1
|
Pinho V, Neves-Petersen MT, Machado R, Castro Gomes A. Light Assisted Covalent Immobilization of Proteins for Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2406561. [PMID: 39887935 DOI: 10.1002/smll.202406561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 01/24/2025] [Indexed: 02/01/2025]
Abstract
The covalent immobilization of proteins attracts considerable interest in the biomedical field due to its potential applications in biosensors, recombinant protein purification, and the development of personalized therapeutic carriers. In response to the demand for more cost-effective, time-efficient, and simpler protocols, photo-immobilization emerges as a technique that circumvents the limitations of conventional methods. This approach offers enhanced precision at the nanoscale level and facilitates device reusability, thereby aligning with current sustainability concerns. Photo-immobilization is versatile, as it can be applied to both 2D and 3D substrates. While some methods involve complex protocols using genetically engineered photosensitive linkers, more straightforward techniques rely on amino acid bonds, such as disulfide bonds, for covalent protein bonding. Photo-immobilization can be achieved with both ultraviolet (UV) and visible light. This systematic review examines literature from Scopus, PubMed, and Web of Science, offering insights into relevant studies and considerations for covalent protein immobilization, and presents photochemical approaches applicable to major protein types.
Collapse
Affiliation(s)
- Vanessa Pinho
- Centre of Molecular and Environmental Biology (CBMA)/Aquatic Research Network (ARNET) Associate Laboratory, Universidade do Minho, Campus de Gualtar, Braga, 4710-057, Portugal
- Institute of Science and Innovation for Sustainability (IB-S), Universidade do Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| | | | - Raúl Machado
- Centre of Molecular and Environmental Biology (CBMA)/Aquatic Research Network (ARNET) Associate Laboratory, Universidade do Minho, Campus de Gualtar, Braga, 4710-057, Portugal
- Institute of Science and Innovation for Sustainability (IB-S), Universidade do Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| | - Andreia Castro Gomes
- Centre of Molecular and Environmental Biology (CBMA)/Aquatic Research Network (ARNET) Associate Laboratory, Universidade do Minho, Campus de Gualtar, Braga, 4710-057, Portugal
- Institute of Science and Innovation for Sustainability (IB-S), Universidade do Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| |
Collapse
|
2
|
Li Y, Dong D, Qu Y, Li J, Chen S, Zhao H, Zhang Q, Jiao Y, Fan L, Sun D. A Multidrug Delivery Microrobot for the Synergistic Treatment of Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301889. [PMID: 37423966 DOI: 10.1002/smll.202301889] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/21/2023] [Indexed: 07/11/2023]
Abstract
Multidrug combination therapy provides an effective strategy for malignant tumor treatment. This paper presents the development of a biodegradable microrobot for on-demand multidrug delivery. By combining magnetic targeting transportation with tumor therapy, it is hypothesized that loading multiple drugs on different regions of a single magnetic microrobot can enhance a synergistic effect for cancer treatment. The synergistic effect of using two drugs together is greater than that of using each drug separately. Here, a 3D-printed microrobot inspired by the fish structure with three hydrogel components: skeleton, head, and body structures is demonstrated. Made of iron oxide (Fe3 O4 ) nanoparticles embedded in poly(ethylene glycol) diacrylate (PEGDA), the skeleton can respond to magnetic fields for microrobot actuation and drug-targeted delivery. The drug storage structures, head, and body, made by biodegradable gelatin methacryloyl (GelMA) exhibit enzyme-responsive cargo release. The multidrug delivery microrobots carrying acetylsalicylic acid (ASA) and doxorubicin (DOX) in drug storage structures, respectively, exhibit the excellent synergistic effects of ASA and DOX by accelerating HeLa cell apoptosis and inhibiting HeLa cell metastasis. In vivo studies indicate that the microrobots improve the efficiency of tumor inhibition and induce a response to anti-angiogenesis. The versatile multidrug delivery microrobot conceptualized here provides a way for developing effective combination therapy for cancer.
Collapse
Affiliation(s)
- Yanfang Li
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Dingran Dong
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Yun Qu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Junyang Li
- Center for Robotics and Automation, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518000, China
- Department of Electronic Engineering, Ocean University of China, Qingdao, 266000, China
| | - Shuxun Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Han Zhao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Qi Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Yang Jiao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Lei Fan
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
- Center for Robotics and Automation, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518000, China
| | - Dong Sun
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
- Center for Robotics and Automation, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518000, China
| |
Collapse
|
3
|
Wang X, He J, Jiang S, Gao Y, Zhang LK, Yin L, You R, Guan YQ. Multi-ligand modified PC@DOX-PA/EGCG micelles effectively inhibit the growth of ER +, PR + or HER 2+ breast cancer. J Mater Chem B 2022; 10:418-429. [PMID: 34940773 DOI: 10.1039/d1tb02056k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Breast cancer is one of the most common cancers in the world with tumor heterogeneity. Currently, cancer treatment mainly relies on surgical intervention, chemotherapy, and radiotherapy, for which the side effects, drug resistance and cost need to be resolved. In this study, we develop a natural medicine targeted therapy system. Phosphatidylcholine (PC), doxorubicin (DOX), procyanidin (PA), and epigallocatechin gallate (EGCG) are assembled and PC@DOX-PA/EGCG nanoparticles (NPs) are obtained. In addition, the HER2, ER and PR ligands were grafted on the surface of the NPs to acquire the targeted nanoparticles NP-ER, NP-ER-HER2, and NP-ER-HER2-PR. The physicochemical properties of the nanoparticles were detected and it was found that the nanoparticles are spherical and less than 200 nm in diameter. Furthermore, in vitro and in vivo results indicate that the nanoparticles can target BT-474, MCF-7, EMT-6, and MDA-MB-231 breast cancer cells, effectively inhibiting the growth of the breast cancer cells. In short, this research will provide some strategies for the treatment of heterogeneous breast cancer.
Collapse
Affiliation(s)
- Xiaozhen Wang
- School of Life Science, South China Normal University, Guangzhou, 510631, China.
| | - Jiecheng He
- School of Life Science, South China Normal University, Guangzhou, 510631, China.
- Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
- South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, 511400, China
| | - Siyuan Jiang
- School of Life Science, South China Normal University, Guangzhou, 510631, China.
- Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
- South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, 511400, China
| | - Yifei Gao
- School of Life Science, South China Normal University, Guangzhou, 510631, China.
| | - Ling-Kun Zhang
- School of Life Science, South China Normal University, Guangzhou, 510631, China.
| | - Liang Yin
- School of Life Science, South China Normal University, Guangzhou, 510631, China.
| | - Rong You
- School of Life Science, South China Normal University, Guangzhou, 510631, China.
| | - Yan-Qing Guan
- School of Life Science, South China Normal University, Guangzhou, 510631, China.
- Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
- South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, 511400, China
| |
Collapse
|
4
|
Paranthaman S, Goravinahalli Shivananjegowda M, Mahadev M, Moin A, Hagalavadi Nanjappa S, Nanjaiyah ND, Chidambaram SB, Gowda DV. Nanodelivery Systems Targeting Epidermal Growth Factor Receptors for Glioma Management. Pharmaceutics 2020; 12:pharmaceutics12121198. [PMID: 33321953 PMCID: PMC7763629 DOI: 10.3390/pharmaceutics12121198] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/17/2020] [Accepted: 10/18/2020] [Indexed: 02/06/2023] Open
Abstract
A paradigm shift in treating the most aggressive and malignant form of glioma is continuously evolving; however, these strategies do not provide a better life and survival index. Currently, neurosurgical debulking, radiotherapy, and chemotherapy are the treatment options available for glioma, but these are non-specific in action. Patients invariably develop resistance to these therapies, leading to recurrence and death. Receptor Tyrosine Kinases (RTKs) are among the most common cell surface proteins in glioma and play a significant role in malignant progression; thus, these are currently being explored as therapeutic targets. RTKs belong to the family of cell surface receptors that are activated by ligands which in turn activates two major downstream signaling pathways via Rapidly Accelerating Sarcoma/mitogen activated protein kinase/extracellular-signal-regulated kinase (Ras/MAPK/ERK) and phosphatidylinositol 3-kinase/a serine/threonine protein kinase/mammalian target of rapamycin (PI3K/AKT/mTOR). These pathways are critically involved in regulating cell proliferation, invasion, metabolism, autophagy, and apoptosis. Dysregulation in these pathways results in uncontrolled glioma cell proliferation, invasion, angiogenesis, and cancer progression. Thus, RTK pathways are considered a potential target in glioma management. This review summarizes the possible risk factors involved in the growth of glioblastoma (GBM). The role of RTKs inhibitors (TKIs) and the intracellular signaling pathways involved, small molecules under clinical trials, and the updates were discussed. We have also compiled information on the outcomes from the various endothelial growth factor receptor (EGFR)-TKIs-based nanoformulations from the preclinical and clinical points of view. Aided by an extensive literature search, we propose the challenges and potential opportunities for future research on EGFR-TKIs-based nanodelivery systems.
Collapse
Affiliation(s)
- Sathishbabu Paranthaman
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, India; (S.P.); (M.G.S.); (M.M.)
| | | | - Manohar Mahadev
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, India; (S.P.); (M.G.S.); (M.M.)
| | - Afrasim Moin
- Department of Pharmaceutics, Hail University, Hail PO BOX 2440, Saudi Arabia;
| | | | | | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, India;
| | - Devegowda Vishakante Gowda
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, India; (S.P.); (M.G.S.); (M.M.)
- Correspondence: ; Tel.: +91-9663162455
| |
Collapse
|
5
|
Heggannavar G, Hiremath CG, Achari DD, Pangarkar VG, Kariduraganavar MY. Development of Doxorubicin-Loaded Magnetic Silica-Pluronic F-127 Nanocarriers Conjugated with Transferrin for Treating Glioblastoma across the Blood-Brain Barrier Using an in Vitro Model. ACS OMEGA 2018; 3:8017-8026. [PMID: 30087932 PMCID: PMC6072239 DOI: 10.1021/acsomega.8b00152] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 07/05/2018] [Indexed: 05/14/2023]
Abstract
Brain glioma is the most lethal type of cancer, with extremely poor prognosis and high relapse. Unfortunately, the treatment of brain glioma is often limited because of the low permeability of anticancer drugs across the blood-brain barrier (BBB). To circumvent this, magnetic mesoporous nanoparticles were synthesized and loaded with doxorubicin as an anticancer agent. These nanoparticles were fabricated with Pluronic F-127 and subsequently conjugated with transferrin (Tf) to achieve the sustained release of the drug at the targeted site. The physicochemical properties of the conjugated nanoparticles were analyzed using different techniques. The magnetic saturation of the nanoparticles determined by a vibration sample magnetometer was found to be 26.10 emu/g. The cytotoxicity study was performed using the MTT assay at 48 and 96 h against the U87 cell line. The Tf-conjugated nanoparticles (DOX-MNP-MSN-PF-127-Tf) exhibited a significant IC50 value (0.570 μg/mL) as compared to the blank nanoparticles (121.98 μg/mL). To understand the transport mechanism of drugs across the BBB, an in vitro BBB model using human brain microvascular endothelial cells was developed. Among the nanoparticles, the Tf-conjugated nanoparticles demonstrated an excellent permeability across the BBB. This effect was predominant in the presence of an external magnetic field, suggesting that magnetic particles present in the matrix facilitated the uptake of drugs in U87 cells. Finally, it is concluded that nanoparticles conjugated with Tf effectively crossed the BBB. Thus, the developed nanocarriers can be considered as potential candidates to treat brain tumor.
Collapse
Affiliation(s)
| | - Chinmay G. Hiremath
- Department
of Studies in Chemistry, Karnatak University, Dharwad 580 003, India
| | - Divya D. Achari
- Department
of Studies in Chemistry, Karnatak University, Dharwad 580 003, India
| | | | | |
Collapse
|
6
|
Hu K, Chen X, Chen W, Zhang L, Li J, Ye J, Zhang Y, Zhang L, Li CH, Yin L, Guan YQ. Neuroprotective effect of gold nanoparticles composites in Parkinson's disease model. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:1123-1136. [PMID: 29474924 DOI: 10.1016/j.nano.2018.01.020] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 01/24/2018] [Accepted: 01/30/2018] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is second most common neurodegenerative disorder worldwide. Although drugs and surgery can relieve the symptoms of PD, these therapies are incapable of fundamentally treating the disease. For PD patients, over-expression of α-synuclein (SNCA) leads to the death of dopaminergic neurons. This process can be prevented by suppressing SNCA over-expression through RNA interference. Here, we successfully synthesized gold nanoparticles (GNP) composites (CTS@GNP-pDNA-NGF) via the combination of electrostatic adsorption and photochemical immobilization, which could load plasmid DNA (pDNA) and target specific cell types. GNP was transfected into cells via endocytosis to inhibiting the apoptosis of PC12 cells and dopaminergic neurons. Simultaneously, GNP composites are also used in PD models in vivo, and it can successfully cross the blood-brain barrier by contents of GNP in the mice brain. In general, all the works demonstrated that GNP composites have good therapeutic effects for PD models in vitro and in vivo.
Collapse
Affiliation(s)
- Kaikai Hu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China; Joint Laboratory of Laser Oncology with Cancer Center of Sun Yet-sen University, South China Normal University, Guangzhou, China
| | - Xiaohui Chen
- School of Life Science, South China Normal University, Guangzhou, China
| | - Wuya Chen
- School of Life Science, South China Normal University, Guangzhou, China
| | - Lingkun Zhang
- School of Life Science, South China Normal University, Guangzhou, China
| | - Jian Li
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China; Joint Laboratory of Laser Oncology with Cancer Center of Sun Yet-sen University, South China Normal University, Guangzhou, China
| | - Jialin Ye
- School of Life Science, South China Normal University, Guangzhou, China
| | - Yuxiao Zhang
- School of Life Science, South China Normal University, Guangzhou, China
| | - Li Zhang
- School of Life Science, South China Normal University, Guangzhou, China
| | - Chu-Hua Li
- School of Life Science, South China Normal University, Guangzhou, China
| | - Liang Yin
- School of Life Science, South China Normal University, Guangzhou, China
| | - Yan-Qing Guan
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China; Joint Laboratory of Laser Oncology with Cancer Center of Sun Yet-sen University, South China Normal University, Guangzhou, China; School of Life Science, South China Normal University, Guangzhou, China.
| |
Collapse
|
7
|
Du SW, Zhang LK, Han K, Chen S, Hu Z, Chen W, Hu K, Yin L, Wu B, Guan YQ. Combined Phycocyanin and Hematoporphyrin Monomethyl Ether for Breast Cancer Treatment via Photosensitizers Modified Fe3O4 Nanoparticles Inhibiting the Proliferation and Migration of MCF-7 Cells. Biomacromolecules 2017; 19:31-41. [DOI: 10.1021/acs.biomac.7b01197] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shi-Wei Du
- School of Life Science, ‡MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, and §Joint Laboratory of Laser Oncology with Cancer Center of Sun Yet-sen University, South China Normal University, Guangzhou 510631, P. R. China
| | - Ling-Kun Zhang
- School of Life Science, ‡MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, and §Joint Laboratory of Laser Oncology with Cancer Center of Sun Yet-sen University, South China Normal University, Guangzhou 510631, P. R. China
| | - Kaibin Han
- School of Life Science, ‡MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, and §Joint Laboratory of Laser Oncology with Cancer Center of Sun Yet-sen University, South China Normal University, Guangzhou 510631, P. R. China
| | - Shaoping Chen
- School of Life Science, ‡MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, and §Joint Laboratory of Laser Oncology with Cancer Center of Sun Yet-sen University, South China Normal University, Guangzhou 510631, P. R. China
| | - Zhuoyan Hu
- School of Life Science, ‡MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, and §Joint Laboratory of Laser Oncology with Cancer Center of Sun Yet-sen University, South China Normal University, Guangzhou 510631, P. R. China
| | - Wuya Chen
- School of Life Science, ‡MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, and §Joint Laboratory of Laser Oncology with Cancer Center of Sun Yet-sen University, South China Normal University, Guangzhou 510631, P. R. China
| | - Kaikai Hu
- School of Life Science, ‡MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, and §Joint Laboratory of Laser Oncology with Cancer Center of Sun Yet-sen University, South China Normal University, Guangzhou 510631, P. R. China
| | - Liang Yin
- School of Life Science, ‡MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, and §Joint Laboratory of Laser Oncology with Cancer Center of Sun Yet-sen University, South China Normal University, Guangzhou 510631, P. R. China
| | - Baoyan Wu
- School of Life Science, ‡MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, and §Joint Laboratory of Laser Oncology with Cancer Center of Sun Yet-sen University, South China Normal University, Guangzhou 510631, P. R. China
| | - Yan-Qing Guan
- School of Life Science, ‡MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, and §Joint Laboratory of Laser Oncology with Cancer Center of Sun Yet-sen University, South China Normal University, Guangzhou 510631, P. R. China
| |
Collapse
|
8
|
Niu S, Zhang LK, Zhang L, Zhuang S, Zhan X, Chen WY, Du S, Yin L, You R, Li CH, Guan YQ. Inhibition by Multifunctional Magnetic Nanoparticles Loaded with Alpha-Synuclein RNAi Plasmid in a Parkinson's Disease Model. Theranostics 2017; 7:344-356. [PMID: 28042339 PMCID: PMC5197069 DOI: 10.7150/thno.16562] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 10/20/2016] [Indexed: 11/05/2022] Open
Abstract
Lewy bodies are considered as the main pathological characteristics of Parkinson's disease (PD). The major component of Lewy bodies is α-synuclein (α-syn). The use of gene therapy that targeting and effectively interfere with the expression of α-syn in neurons has received tremendous attention. In this study, we used magnetic Fe3O4 nanoparticles coated with oleic acid molecules as a nano-carrier. N-isopropylacrylamide derivative (NIPAm-AA) was photo-immobilized onto the oleic acid molecules, and shRNA (short hairpin RNA) was absorbed. The same method was used to absorb nerve growth factor (NGF) to NIPAm-AA to specifically promote neuronal uptake via NGF receptor-mediated endocytosis. Additionally, shRNA plasmid could be released into neurons because of the temperature and pH sensitivity of NIPAm-AA interference with α-syn synthesis. We investigated apoptosis in neurons with abrogated α-syn expression in vitro and in vivo. The results demonstrated that multifunctional superparamagnetic nanoparticles carrying shRNA for α-syn could provide effective repair in a PD model.
Collapse
Affiliation(s)
- Shuiqin Niu
- School of Life Science, South China Normal University, Guangzhou 510631, China
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Ling-Kun Zhang
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Li Zhang
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Siyi Zhuang
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Xiuyu Zhan
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Wu-Ya Chen
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Shiwei Du
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Liang Yin
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Rong You
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Chu-Hua Li
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Yan-Qing Guan
- School of Life Science, South China Normal University, Guangzhou 510631, China
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| |
Collapse
|
9
|
Yang R, Wu L, Chen J, Chen W, Zhang L, Zhang L, You R, Yin L, Li CH, Guan YQ. Effects of Differentiation and Antisenescence from BMSCs to Hepatocy-Like Cells of the PAAm-IGF-1/TNF-α Biomaterial. ACS APPLIED MATERIALS & INTERFACES 2016; 8:26638-26647. [PMID: 27668443 DOI: 10.1021/acsami.6b10377] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Aiming at the cells' differentiation phenomenon and senescence problem in liver tissue engineering, this work is designed to synthesize three different chargeable polymers (polypropylene acid (PAAc), polyethylene glycol (PEG), and polypropylene amine (PAAm)) coimmobilized by the insulin-like growth factor 1 (IGF-1) and tumor necrosis factor-α (TNF-α). We explore the hepatocyte differentiation effect and the antisenecence effect of PSt-PAAm-IGF-1/TNF-α biomaterial which was selected from the three different chargeable polymers in bone marrow mesenchymal stem cells (BMSCs). Our work will establish a model for studying the biochemical molecular regulation mechanism and signal transduction pathway of cell senescence in liver tissue engineering, which provide a molecular basis for developing biomaterials for liver tissue engineering.
Collapse
Affiliation(s)
- Runcai Yang
- School of Life Science, South China Normal University , Guangzhou 510631, China
| | - Lifang Wu
- School of Life Science, South China Normal University , Guangzhou 510631, China
| | - Jiehong Chen
- School of Life Science, South China Normal University , Guangzhou 510631, China
| | - Wuya Chen
- School of Life Science, South China Normal University , Guangzhou 510631, China
| | - Lin Zhang
- School of Life Science, South China Normal University , Guangzhou 510631, China
| | - Li Zhang
- School of Life Science, South China Normal University , Guangzhou 510631, China
| | - Rong You
- School of Life Science, South China Normal University , Guangzhou 510631, China
| | - Liang Yin
- School of Life Science, South China Normal University , Guangzhou 510631, China
| | - Chu-Hua Li
- School of Life Science, South China Normal University , Guangzhou 510631, China
| | - Yan-Qing Guan
- School of Life Science, South China Normal University , Guangzhou 510631, China
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University , Guangzhou 510631, China
| |
Collapse
|
10
|
Chen WY, Yang RC, Wang HM, Zhang L, Hu K, Li CH, You R, Yin L, Guan YQ. Self-Assembled Heterojunction Carbon Nanotubes Synergizing with Photoimmobilized IGF-1 Inhibit Cellular Senescence. Adv Healthc Mater 2016; 5:2413-26. [PMID: 27385628 DOI: 10.1002/adhm.201600359] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/03/2016] [Indexed: 12/11/2022]
Abstract
Synthesis of artificial and functional structures for bone tissue engineering has been well recognized but the associated cell senescence issue remains much less concerned so far. In this work, surface-modified polycaprolactone-polylactic acid scaffolds using self-assembled heterojunction carbon nanotubes (sh-CNTs) combined with insulin-like growth factor-1 are synthesized and a series of structural and biological characterizations are carried out, with particular attention to cell senescence mechanism. It is revealed that the modified scaffolds can up-regulate the expressions of alkaline phosphates and bone morphogenetic proteins while down-regulate the expressions of senescence-related proteins in mesenchymal stem cells, demonstrating the highly preferred anti-senescence functionality of the sh-CNTs modified scaffolds in bone tissue engineering. Furthermore, it is also found that with sh-CNTs, scaffolds can accelerate bone healing with extremely low toxicity in vivo.
Collapse
Affiliation(s)
- Wu-Ya Chen
- School of Life Science; South China Normal University; Guangzhou 510631 P. R. China
| | - Run-Cai Yang
- School of Life Science; South China Normal University; Guangzhou 510631 P. R. China
| | - Hui-Min Wang
- School of Life Science; South China Normal University; Guangzhou 510631 P. R. China
| | - Li Zhang
- School of Life Science; South China Normal University; Guangzhou 510631 P. R. China
| | - Kaikai Hu
- College of Biophotonics; South China Normal University; Guangzhou 510631 P. R. China
| | - Chu-Hua Li
- School of Life Science; South China Normal University; Guangzhou 510631 P. R. China
| | - Rong You
- School of Life Science; South China Normal University; Guangzhou 510631 P. R. China
| | - Liang Yin
- School of Life Science; South China Normal University; Guangzhou 510631 P. R. China
| | - Yan-Qing Guan
- School of Life Science; South China Normal University; Guangzhou 510631 P. R. China
- College of Biophotonics; South China Normal University; Guangzhou 510631 P. R. China
| |
Collapse
|
11
|
Tietze R, Zaloga J, Unterweger H, Lyer S, Friedrich RP, Janko C, Pöttler M, Dürr S, Alexiou C. Magnetic nanoparticle-based drug delivery for cancer therapy. Biochem Biophys Res Commun 2015; 468:463-70. [DOI: 10.1016/j.bbrc.2015.08.022] [Citation(s) in RCA: 232] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 08/05/2015] [Indexed: 01/10/2023]
|
12
|
Kane JR, Miska J, Young JS, Kanojia D, Kim JW, Lesniak MS. Sui generis: gene therapy and delivery systems for the treatment of glioblastoma. Neuro Oncol 2015; 17 Suppl 2:ii24-ii36. [PMID: 25746089 DOI: 10.1093/neuonc/nou355] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Gene therapy offers a multidimensional set of approaches intended to treat and cure glioblastoma (GBM), in combination with the existing standard-of-care treatment (surgery and chemoradiotherapy), by capitalizing on the ability to deliver genes directly to the site of neoplasia to yield antitumoral effects. Four types of gene therapy are currently being investigated for their potential use in treating GBM: (i) suicide gene therapy, which induces the localized generation of cytotoxic compounds; (ii) immunomodulatory gene therapy, which induces or augments an enhanced antitumoral immune response; (iii) tumor-suppressor gene therapy, which induces apoptosis in cancer cells; and (iv) oncolytic virotherapy, which causes the lysis of tumor cells. The delivery of genes to the tumor site is made possible by means of viral and nonviral vectors for direct delivery of therapeutic gene(s), tumor-tropic cell carriers expressing therapeutic gene(s), and "intelligent" carriers designed to increase delivery, specificity, and tumoral toxicity against GBM. These vehicles are used to carry genetic material to the site of pathology, with the expectation that they can provide specific tropism to the desired site while limiting interaction with noncancerous tissue. Encouraging preclinical results using gene therapies for GBM have led to a series of human clinical trials. Although there is limited evidence of a therapeutic benefit to date, a number of clinical trials have convincingly established that different types of gene therapies delivered by various methods appear to be safe. Due to the flexibility of specialized carriers and genetic material, the technology for generating new and more effective therapies already exists.
Collapse
Affiliation(s)
- J Robert Kane
- Brain Tumor Center, The University of Chicago Pritzker School of Medicine, Chicago, Illinois
| | - Jason Miska
- Brain Tumor Center, The University of Chicago Pritzker School of Medicine, Chicago, Illinois
| | - Jacob S Young
- Brain Tumor Center, The University of Chicago Pritzker School of Medicine, Chicago, Illinois
| | - Deepak Kanojia
- Brain Tumor Center, The University of Chicago Pritzker School of Medicine, Chicago, Illinois
| | - Julius W Kim
- Brain Tumor Center, The University of Chicago Pritzker School of Medicine, Chicago, Illinois
| | - Maciej S Lesniak
- Brain Tumor Center, The University of Chicago Pritzker School of Medicine, Chicago, Illinois
| |
Collapse
|
13
|
Folate-conjugated nanoparticles as a potent therapeutic approach in targeted cancer therapy. Tumour Biol 2015; 36:5727-42. [PMID: 26142733 DOI: 10.1007/s13277-015-3706-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 06/22/2015] [Indexed: 01/01/2023] Open
Abstract
The selective and efficient drug delivery to tumor cells can remarkably improve different cancer therapeutic approaches. There are several nanoparticles (NPs) which can act as a potent drug carrier for cancer therapy. However, the specific drug delivery to cancer cells is an important issue which should be considered before designing new NPs for in vivo application. It has been shown that cancer cells over-express folate receptor (FR) in order to improve their growth. As normal cells express a significantly lower levels of FR compared to tumor cells, it seems that folate molecules can be used as potent targeting moieties in different nanocarrier-based therapeutic approaches. Moreover, there is evidence which implies folate-conjugated NPs can selectively deliver anti-tumor drugs into cancer cells both in vitro and in vivo. In this review, we will discuss about the efficiency of different folate-conjugated NPs in cancer therapy.
Collapse
|
14
|
Zhan X, Guan YQ. Design of magnetic nanoparticles for hepatocellular carcinoma treatment using the control mechanisms of the cell internal nucleus and external membrane. J Mater Chem B 2015; 3:4191-4204. [PMID: 32262296 DOI: 10.1039/c5tb00514k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanoparticle drugs and relevant treatment technologies have achieved widespread attention in recent years. Hepatocellular carcinoma (HCC) remains a challenging malignancy of worldwide importance since it is one of the worst malignant tumors. In this study, magnetic Fe3O4 nanoparticles are prepared via a co-precipitation reaction with self-assembled surface monolayers of oleic acid molecules. For synthesizing the nanoparticle anti-tumor drug used against HCC, the liquid photo-immobilization method is used to bond the photoactive N-isopropylacrylamide derivative (NIPAm-AA) onto the oleic acid monolayer for subsequently embedding doxorubicin, photoactive tumor necrosis factor-α (TNF-α)/interferon-γ (IFN-γ), and folic acid (FOL). We investigate how the nanoparticle drug inhibits the growth of human hepatocellular carcinoma HepG2 cells in vitro and in vivo. Remarkably, our characterizations show that the nanoparticle drug demonstrates much higher anticancer efficacy (94.7%) in vitro than previously reported drugs. It is revealed that the programmed cell death induced by the drug is mainly oncosis, a new programmed cell death pathway, different from earlier proposed mechanisms. This oncosis mechanism is also confirmed in the other two hepatocellular carcinoma cells (BEL-7402 and Huh-7). This study may be helpful for developing a new type of nanoparticle drug capable of assuring molecular control of both the cell inner nucleus and outer membrane as a means to enormously increase the drug efficacy in human hepatocellular carcinoma.
Collapse
Affiliation(s)
- Xiuyu Zhan
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | | |
Collapse
|