrial structure and proteins related to mitochondria fission were analyzed. The acidic extracellular environment increased OCR in tumor cells but not in fibroblasts. In parallel, the mitochondrial membrane potential increased at low pH. In both tumor lines (but not in fibroblasts), the phosphorylation of ERK1/2 and PI3K/Akt was significantly increased, and both cascades were involved in OCR modulation. The activation of signaling pathways was located predominantly in the mitochondrial compartment of the cells. At low pH, the mitochondrial structure in tumor cells showed structural changes related to elongation whereas mitochondria fragmentation was reduced indicating mitochondria fusion. However, these morphological changes were not related to ERK1/2 or PI3K signaling. Acidic stress seems to induce an increased oxygen consumption, which might further aggravate tumor hypoxia. Low pH also induces mitochondria fusion that is not mediated by ERK1/2 or PI3K signaling. The mechanism by which these signaling cascades modulate the respiratory activity of tumor cells needs further investigation.
Collapse
Affiliation(s)
- Carmen Degitz
- Julius Bernstein Institute of Physiology, University of Halle-Wittenberg, Magdeburger Str. 6 (Saale), Halle, 06112, Germany
| | - Sarah Reime
- Julius Bernstein Institute of Physiology, University of Halle-Wittenberg, Magdeburger Str. 6 (Saale), Halle, 06112, Germany
| | - Christina-Marie Baumbach
- Julius Bernstein Institute of Physiology, University of Halle-Wittenberg, Magdeburger Str. 6 (Saale), Halle, 06112, Germany
| | - Mandy Rauschner
- Julius Bernstein Institute of Physiology, University of Halle-Wittenberg, Magdeburger Str. 6 (Saale), Halle, 06112, Germany
| | - Oliver Thews
- Julius Bernstein Institute of Physiology, University of Halle-Wittenberg, Magdeburger Str. 6 (Saale), Halle, 06112, Germany.
| |
Collapse
|
14
|
Yao L, Zhu X, Shan Y, Zhang L, Yao J, Xiong H. Recent Progress in Anti-Tumor Nanodrugs Based on Tumor Microenvironment Redox Regulation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310018. [PMID: 38269480 DOI: 10.1002/smll.202310018] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/30/2023] [Indexed: 01/26/2024]
Abstract
The growth state of tumor cells is strictly affected by the specific abnormal redox status of the tumor microenvironment (TME). Moreover, redox reactions at the biological level are also central and fundamental to essential energy metabolism reactions in tumors. Accordingly, anti-tumor nanodrugs targeting the disruption of this abnormal redox homeostasis have become one of the hot spots in the field of nanodrugs research due to the effectiveness of TME modulation and anti-tumor efficiency mediated by redox interference. This review discusses the latest research results of nanodrugs in anti-tumor therapy, which regulate the levels of oxidants or reductants in TME through a variety of therapeutic strategies, ultimately breaking the original "stable" redox state of the TME and promoting tumor cell death. With the gradual deepening of study on the redox state of TME and the vigorous development of nanomaterials, it is expected that more anti-tumor nano drugs based on tumor redox microenvironment regulation will be designed and even applied clinically.
Collapse
Affiliation(s)
- Lan Yao
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, P. R. China
| | - Xiang Zhu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, P. R. China
| | - Yunyi Shan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, P. R. China
| | - Liang Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, P. R. China
| | - Jing Yao
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, P. R. China
| | - Hui Xiong
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, P. R. China
| |
Collapse
|
15
|
Zhang Z, Aoki H, Umezawa K, Kranrod J, Miyazaki N, Oshima T, Hirao T, Miura Y, Seubert J, Ito K, Aoki S. Potential role of lipophagy impairment for anticancer effects of glycolysis-suppressed pancreatic ductal adenocarcinoma cells. Cell Death Discov 2024; 10:166. [PMID: 38580661 PMCID: PMC10997792 DOI: 10.1038/s41420-024-01933-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/07/2024] Open
Abstract
Although increased aerobic glycolysis is common in various cancers, pancreatic ductal adenocarcinoma (PDAC) cells can survive a state of glycolysis suppression. We aimed to identify potential therapeutic targets in glycolysis-suppressed PDAC cells. By screening anticancer metabolic compounds, we identified SP-2509, an inhibitor of lysine-specific histone demethylase 1A (LSD1), which dramatically decreased the growth of PDAC PANC-1 cells and showed an anti-tumoral effect in tumor-bearing mice. The growth of glycolysis-suppressed PANC-1 cells was also inhibited by another LSD1 inhibitor, OG-L002. Similarly, the other two PDAC cells (PK-1 and KLM-1) with suppressed glycolysis exhibited anticancer effects against SP-2509. However, the anticancer effects on PDAC cells were unrelated to LSD1. To investigate how PDAC cells survive in a glycolysis-suppressed condition, we conducted proteomic analyses. These results combined with our previous findings suggested that glucose-starvation causes PDAC cells to enhance mitochondrial oxidative phosphorylation. In particular, mitochondrial fatty acid metabolism was identified as a key factor contributing to the survival of PDAC cells under glycolysis suppression. We further demonstrated that SP-2509 and OG-L002 disturbed fatty acid metabolism and induced lipid droplet accumulation through the impairment of lipophagy, but not bulk autophagy. These findings indicate a significant potential association of lipophagy and anticancer effects in glycolysis-suppressed PDAC cells, offering ideas for new therapeutic strategies for PDAC by dual inhibition of glycolysis and fatty acids metabolism.
Collapse
Affiliation(s)
- Zhiheng Zhang
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-city, Chiba, 260-8675, Japan
| | - Haruna Aoki
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-city, Chiba, 260-8675, Japan
| | - Keitaro Umezawa
- Research Team for Mechanism of Aging, Tokyo Metropolitan Institute of Gerontology, 35‑2 Sakae‑cho, Itabashi‑ku, Tokyo, 173‑0015, Japan
| | - Joshua Kranrod
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, 2026-M Katz Group Centre for Pharmacy and Health Research, 11361-97 Ave, Edmonton, AB, T6G 2E1, Canada
| | - Natsumi Miyazaki
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-city, Chiba, 260-8675, Japan
| | - Taichi Oshima
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-city, Chiba, 260-8675, Japan
| | - Takuya Hirao
- Divisions of Clinical Pharmacokinetics, Department of Pharmaceutical Sciences, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi, 324-8501, Japan
| | - Yuri Miura
- Research Team for Mechanism of Aging, Tokyo Metropolitan Institute of Gerontology, 35‑2 Sakae‑cho, Itabashi‑ku, Tokyo, 173‑0015, Japan
| | - John Seubert
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, 2026-M Katz Group Centre for Pharmacy and Health Research, 11361-97 Ave, Edmonton, AB, T6G 2E1, Canada
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Kousei Ito
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-city, Chiba, 260-8675, Japan
| | - Shigeki Aoki
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-city, Chiba, 260-8675, Japan.
| |
Collapse
|
16
|
Sunassee ED, Deutsch RJ, D’Agostino VW, Castellano-Escuder P, Siebeneck EA, Ilkayeva O, Crouch BT, Madonna MC, Everitt J, Alvarez JV, Palmer GM, Hirschey MD, Ramanujam N. Optical imaging reveals chemotherapy-induced metabolic reprogramming of residual disease and recurrence. SCIENCE ADVANCES 2024; 10:eadj7540. [PMID: 38579004 PMCID: PMC10997195 DOI: 10.1126/sciadv.adj7540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 03/04/2024] [Indexed: 04/07/2024]
Abstract
Fewer than 20% of triple-negative breast cancer patients experience long-term responses to mainstay chemotherapy. Resistant tumor subpopulations use alternative metabolic pathways to escape therapy, survive, and eventually recur. Here, we show in vivo, longitudinal metabolic reprogramming in residual disease and recurrence of triple-negative breast cancer xenografts with varying sensitivities to the chemotherapeutic drug paclitaxel. Optical imaging coupled with metabolomics reported an increase in non-glucose-driven mitochondrial metabolism and an increase in intratumoral metabolic heterogeneity during regression and residual disease in resistant MDA-MB-231 tumors. Conversely, sensitive HCC-1806 tumors were primarily reliant on glucose uptake and minimal changes in metabolism or heterogeneity were observed over the tumors' therapeutic life cycles. Further, day-matched resistant HCC-1806 tumors revealed a higher reliance on mitochondrial metabolism and elevated metabolic heterogeneity compared to sensitive HCC-1806 tumors. Together, metabolic flexibility, increased reliance on mitochondrial metabolism, and increased metabolic heterogeneity are defining characteristics of persistent residual disease, features that will inform the appropriate type and timing of therapies.
Collapse
Affiliation(s)
| | - Riley J. Deutsch
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | | | - Pol Castellano-Escuder
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Durham, NC, USA
- Department of Pharmacology and Cancer Biology, School of Medicine, Duke University, Durham, NC, USA
- Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University Medical Center, Durham, NC, USA
| | | | - Olga Ilkayeva
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Durham, NC, USA
- Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University Medical Center, Durham, NC, USA
| | - Brian T. Crouch
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Megan C. Madonna
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Jeffrey Everitt
- Department of Pathology, School of Medicine, Duke University, Durham, NC, USA
| | - James V. Alvarez
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | - Matthew D. Hirschey
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Durham, NC, USA
- Department of Pharmacology and Cancer Biology, School of Medicine, Duke University, Durham, NC, USA
- Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University Medical Center, Durham, NC, USA
| | - Nirmala Ramanujam
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Department of Radiation Oncology, Duke University, Durham, NC, USA
| |
Collapse
|
17
|
Yu T, Jiang W, Wang Y, Zhou Y, Jiao J, Wu M. Chimeric antigen receptor T cells in the treatment of osteosarcoma (Review). Int J Oncol 2024; 64:40. [PMID: 38390935 PMCID: PMC10919759 DOI: 10.3892/ijo.2024.5628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
Osteosarcoma (OS) is a frequently occurring primary bone tumor, mostly affecting children, adolescents and young adults. Before 1970, surgical resection was the main treatment method for OS, but the clinical results were not promising. Subsequently, the advent of chemotherapy has improved the prognosis of patients with OS. However, there is still a high incidence of metastasis or recurrence, and chemotherapy has several side effects, thus making the 5‑year survival rate markedly low. Recently, chimeric antigen receptor T (CAR‑T) cell therapy represents an alternative immunotherapy approach with significant potential for hematologic malignancies. Nevertheless, the application of CAR‑T cells in the treatment of OS faces numerous challenges. The present review focused on the advances in the development of CAR‑T cells to improve their clinical efficacy, and discussed ways to overcome the difficulties faced by CAR T‑cell therapy for OS.
Collapse
Affiliation(s)
- Tong Yu
- Department of Orthopedics, The Second Norman Bethune Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Weibo Jiang
- Department of Orthopedics, The Second Norman Bethune Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Yang Wang
- Department of Orthopedics, The Second Norman Bethune Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Ying Zhou
- Department of Operating Room, The Third Hospital of Qinhuangdao, Qinhuangdao, Hebei 066000, P.R. China
| | - Jianhang Jiao
- Department of Orthopedics, The Second Norman Bethune Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Minfei Wu
- Department of Orthopedics, The Second Norman Bethune Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| |
Collapse
|
18
|
Tafech A, Stéphanou A. On the Importance of Acidity in Cancer Cells and Therapy. BIOLOGY 2024; 13:225. [PMID: 38666837 PMCID: PMC11048434 DOI: 10.3390/biology13040225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024]
Abstract
Cancer cells are associated with high glycolytic activity, which results in acidification of the tumor microenvironment. The occurrence of this stressful condition fosters tumor aggressiveness, with the outcome of invasiveness and metastasis that are linked to a poor clinical prognosis. Acidosis can be both the cause or consequence of alterations in the functions and expressions of transporters involved in intracellular acidity regulation. This review aims to explore the origin of acidity in cancer cells and the various mechanisms existing in tumors to resist, survive, or thrive in the acidic environment. It highlights the difficulties in measuring the intracellular pH evolution that impedes our understanding of the many regulatory and feedback mechanisms. It finally presents the consequences of acidity on tumor development as well as the friend or foe role of acidity in therapy.
Collapse
Affiliation(s)
| | - Angélique Stéphanou
- Université Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
| |
Collapse
|
19
|
Ji X, Yang Z, Li C, Zhu S, Zhang Y, Xue F, Sun S, Fu T, Ding C, Liu Y, Wan Q. Mitochondrial ribosomal protein L12 potentiates hepatocellular carcinoma by regulating mitochondrial biogenesis and metabolic reprogramming. Metabolism 2024; 152:155761. [PMID: 38104924 DOI: 10.1016/j.metabol.2023.155761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND Mitochondrial dysfunction and metabolic reprogramming are key features of hepatocellular carcinoma (HCC). Despite its significance, the precise underlying mechanism behind these processes has not been fully elucidated. The latest investigations, along with our previous discoveries, have substantiated the significant role of mitochondrial ribosomal protein L12 (MRPL12), a newly identified gene involved in mitochondrial transcription regulation, in the modulation of mitochondrial metabolism. Nevertheless, the role of MRPL12 in tumorigenesis has yet to be investigated. METHODS The expression of MRPL12 in HCC was assessed using an online database. Western blot, quantitative real-time polymerase chain reaction (qRT-PCR), and immunohistochemistry (IHC) were employed to determine the expression of MRPL12 in HCC tissues, patient-derived organoid (PDO), and cell lines. The correlation between MRPL12 expression and clinicopathological features, as well as prognosis, was examined using tissue microarray analysis. An in vivo subcutaneous tumor xenograft model, gene knockdown or overexpression assay, chromatin immunoprecipitation (ChIP) assay, Seahorse XF96 assay, and cell function assay were employed to investigate the biological function and potential molecular mechanism of MRPL12 in HCC. RESULTS A significant upregulation of MRPL12 was observed in HCC cells, PDO and patient tissues, which correlated with advanced tumor stage, higher grade and poor prognosis. MRPL12 overexpression promoted cell proliferation, migration, and invasion in vitro, as well as tumorigenicity in vivo, whereas MRPL12 knockdown showed the opposite effect. MRPL12 knockdown also inhibited the capacity of organoids proliferation capacity. Furthermore, MRPL12 was found to be crucial for maintaining mitochondrial homeostasis. Both gain and loss-of-function experiments targeting MRPL12 in HCC cells altered oxidative phosphorylation (OXPHOS) and mitochondrial DNA content. Notably, suppression of OXPHOS effectively mitigates the tumor-promoting effect attributed to MRPL12 overexpression, implying the involvement of MRPL12 in HCC through the modulation of mitochondrial metabolism. Besides, Yin Yang 1 (YY1) was identified as a transcription factor responsible for regulating MRPL12, while the PI3K/mTOR pathway was found to act as an upstream regulator of YY1. MRPL12 knockdown attenuated the YY1 overexpression or PI3K/mTOR activation-induced malignant phenotype in HCC cells. CONCLUSION Our findings provide compelling evidence that MRPL12 is implicated in driving the malignant phenotype of HCC via regulating mitochondrial metabolism. Moreover, the aberrant expression of MRPL12 in HCC is mediated by the upstream PI3K/mTOR/YY1 pathway. These results highlight the potential of targeting MRPL12 as a promising therapeutic strategy for the treatment of HCC.
Collapse
Affiliation(s)
- Xingzhao Ji
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Shandong Key Laboratory of Infections Respiratory Disease, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Zhen Yang
- Department of Infectious Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Chensheng Li
- Department of Gastroenterological Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Suwei Zhu
- Department of Critical-Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Yu Zhang
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China
| | - Fuyuan Xue
- Key Laboratory of Cell Metabolism in Medical and Health of Shandong Provincial Health Commission, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Shengnan Sun
- Key Laboratory of Cell Metabolism in Medical and Health of Shandong Provincial Health Commission, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Tingting Fu
- Key Laboratory of Cell Metabolism in Medical and Health of Shandong Provincial Health Commission, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Can Ding
- Department of Pulmonary and Critical Care Medicine, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China
| | - Yi Liu
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Shandong Key Laboratory of Infections Respiratory Disease, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| | - Qiang Wan
- Key Laboratory of Cell Metabolism in Medical and Health of Shandong Provincial Health Commission, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China.
| |
Collapse
|
20
|
Bogdanov A, Verlov N, Bogdanov A, Burdakov V, Semiletov V, Egorenkov V, Volkov N, Moiseyenko V. Tumor alkalization therapy: misconception or good therapeutics perspective? - the case of malignant ascites. Front Oncol 2024; 14:1342802. [PMID: 38390269 PMCID: PMC10881708 DOI: 10.3389/fonc.2024.1342802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
Tumor acidity has been identified as a key factor in promoting cancer progression, metastasis, and resistance. Tumor alkalization therapy has emerged as a potential strategy for cancer treatment. This article provides preclinical and clinical evidence for tumor alkalization therapy as a promising cancer treatment strategy. The potential of tumor alkalization therapy using sodium bicarbonate in the treatment of malignant ascites was studied. The concept of intraperitoneal perfusion with an alkalizing solution to increase the extracellular pH and its antitumor effect were explored. The significant extension in the overall survival of the Ehrlich ascites carcinoma mice treated with sodium bicarbonate solution compared to those treated with a sodium chloride solution was observed. In the sodium bicarbonate group, mice had a median survival of 30 days after tumor cell injection, which was significantly (p<0.05) different from the median survival of 18 days in the sodium chloride group and 14 days in the intact group. We also performed a case study of a patient with ovarian cancer malignant ascites resistant to previous lines of chemotherapy who underwent intraperitoneal perfusions with a sodium bicarbonate solution, resulting in a significant drop of CA-125 levels from 5600 U/mL to 2200 U/mL in and disappearance of ascites, indicating the potential effectiveness of the treatment. The preclinical and clinical results obtained using sodium bicarbonate perfusion in the treatment of malignant ascites represent a small yet significant contribution to the evolving field of tumor alkalization as a cancer therapy. They unequivocally affirm the good prospects of this concept.
Collapse
Affiliation(s)
- Alexey Bogdanov
- Napalkov Saint Petersburg Clinical Research and Practical Center of Specialized Types of Medical Care (Oncological), Saint Petersburg, Russia
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Carlos-Reyes A, Romero-Garcia S, Prado-Garcia H. Metabolic Responses of Lung Adenocarcinoma Cells to Survive under Stressful Conditions Associated with Tumor Microenvironment. Metabolites 2024; 14:103. [PMID: 38392995 PMCID: PMC10890307 DOI: 10.3390/metabo14020103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Solid tumors frequently present a heterogeneous tumor microenvironment. Because tumors have the potential to proliferate quickly, the consequence is a reduction in the nutrients, a reduction in the pH (<6.8), and a hypoxic environment. Although it is often assumed that tumor clones show a similar growth rate with little variations in nutrient consumption, the present study shows how growth-specific rate (µ), the specific rates of glucose, lactate, and glutamine consumption (qS), and the specific rates of lactate and glutamate production (qP) of 2D-cultured lung tumor cells are affected by changes in their environment. We determined in lung tumor cells (A427, A549, Calu-1, and SKMES-1) the above mentioned kinetic parameters during the exponential phase under different culture conditions, varying the predominant carbon source, pH, and oxygen tension. MCF-7 cells, a breast tumor cell line that can consume lactate, and non-transformed fibroblast cells (MRC-5) were included as controls. We also analyzed how cell-cycle progression and the amino acid transporter CD98 expression were affected. Our results show that: (1) In glucose presence, μ increased, but qS Glucose and qP Lactate decreased when tumor cells were cultured under acidosis as opposed to neutral conditions; (2) most lung cancer cell lines consumed lactate under normoxia or hypoxia; (3) although qS Glutamine diminished under hypoxia or acidosis, it slightly increased in lactate presence, a finding that was associated with CD98 upregulation; and (4) under acidosis, G0/G1 arrest was induced in A427 cancer cells, although this phenomenon was significantly increased when glucose was changed by lactate as the predominant carbon-source. Hence, our results provide an understanding of metabolic responses that tumor cells develop to survive under stressful conditions, providing clues for developing promising opportunities to improve traditional cancer therapies.
Collapse
Affiliation(s)
- Angeles Carlos-Reyes
- Laboratorio de Onco-Inmunobiologia, Departamento de Enfermedades Crónico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico
| | - Susana Romero-Garcia
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Heriberto Prado-Garcia
- Laboratorio de Onco-Inmunobiologia, Departamento de Enfermedades Crónico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico
| |
Collapse
|
22
|
Ji G, Li Y, Zhang Z, Li H, Sun P. Recent advances of novel targeted drug delivery systems based on natural medicine monomers against hepatocellular carcinoma. Heliyon 2024; 10:e24667. [PMID: 38312669 PMCID: PMC10834828 DOI: 10.1016/j.heliyon.2024.e24667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/22/2023] [Accepted: 01/11/2024] [Indexed: 02/06/2024] Open
Abstract
Hepatocellular carcinoma (HCC), the most prevalent type of liver cancer, is often diagnosed at an advanced stage. Surgical interventions are often ineffective, leading HCC patients to rely on systemic chemotherapy. Unfortunately, commonly used chemotherapeutic drugs have limited efficacy and can adversely affect vital organs, causing significant physical and psychological distress for patients. Natural medicine monomers (NMMs) have shown promising efficacy and safety profiles in HCC treatment, garnering attention from researchers. In recent years, the development of novel targeted drug delivery systems (TDDS) combining NMMs with nanocarriers has emerged. These TDDS aim to concentrate drugs effectively in HCC cells by manipulating the characteristics of nanomedicines, leveraging receptor and ligand interactions, and utilizing endogenous stimulatory responses to promote specific nanomedicines distribution. This comprehensive review presents recent research on TDDS for HCC treatment using NMMs from three perspectives: passive TDDS, active TDDS, and stimuli-responsive drug delivery systems (SDDS). It consolidates the current state of research on TDDS for HCC treatment with NMMs and highlights the potential of these innovative approaches in improving treatment outcomes. Moreover, the review also identifies research gaps in the related fields to provide references for future targeted therapy research in HCC.
Collapse
Affiliation(s)
- Guanjie Ji
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yue Li
- Department of Clinical Pharmacy, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Zhiyue Zhang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong Province, 250012, China
| | - Hui Li
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong Province, 250012, China
| | - Ping Sun
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- Grade Three Laboratory of Traditional Chinese Medicine Preparation of the National Administration of Traditional Chinese Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| |
Collapse
|
23
|
Daverio Z, Kolkman M, Perrier J, Brunet L, Bendridi N, Sanglar C, Berger MA, Panthu B, Rautureau GJP. Warburg-associated acidification represses lactic fermentation independently of lactate, contribution from real-time NMR on cell-free systems. Sci Rep 2023; 13:17733. [PMID: 37853114 PMCID: PMC10584866 DOI: 10.1038/s41598-023-44783-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023] Open
Abstract
Lactate accumulation and acidification in tumours are a cancer hallmark associated with the Warburg effect. Lactic acidosis correlates with cancer malignancy, and the benefit it offers to tumours has been the subject of numerous hypotheses. Strikingly, lactic acidosis enhances cancer cell survival to environmental glucose depletion by repressing high-rate glycolysis and lactic fermentation, and promoting an oxidative metabolism involving reactivated respiration. We used real-time NMR to evaluate how cytosolic lactate accumulation up to 40 mM and acidification up to pH 6.5 individually impact glucose consumption, lactate production and pyruvate evolution in isolated cytosols. We used a reductive cell-free system (CFS) to specifically study cytosolic metabolism independently of other Warburg-regulatory mechanisms found in the cell. We assessed the impact of lactate and acidification on the Warburg metabolism of cancer cytosols, and whether this effect extended to different cytosolic phenotypes of lactic fermentation and cancer. We observed that moderate acidification, independently of lactate concentration, drastically reduces the glucose consumption rate and halts lactate production in different lactic fermentation phenotypes. In parallel, for Warburg-type CFS lactate supplementation induces pyruvate accumulation at control pH, and can maintain a higher cytosolic pyruvate pool at low pH. Altogether, we demonstrate that intracellular acidification accounts for the direct repression of lactic fermentation by the Warburg-associated lactic acidosis.
Collapse
Affiliation(s)
- Zoé Daverio
- Laboratoire CarMeN, UMR INSERM U1060/INRAE U1397, University of Lyon, Université Claude Bernard Lyon 1, 69310, Pierre-Bénite, France
- Master de Biologie, École Normale Supérieure de Lyon, University of Lyon, Université Claude Bernard Lyon 1, 69342, Lyon Cedex 07, France
| | - Maxime Kolkman
- Laboratoire CarMeN, UMR INSERM U1060/INRAE U1397, University of Lyon, Université Claude Bernard Lyon 1, 69310, Pierre-Bénite, France
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS UMR 5246, University of Lyon, Université Claude Bernard Lyon 1, 69622, Lyon, France
| | - Johan Perrier
- Laboratoire CarMeN, UMR INSERM U1060/INRAE U1397, University of Lyon, Université Claude Bernard Lyon 1, 69310, Pierre-Bénite, France
| | - Lexane Brunet
- Laboratoire CarMeN, UMR INSERM U1060/INRAE U1397, University of Lyon, Université Claude Bernard Lyon 1, 69310, Pierre-Bénite, France
| | - Nadia Bendridi
- Laboratoire CarMeN, UMR INSERM U1060/INRAE U1397, University of Lyon, Université Claude Bernard Lyon 1, 69310, Pierre-Bénite, France
| | - Corinne Sanglar
- Institut des Sciences Analytiques, UMR5280 CNRS, University of Lyon, Université Claude Bernard Lyon 1, 5 rue de la Doua, 69100, Villeurbanne, France
| | - Marie-Agnès Berger
- Laboratoire CarMeN, UMR INSERM U1060/INRAE U1397, University of Lyon, Université Claude Bernard Lyon 1, 69310, Pierre-Bénite, France
| | - Baptiste Panthu
- Laboratoire CarMeN, UMR INSERM U1060/INRAE U1397, University of Lyon, Université Claude Bernard Lyon 1, 69310, Pierre-Bénite, France.
| | - Gilles J P Rautureau
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS UMR 5246, University of Lyon, Université Claude Bernard Lyon 1, 69622, Lyon, France.
| |
Collapse
|
24
|
Tu YH, Liu N, Xiao C, Gavrilova O, Reitman ML. Loss of Otopetrin 1 affects thermoregulation during fasting in mice. PLoS One 2023; 18:e0292610. [PMID: 37812612 PMCID: PMC10561838 DOI: 10.1371/journal.pone.0292610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 09/09/2023] [Indexed: 10/11/2023] Open
Abstract
OBJECTIVE Otopetrin 1 (OTOP1) is a proton channel that is highly expressed in brown adipose tissue. We examined the physiology of Otop1-/- mice, which lack functional OTOP1. METHODS Mice were studied by indirect calorimetry and telemetric ambulatory body temperature monitoring. Mitochondrial function was measured as oxygen consumption and extracellular acidification. RESULTS Otop1-/- mice had similar body temperatures as control mice at baseline and in response to cold and hot ambient temperatures. However, in response to fasting the Otop1-/- mice exhibited an exaggerated hypothermia and hypometabolism. Similarly, in ex vivo tests of Otop1-/- brown adipose tissue mitochondrial function, there was no change in baseline oxygen consumption, but the oxygen consumption was reduced after maximal uncoupling with FCCP and increased upon stimulation with the β3-adrenergic agonist CL316243. Mast cells also express Otop1, and Otop1-/- mice had intact, possibly greater hypothermia in response to mast cell activation by the adenosine A3 receptor agonist MRS5698. No increase in insulin resistance was observed in the Otop1-/- mice. CONCLUSIONS Loss of OTOP1 does not change basal function of brown adipose tissue but affects stimulated responses.
Collapse
Affiliation(s)
- Yu-Hsiang Tu
- Diabetes, Endocrinology and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Naili Liu
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Cuiying Xiao
- Diabetes, Endocrinology and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Oksana Gavrilova
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Marc L. Reitman
- Diabetes, Endocrinology and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States of America
| |
Collapse
|
25
|
Rong Y, Dong F, Zhang G, Tang M, Zhao X, Zhang Y, Tao P, Cai H. The crosstalking of lactate-Histone lactylation and tumor. Proteomics Clin Appl 2023; 17:e2200102. [PMID: 36853081 DOI: 10.1002/prca.202200102] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/17/2023] [Accepted: 02/23/2023] [Indexed: 03/01/2023]
Abstract
Lactate was once considered to be a by-product of energy metabolism, but its unique biological value was only gradually explored with the advent of the Warburg effect. As an end product of glycolysis, lactate can act as a substrate for energy metabolism, a signal transduction molecule, a regulator of the tumor microenvironment and immune cells, and a regulator of the deubiquitination of specific enzymes, and is involved in various biological aspects of tumor regulation, including energy shuttling, growth and invasion, angiogenesis and immune escape. Furthermore, we describe a novel lactate-dependent epigenetic modification, namely histone lactylation modification, and review the progress of its study in tumors, mainly involving the reprogramming of tumor phenotypes, regulation of related gene expression, mediation of the glycolytic process in tumor stem cells (CSCs) and influence on the tumor immune microenvironment. The study of epigenetic regulation of tumor genes by histone modification is still in its infancy, and we expect that by summarizing the effects of lactate and histone modification on tumor and related gene regulation, we will clarify the scientific significance of future histone modification studies and the problems to be solved, and open up new fields for targeted tumor therapy.
Collapse
Affiliation(s)
- Yao Rong
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Gansu, China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, China
| | - Fengyuan Dong
- Geriatrics Department, Lianyungang First People's Hospital, Lianyugang, China
| | - Guiqian Zhang
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Gansu, China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, China
| | - Mingzheng Tang
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Gansu, China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, China
| | - Xiashuang Zhao
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Gansu, China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, China
| | - Yan Zhang
- Cadre Ward of General Surgery Department, Gansu Provincial Hospital, Lanzhou, China
| | - Pengxian Tao
- Cadre Ward of General Surgery Department, Gansu Provincial Hospital, Lanzhou, China
| | - Hui Cai
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Gansu, China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, China
| |
Collapse
|
26
|
Nzenwa IC, Berquist M, Brenner TJ, Ansari A, Al-Fadhl HD, Aboukhaled M, Patel SS, Peck EE, Al-Fadhl MD, Thomas AV, Zackariya N, Walsh MM, Bufill JA. Type B Lactic Acidosis in a Patient with Mantle Cell Lymphoma. Case Rep Crit Care 2023; 2023:7021123. [PMID: 37621746 PMCID: PMC10447056 DOI: 10.1155/2023/7021123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 02/23/2023] [Accepted: 07/29/2023] [Indexed: 08/26/2023] Open
Abstract
Type B lactic acidosis is an uncommon medical emergency in which acid production overwhelms hepatic clearance. This specific etiology of lactic acidosis occurs without organ hypoperfusion and has been most commonly described in patients with hematologic malignancies but also in patients with solid tumors. The mechanism by which cancer cells switch their glucose metabolism toward increasingly anaerobic glycolytic phenotypes has been described as the "Warburg effect." Without treating the underlying malignancy, the prognosis for patients diagnosed with malignancy-related type B lactic acidosis is extremely poor. Here, we present a case of a 66-year-old male who was diagnosed with type B lactic acidosis secondary to mantle cell lymphoma. Bicarbonate drip was started to correct the lactic acidosis. The patient was also immediately treated with rituximab chemotherapy combined with rasburicase to avoid the hyperuricemia associated with tumor lysis syndrome. He responded to the early treatment and was discharged with normal renal function. Type B lactic acidosis secondary to hematologic malignancy is important to recognize. In order to successfully treat this syndrome, early diagnosis and simultaneous treatment of the imbalance of lactic acid levels and the underlying malignancy are necessary.
Collapse
Affiliation(s)
| | | | - Toby J. Brenner
- Saint Joseph Regional Medical Center, Mishawaka, Indiana, USA
| | - Aida Ansari
- Saint Joseph Regional Medical Center, Mishawaka, Indiana, USA
| | | | | | | | - Ethan E. Peck
- Saint Joseph Regional Medical Center, Mishawaka, Indiana, USA
| | - Mahmoud D. Al-Fadhl
- Indiana University School of Medicine South Bend Campus, Notre Dame, Indiana, USA
| | - Anthony V. Thomas
- Indiana University School of Medicine South Bend Campus, Notre Dame, Indiana, USA
| | - Nuha Zackariya
- Indiana University School of Medicine South Bend Campus, Notre Dame, Indiana, USA
| | - Mark M. Walsh
- Saint Joseph Regional Medical Center, Mishawaka, Indiana, USA
- Indiana University School of Medicine South Bend Campus, Notre Dame, Indiana, USA
| | | |
Collapse
|
27
|
Sun Y, He Q, Li J, Yang Z, Ahmad M, Lin Y, Wu D, Zheng L, Li J, Wang B, Chen C, Hu Y, Luo H, Luo Y. A GSTP1-mediated lactic acid signaling promotes tumorigenesis through the PPP oxidative branch. Cell Death Dis 2023; 14:463. [PMID: 37491277 PMCID: PMC10368634 DOI: 10.1038/s41419-023-05998-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/21/2023] [Accepted: 07/13/2023] [Indexed: 07/27/2023]
Abstract
Lactic acidosis is a feature of solid tumors and plays fundamental role(s) rendering cancer cells to adapt to diverse metabolic stresses, but the mechanism underlying its roles in redox homeostasis remains elusive. Here we show that G6PD is phosphorylated at tyrosine 249/322 by the SRC through the formation of a GSTP1-G6PD-SRC complex. Lactic acid attenuates this formation and the phosphorylation of G6PD by non-covalently binding with GSTP1. Furthermore, lactic acid increases the activity of G6PD and facilitates the PPP (NADPH production) through its sensor GSTP1, thereby exhibiting resistance to reactive oxygen species when glucose is scarce. Abrogating a GSTP1-mediated lactic acid signaling showed attenuated tumor growth and reduced resistance to ROS in breast cancer cells. Importantly, positive correlations between immuno-enriched SRC protein and G6PD Y249/322 phosphorylation specifically manifest in ER/PR positive or HER negative types of breast cancer. Taken together, these results suggest that GSTP1 plays a key role in tumor development by functioning as a novel lactate sensor.
Collapse
Affiliation(s)
- Yandi Sun
- Cancer Institute, The Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
- Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qian He
- Department of Biochemistry & Cancer Medicine, International Institutes of Medicine, the Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, China
- Department of Biochemistry and Molecular Biology, School of Medicine, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, Zhejiang, China
| | - Jingjia Li
- Department of Biochemistry & Cancer Medicine, International Institutes of Medicine, the Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, China
- Department of Biochemistry and Molecular Biology, School of Medicine, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, Zhejiang, China
| | - Ze Yang
- Department of Biochemistry & Cancer Medicine, International Institutes of Medicine, the Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, China
- Department of Biochemistry and Molecular Biology, School of Medicine, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, Zhejiang, China
| | - Mashaal Ahmad
- Department of Biochemistry & Cancer Medicine, International Institutes of Medicine, the Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, China
- Department of Biochemistry and Molecular Biology, School of Medicine, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, Zhejiang, China
| | - Yindan Lin
- Department of Biochemistry & Cancer Medicine, International Institutes of Medicine, the Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, China
- Department of Biochemistry and Molecular Biology, School of Medicine, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, Zhejiang, China
| | - Di Wu
- Department of General Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lei Zheng
- Departments of Oncology and Surgery, the Pancreatic Cancer Center of Excellence Program, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jiangtao Li
- Department of General Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ben Wang
- Cancer Institute, The Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
- Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chitty Chen
- Department of Research and Development, SysDiagno Biotech, Nanjing, 211800, Jiangsu Province, China
| | - Yue Hu
- Department of Breast Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Heng Luo
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou, China.
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, Guizhou, China.
| | - Yan Luo
- Department of Biochemistry & Cancer Medicine, International Institutes of Medicine, the Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, China.
- Department of Biochemistry and Molecular Biology, School of Medicine, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, Zhejiang, China.
| |
Collapse
|
28
|
Kao TW, Bai GH, Wang TL, Shih IM, Chuang CM, Lo CL, Tsai MC, Chiu LY, Lin CC, Shen YA. Novel cancer treatment paradigm targeting hypoxia-induced factor in conjunction with current therapies to overcome resistance. J Exp Clin Cancer Res 2023; 42:171. [PMID: 37460927 DOI: 10.1186/s13046-023-02724-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/29/2023] [Indexed: 07/20/2023] Open
Abstract
Chemotherapy, radiotherapy, targeted therapy, and immunotherapy are established cancer treatment modalities that are widely used due to their demonstrated efficacy against tumors and favorable safety profiles or tolerability. Nevertheless, treatment resistance continues to be one of the most pressing unsolved conundrums in cancer treatment. Hypoxia-inducible factors (HIFs) are a family of transcription factors that regulate cellular responses to hypoxia by activating genes involved in various adaptations, including erythropoiesis, glucose metabolism, angiogenesis, cell proliferation, and apoptosis. Despite this critical function, overexpression of HIFs has been observed in numerous cancers, leading to resistance to therapy and disease progression. In recent years, much effort has been poured into developing innovative cancer treatments that target the HIF pathway. Combining HIF inhibitors with current cancer therapies to increase anti-tumor activity and diminish treatment resistance is one strategy for combating therapeutic resistance. This review focuses on how HIF inhibitors could be applied in conjunction with current cancer treatments, including those now being evaluated in clinical trials, to usher in a new era of cancer therapy.
Collapse
Affiliation(s)
- Ting-Wan Kao
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110301, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 110301, Taiwan
| | - Geng-Hao Bai
- Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei City, 100225, Taiwan
| | - Tian-Li Wang
- Departments of Pathology, Oncology and Gynecology and Obstetrics, Johns Hopkins Medical Institutions, 1550 Orleans StreetRoom 306, Baltimore, MD, CRB221231, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ie-Ming Shih
- Departments of Pathology, Oncology and Gynecology and Obstetrics, Johns Hopkins Medical Institutions, 1550 Orleans StreetRoom 306, Baltimore, MD, CRB221231, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chi-Mu Chuang
- Faculty of Medicine, School of Medicine, National Yang-Ming Chiao Tung University, Taipei, 112304, Taiwan
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, 112201, Taiwan
- Department of Midwifery and Women Health Care, National Taipei University of Nursing and Health Sciences, Taipei, 112303, Taiwan
| | - Chun-Liang Lo
- Department of Biomedical Engineering, National Yang-Ming Chiao Tung University, Taipei, 112304, Taiwan
- Medical Device Innovation and Translation Center, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan
| | - Meng-Chen Tsai
- Department of General Medicine, Taipei Medical University Hospital, Taipei, 110301, Taiwan
| | - Li-Yun Chiu
- Department of General Medicine, Mackay Memorial Hospital, Taipei, 104217, Taiwan
| | - Chu-Chien Lin
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110301, Taiwan
- School of Medicine, College of Medicine, Taipei Medical University, Taipei City, 110301, Taiwan
| | - Yao-An Shen
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110301, Taiwan.
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 110301, Taiwan.
- International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, 110301, Taiwan.
| |
Collapse
|
29
|
Kerslake R, Belay B, Panfilov S, Hall M, Kyrou I, Randeva HS, Hyttinen J, Karteris E, Sisu C. Transcriptional Landscape of 3D vs. 2D Ovarian Cancer Cell Models. Cancers (Basel) 2023; 15:3350. [PMID: 37444459 DOI: 10.3390/cancers15133350] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 06/01/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023] Open
Abstract
Three-dimensional (3D) cancer models are revolutionising research, allowing for the recapitulation of an in vivo-like response through the use of an in vitro system, which is more complex and physiologically relevant than traditional monolayer cultures. Cancers such as ovarian (OvCa) are prone to developing resistance, are often lethal, and stand to benefit greatly from the enhanced modelling emulated by 3D cultures. However, the current models often fall short of the predicted response, where reproducibility is limited owing to the lack of standardised methodology and established protocols. This meta-analysis aims to assess the current scope of 3D OvCa models and the differences in the genetic profiles presented by a vast array of 3D cultures. An analysis of the literature (Pubmed.gov) spanning 2012-2022 was used to identify studies with paired data of 3D and 2D monolayer counterparts in addition to RNA sequencing and microarray data. From the data, 19 cell lines were found to show differential regulation in their gene expression profiles depending on the bio-scaffold (i.e., agarose, collagen, or Matrigel) compared to 2D cell cultures. The top genes differentially expressed in 2D vs. 3D included C3, CXCL1, 2, and 8, IL1B, SLP1, FN1, IL6, DDIT4, PI3, LAMC2, CCL20, MMP1, IFI27, CFB, and ANGPTL4. The top enriched gene sets for 2D vs. 3D included IFN-α and IFN-γ response, TNF-α signalling, IL-6-JAK-STAT3 signalling, angiogenesis, hedgehog signalling, apoptosis, epithelial-mesenchymal transition, hypoxia, and inflammatory response. Our transversal comparison of numerous scaffolds allowed us to highlight the variability that can be induced by these scaffolds in the transcriptional landscape and identify key genes and biological processes that are hallmarks of cancer cells grown in 3D cultures. Future studies are needed to identify which is the most appropriate in vitro/preclinical model to study tumour microenvironments.
Collapse
Affiliation(s)
- Rachel Kerslake
- Division of Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| | - Birhanu Belay
- Computational Biophysics and Imaging Group, The Faculty of Medicine and Health Technology, Tampere University, 33100 Tampere, Finland
| | - Suzana Panfilov
- Division of Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| | - Marcia Hall
- Division of Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
- Mount Vernon Cancer Centre, Rickmansworth Road, Northwood HA6 2RN, UK
| | - Ioannis Kyrou
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- Research Institute for Health & Wellbeing, Coventry University, Coventry CV1 5FB, UK
- Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK
- Laboratory of Dietetics and Quality of Life, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, 11855 Athens, Greece
| | - Harpal S Randeva
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Jari Hyttinen
- Computational Biophysics and Imaging Group, The Faculty of Medicine and Health Technology, Tampere University, 33100 Tampere, Finland
| | - Emmanouil Karteris
- Division of Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| | - Cristina Sisu
- Division of Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| |
Collapse
|
30
|
Wang M, Zhang J, Wu Y. Tumor metabolism rewiring in epithelial ovarian cancer. J Ovarian Res 2023; 16:108. [PMID: 37277821 DOI: 10.1186/s13048-023-01196-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 05/29/2023] [Indexed: 06/07/2023] Open
Abstract
The mortality rate of epithelial ovarian cancer (EOC) remains the first in malignant tumors of the female reproductive system. The characteristics of rapid proliferation, extensive implanted metastasis, and treatment resistance of cancer cells require an extensive metabolism rewiring during the progression of cancer development. EOC cells satisfy their rapid proliferation through the rewiring of perception, uptake, utilization, and regulation of glucose, lipids, and amino acids. Further, complete implanted metastasis by acquiring a superior advantage in microenvironment nutrients competing. Lastly, success evolves under the treatment stress of chemotherapy and targets therapy. Understanding the above metabolic characteristics of EOCs helps to find new methods of its treatment.
Collapse
Affiliation(s)
- Ming Wang
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, 17 Qihelou St, Dongcheng District, Beijing, 100006, China
| | - Jingjing Zhang
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, 17 Qihelou St, Dongcheng District, Beijing, 100006, China
| | - Yumei Wu
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, 17 Qihelou St, Dongcheng District, Beijing, 100006, China.
| |
Collapse
|
31
|
Zeng S, Hu X. Lactic acidosis switches cancer cells from dependence on glycolysis to OXPHOS and renders them highly sensitive to OXPHOS inhibitors. Biochem Biophys Res Commun 2023; 671:46-57. [PMID: 37295355 DOI: 10.1016/j.bbrc.2023.05.097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023]
Abstract
Targeting oxidative phosphorylation (OXPHOS) has emerged as a strategy for cancer treatment. However, most tumor cells exhibit Warburg effect, they primarily rely on glycolysis to generate ATP, and hence they are resistant to OXPHOS inhibitors. Here, we report that lactic acidosis, a ubiquitous factor in the tumor microenvironment, increases the sensitivity of glycolysis-dependent cancer cells to OXPHOS inhibitors by 2-4 orders of magnitude. Lactic acidosis reduces glycolysis by 79-86% and increases OXPHOS by 177-218%, making the latter the main production pathway of ATP. In conclusion, we revealed that lactic acidosis renders cancer cells with typical Warburg effect phenotype highly sensitive to OXPHOS inhibitors, thereby greatly expanding the anti-cancer spectrum of OXPHOS inhibitors. In addition, as lactic acidosis is a ubiquitous factor of TME, it is a potential indicator to predict the efficacy of OXPHOS inhibitors in cancer treatment.
Collapse
Affiliation(s)
- Siying Zeng
- Cancer Institute (Key Laboratory for Cancer Intervention and Prevention, China National Ministry of Education, Zhejiang Provincial Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, China
| | - Xun Hu
- Cancer Institute (Key Laboratory for Cancer Intervention and Prevention, China National Ministry of Education, Zhejiang Provincial Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, China; Cancer Center, Zhejiang University, China.
| |
Collapse
|
32
|
A reduced model of cell metabolism to revisit the glycolysis-OXPHOS relationship in the deregulated tumor microenvironment. J Theor Biol 2023; 562:111434. [PMID: 36739944 DOI: 10.1016/j.jtbi.2023.111434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 01/24/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Cancer cells metabolism focuses the interest of the cancer research community. Although this process is intensely studied experimentally, there are very few theoretical models that address this issue. One of the main reasons is the extraordinary complexity of the metabolism that involves numerous interdependent regulatory networks which makes the computational recreation of this complexity illusory. In this study we propose a reduced model of the metabolism which focuses on the interrelation of the three main energy metabolites which are oxygen, glucose and lactate in order to better understand the dynamics of the core system of the glycolysis-OXPHOS relationship. So simple as it is, the model highlights the main rules allowing the cell to dynamically adapt its metabolism to its changing environment. It also makes it possible to address this impact at the tissue scale. The simulations carried out in a spheroid show non-trivial spatial heterogeneity of energy metabolism. It further suggests that the metabolic features that are commonly attributed to cancer cells are not necessarily due to an intrinsic abnormality of the cells. They can emerge spontaneously due to the deregulated over-acidic environment.
Collapse
|
33
|
Matamala Montoya M, van Slobbe GJJ, Chang JC, Zaal EA, Berkers CR. Metabolic changes underlying drug resistance in the multiple myeloma tumor microenvironment. Front Oncol 2023; 13:1155621. [PMID: 37091139 PMCID: PMC10117897 DOI: 10.3389/fonc.2023.1155621] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/21/2023] [Indexed: 04/08/2023] Open
Abstract
Multiple myeloma (MM) is characterized by the clonal expansion of malignant plasma cells in the bone marrow (BM). MM remains an incurable disease, with the majority of patients experiencing multiple relapses from different drugs. The MM tumor microenvironment (TME) and in particular bone-marrow stromal cells (BMSCs) play a crucial role in the development of drug resistance. Metabolic reprogramming is emerging as a hallmark of cancer that can potentially be exploited for cancer treatment. Recent studies show that metabolism is further adjusted in MM cells during the development of drug resistance. However, little is known about the role of BMSCs in inducing metabolic changes that are associated with drug resistance. In this Perspective, we summarize current knowledge concerning the metabolic reprogramming of MM, with a focus on those changes associated with drug resistance to the proteasome inhibitor Bortezomib (BTZ). In addition, we present proof-of-concept fluxomics (glucose isotope-tracing) and Seahorse data to show that co-culture of MM cells with BMSCs skews the metabolic phenotype of MM cells towards a drug-resistant phenotype, with increased oxidative phosphorylation (OXPHOS), serine synthesis pathway (SSP), TCA cycle and glutathione (GSH) synthesis. Given the crucial role of BMSCs in conveying drug resistance, insights into the metabolic interaction between MM and BMSCs may ultimately aid in the identification of novel metabolic targets that can be exploited for therapy.
Collapse
Affiliation(s)
- María Matamala Montoya
- Division Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Gijs J. J. van Slobbe
- Division Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Jung-Chin Chang
- Division Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Esther A. Zaal
- Division Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
- *Correspondence: Celia R. Berkers, ; Esther A. Zaal,
| | - Celia R. Berkers
- Division Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
- *Correspondence: Celia R. Berkers, ; Esther A. Zaal,
| |
Collapse
|
34
|
How Warburg-Associated Lactic Acidosis Rewires Cancer Cell Energy Metabolism to Resist Glucose Deprivation. Cancers (Basel) 2023; 15:cancers15051417. [PMID: 36900208 PMCID: PMC10000466 DOI: 10.3390/cancers15051417] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Lactic acidosis, a hallmark of solid tumour microenvironment, originates from lactate hyperproduction and its co-secretion with protons by cancer cells displaying the Warburg effect. Long considered a side effect of cancer metabolism, lactic acidosis is now known to play a major role in tumour physiology, aggressiveness and treatment efficiency. Growing evidence shows that it promotes cancer cell resistance to glucose deprivation, a common feature of tumours. Here we review the current understanding of how extracellular lactate and acidosis, acting as a combination of enzymatic inhibitors, signal, and nutrient, switch cancer cell metabolism from the Warburg effect to an oxidative metabolic phenotype, which allows cancer cells to withstand glucose deprivation, and makes lactic acidosis a promising anticancer target. We also discuss how the evidence about lactic acidosis' effect could be integrated in the understanding of the whole-tumour metabolism and what perspectives it opens up for future research.
Collapse
|
35
|
Ghaly G, Tallima H, Dabbish E, Badr ElDin N, Abd El-Rahman MK, Ibrahim MAA, Shoeib T. Anti-Cancer Peptides: Status and Future Prospects. Molecules 2023; 28:molecules28031148. [PMID: 36770815 PMCID: PMC9920184 DOI: 10.3390/molecules28031148] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/26/2022] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
The dramatic rise in cancer incidence, alongside treatment deficiencies, has elevated cancer to the second-leading cause of death globally. The increasing morbidity and mortality of this disease can be traced back to a number of causes, including treatment-related side effects, drug resistance, inadequate curative treatment and tumor relapse. Recently, anti-cancer bioactive peptides (ACPs) have emerged as a potential therapeutic choice within the pharmaceutical arsenal due to their high penetration, specificity and fewer side effects. In this contribution, we present a general overview of the literature concerning the conformational structures, modes of action and membrane interaction mechanisms of ACPs, as well as provide recent examples of their successful employment as targeting ligands in cancer treatment. The use of ACPs as a diagnostic tool is summarized, and their advantages in these applications are highlighted. This review expounds on the main approaches for peptide synthesis along with their reconstruction and modification needed to enhance their therapeutic effect. Computational approaches that could predict therapeutic efficacy and suggest ACP candidates for experimental studies are discussed. Future research prospects in this rapidly expanding area are also offered.
Collapse
Affiliation(s)
- Gehane Ghaly
- Department of Chemistry, The American University in Cairo, New Cairo 11835, Egypt
| | - Hatem Tallima
- Department of Chemistry, The American University in Cairo, New Cairo 11835, Egypt
| | - Eslam Dabbish
- Department of Chemistry, The American University in Cairo, New Cairo 11835, Egypt
| | - Norhan Badr ElDin
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr-El Aini Street, Cairo 11562, Egypt
| | - Mohamed K. Abd El-Rahman
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr-El Aini Street, Cairo 11562, Egypt
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | - Mahmoud A. A. Ibrahim
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
- School of Health Sciences, University of Kwa-Zulu-Natal, Westville, Durban 4000, South Africa
| | - Tamer Shoeib
- Department of Chemistry, The American University in Cairo, New Cairo 11835, Egypt
- Correspondence:
| |
Collapse
|
36
|
El Sayed SM. Biochemical Origin of the Warburg Effect in Light of 15 Years of Research Experience: A Novel Evidence-Based View (An Expert Opinion Article). Onco Targets Ther 2023; 16:143-155. [PMID: 36911533 PMCID: PMC9997657 DOI: 10.2147/ott.s397593] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/10/2023] [Indexed: 03/07/2023] Open
Abstract
Cancer cells strongly upregulate glucose uptake and glycolysis to produce vital biomolecules for cancer cell survival, proliferation, and metastasis as ATP, lipids, proteins, nucleotides, and lactate. The Warburg effect is tumours' unique glucose oxidation to give lactate (not pyruvate) even in the presence of oxygen. Nicotinamide adenine dinucleotide (NAD/NADH.H) is used in glycolysis via glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and lactate dehydrogenase (LDH). Both catalyse reversible biochemical reactions to produce 1,3-diphosphoglycerate and lactate, respectively. In this expert opinion and based on published evidence, the author suggests that: "In transformed cells and hyperglycolytic cancer cells, the Warburg effect (permanent conversion of pyruvate to lactate) occurs secondary to a vicious cycle and a closed circuit between GAPDH and LDH (reaction of carcinogenesis) causing increased endogenous oxidative stress and subsequent carcinogenesis. Mitochondrial defects in cancer cells cause hyperglycolysis resulting in NADH.H accumulation (produced during GAPDH step) that obligatorily drives LDH to become an irreversible reaction in the direction of lactate formation (Warburg effect) but not pyruvate formation. Likewise, LDH oxidizes NADH.H producing excessive NAD+ that secondarily drives GAPDH reaction to be irreversible to produce NADH.H and so on. Pyruvate is an antioxidant while lactate is pro-oxidant, causing increased endogenous oxidative stress in cancer cells, tumour's hypoxia and obligatory hyperglycolysis with NADH.H overproduction (GAPDH step) to be consumed in the LDH step for lactate production and NAD+ generation (utilized by GAPDH) and so on". This confirms Warburg's origin of cancer cells. Best anticancer applications based on this hypothesis are: breaking this closed vicious circle using siRNA to target GAPDH and LDH, avoiding strong oxidants (as many cancer chemotherapeutics), and using strong antioxidants for causing antioxidant-oxidant antagonism or antioxidant-lactate antagonism to inhibit the Warburg effect. Strong natural antioxidants of prophetic medicine (related to Prophet Muhammad peace be upon him) such as Zamzam water, Nigella sativa, costus, Ajwa date fruit, olive oil, Al-hijamah and natural honey are strongly recommended to prevent and antagonize the Warburg effect.
Collapse
Affiliation(s)
- Salah Mohamed El Sayed
- Department of Clinical Biochemistry & Molecular Medicine, Taibah College of Medicine, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia.,Department of Medical Biochemistry, Faculty of Medicine, Sohag University, Sohag, Egypt.,Prophetic Medicine Course and Research, Taibah College of Medicine, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia
| |
Collapse
|
37
|
Liu C, Cheng S, Zhou X, Wang J, Mu P, Wang Z, Zhang L, Li L, Wang C. Selective Nanoblocker of Cellular Stress Response for Improved Drug-Free Tumor Therapy. Adv Healthc Mater 2022; 12:e2202893. [PMID: 36573808 DOI: 10.1002/adhm.202202893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/09/2022] [Indexed: 12/28/2022]
Abstract
Nanotechnology-based drug-free therapeutic systems using external stimuli can avoid the inherent side effects of drugs and become an attractive therapeutic strategy. However, the cellular stress responses (CSR) are activated encounter with external stimuli, which greatly weaken the efficacy of the drug-free antitumor. Thus, this work proposes a CSR regulation strategy and synthesizes the glucose oxidase (GOx)-modified Cu3 BiS3 nanosheets (CBSG NSs) encapsulated by calcium carbonate (CBSG@CaCO3 ) as the novel drug-free nanoagent. The CBSG@CaCO3 not only cause external stimuli such as energy consumption and oxidative stress damage, but also can destroy the CSR mechanism to guarantee optimal efficacy of starvation-chemodynamic therapy (ST-CDT). In tumor cells, the CaCO3 shell layer of CBSG@CaCO3 is rapidly degraded, releasing the slowly degradable CBSG NSs with NIR-II photothermal properties that accelerate the production of external stimuli under laser irradiation. Meanwhile, CaCO3 can block CSR to disrupt the adaptive viability of cancer cells by inhibiting expression of P27 and NRF2. Importantly, the CSR regulation achieves selective treatment on tumor cells based on the difference in physiological conditions between cancer cells and normal cells. This drug-free cancer therapy with selectivity improves the problem of poor efficacy under the action of CSR, which offers a new avenue in the cancer-related disease treatment.
Collapse
Affiliation(s)
- Cuimei Liu
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Sihang Cheng
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Xue Zhou
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Jue Wang
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Ping Mu
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Zhongyao Wang
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Lingyu Zhang
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Lu Li
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Chungang Wang
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| |
Collapse
|
38
|
Yu L, Ding L, Wang ZY, Zhao XZ, Wang YH, Liang C, Li J. Hybrid Metabolic Activity-Related Prognostic Model and Its Effect on Tumor in Renal Cell Carcinoma. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:1147545. [PMID: 36591111 PMCID: PMC9797315 DOI: 10.1155/2022/1147545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 11/10/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
Abstract
Background Tumor cells with a hybrid metabolic state, in which glycolysis and oxidative phosphorylation (OXPHOS) can be used, usually have a strong ability to adapt to different stress environments due to their metabolic plasticity. However, few studies on tumor cells with this phenotype have been conducted in the field of renal cell carcinoma (RCC). Methods The metabolic pathway (glycolysis, OXPHOS) related gene sets were obtained from the Molecular Signatures Database (V7.5.1). The gene expression matrix, clinical information, and mutation data were obtained by Perl programming language (5.32.0) mining, the Cancer Genome Atlas and International Cancer Genome Consortium database. Gene Set Enrichment Analysis (GSEA) software (4.0.3) was utilised to analyse glycolysis-related gene sets. Analysis of survival, immune infiltration, mutation, etc. was performed using the R programming language (4.1.0). Results Eight genes that are highly associated with glycolysis and OXHPOS were used to construct the cox proportional hazards model, and risk scores were calculated based on this to predict the prognosis of clear cell RCC patients and to classify patients into risk groups. Gene Ontology, the Kyoto Encyclopaedia of Genes and Genomes, and GSEA were analysed according to the differential genes to investigate the signal pathways related to the hybrid metabolic state. Immunoinfiltration analysis revealed that CD8+T cells, M2 macrophages, etc., had significant differences in infiltration. In addition, the analysis of mutation data showed significant differences in the number of mutations of PBRM1, SETD2, and BAP1 between groups. Cell experiments demonstrated that the DLD gene expression was abnormally high in various tumor cells and is associated with the strong migration ability of RCC. Conclusions We successfully constructed a risk score system based on glycolysis and OXPHOS-related genes to predict the prognosis of RCC patients. Bioinformatics analysis and cell experiments also revealed the effect of the hybrid metabolic activity on the migration ability and immune activity of RCC and the possible therapeutic targets for patients.
Collapse
Affiliation(s)
- Lei Yu
- Department of Urology, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, China
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lei Ding
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhong-Yuan Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xing-Zhi Zhao
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yu-Hao Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chao Liang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jie Li
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
39
|
Melatonin Treatment Triggers Metabolic and Intracellular pH Imbalance in Glioblastoma. Cells 2022; 11:cells11213467. [DOI: 10.3390/cells11213467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Metabolic rewiring in glioblastoma (GBM) is linked to intra- and extracellular pH regulation. In this study, we sought to characterize the role of melatonin on intracellular pH modulation and metabolic consequences to identify the mechanisms of action underlying melatonin oncostatic effects on GBM tumor initiating cells. GBM tumor initiating cells were treated at different times with melatonin (1.5 and 3.0 mM). We analyzed melatonin’s functional effects on GBM proliferation, cell cycle, viability, stemness, and chemo-radiosensitivity. We then assessed the effects of melatonin on GBM metabolism by analyzing the mitochondrial and glycolytic parameters. We also measured the intracellular and extracellular pH. Finally, we tested the effects of melatonin on a mouse subcutaneous xenograft model. We found that melatonin downregulated LDHA and MCT4, decreasing lactate production and inducing a decrease in intracellular pH that was associated with an increase in ROS and ATP depletion. These changes blocked cell cycle progression and induced cellular death and we observed similar results in vivo. Melatonin’s cytotoxic effects on GBM were due, at least in part, to intracellular pH modulation, which has emerged as a newly identified mechanism, providing new insights into the oncostatic effect of melatonin on GBM.
Collapse
|
40
|
Differential Regulation of Genes by the Glucogenic Hormone Asprosin in Ovarian Cancer. J Clin Med 2022; 11:jcm11195942. [PMID: 36233808 PMCID: PMC9573256 DOI: 10.3390/jcm11195942] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/26/2022] [Accepted: 10/03/2022] [Indexed: 11/07/2022] Open
Abstract
Background: Ovarian cancer (OvCa) is one of the most lethal forms of gynaecological malignancy. Altered energy metabolism and increased aerobic glycolysis in OvCa are hallmarks that demand attention. The glucogenic hormone asprosin is often dysregulated in metabolic disorders such as insulin resistance, diabetes (type 2 and gestational), and preeclampsia. Despite association with metabolic disorders, its role in energy metabolism within the tumour microenvironment is yet to be explored. Here, we study the role of asprosin in OvCa using transcriptomics and expand on functional studies with clinical samples. Methods: RNA sequencing, functional gene enrichment analysis, Western blotting and ImageStream. Results: Following treatment with 100 nM of asprosin, the serous OvCa cell line, SKOV-3, displayed 160 and 173 gene regulatory changes, at 4 and 12 h respectively, when compared with control samples (p < 0.05 and Log2FC > 1). In addition to energy metabolism and glucose-related pathways, asprosin was shown to alter pathways associated with cell communication, TGF-β signalling, and cell proliferation. Moreover, asprosin was shown to induce phosphorylation of ERK1/2 in the same in vitro model. Using liquid biopsies, we also report for novel expression of asprosin’s predicted receptors OR4M1 and TLR4 in cancer-associated circulating cells; with significant reduction seen between pre-chemotherapy and end of first line chemotherapy, in addition to patients under maintenance with bevacizumab +/− olaparib for OR4M1. Conclusions: In relation to OvCa, asprosin appears to regulate numerous signalling pathways in-vitro. The prognostic potential of OR4M1 in liquid biopsies should also be explored further.
Collapse
|
41
|
Jacquet P, Stéphanou A. Searching for the Metabolic Signature of Cancer: A Review from Warburg's Time to Now. Biomolecules 2022; 12:biom12101412. [PMID: 36291621 PMCID: PMC9599674 DOI: 10.3390/biom12101412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/18/2022] [Accepted: 09/29/2022] [Indexed: 11/29/2022] Open
Abstract
This review focuses on the evolving understanding that we have of tumor cell metabolism, particularly glycolytic and oxidative metabolism, and traces back its evolution through time. This understanding has developed since the pioneering work of Otto Warburg, but the understanding of tumor cell metabolism continues to be hampered by misinterpretation of his work. This has contributed to the use of the new concepts of metabolic switch and metabolic reprogramming, that are out of step with reality. The Warburg effect is often considered to be a hallmark of cancer, but is it really? More generally, is there a metabolic signature of cancer? We draw the conclusion that the signature of cancer cannot be reduced to a single factor, but is expressed at the tissue level in terms of the capacity of cells to dynamically explore a vast metabolic landscape in the context of significant environmental heterogeneities.
Collapse
|
42
|
In vivo metabolic imaging identifies lipid vulnerability in a preclinical model of Her2+/Neu breast cancer residual disease and recurrence. NPJ Breast Cancer 2022; 8:111. [PMID: 36163365 PMCID: PMC9512922 DOI: 10.1038/s41523-022-00481-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 09/16/2022] [Indexed: 11/08/2022] Open
Abstract
Recurrent cancer cells that evade therapy is a leading cause of death in breast cancer patients. This risk is high for women showing an overexpression of human epidermal growth factor receptor 2 (Her2). Cells that persist can rely on different substrates for energy production relative to their primary tumor counterpart. Here, we characterize metabolic reprogramming related to tumor dormancy and recurrence in a doxycycline-induced Her2+/Neu model of breast cancer with varying times to recurrence using longitudinal fluorescence microscopy. Glucose uptake (2-NBDG) and mitochondrial membrane potential (TMRE) imaging metabolically phenotype mammary tumors as they transition to regression, dormancy, and recurrence. “Fast-recurrence” tumors (time to recurrence ~55 days), transition from glycolysis to mitochondrial metabolism during regression and this persists upon recurrence. “Slow-recurrence” tumors (time to recurrence ~100 days) rely on both glycolysis and mitochondrial metabolism during recurrence. The increase in mitochondrial activity in fast-recurrence tumors is attributed to a switch from glucose to fatty acids as the primary energy source for mitochondrial metabolism. Consequently, when fast-recurrence tumors receive treatment with a fatty acid inhibitor, Etomoxir, tumors report an increase in glucose uptake and lipid synthesis during regression. Treatment with Etomoxir ultimately prolongs survival. We show that metabolic reprogramming reports on tumor recurrence characteristics, particularly at time points that are essential for actionable targets. The temporal characteristics of metabolic reprogramming will be critical in determining the use of an appropriate timing for potential therapies; namely, the notion that metabolic-targeted inhibition during regression reports long-term therapeutic benefit.
Collapse
|
43
|
Targeting Tumor Acidosis and Regulatory T Cells Unmasks Anti-Metastatic Potential of Local Tumor Ablation in Triple-Negative Breast Cancer. Int J Mol Sci 2022; 23:ijms23158479. [PMID: 35955613 PMCID: PMC9368760 DOI: 10.3390/ijms23158479] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 01/27/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is an immunologically heterogenous disease that lacks clinically actionable targets and is more likely to progress to metastatic disease than other types of breast cancer. Tumor ablation has been used to increase response rates to checkpoint inhibitors, which remain low for TNBC patients. We hypothesized that tumor ablation could produce an anti-tumor response without using checkpoint inhibitors if immunosuppression (i.e., Tregs, tumor acidosis) was subdued. Tumors were primed with sodium bicarbonate (200 mM p.o.) to reduce tumor acidosis and low-dose cyclophosphamide (100–200 mg/kg i.p.) to deplete regulatory T cells, as has been shown independently in previous studies. A novel injectable ablative was then used to necrose the tumor, release tumor antigens, and initiate an immune event that could create an abscopal effect. This combination of bicarbonate, cyclophosphamide, and ablation, called “BiCyclA”, was tested in three syngeneic models of TNBC: E0771 (C57BL/6), 67NR (BALB/c), and 4T1-Luc (BALB/c). In E0771 and 67NR, BiCyclA therapy significantly reduced tumor growth and cured 5/7 and 6/10 mice 50 days after treatment respectively. In the metastatic 4T1-Luc tumors, for which surgery and checkpoint inhibitors fail, BiCyclA cured 5/10 mice of primary tumors and lung metastases. Notably, CD4+ and CD8+ T cells were found to be crucial for the anti-metastatic response, and cured mice were able to resist tumor rechallenge, suggesting production of immune memory. Reduction of tumor acidity and regulatory T cells with ablation is a simple yet effective therapy for local and systemic tumor control with broad applicability as it is not limited by expensive supplies.
Collapse
|
44
|
Alkalization of cellular pH leads to cancer cell death by disrupting autophagy and mitochondrial function. Oncogene 2022; 41:3886-3897. [PMID: 35780182 DOI: 10.1038/s41388-022-02396-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 06/07/2022] [Accepted: 06/21/2022] [Indexed: 12/14/2022]
Abstract
We previously found that lactic acidosis in the tumor environment was permissive to cancer cell surviving under glucose deprivation and demonstrated that neutralizing lactic acidosis restored cancer cell susceptibility to glucose deprivation. We then reported that alternate infusion of bicarbonate and anticancer agent into tumors via tumor feeding artery markedly enhanced the efficacy of transarterial chemoembolization (TACE) in the local control of hepatocellular carcinoma (HCC). Here we sought to further investigate the mechanism by which bicarbonate enhances the anticancer activity of TACE. We propose that interfering cellular pH by bicarbonate could induce a cascade of molecular events leading to cancer cell death. Alkalizing cellular pH by bicarbonate decreased pH gradient (ΔpH), membrane potential (ΔΨm), and proton motive force (Δp) across the inner membrane of mitochondria; disruption of oxidative phosphorylation (OXPHOS) due to collapsed Δp led to a significant increase in adenosine monophosphate (AMP), which activated the classical AMPK-mediated autophagy. Meanwhile, the autophagic flux was ultimately blocked by increased cellular pH, reduced OXPHOS, and inhibition of lysosomal proton pump in alkalized lysosome. Bicarbonate also induced persistent mitochondrial permeability (MPT) and damaged mitochondria. Collectively, this study reveals that interfering cellular pH may provide a valuable approach to treat cancer.
Collapse
|
45
|
Singh R, Sharma A, Saji J, Umapathi A, Kumar S, Daima HK. Smart nanomaterials for cancer diagnosis and treatment. NANO CONVERGENCE 2022; 9:21. [PMID: 35569081 PMCID: PMC9108129 DOI: 10.1186/s40580-022-00313-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/26/2022] [Indexed: 05/14/2023]
Abstract
Innovations in nanomedicine has guided the improved outcomes for cancer diagnosis and therapy. However, frequent use of nanomaterials remains challenging due to specific limitations like non-targeted distribution causing low signal-to-noise ratio for diagnostics, complex fabrication, reduced-biocompatibility, decreased photostability, and systemic toxicity of nanomaterials within the body. Thus, better nanomaterial-systems with controlled physicochemical and biological properties, form the need of the hour. In this context, smart nanomaterials serve as promising solution, as they can be activated under specific exogenous or endogenous stimuli such as pH, temperature, enzymes, or a particular biological molecule. The properties of smart nanomaterials make them ideal candidates for various applications like biosensors, controlled drug release, and treatment of various diseases. Recently, smart nanomaterial-based cancer theranostic approaches have been developed, and they are displaying better selectivity and sensitivity with reduced side-effects in comparison to conventional methods. In cancer therapy, the smart nanomaterials-system only activates in response to tumor microenvironment (TME) and remains in deactivated state in normal cells, which further reduces the side-effects and systemic toxicities. Thus, the present review aims to describe the stimulus-based classification of smart nanomaterials, tumor microenvironment-responsive behaviour, and their up-to-date applications in cancer theranostics. Besides, present review addresses the development of various smart nanomaterials and their advantages for diagnosing and treating cancer. Here, we also discuss about the drug targeting and sustained drug release from nanocarriers, and different types of nanomaterials which have been engineered for this intent. Additionally, the present challenges and prospects of nanomaterials in effective cancer diagnosis and therapeutics have been discussed.
Collapse
Affiliation(s)
- Ragini Singh
- College of Agronomy, Liaocheng University, Liaocheng, 252059, Shandong, China.
| | - Ayush Sharma
- Amity Center for Nanobiotechnology and Nanomedicine (ACNN), Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, 303002, Rajasthan, India
| | - Joel Saji
- Amity Center for Nanobiotechnology and Nanomedicine (ACNN), Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, 303002, Rajasthan, India
| | - Akhela Umapathi
- Amity Center for Nanobiotechnology and Nanomedicine (ACNN), Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, 303002, Rajasthan, India
| | - Santosh Kumar
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng, 252059, Shandong, China
| | - Hemant Kumar Daima
- Amity Center for Nanobiotechnology and Nanomedicine (ACNN), Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, 303002, Rajasthan, India.
| |
Collapse
|
46
|
Golchert J, Staar D, Bennewitz J, Hartmann M, Hoffmann N, Ameling S, Völker U, Peters J, Wanka H. Overexpression of Renin-B Induces Warburg-like Effects That Are Associated with Increased AKT/mTOR Signaling. Cells 2022; 11:cells11091459. [PMID: 35563765 PMCID: PMC9103744 DOI: 10.3390/cells11091459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/08/2022] [Accepted: 04/19/2022] [Indexed: 11/29/2022] Open
Abstract
The classical secretory renin-a is known to be involved in angiotensin generation, thereby regulating not only blood pressure, but also promoting oxidative stress as well as apoptotic and necrotic cell death. In contrast, another cytosolic renin isoform named renin-b has been described, exerting protective effects under ischemia-related conditions in H9c2 cardiomyoblasts. Using microarray-based transcriptome analyses, we aimed to identify the signaling pathways involved in mediating cardioprotection in H9c2 cells overexpressing renin-b. By transcriptome profiling, we identified increased gene expression of several genes encoding glycolytic enzymes and glucose transporters, while the transcript levels of TCA-cycle enzymes were decreased. Complementing data from metabolic analyses revealed enhanced glucose consumption and lactate accumulation due to renin-b overexpression. Renin-b overexpression further stimulated AKT/mTOR signaling, where numerous genes involved in this pathway showed altered transcript levels. For AKT, we also detected enhanced phosphorylation levels by means of Western blotting, suggesting an activation of this kinase. Moreover, analysis of the ROS levels identified an increase in ROS accumulation in renin-b-overexpressing cells. Altogether, our data demonstrate that renin-b overexpression induces the metabolic remodeling of H9c2 cells similar to that seen under oxygen deprivation. This metabolic phenotype exerting so-called aerobic glycolysis is also known as the Warburg effect.
Collapse
Affiliation(s)
- Janine Golchert
- Institute of Physiology, University Medicine Greifswald, 17475 Greifswald, Germany; (J.G.); (D.S.); (J.B.); (M.H.); (N.H.); (H.W.)
| | - Doreen Staar
- Institute of Physiology, University Medicine Greifswald, 17475 Greifswald, Germany; (J.G.); (D.S.); (J.B.); (M.H.); (N.H.); (H.W.)
| | - Jonathan Bennewitz
- Institute of Physiology, University Medicine Greifswald, 17475 Greifswald, Germany; (J.G.); (D.S.); (J.B.); (M.H.); (N.H.); (H.W.)
| | - Miriam Hartmann
- Institute of Physiology, University Medicine Greifswald, 17475 Greifswald, Germany; (J.G.); (D.S.); (J.B.); (M.H.); (N.H.); (H.W.)
| | - Nadin Hoffmann
- Institute of Physiology, University Medicine Greifswald, 17475 Greifswald, Germany; (J.G.); (D.S.); (J.B.); (M.H.); (N.H.); (H.W.)
| | - Sabine Ameling
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany; (S.A.); (U.V.)
- Partner Site Greifswald, DZHK (German Center for Cardiovascular Research), 17475 Greifswald, Germany
| | - Uwe Völker
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany; (S.A.); (U.V.)
- Partner Site Greifswald, DZHK (German Center for Cardiovascular Research), 17475 Greifswald, Germany
| | - Jörg Peters
- Institute of Physiology, University Medicine Greifswald, 17475 Greifswald, Germany; (J.G.); (D.S.); (J.B.); (M.H.); (N.H.); (H.W.)
- Correspondence:
| | - Heike Wanka
- Institute of Physiology, University Medicine Greifswald, 17475 Greifswald, Germany; (J.G.); (D.S.); (J.B.); (M.H.); (N.H.); (H.W.)
| |
Collapse
|
47
|
Ramos JRC, Bissinger T, Genzel Y, Reichl U. Impact of Influenza A Virus Infection on Growth and Metabolism of Suspension MDCK Cells Using a Dynamic Model. Metabolites 2022; 12:metabo12030239. [PMID: 35323683 PMCID: PMC8950586 DOI: 10.3390/metabo12030239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/04/2022] [Accepted: 03/09/2022] [Indexed: 11/21/2022] Open
Abstract
Cell cultured-based influenza virus production is a viable option for vaccine manufacturing. In order to achieve a high concentration of viable cells, is requirement to have not only optimal process conditions, but also an active metabolism capable of intracellular synthesis of viral components. Experimental metabolic data collected in such processes are complex and difficult to interpret, for which mathematical models are an appropriate way to simulate and analyze the complex and dynamic interaction between the virus and its host cell. A dynamic model with 35 states was developed in this study to describe growth, metabolism, and influenza A virus production in shake flask cultivations of suspension Madin-Darby Canine Kidney (MDCK) cells. It considers cell growth (concentration of viable cells, mean cell diameters, volume of viable cells), concentrations of key metabolites both at the intracellular and extracellular level and virus titers. Using one set of parameters, the model accurately simulates the dynamics of mock-infected cells and correctly predicts the overall dynamics of virus-infected cells for up to 60 h post infection (hpi). The model clearly suggests that most changes observed after infection are related to cessation of cell growth and the subsequent transition to apoptosis and cell death. However, predictions do not cover late phases of infection, particularly for the extracellular concentrations of glutamate and ammonium after about 12 hpi. Results obtained from additional in silico studies performed indicated that amino acid degradation by extracellular enzymes resulting from cell lysis during late infection stages may contribute to this observed discrepancy.
Collapse
Affiliation(s)
- João Rodrigues Correia Ramos
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany; (T.B.); (Y.G.); (U.R.)
- Correspondence:
| | - Thomas Bissinger
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany; (T.B.); (Y.G.); (U.R.)
| | - Yvonne Genzel
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany; (T.B.); (Y.G.); (U.R.)
| | - Udo Reichl
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany; (T.B.); (Y.G.); (U.R.)
- Institute of Process Engineering, Faculty of Process & Systems Engineering, Otto-von-Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
| |
Collapse
|
48
|
Jing X, Hu H, Sun Y, Yu B, Cong H, Shen Y. The Intracellular and Extracellular Microenvironment of Tumor Site: The Trigger of Stimuli-Responsive Drug Delivery Systems. SMALL METHODS 2022; 6:e2101437. [PMID: 35048560 DOI: 10.1002/smtd.202101437] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/29/2021] [Indexed: 06/14/2023]
Abstract
The tumor microenvironment (TME), including intracellular and extracellular microenvironment, contains many biochemical indicators (such as acidity/alkalinity, oxygen content, and enzymatic activity) that are different from the normal physiological environment. These abnormal biochemical indicators can accelerate the heterogeneity of tumors, but on the other hand, they also provide opportunities for the design of intelligent drug delivery systems (DDSs). The TME-responsive DDSs have shown great potential in reducing the side effects of chemotherapy and improving the curative effect of tumors. In this review, the abnormal biochemical indicators of TME are introduced in detail from both the extracellular and intracellular aspects. In view of the various physiological barriers encountered during drug delivery, the strategy of constructing TME-responsive DDSs is discussed. By summarizing the typical research progress, the authors prospect the development of TME-responsive DDS in the future.
Collapse
Affiliation(s)
- Xiaodong Jing
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China
| | - Hao Hu
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China
| | - Yanzhen Sun
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China
| | - Bing Yu
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| |
Collapse
|
49
|
Lappano R, Todd LA, Stanic M, Cai Q, Maggiolini M, Marincola F, Pietrobon V. Multifaceted Interplay between Hormones, Growth Factors and Hypoxia in the Tumor Microenvironment. Cancers (Basel) 2022; 14:539. [PMID: 35158804 PMCID: PMC8833523 DOI: 10.3390/cancers14030539] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 02/07/2023] Open
Abstract
Hormones and growth factors (GFs) are signaling molecules implicated in the regulation of a variety of cellular processes. They play important roles in both healthy and tumor cells, where they function by binding to specific receptors on target cells and activating downstream signaling cascades. The stages of tumor progression are influenced by hormones and GF signaling. Hypoxia, a hallmark of cancer progression, contributes to tumor plasticity and heterogeneity. Most solid tumors contain a hypoxic core due to rapid cellular proliferation that outgrows the blood supply. In these circumstances, hypoxia-inducible factors (HIFs) play a central role in the adaptation of tumor cells to their new environment, dramatically reshaping their transcriptional profile. HIF signaling is modulated by a variety of factors including hormones and GFs, which activate signaling pathways that enhance tumor growth and metastatic potential and impair responses to therapy. In this review, we summarize the role of hormones and GFs during cancer onset and progression with a particular focus on hypoxia and the interplay with HIF proteins. We also discuss how hypoxia influences the efficacy of cancer immunotherapy, considering that a hypoxic environment may act as a determinant of the immune-excluded phenotype and a major hindrance to the success of adoptive cell therapies.
Collapse
Affiliation(s)
- Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
| | - Lauren A. Todd
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| | - Mia Stanic
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Qi Cai
- Kite Pharma Inc., Santa Monica, CA 90404, USA; (Q.C.); (F.M.)
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
| | | | | |
Collapse
|
50
|
Li R, Peng Y, Pu Y, Zhao Y, Nie R, Guo L, Wu Y. Fructose and biotin co-modified liposomes for dual-targeting breast cancer. J Liposome Res 2021; 32:119-128. [PMID: 34895001 DOI: 10.1080/08982104.2021.1894171] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Chemotherapy, as the main treatment for breast cancer, inevitably damages normal tissues due to the lack of targeting. Various nano targeting drug delivery systems (TDDS) have the potential to be developed as anticancer therapeutics. Although mono-ligand-directed liposomes have been used with some success, dual-ligand-directed liposomes exhibit promising advantages. In current work, we synthesized a Y-shaped ligand covalently linking fructose and biotin (Fru-Bio-Chol) to prepare a dual-targeting liposome Fru-Bio-Lip for breast cancer. The targeting ability was evaluated by comparing the Fru-Bio-Lip with the non-modified liposome (Lip), fructose or biotin mono modified liposomes (Fru-Lip and Bio-Lip), and another dual-targeting liposome (Fru + Bio-Lip) physically mixing fructose and biotin mono modified ligands (Fru-Chol and Bio-Chol). The cellular uptake of Fru-Bio-Lip is 3.27-, 1.81-, 2.19-, 1.15-times that of Lip, Fru-Lip, Bio-Lip and Fru + Bio-Lip on 4T1 cells, and 3.11-, 1.80-, 1.89-, 1.15-times on MCF-7 cells. Additionally, the uptake mechanism indicates the uptake of Fru-Bio-Lip is energy-dependently achieved through multiple endocytosis pathway with a dual recognition of fructose and biotin by GLUT5 and SMVT. The cytotoxicity and apoptosis assay show PTX-Fru-Bio-Lip among liposomes have the strongest proliferation inhibitory effect on breast cancer cells, and the apoptosis rate is 1.7-times that of PTX-Lip. In vivo images indicate Fru-Bio-Lip have the strongest tumour enrichment ability, which is 2.76-, 1.60-, 1.96-, 1.40-times that of Lip, Fru-Lip, Bio-Lip and Fru + Bio-Lip, respectively. Overall, the fructose and biotin covalently modified liposomes improved breast cancer targeting ability, demonstrating great potential as a drug delivery system for breast cancer.
Collapse
Affiliation(s)
- Ru Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Yao Peng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Yanchi Pu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Yi Zhao
- Department of Translational Medicine Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruifang Nie
- Department of Pharmacy, Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Li Guo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Yong Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| |
Collapse
|