1
|
Li Y, Cao Y, Huang J, Zhang J, Wang Y, Wang Y, Ning G. A colorimetric and electrochemical dual-modal ochratoxin a aptasensor based on branched hybridization chain reaction signal amplification. Bioelectrochemistry 2025; 165:108984. [PMID: 40198995 DOI: 10.1016/j.bioelechem.2025.108984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/01/2025] [Accepted: 04/04/2025] [Indexed: 04/10/2025]
Abstract
Ochratoxin A (OTA), a fungal toxin, induces various toxic effects in animals and humans through the enrichment of toxin residues. In this work, a dual-modal biosensor based on gold nanoparticles (AuNPs) and branched hybridization chain reaction (bHCR) was proposed for the detection of OTA. The strategy is contingent on OTA aptamer-bridged occurrence of bHCR and the salt-induced aggregation of AuNPs. OTA-apt/cDNA could be used to specifically identify the OTA and trigger bHCR reactions, producing a long-branched dsDNA polymer. The electroactive molecule-methylene blue (MB) can be inserted into the superstructure of branched DNA due to the formation of DNA polymers, leading to dynamic changes in MB redox signaling. The residual DNA hairpins were added and adhered to the surface of AuNPs, but they were inadequate to prevent the AuNPs from salt-induced aggregation. The dual-modal yields limits of detection of 4.8 pM (electrochemical assay) and 0.25 nM (colorimetric assay), respectively. It exhibited excellent specificity against common mycotoxins (AFB1, DON, FB1, ZEN), with satisfactory recoveries in corn flour (92.9-108.3 %). This aptasensor, which adopts a dual-modal strategy, features self-calibration to reduce false-positive results and improve accuracy. It demonstrates significant advantages in mycotoxin detection.
Collapse
Affiliation(s)
- Yihao Li
- State Key Laboratory of Utilization of Woody Oil Resource, College of Life Sciences and Technology. Central South University of Forestry and Technology, 410004, Changsha, China
| | - Yulu Cao
- State Key Laboratory of Utilization of Woody Oil Resource, College of Life Sciences and Technology. Central South University of Forestry and Technology, 410004, Changsha, China
| | - Junjie Huang
- State Key Laboratory of Utilization of Woody Oil Resource, College of Life Sciences and Technology. Central South University of Forestry and Technology, 410004, Changsha, China
| | - Jiachen Zhang
- State Key Laboratory of Utilization of Woody Oil Resource, College of Life Sciences and Technology. Central South University of Forestry and Technology, 410004, Changsha, China
| | - Yonghong Wang
- State Key Laboratory of Utilization of Woody Oil Resource, College of Life Sciences and Technology. Central South University of Forestry and Technology, 410004, Changsha, China.
| | - Yuanqing Wang
- State Key Laboratory of Utilization of Woody Oil Resource, College of Life Sciences and Technology. Central South University of Forestry and Technology, 410004, Changsha, China
| | - Ge Ning
- International Education Institute, Hunan University of Chinese Medicine, 410208, Changsha, China.
| |
Collapse
|
2
|
Nugraha A, Wibisono KF, Muda EVS, Cahya P, Eleanor M. Risk assessment of Ochratoxin A (OTA) exposure from coffee consumption in Indonesia using Margin of Exposure (MOE) approach. Food Chem Toxicol 2025; 195:115119. [PMID: 39561937 DOI: 10.1016/j.fct.2024.115119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/21/2024]
Abstract
Ochratoxin A (OTA) is a mycotoxin widely found in foodstuffs that is suspected to pose adverse health effects on humans. As one of the biggest coffee-producing countries, Indonesia face challenges in managing the OTA contamination at reasonable levels in coffee. A favorable climate for fungi growth and inappropriate food safety practices are several issues faced in Indonesia for managing the OTA contamination in coffee products. Nevertheless, studies about risk analysis exposure of OTA from coffee consumption in Indonesia is limited. Hence, the present study aimed to evaluate the risk of exposure to OTA from coffee consumption using the Margin of Exposure Approach (MOE) based on coffee provincial consumption data. Risk assessment using the MOE approach revealed that the OTA exposure from coffee consumption in Indonesia is generally of concern. The MOE values derived in the present study were generally below 1000. Several Indonesian provinces even have MOE values below 200, indicating a greater concern of exposure. Overall, the present study highlights the importance of food safety management in Indonesian coffee production to minimize the OTA exposure from coffee consumption.
Collapse
Affiliation(s)
- Ananditya Nugraha
- Department of Food Technology, School of Life Sciences, Indonesia International Institute for Life Sciences, Jakarta, 13210, Indonesia.
| | - Kenneth Francis Wibisono
- Department of Food Technology, School of Life Sciences, Indonesia International Institute for Life Sciences, Jakarta, 13210, Indonesia
| | - Eleonora Valentia Sode Muda
- Department of Food Science and Nutrition, School of Life Sciences, Indonesia International Institute for Life Sciences, Jakarta, 13210, Indonesia
| | - Patricia Cahya
- Department of Food Technology, School of Life Sciences, Indonesia International Institute for Life Sciences, Jakarta, 13210, Indonesia
| | - Michella Eleanor
- Department of Food Technology, School of Life Sciences, Indonesia International Institute for Life Sciences, Jakarta, 13210, Indonesia
| |
Collapse
|
3
|
Murashiki TC, Mazhandu AJ, Zinyama-Gutsire RBL, Mutingwende I, Mazengera LR, Duri K. Biomonitoring and determinants of mycotoxin exposures from pregnancy until post-lactation in HIV-infected and HIV-uninfected women from Harare, Zimbabwe. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:1625-1647. [PMID: 39284005 DOI: 10.1080/19440049.2024.2402553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/14/2024] [Accepted: 09/02/2024] [Indexed: 10/11/2024]
Abstract
The human immunodeficiency virus (HIV) heavily affects women from resource-limited settings who are vulnerable to potentially harmful mycotoxins including aflatoxin B1 (AFB1), fumonisin B1 (FB1) and ochratoxin A (OTA). We aimed to conduct biomonitoring and ascertain the determinants of maternal mycotoxin exposure in pregnancy, lactation and post-lactation periods. We conducted a retrospective longitudinal study in HIV-infected and HIV-uninfected women from Harare, Zimbabwe. 175 and 125 random urine samples in pregnancy and 24 months after delivery (post-lactation) respectively were analysed for aflatoxin M1 (AFM1) and FB1 by ELISA. 6 weeks after delivery (lactation), 226 and 262 breast milk (BM) samples were analysed for AFM1 and OTA respectively by ELISA. The association of demographics and food consumption with mycotoxins was evaluated using multivariable logistic regression. In HIV-infected, urinary AFM1 was detected in 46/94 (Median: 0.05; Range: 0.04-0.46 ng mL-1) in pregnancy and 47/66 (Median: 0.05; Range: 0.04-1.01 ng mL-1) post-lactation. Urinary FB1 was detected in 86/94 (Median: 1.39; Range: 0.17-6.02 ng mL-1) in pregnancy and 56/66 (Median: 0.72; Range: 0.20-3.81 ng mL-1) post-lactation. BM AFM1 was detected in 28/110 (Median: 7.24; Range: 5.96-29.80 pg mL-1) and OTA in 11/129 (Median: 0.20; Range: 0.14-0.65 ng mL-1). In HIV-uninfected, urinary AFM1 was detected in 48/81 (Median: 0.05; Range: 0.04-1.06 ng mL-1) in pregnancy and 41/59 (Median: 0.05; Range: 0.04-0.52 ng mL-1) post-lactation. Urinary FB1 was detected in 74/81 (Median: 1.15; Range: 0.17-6.16 ng mL-1) in pregnancy and 55/59 (Median: 0.96; Range: 0.20-2.82 ng mL-1) post-lactation. BM AFM1 was detected in 38/116 (Median: 7.70; Range: 6.07-31.75 pg mL-1) and OTA in 4/133 (Median: 0.24; Range: 0.18-0.83 ng mL-1). Location, wealth, and peanut butter consumption were determinants of AFB1 exposure. HIV infection, BMI, location, rainy season, unemployment, and age were determinants of FB1 exposure. Women especially those pregnant and/or HIV-infected are at risk of adverse effects of mycotoxins.
Collapse
Affiliation(s)
- Tatenda Clive Murashiki
- Immunology Unit, Department of Laboratory Diagnostic and Investigative Sciences, Faculty of Medicine and Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Arthur John Mazhandu
- Immunology Unit, Department of Laboratory Diagnostic and Investigative Sciences, Faculty of Medicine and Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Rutendo B L Zinyama-Gutsire
- Immunology Unit, Department of Laboratory Diagnostic and Investigative Sciences, Faculty of Medicine and Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Isaac Mutingwende
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Medicine and Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Lovemore Ronald Mazengera
- Immunology Unit, Department of Laboratory Diagnostic and Investigative Sciences, Faculty of Medicine and Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Kerina Duri
- Immunology Unit, Department of Laboratory Diagnostic and Investigative Sciences, Faculty of Medicine and Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| |
Collapse
|
4
|
Oladele JO, Wang M, Xenophontos X, Lilly K, Tamamis P, Phillips TD. Chlorophyll-Amended Organoclays for the Detoxification of Ochratoxin A. Toxins (Basel) 2024; 16:479. [PMID: 39591234 PMCID: PMC11598794 DOI: 10.3390/toxins16110479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/26/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
Climate change has been associated with outbreaks of mycotoxicosis following periods of drought, enhanced fungal growth, and increased exposure to mycotoxins. For detoxification, the inclusion of clay-based materials in food and drinking water has resulted in a very promising strategy to reduce mycotoxin exposure. In this strategy, mycotoxins are tightly sorbed to high-affinity clay particles in the gastrointestinal tract, thus decreasing bioavailability, uptake to blood, and potential toxicity. This study investigated the ability of chlorophyll and chlorophyllin-amended montmorillonite clays to decrease the toxicity of ochratoxin A (OTA). The sorption mechanisms of OTA binding to surfaces of sorbents, as well as binding parameters such as capacity, affinity, enthalpy, and free energy, were examined. Chlorophyll-amended organoclay (CMCH) demonstrated the highest binding (72%) and was better than the chlorophyllin-amended hydrophilic clay (59%), possibly due to the hydrophobicity of OTA (LogP 4.7). In silico studies using molecular dynamics simulations showed that CMCH improves OTA binding in comparison to parent clay in line with experiments. Simulations depicted that chlorophyll amendments on clay facilitated OTA molecules binding both directly, through enhancing OTA binding on the clay, or predominantly indirectly, through OTA molecules interacting with bound chlorophyll amendments. Simulations uncovered the key role of calcium ions in OTA binding, particularly in neutral conditions, and demonstrated that CMCH binding to OTA is enhanced under both neutral and acidic conditions. Furthermore, the protection of various sorbents against OTA-induced toxicity was carried out using two living organisms (Hydra vulgaris and Caenorhabditis elegans) which are susceptible to OTA toxicity. This study showed the significant detoxification of OTA (33% to 100%) by inclusion of sorbents. Organoclay (CMCH) at 0.5% offered complete protection. These findings suggest that the chlorophyll-amended organoclays described in this study could be included in food and feed as OTA binders and as potential filter materials for water and beverages to protect against OTA contaminants during outbreaks and emergencies.
Collapse
Affiliation(s)
- Johnson O. Oladele
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX 77843, USA; (J.O.O.); (M.W.)
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Meichen Wang
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX 77843, USA; (J.O.O.); (M.W.)
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Xenophon Xenophontos
- Artie McFerrin Department of Chemical Engineering, College of Engineering, Texas A&M University, College Station, TX 77843, USA; (X.X.); (P.T.)
| | - Kendall Lilly
- Department of Materials Science and Engineering, College of Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Phanourios Tamamis
- Artie McFerrin Department of Chemical Engineering, College of Engineering, Texas A&M University, College Station, TX 77843, USA; (X.X.); (P.T.)
- Department of Materials Science and Engineering, College of Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Timothy D. Phillips
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX 77843, USA; (J.O.O.); (M.W.)
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
5
|
Bahuguna A, Kumar V, Lee S, Kim M. Kinetic study and optimization of ginger mediated ochratoxin A reduction: An eco-friendly approach including toxicity evaluation. CHEMOSPHERE 2024; 367:143655. [PMID: 39481488 DOI: 10.1016/j.chemosphere.2024.143655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/15/2024] [Accepted: 10/29/2024] [Indexed: 11/02/2024]
Abstract
Ochratoxin A (OTA) is a toxic secondary metabolite synthesized by certain fungal strains of Penicillium and Aspergillus and is characterized as a Group 2B carcinogen. OTA infiltrates food and feeds through diverse chains, posing health risks to humans and animals. Herein, seven distinct edible plant materials were screened for their OTA reduction activity. Amidst them, ginger juice in aqueous (2.5%, v/v) showed the highest OTA reduction (95.63%), following first-order reaction kinetics (R2 = 0.92) with 0.72 d-1 rate constant. OTA reduction activity of ginger juice was substantially compromised in the presence of salt (>2.5%) and temperature (>40 °C). The response surface methodology-based approach employing Box-Behnken experimental design revealed an integrated effect of temperature, pH, and salt concentrations on OTA reduction (27.44-100%) by ginger juice. In addition, heat treatment (100 °C) and dialysis (12-14 kDa cutoff) of ginger juice implied the inclusion of heat-stable small molecules in reducing OTA. Ginger-treated OTA ameliorated hepatocellular carcinoma (HepG2) cell viability and diminished reactive oxygen species (ROS) levels compared to native OTA. In zebrafish embryos, OTA-induced teratogenic effects, diminished hatching (22.91%), and elevated ROS levels leading to embryo mortality (75%) were significantly reversed by OTA treated with ginger, underscoring the curtailed toxicity of OTA-converted products by ginger.
Collapse
Affiliation(s)
- Ashutosh Bahuguna
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea.
| | - Vishal Kumar
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea.
| | - Sumi Lee
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea.
| | - Myunghee Kim
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea.
| |
Collapse
|
6
|
Aydemir MC, Yaman İ, Kilic MA. Membrane Receptor-Mediated Disruption of Cellular Homeostasis: Changes in Intracellular Signaling Pathways Increase the Toxicity of Ochratoxin A. Mol Nutr Food Res 2024; 68:e2300777. [PMID: 38880772 DOI: 10.1002/mnfr.202300777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/29/2024] [Indexed: 06/18/2024]
Abstract
Organisms maintain their cellular homeostatic balance by interacting with their environment through the use of their cell surface receptors. Membrane based receptors such as the transforming growth factor β receptor (TGFR), the prolactin receptor (PRLR), and hepatocyte growth factor receptor (HGFR), along with their associated signaling cascade, play significant roles in retaining cellular homeostasis. While these receptors and related signaling pathways are essential for health of cell and organism, their dysregulation can lead to imbalance in cell function with severe pathological conditions such as cell death or cancer. Ochratoxin A (OTA) can disrupt cellular homeostasis by altering expression levels of these receptors and/or receptor-associated intracellular downstream signaling modulators and/or pattern and levels of their phosphorylation/dephosphorylation. Recent studies have shown that the activity of the TGFR, the PRLR, and HGFR and their associated signaling cascades change upon OTA exposure. A critical evaluation of these findings suggests that while increased activity of the HGFR and TGFR signaling pathways leads to an increase in cell survival and fibrosis, decreased activity of the PRLR signaling pathway leads to tissue damage. This review explores the roles of these receptors in OTA-related pathologies and effects on cellular homeostasis.
Collapse
Affiliation(s)
- Mesut Cihan Aydemir
- Department of Biology, Institute of Natural and Applied Sciences, Akdeniz University, Antalya, 07070, Turkey
| | - İbrahim Yaman
- Molecular Toxicology and Cancer Research Laboratory, Department of Molecular Biology and Genetics, Bogazici University, Istanbul, Bebek, 34342, Turkey
| | - Mehmet Akif Kilic
- Department of Biology, Molecular Biology Section, Akdeniz University, Antalya, 07070, Turkey
| |
Collapse
|
7
|
Kappari L, Dasireddy JR, Applegate TJ, Selvaraj RK, Shanmugasundaram R. MicroRNAs: exploring their role in farm animal disease and mycotoxin challenges. Front Vet Sci 2024; 11:1372961. [PMID: 38803799 PMCID: PMC11129562 DOI: 10.3389/fvets.2024.1372961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/04/2024] [Indexed: 05/29/2024] Open
Abstract
MicroRNAs (miRNAs) serve as key regulators in gene expression and play a crucial role in immune responses, holding a significant promise for diagnosing and managing diseases in farm animals. This review article summarizes current research on the role of miRNAs in various farm animal diseases and mycotoxicosis, highlighting their potential as biomarkers and using them for mitigation strategies. Through an extensive literature review, we focused on the impact of miRNAs in the pathogenesis of several farm animal diseases, including viral and bacterial infections and mycotoxicosis. They regulate gene expression by inducing mRNA deadenylation, decay, or translational inhibition, significantly impacting cellular processes and protein synthesis. The research revealed specific miRNAs associated with the diseases; for instance, gga-miR-M4 is crucial in Marek's disease, and gga-miR-375 tumor-suppressing function in Avian Leukosis. In swine disease such as Porcine Respiratory and Reproductive Syndrome (PRRS) and swine influenza, miRNAs like miR-155 and miR-21-3p emerged as key regulatory factors. Additionally, our review highlighted the interaction between miRNAs and mycotoxins, suggesting miRNAs can be used as a biomarker for mycotoxin exposure. For example, alterations in miRNA expression, such as the dysregulation observed in response to Aflatoxin B1 (AFB1) in chickens, may indicate potential mechanisms for toxin-induced changes in lipid metabolism leading to liver damage. Our findings highlight miRNAs potential for early disease detection and intervention in farm animal disease management, potentially reducing significant economic losses in agriculture. With only a fraction of miRNAs functionally characterized in farm animals, this review underlines more focused research on specific miRNAs altered in distinct diseases, using advanced technologies like CRISPR-Cas9 screening, single-cell sequencing, and integrated multi-omics approaches. Identifying specific miRNA targets offers a novel pathway for early disease detection and the development of mitigation strategies against mycotoxin exposure in farm animals.
Collapse
Affiliation(s)
- Laharika Kappari
- Department of Poultry Science, The University of Georgia, Athens, GA, United States
| | | | - Todd J. Applegate
- Department of Poultry Science, The University of Georgia, Athens, GA, United States
| | - Ramesh K. Selvaraj
- Department of Poultry Science, The University of Georgia, Athens, GA, United States
| | - Revathi Shanmugasundaram
- Toxicology and Mycotoxin Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, United States
| |
Collapse
|
8
|
Beraza E, Serrano-Civantos M, Izco M, Alvarez-Erviti L, Gonzalez-Peñas E, Vettorazzi A. High-Performance Liquid Chromatography-Fluorescence Detection Method for Ochratoxin A Quantification in Small Mice Sample Volumes: Versatile Application across Diverse Matrices Relevant for Neurodegeneration Research. Toxins (Basel) 2024; 16:213. [PMID: 38787065 PMCID: PMC11125890 DOI: 10.3390/toxins16050213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
Ochratoxin A (OTA) is a mycotoxin commonly found in various food products, which poses potential health risks to humans and animals. Recently, more attention has been directed towards its potential neurodegenerative effects. However, there are currently no fully validated HPLC analytical methods established for its quantification in mice, the primary animal model in this field, that include pivotal tissues in this area of research, such as the intestine and brain. To address this gap, we developed and validated a highly sensitive, rapid, and simple method using HPLC-FLD for OTA determination in mice tissues (kidney, liver, brain, and intestine) as well as plasma samples. The method was rigorously validated for selectivity, linearity, accuracy, precision, recovery, dilution integrity, carry-over effect, stability, and robustness, meeting the validation criteria outlined by FDA and EMA guidelines. Furthermore, the described method enables the quantification of OTA in each individual sample using minimal tissue mass while maintaining excellent recovery values. The applicability of the method was demonstrated in a repeated low-dose OTA study in Balb/c mice, which, together with the inclusion of relevant and less common tissues in the validation process, underscore its suitability for neurodegeneration-related research.
Collapse
Affiliation(s)
- Elba Beraza
- MITOX Research Group, Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, Universidad de Navarra, 31008 Pamplona, Spain; (E.B.); (M.S.-C.); (E.G.-P.)
| | - Maria Serrano-Civantos
- MITOX Research Group, Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, Universidad de Navarra, 31008 Pamplona, Spain; (E.B.); (M.S.-C.); (E.G.-P.)
| | - Maria Izco
- Laboratory of Molecular Neurobiology, Center for Biomedical Research of La Rioja (CIBIR), Piqueras 98, 26006 Logroño, Spain; (M.I.); (L.A.-E.)
| | - Lydia Alvarez-Erviti
- Laboratory of Molecular Neurobiology, Center for Biomedical Research of La Rioja (CIBIR), Piqueras 98, 26006 Logroño, Spain; (M.I.); (L.A.-E.)
| | - Elena Gonzalez-Peñas
- MITOX Research Group, Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, Universidad de Navarra, 31008 Pamplona, Spain; (E.B.); (M.S.-C.); (E.G.-P.)
| | - Ariane Vettorazzi
- MITOX Research Group, Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, Universidad de Navarra, 31008 Pamplona, Spain; (E.B.); (M.S.-C.); (E.G.-P.)
| |
Collapse
|
9
|
Więckowska M, Szelenberger R, Niemcewicz M, Harmata P, Poplawski T, Bijak M. Ochratoxin A-The Current Knowledge Concerning Hepatotoxicity, Mode of Action and Possible Prevention. Molecules 2023; 28:6617. [PMID: 37764392 PMCID: PMC10534339 DOI: 10.3390/molecules28186617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Ochratoxin A (OTA) is considered as the most toxic of the other ochratoxins synthesized by various fungal species belonging to the Aspergillus and Penicillium families. OTA commonly contaminates food and beverages, resulting in animal and human health issues. The toxicity of OTA is known to cause liver damage and is still being researched. However, current findings do not provide clear insights into the toxin mechanism of action. The current studies focusing on the use of potentially protective compounds against the effects of the toxin are insufficient as they are mainly conducted on animals. Further research is required to fill the existing gaps in both fields (namely the exact OTA molecular mechanism and the prevention of its toxicity in the human liver). This review article is a summary of the so far obtained results of studies focusing on the OTA hepatotoxicity, its mode of action, and the known approaches of liver cells protection, which may be the base for expanding other research in near future.
Collapse
Affiliation(s)
- Magdalena Więckowska
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (M.W.); (R.S.); (M.N.)
| | - Rafał Szelenberger
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (M.W.); (R.S.); (M.N.)
| | - Marcin Niemcewicz
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (M.W.); (R.S.); (M.N.)
| | - Piotr Harmata
- Faculty of Advanced Technologies and Chemistry, Military University of Technology, 2 gen. S. Kaliskiego St., 00-908 Warsaw, Poland;
| | - Tomasz Poplawski
- Department of Pharmaceutical Microbiology and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland;
| | - Michał Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (M.W.); (R.S.); (M.N.)
| |
Collapse
|
10
|
Cardoso Gimenes D, Ono MA, de Souza Suguiura IM, Macagnan R, Sartori D, Borsato D, Pelegrinelli Fungaro MH, Ono EYS. Yeasts as sustainable biocontrol agents against ochratoxigenic Aspergillus species and in vitro optimization of ochratoxin A detoxification. J Appl Microbiol 2023; 134:lxad174. [PMID: 37537147 DOI: 10.1093/jambio/lxad174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/15/2023] [Accepted: 08/02/2023] [Indexed: 08/05/2023]
Abstract
AIMS The aims of this study were to evaluate the potential of Hanseniaspora opuntiae, Meyerozyma caribbica, and Kluyveromyces marxianus for in vitro biocontrol of Aspergillus ochraceus, A. westerdijkiae, and A. carbonarius growth, the ochratoxin A (OTA) effect on yeast growth, and yeast in vitro OTA detoxification ability using an experimental design to predict the combined effects of inoculum size, incubation time, and OTA concentration. METHODS AND RESULTS Predictive models were developed using an incomplete Box-Behnken experimental design to predict the combined effects of inoculum size, incubation time, and OTA concentration on OTA detoxification by the yeasts. The yeasts were able to inhibit fungal growth from 13% to 86%. Kluyveromyces marxianus was the most efficient in inhibiting the three Aspergillus species. Furthermore, high OTA levels (100 ng ml-1) did not affect yeast growth over 72 h incubation. The models showed that the maximum OTA detoxification under optimum conditions was 86.8% (H. opuntiae), 79.3% (M. caribbica), and 73.7% (K. marxianus), with no significant difference (P > 0.05) between the values predicted and the results obtained experimentally. CONCLUSION The yeasts showed potential for biocontrol of ochratoxigenic fungi and OTA detoxification, and the models developed are important tools for predicting the best conditions for the application of these yeasts as detoxification agents.
Collapse
Affiliation(s)
- Danielle Cardoso Gimenes
- Department of Biochemistry and Biotechnology, State University of Londrina, P.O. box 10.011, Londrina, PR, 86057-970, Brazil
| | - Mario Augusto Ono
- Department of Pathological Sciences, State University of Londrina, P.O. box 10.011, Londrina, PR, 86057-970, Brazil
| | | | - Rafaela Macagnan
- Department of Pathological Sciences, State University of Londrina, P.O. box 10.011, Londrina, PR, 86057-970, Brazil
| | - Daniele Sartori
- Department of Biochemistry and Biotechnology, State University of Londrina, P.O. box 10.011, Londrina, PR, 86057-970, Brazil
| | - Dionisio Borsato
- Department of Chemistry, State University of Londrina, P.O. box 10.011, Londrina, PR, 86057-970, Brazil
| | | | - Elisabete Yurie Sataque Ono
- Department of Biochemistry and Biotechnology, State University of Londrina, P.O. box 10.011, Londrina, PR, 86057-970, Brazil
| |
Collapse
|
11
|
Rhee KH, Yang SA, Pyo MC, Lim JM, Lee KW. MiR-155-5p Elevated by Ochratoxin A Induces Intestinal Fibrosis and Epithelial-to-Mesenchymal Transition through TGF-β Regulated Signaling Pathway In Vitro and In Vivo. Toxins (Basel) 2023; 15:473. [PMID: 37505742 PMCID: PMC10467050 DOI: 10.3390/toxins15070473] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/16/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023] Open
Abstract
Ochratoxin A (OTA) is a mycotoxin that induces fibrosis and epithelial-to-mesenchymal transitions (EMT) in kidneys and livers. It enters our bodies through food consumption, where it is absorbed in the intestines. However, the impact of OTA on the intestines is yet to be studied. MicroRNA (miRNAs) are small non-coding single-stranded RNAs that block the transcription of specific mRNAs and are, therefore, involved in many biochemical processes. Our findings indicate that OTA can induce EMT and intestinal fibrosis both in vivo and in vitro. This study examines the impact of OTA on intestinal toxicity and the role of miRNAs in this process. Following OTA treatment, miR-155-5p was the most elevated miRNA by next-generation sequencing. Our research showed that OTA increased miR-155-5p levels through transforming growth factor β (TGF-β), leading to the development of intestinal fibrosis and EMT. Additionally, the study identified that the modulation of TGF-β and miR-155-5p by OTA is linked to the inhibition of CCAAT/enhancer-binding protein β (C/EBPβ) and Smad2/3 accumulation in the progression of intestinal fibrosis.
Collapse
Affiliation(s)
| | | | | | | | - Kwang-Won Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; (K.H.R.); (S.A.Y.); (M.C.P.); (J.-M.L.)
| |
Collapse
|
12
|
Malir F, Pickova D, Toman J, Grosse Y, Ostry V. Hazard characterisation for significant mycotoxins in food. Mycotoxin Res 2023; 39:81-93. [PMID: 36930431 DOI: 10.1007/s12550-023-00478-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 03/18/2023]
Abstract
This review updates the current status of activities related to hazard characterisation for mycotoxins, with special reference to regulatory work accomplished within the European Union. Because the relevant information on these topics is widely scattered in the scientific literature, this review intends to provide a condensed overview on the most pertinent aspects. Human health risk assessment is a procedure to estimate the nature and potential for harmful effects of mycotoxins on human health due to exposure to them via contaminated food. This assessment involves hazard identification, hazard characterisation, exposure assessment, and risk characterisation. Mycotoxins covered in this review are aflatoxins, ochratoxin A, cyclopiazonic acid, citrinin, trichothecenes (deoxynivalenol, nivalenol, T-2, and HT-2 toxins), fumonisins, zearalenone, patulin, and ergot alkaloids. For mycotoxins with clear genotoxic/carcinogenic properties, the focus is on the margin of exposure approach. One of its goals is to document predictive characterisation of the human hazard, based on studies in animals using conditions of low exposure. For the other, non-genotoxic toxins, individual 'no adverse effect levels' have been established, but structural analogues or modified forms may still complicate assessment. During the process of hazard characterisation, each identified effect is assessed for human relevance. The estimation of a 'safe dose' is the hazard characterisation endpoint. The final aim of all of these activities is to establish a system, which is able to minimise and control the risk for the consumer from mycotoxins in food. Ongoing research on mycotoxins constantly comes up with new findings, which may have to be implemented into this system.
Collapse
Affiliation(s)
- Frantisek Malir
- Department of Biology, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, CZ-50003, Hradec Kralove, Czech Republic.
| | - Darina Pickova
- Department of Biology, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, CZ-50003, Hradec Kralove, Czech Republic
| | - Jakub Toman
- Department of Biology, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, CZ-50003, Hradec Kralove, Czech Republic
| | - Yann Grosse
- The IARC Monographs Programme, International Agency for Research On Cancer (retired), Lyon, France
| | - Vladimir Ostry
- Center for Health, Nutrition and Food in Brno, National Institute of Public Health, Palackeho 3a, 61242, Brno, Czech Republic
| |
Collapse
|
13
|
Kortei NK, Oman Ayiku P, Nsor-Atindana J, Owusu Ansah L, Wiafe-Kwagyan M, Kyei-Baffour V, Kottoh ID, Odamtten GT. Toxicogenic fungal profile, Ochratoxin A exposure and cancer risk characterization through maize (Zea mays) consumed by different age populations in the Volta region of Ghana. Toxicon 2023; 226:107085. [PMID: 36921906 DOI: 10.1016/j.toxicon.2023.107085] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/27/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023]
Abstract
Maize (Zea mays) is an important staple food crop for the majority of Ghanaians. Maize is mostly contaminated by fungal species and particularly mycotoxins. This work aimed to identify and quantify the incidence of fungal infection and exposure to Ochratoxin A (OTA) as well as the health risk characterization in different age populations due to maize consumption in the Volta region. Maize samples were plated on Dichloran Rose Bengal Chloramphenicol (DRBC) agar, and Oxytetracycline Glucose Yeast Extract (OGYE) agar. All media were prepared in accordance with the manufacturers' instructions. The plates were incubated at 28 ± 2 °C for 5-7 days. High-Performance Liquid Chromatography connected to a fluorescence detector (HPLC-FLD) was used to analyze the ochratoxin A (OTA) levels in maize. Cancer risk assessments were also conducted using models prescribed by the Joint FAO/WHO Expert Committee on Additives (JECFA). The maize samples collected from the Volta region contained fungal population between the range of 3.08-4.58 log10 CFU/g. Eight (8) genera were recorded belonging to Aspergillus, Trichoderma, Penicillium, Fusarium, Saccharomyces, Mucor, Rhodotorula and Rhizopus. The species diversity includes A. flavus, A. niger, T. harzianum, P. verrucosum, F. oxysporum, Yeast, F. verticillioides, Rhodotorulla sp, A. fumigatus, R. stolonifer, M. racemosus species. Additionally, the ochratoxins level contained in the samples were very noteworthy and ranged from 1.22 to 28.17 μg/kg. Cancer risk assessments of OTA produced outcomes also ranged between 2.15 and 524.54 ng/kg bw/day, 0.03-8.31, 0.0323, and 0.07-16.94 for cases/100,000 person/yr for Estimated Daily Intake (EDI), Margin of Exposure (MOE), Average Potency, and Cancer Risks respectively for all age categories investigated. There was very high mycoflora load on the maize sampled from the Volta region, likewise the range of mycotoxins present in the maize grains, suggesting the potential to pose some adverse health effects with the populace of the Volta region.
Collapse
Affiliation(s)
- Nii Korley Kortei
- Department of Nutrition and Dietetics, School of Allied Health Sciences, University of Health and Allied Sciences, PMB 31, Ho, Ghana.
| | - Peter Oman Ayiku
- Department of Nutrition and Dietetics, School of Allied Health Sciences, University of Health and Allied Sciences, PMB 31, Ho, Ghana
| | - John Nsor-Atindana
- Department of Nutrition and Dietetics, School of Allied Health Sciences, University of Health and Allied Sciences, PMB 31, Ho, Ghana
| | - Leslie Owusu Ansah
- Department of Food Laboratory, Food and Drugs Authority, P.O. Box CT 2783, Cantonments, Accra, Ghana
| | - Michael Wiafe-Kwagyan
- Department of Plant and Environmental Biology, College of Basic and Applied Sciences, University of Ghana, P. O. Box LG 55, Legon, Ghana
| | - Vincent Kyei-Baffour
- Food Chemistry and Nutrition Research Division, Council for Scientific and Industrial Research- Food Research Institute, P. O. Box M20, Accra, Ghana
| | - Isaac Delali Kottoh
- Biotechnology and Nuclear Agriculture Research Institute (BNARI), Ghana Atomic Energy Commission, P. O. Box LG 80, Legon, Accra, Ghana
| | - George Tawia Odamtten
- Department of Plant and Environmental Biology, College of Basic and Applied Sciences, University of Ghana, P. O. Box LG 55, Legon, Ghana
| |
Collapse
|
14
|
Valadas J, Sachett A, Marcon M, Bastos LM, Piato A. Ochratoxin A induces locomotor impairment and oxidative imbalance in adult zebrafish. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:21144-21155. [PMID: 36264473 DOI: 10.1007/s11356-022-23692-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Ochratoxin A (OTA) is a mycotoxin produced by species of filamentous fungi widely found as a contaminant in food and with high toxic potential. Studies have shown that this toxin causes kidney and liver damage; however, data on the central nervous system effects of exposure to OTA are still scarce. Thus, this study aimed to investigate the effects of exposure to OTA on behavioral and neurochemical parameters in adult zebrafish. The animals were treated with different doses of OTA (1.38, 2.77, and 5.53 mg/kg) with intraperitoneal injections and submitted to behavioral evaluations in the open tank and social interaction tests. Subsequently, they were euthanized, and the brains were used to assess markers associated with oxidative status. In the open tank test, OTA altered distance traveled, absolute turn angle, mean speed, and freezing time. However, no significant effects were observed in the social interaction test. Moreover, OTA also increased glutathione peroxidase (GPx), glutathione-S-transferase (GST), and glutathione reductase (GR) levels and decreased non-protein thiols (NPSH) levels in the zebrafish brain. This study showed that OTA can affect behavior and neurochemical levels in zebrafish.
Collapse
Affiliation(s)
- Jéssica Valadas
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, Prédio UFRGS n° 21116, 6º andar - Campus Saúde, Porto Alegre, RS, 90035-003, Brazil
| | - Adrieli Sachett
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, Prédio UFRGS n° 21116, 6º andar - Campus Saúde, Porto Alegre, RS, 90035-003, Brazil
| | - Matheus Marcon
- Departamento de Bioquímica, Farmacologia e Fisiologia, Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, MG, Brazil
| | - Leonardo M Bastos
- Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Angelo Piato
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, Prédio UFRGS n° 21116, 6º andar - Campus Saúde, Porto Alegre, RS, 90035-003, Brazil.
- Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
15
|
Miguel Alfonso RA, Yael Yvette BH, Irma Martha MD, Cyndia Azucena GA, Briscia Socorro BV, José Francisco HM, Monserrat S, Aurora Elizabeth RG. Genotoxic effects of the ochratoxin A (OTA), its main metabolite (OTα) per se and in combination with fumonisin B1 in HepG2 cells and human lymphocytes. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 878:503482. [PMID: 35649676 DOI: 10.1016/j.mrgentox.2022.503482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 02/26/2022] [Accepted: 03/07/2022] [Indexed: 12/15/2022]
Abstract
Ochratoxin A (OTA) and fumonisin B1 (FB1) are mycotoxins distributed in a wide variety of foods for human or animal consumption and are classified as possible carcinogens for humans. This study aimed to evaluate the cytotoxic, cytostatic and genotoxic effects of OTA and its main metabolite, ochratoxin α (OTα), FB1 and three combinations of OTA and FB1 at moderate and environmental doses. Cell viability was evaluated through MTT assay and the trypan blue exclusion method. The cytostatic and genotoxic effects were evaluated through the cytokinesis-block micronucleus assay. The results showed synergistic time- and concentration-dependent cytotoxic effects of one of the combinations of OTA and FB1. In contrast, significant differences were observed in the micronuclei (MN) frequency from OTA, OTα and coexposure of OTA + FB1. Some of these combinations increased the frequency of nuclear buds, nucleoplasmic bridges, donut-shaped nuclei, necrotic and apoptotic cells and MN in mononucleated cells. In conclusion, OTA and its main metabolite OTα, as well as the co-exposure of OTA and FB1, cause stable DNA damage at environmentally relevant concentrations, which was greater in metabolically competent cells. More studies are needed to understand the chemical interactions that occur due to the joint presence of mycotoxins, which occurs commonly.
Collapse
Affiliation(s)
- Ruíz-Arias Miguel Alfonso
- Laboratorio de Contaminación y Toxicología Ambiental. Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, 63155. Ciudad de la Cultura s/n. Col. Centro, C.P, 63000 Tepic, Nayarit, Mexico; Posgrado en Ciencias Biológico Agropecuarias, Unidad Académica de Agricultura, Km. 9 Carretera Tepic-Compostela, Xalisco, Nayarit, Mexico
| | - Bernal-Hernández Yael Yvette
- Laboratorio de Contaminación y Toxicología Ambiental. Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, 63155. Ciudad de la Cultura s/n. Col. Centro, C.P, 63000 Tepic, Nayarit, Mexico
| | - Medina-Díaz Irma Martha
- Laboratorio de Contaminación y Toxicología Ambiental. Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, 63155. Ciudad de la Cultura s/n. Col. Centro, C.P, 63000 Tepic, Nayarit, Mexico
| | - González-Arias Cyndia Azucena
- Laboratorio de Contaminación y Toxicología Ambiental. Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, 63155. Ciudad de la Cultura s/n. Col. Centro, C.P, 63000 Tepic, Nayarit, Mexico
| | - Barrón-Vivanco Briscia Socorro
- Laboratorio de Contaminación y Toxicología Ambiental. Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, 63155. Ciudad de la Cultura s/n. Col. Centro, C.P, 63000 Tepic, Nayarit, Mexico
| | - Herrera-Moreno José Francisco
- Posgrado en Ciencias Biológico Agropecuarias, Unidad Académica de Agricultura, Km. 9 Carretera Tepic-Compostela, Xalisco, Nayarit, Mexico
| | - Sordo Monserrat
- Instituto de Investigaciones Biomédicas, UNAM, Ciudad Universitaria, P.O. Box 70228, Ciudad de México 04510, Mexico
| | - Rojas-García Aurora Elizabeth
- Laboratorio de Contaminación y Toxicología Ambiental. Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, 63155. Ciudad de la Cultura s/n. Col. Centro, C.P, 63000 Tepic, Nayarit, Mexico.
| |
Collapse
|
16
|
Liu M, Liu S, Ma Y, Li B. Construction of a fluorescence biosensor for ochratoxin A based on magnetic beads and exonuclease III-assisted DNA cycling signal amplification. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:734-740. [PMID: 35107449 DOI: 10.1039/d1ay02041b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Specific and sensitive detection of hazardous mycotoxins in agricultural crops is one of the most important goals of food safety. A fluorescence biosensor for sensitive detection of ochratoxin A (OTA) was constructed via magnetic beads and the exonuclease III (Exo III)-assisted trigger DNA circle amplification approach. Exo III-assisted trigger DNA circle amplification can be utilized as an effective strategy for the sensitive detection of OTA. The employment of streptavidin labeled magnetic beads offers a manner for the accumulation and separation of the hairpin signal probe sDNA-FAM in solution. After target specific recognition, the aptamers combined with OTA were released and the remaining block DNA (bDNA) probes captured the signal probes on magnetic bead modified fluorophores. Subsequently, the enzyme digestion reaction leads to the fluorophore free solution. Exo III-assisted DNA circle amplification contributed to the high sensitivity of the presented OTA fluorescence aptasensor. The experimental results demonstrate that the aptasensor is sensitive with the limit of detection as low as 0.28 ng mL-1 for OTA, which was lower than that of the proposed aptasensors reported by the other literature on fluorescence methods. Additionally, the developed aptasensor with the diverse aptamer sequence shows promising potential applications in food monitoring.
Collapse
Affiliation(s)
- Mei Liu
- Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Shasha Liu
- Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Yue Ma
- Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Baoxin Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
17
|
Søderstrøm S, Lie KK, Lundebye AK, Søfteland L. Beauvericin (BEA) and enniatin B (ENNB)-induced impairment of mitochondria and lysosomes - Potential sources of intracellular reactive iron triggering ferroptosis in Atlantic salmon primary hepatocytes. Food Chem Toxicol 2022; 161:112819. [PMID: 35038498 DOI: 10.1016/j.fct.2022.112819] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 12/13/2022]
Abstract
Beauvericin (BEA) and enniatin B (ENNB) are emerging mycotoxins frequently detected in plant-based fish feed. With ionophoric properties, they have shown cytotoxic potential in mammalian models. Sensitivity in fish is still largely unknown. Primary hepatocytes isolated from Atlantic salmon (Salmo salar) were used as a model and exposed to BEA and ENNB (0.05-10 μM) for 48 h. Microscopy, evaluation of cell viability, total ATP, total H2O2, total iron content, total Gpx enzyme activity, and RNA sequencing were used to characterize the toxicodynamics of BEA and ENNB. Both mycotoxins became cytotoxic at ≥ 5 μM, causing condensation of the hepatocytes followed by formation of blister-like protrusions on the cell's membrane. RNA sequencing analysis at sub-cytotoxic levels indicated BEA and ENNB exposed hepatocytes to experience increased energy expenditure, elevated oxidative stress, and iron homeostasis disturbances sensitizing the hepatocytes to ferroptosis. The present study provides valuable knowledge disclosing the toxic action of these mycotoxins in Atlantic salmon primary hepatocytes.
Collapse
Affiliation(s)
| | - Kai K Lie
- Institute of Marine Research (IMR), Bergen, Norway
| | | | | |
Collapse
|
18
|
Zhang K. Comparison of Flow Injection-MS/MS and LC-MS/MS for the Determination of Ochratoxin A. Toxins (Basel) 2021; 13:toxins13080547. [PMID: 34437418 PMCID: PMC8402343 DOI: 10.3390/toxins13080547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/28/2021] [Accepted: 08/04/2021] [Indexed: 11/19/2022] Open
Abstract
Two methods for measuring ochratoxin A in corn, oat, and grape juice were developed and compared. Flow injection (FI) and on-line liquid chromatography (LC) performances were evaluated separately, with both methods using a triple quadrupole tandem mass spectrometer (MS/MS) for quantitation. Samples were fortified with 13C uniformly labeled ochratoxin A as the internal standard (13C-IS) and prepared by dilution and filtration, followed by FI- and LC-MS/MS analysis. For the LC-MS/MS method, which had a 10 min run time/sample, recoveries of ochratoxin A fortified at 1, 5, 20, and 100 ppb in corn, oat, red grape juice, and white grape juice ranged from 100% to 117% with RSDs < 9%. The analysis time of the FI-MS/MS method was <60 s/sample, however, the method could not detect ochratoxin A at the lowest fortification concentration, 1 ppb, in all tested matrix sources. At 5, 20, and 100 ppb, recoveries by FI-MS/MS ranged from 79 to 117% with RSDs < 15%. The FI-MS/MS method also had ~5× higher solvent and matrix-dependent instrument detection limits (0.12–0.35 ppb) compared to the LC-MS/MS method (0.02–0.06 ppb). In the analysis of incurred corn and oat samples, both methods generated comparable results within ±20% of reference values, however, the FI-MS/MS method failed to determine ochratoxin A in two incurred wheat flour samples due to co-eluted interferences due to the lack of chromatographic separation.
Collapse
Affiliation(s)
- Kai Zhang
- Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, 5001 Campus Drive, HFS-717, College Park, MD 20740, USA
| |
Collapse
|
19
|
Huang X, Ren J, Li P, Feng S, Dong P, Ren M. Potential of microbial endophytes to enhance the resistance to postharvest diseases of fruit and vegetables. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:1744-1757. [PMID: 32974893 DOI: 10.1002/jsfa.10829] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/17/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
Food loss of fruit and vegetables caused by postharvest diseases is a major issue worldwide. The method used to prevent and control postharvest diseases is usually to use chemical fungicides, but long-term and large-scale use will make the pathogens resistant and potentially have a negative impact on human health and the ecological environment. Therefore, finding a safe and effective biological control method instead of chemical control is a hot research topic in recent years. Endophytes, colonizing plants asymptomatically, can promote the growth of the hosts and enhance their resistance. The use of endophytes as biological control agents for postharvest diseases of fruit and vegetables has attracted increasing attention in the last 20 years. Compared with chemical control, endophytes have the advantages of being more environmentally friendly, sustainable, and safer. However, there are relatively few relevant studies, so herein we summarize the available literature. This review focuses mainly on the recent progress of using endophytes to enhance the resistance of postharvest fruit and vegetables to diseases, with the emphasis on the possible mechanisms and the potential applications. Furthermore, this article suggests future areas for study using antagonistic endophytes to prevent and control fruit and vegetable postharvest diseases: (i) screening more potential broad-spectrum anti-pathogen endophytes and their metabolic active substances by the method of macrogenomics; (ii) elucidating the underlining molecular mechanism among endophytes, harvested vegetables and fruit, pathogens, and microbial communities; (iii) needing more application research to overcome the difficulties of commercialization practice. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaoqing Huang
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Jie Ren
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Peihua Li
- College of Agronomy, Xichang University, Xichang, China
| | - Shun Feng
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Pan Dong
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Maozhi Ren
- School of Life Sciences, Chongqing University, Chongqing, China
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| |
Collapse
|
20
|
Gao J, Xu X, Huang K, Liang Z. Fungal G-Protein-Coupled Receptors: A Promising Mediator of the Impact of Extracellular Signals on Biosynthesis of Ochratoxin A. Front Microbiol 2021; 12:631392. [PMID: 33643259 PMCID: PMC7907439 DOI: 10.3389/fmicb.2021.631392] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/21/2021] [Indexed: 01/17/2023] Open
Abstract
G-protein-coupled receptors (GPCRs) are transmembrane receptors involved in transducing signals from the external environment inside the cell, which enables fungi to coordinate cell transport, metabolism, and growth to promote their survival, reproduction, and virulence. There are 14 classes of GPCRs in fungi involved in sensing various ligands. In this paper, the synthesis of mycotoxins that are GPCR-mediated is discussed with respect to ligands, environmental stimuli, and intra-/interspecific communication. Despite their apparent importance in fungal biology, very little is known about the role of ochratoxin A (OTA) biosynthesis by Aspergillus ochraceus and the ligands that are involved. Fortunately, increasing evidence shows that the GPCR that involves the AF/ST (sterigmatocystin) pathway in fungi belongs to the same genus. Therefore, we speculate that GPCRs play an important role in a variety of environmental signals and downstream pathways in OTA biosynthesis. The verification of this inference will result in a more controllable GPCR target for control of fungal contamination in the future.
Collapse
Affiliation(s)
- Jing Gao
- Beijing Laboratory for Food Quality and Safety, Beijing, China
| | - Xinge Xu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Kunlun Huang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Zhihong Liang
- Beijing Laboratory for Food Quality and Safety, Beijing, China.,College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
21
|
Bhatti SA, Khan MZ, Saleemi MK, Hassan ZU, Khan A. Ameliorative role of dietary activated carbon against ochratoxin-A induced oxidative damage, suppressed performance and toxicological effects. TOXIN REV 2020. [DOI: 10.1080/15569543.2020.1848870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Sheraz Ahmed Bhatti
- Department of Pathobiology, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Zargham Khan
- Department of Pathology, Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Kashif Saleemi
- Department of Pathology, Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan
| | - Zahoor Ul Hassan
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Ahrar Khan
- Shandong Vocational Animal Science and Veterinary College, Weifang, China
| |
Collapse
|
22
|
Niaz K, Shah SZA, Khan F, Bule M. Ochratoxin A-induced genotoxic and epigenetic mechanisms lead to Alzheimer disease: its modulation with strategies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:44673-44700. [PMID: 32424756 DOI: 10.1007/s11356-020-08991-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
Ochratoxin A (OTA) is a naturally occurring mycotoxin mostly found in food items including grains and coffee beans. It induces DNA single-strand breaks and has been considered to be carcinogenic. It is recognized as a serious threat to reproductive health both in males and females. OTA is highly nephrotoxic and carcinogenic, and its potency changes evidently between species and sexes. There is a close association between OTA, mutagenicity, carcinogenicity, and genotoxicity, but the underlying mechanisms are not clear. Reports regarding genotoxic effects in relation to OTA which leads to the induction of DNA adduct formation, protein synthesis inhibition, perturbation of cellular energy production, initiation of oxidative stress, induction of apoptosis, influences on mitosis, induction of cell cycle arrest, and interference with cytokine pathways. All these mechanisms are associated with nephrotoxicity, hepatotoxicity, teratotoxicity, immunological toxicity, and neurotoxicity. OTA administration activates various mechanisms such as p38 MAPK, JNKs, and ERKs dysfunctions, BDNF disruption, TH overexpression, caspase-3 and 9 activation, and ERK-1/2 phosphorylation which ultimately lead to Alzheimer disease (AD) progression. The current review will focus on OTA in terms of recent discoveries in the field of molecular biology. The main aim is to investigate the underlying mechanisms of OTA in regard to genotoxicity and epigenetic modulations that lead to AD. Also, we will highlight the strategies for the purpose of attenuating the hazards posed by OTA exposure.
Collapse
Affiliation(s)
- Kamal Niaz
- Department of Pharmacology and Toxicology, Faculty of Bio-Sciences, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 63100, Pakistan.
| | - Syed Zahid Ali Shah
- Department of Pathology, Faculty of Veterinary Science, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 63100, Pakistan
| | - Fazlullah Khan
- The Institute of Pharmaceutical Sciences (TIPS), School of Pharmacy, International Campus, Tehran University of Medical Sciences (IC-TUMS), Tehran, 1417614411, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, 1417614411, Iran
| | - Mohammed Bule
- Department of Pharmacy, College of Medicine and Health Sciences, Ambo University, Ambo, Oromia, Ethiopia
| |
Collapse
|
23
|
Kumar P, Mahato DK, Sharma B, Borah R, Haque S, Mahmud MC, Shah AK, Rawal D, Bora H, Bui S. Ochratoxins in food and feed: Occurrence and its impact on human health and management strategies. Toxicon 2020; 187:151-162. [DOI: 10.1016/j.toxicon.2020.08.031] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/30/2020] [Accepted: 08/31/2020] [Indexed: 12/14/2022]
|
24
|
Choi SY, Kim TH, Hong MW, Park TS, Lee H, Lee SJ. Transcriptomic alterations induced by aflatoxin B1 and ochratoxin A in LMH cell line. Poult Sci 2020; 99:5265-5274. [PMID: 33142442 PMCID: PMC7647754 DOI: 10.1016/j.psj.2020.05.058] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/09/2020] [Accepted: 05/22/2020] [Indexed: 12/23/2022] Open
Abstract
Aflatoxin B1 (AFB1) and ochratoxin A (OTA), which are toxic metabolites of ubiquitously occurring molds, show diverse toxicological effects such as hepatotoxicity, genotoxicity, and immunotoxicity in human and animals. Despite poultry show sensitivity to AFB1 and OTA, the mechanism of these mycotoxins in chickens has not been fully investigated. Here, we aimed to elucidate the molecular mechanism induced by AFB1 and/or OTA in chicken hepatic cells using transcriptomic analysis. Aflatoxin B1 and OTA induced cytotoxic effects in a dose-dependent manner at 48 h after exposure. Furthermore, correlation effect indicated an antagonism between the 2 toxins. The mRNA sequencing of AFB1-treated or OTA-treated chicken hepatocarcinoma and functional analysis revealed the pathways that were commonly regulated by both mycotoxins, especially PPAR signaling, focal adhesion, and MAPK signaling. Based on these findings, a possible hypothesis is that AFB1 and OTA have similar toxic mechanisms and compete for some steps in the chicken liver, and it is expected that the mycotoxins would have antagonistic effects. In addition, genes identified through transcriptome analysis provide candidates for further study of AFB1 and OTA toxicity and targets for efforts to improve the health of chickens exposed to mycotoxins.
Collapse
Affiliation(s)
- So-Young Choi
- Department of Animal Life Science, Kangwon National University, Chuncheon-si, Gangwon-do 24341, Korea
| | - Tae Hyun Kim
- Department of Animal Science, University of California, Davis, Davis, CA 95616, USA
| | - Min-Wook Hong
- Department of Animal Life Science, Kangwon National University, Chuncheon-si, Gangwon-do 24341, Korea
| | - Tae Sub Park
- Graduate School of International Agricultural Technology and Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang-gun, Gangwon-do 25354, Korea
| | - Hyojeong Lee
- Department of Animal Life Science, Kangwon National University, Chuncheon-si, Gangwon-do 24341, Korea
| | - Sung-Jin Lee
- Department of Animal Life Science, Kangwon National University, Chuncheon-si, Gangwon-do 24341, Korea.
| |
Collapse
|
25
|
Sun J, Sun X. Recent advances in the construction of DNA nanostructure with signal amplification and ratiometric response for miRNA sensing and imaging. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115900] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
26
|
EFSA Panel on Contaminants in the Food Chain (CONTAM), Schrenk D, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Hoogenboom L(R, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Vleminckx C, Wallace H, Alexander J, Dall'Asta C, Mally A, Metzler M, Binaglia M, Horváth Z, Steinkellner H, Bignami M. Risk assessment of ochratoxin A in food. EFSA J 2020; 18:e06113. [PMID: 37649524 PMCID: PMC10464718 DOI: 10.2903/j.efsa.2020.6113] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The European Commission asked EFSA to update their 2006 opinion on ochratoxin A (OTA) in food. OTA is produced by fungi of the genus Aspergillus and Penicillium and found as a contaminant in various foods. OTA causes kidney toxicity in different animal species and kidney tumours in rodents. OTA is genotoxic both in vitro and in vivo; however, the mechanisms of genotoxicity are unclear. Direct and indirect genotoxic and non-genotoxic modes of action might each contribute to tumour formation. Since recent studies have raised uncertainty regarding the mode of action for kidney carcinogenicity, it is inappropriate to establish a health-based guidance value (HBGV) and a margin of exposure (MOE) approach was applied. For the characterisation of non-neoplastic effects, a BMDL 10 of 4.73 μg/kg body weight (bw) per day was calculated from kidney lesions observed in pigs. For characterisation of neoplastic effects, a BMDL 10 of 14.5 μg/kg bw per day was calculated from kidney tumours seen in rats. The estimation of chronic dietary exposure resulted in mean and 95th percentile levels ranging from 0.6 to 17.8 and from 2.4 to 51.7 ng/kg bw per day, respectively. Median OTA exposures in breastfed infants ranged from 1.7 to 2.6 ng/kg bw per day, 95th percentile exposures from 5.6 to 8.5 ng/kg bw per day in average/high breast milk consuming infants, respectively. Comparison of exposures with the BMDL 10 based on the non-neoplastic endpoint resulted in MOEs of more than 200 in most consumer groups, indicating a low health concern with the exception of MOEs for high consumers in the younger age groups, indicating a possible health concern. When compared with the BMDL 10 based on the neoplastic endpoint, MOEs were lower than 10,000 for almost all exposure scenarios, including breastfed infants. This would indicate a possible health concern if genotoxicity is direct. Uncertainty in this assessment is high and risk may be overestimated.
Collapse
|
27
|
Lv L, Wang X. Recent Advances in Ochratoxin A Electrochemical Biosensors: Recognition Elements, Sensitization Technologies, and Their Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4769-4787. [PMID: 32243155 DOI: 10.1021/acs.jafc.0c00258] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ochratoxin A (OTA) is a class of mycotoxin that are mainly produced by Aspergillus and Penicillium and widely found in plant origin food. OTA-contaminated foods can cause serious harm to animals and humans, while high stability of OTA makes it difficult to remove in conventional food processing. Thus, sensitive and rapid detection of OTA undoubtedly plays an important role in OTA prevention and control. In this paper, the conventional and novel methods of OTA at home and abroad are summarized and compared. The latest research progress and related applications of novel OTA electrochemical biosensors are mainly described with a new perspective. We innovatively divided the recognition element into single and combined recognition elements. Specifically, signal amplification technologies applied to the OTA electrochemical aptasensor are proposed. Furthermore, summary of the current limitations and future challenges in OTA analysis is included, which provide reference for the further research and applications.
Collapse
Affiliation(s)
- Liangrui Lv
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Xiaoying Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| |
Collapse
|
28
|
Zhai SS, Ruan D, Zhu YW, Li MC, Ye H, Wang WC, Yang L. Protective effect of curcumin on ochratoxin A-induced liver oxidative injury in duck is mediated by modulating lipid metabolism and the intestinal microbiota. Poult Sci 2020; 99:1124-1134. [PMID: 32036964 PMCID: PMC7587726 DOI: 10.1016/j.psj.2019.10.041] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 12/21/2022] Open
Abstract
Curcumin has antioxidant functions, regulates the intestinal microbial composition, and alleviates mycotoxin toxicity. The present study aimed to explore whether curcumin could alleviate ochratoxin A (OTA)-induced liver injury via the intestinal microbiota. A total of 720 mixed-sex 1-day-old White Pekin ducklings were randomly assigned into 4 groups: CON (control group, without OTA), OTA (fed a diet with 2 mg/kg OTA), CUR (ducks fed a diet with 400 mg/kg curcumin), and OTA + CUR (2 mg/kg OTA plus 400 mg/kg curcumin). Each treatment consisted of 6 replicates and 30 ducklings per replicate. Treatment lasted for 21 D. Results were analyzed by a two-tailed Student t test between 2 groups. Our results demonstrated that OTA treatment had the highest serum low-density lipoprotein (LDL) level among 4 groups. Compared with OTA group, OTA + CUR decreased serum LDL level (P < 0.05). OTA decreased liver catalase (CAT) activity in ducks (P < 0.05), while addition of curcumin in OTA group increased liver CAT activity (P < 0.05). 16S ribosomal RNA sequencing suggested that curcumin increased the richness indices (ACE index) and diversity indices (Simpson index) compared with OTA group (P < 0.05) and recovered the OTA-induced alterations in composition of the intestinal microbiota. Curcumin supplementation relieved the decreased abundance of butyric acid producing bacteria, including blautia, butyricicoccus, and butyricimonas, induced by OTA (P < 0.05). OTA also significantly influenced the metabolism of the intestinal microbiota, such as tryptophan metabolism and glyceropholipid metabolism. Curcumin could alleviate the upregulation of oxidative stress pathways induced by OTA. OTA treatment also increased SREBP-1c expression (P < 0.05). The curcumin group had the lowest expression of FAS and PPARG mRNA (P < 0.05) and the highest expression of NRF2 and HMOX1 mRNA. These results indicated that curcumin could alleviate OTA-induced oxidative injury and lipid metabolism disruption by modulating the cecum microbiota.
Collapse
Affiliation(s)
- S S Zhai
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - D Ruan
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Y W Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - M C Li
- Dayitongchuang Biotech Co., Ltd., Tianjin 300000, China
| | - H Ye
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - W C Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - L Yang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
29
|
Horemans N, Spurgeon DJ, Lecomte-Pradines C, Saenen E, Bradshaw C, Oughton D, Rasnaca I, Kamstra JH, Adam-Guillermin C. Current evidence for a role of epigenetic mechanisms in response to ionizing radiation in an ecotoxicological context. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 251:469-483. [PMID: 31103007 DOI: 10.1016/j.envpol.2019.04.125] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/14/2019] [Accepted: 04/27/2019] [Indexed: 05/22/2023]
Abstract
The issue of potential long-term or hereditary effects for both humans and wildlife exposed to low doses (or dose rates) of ionising radiation is a major concern. Chronic exposure to ionising radiation, defined as an exposure over a large fraction of the organism's lifespan or even over several generations, can possibly have consequences in the progeny. Recent work has begun to show that epigenetics plays an important role in adaptation of organisms challenged to environmental stimulae. Changes to so-called epigenetic marks such as histone modifications, DNA methylation and non-coding RNAs result in altered transcriptomes and proteomes, without directly changing the DNA sequence. Moreover, some of these environmentally-induced epigenetic changes tend to persist over generations, and thus, epigenetic modifications are regarded as the conduits for environmental influence on the genome. Here, we review the current knowledge of possible involvement of epigenetics in the cascade of responses resulting from environmental exposure to ionising radiation. In addition, from a comparison of lab and field obtained data, we investigate evidence on radiation-induced changes in the epigenome and in particular the total or locus specific levels of DNA methylation. The challenges for future research and possible use of changes as an early warning (biomarker) of radiosensitivity and individual exposure is discussed. Such a biomarker could be used to detect and better understand the mechanisms of toxic action and inter/intra-species susceptibility to radiation within an environmental risk assessment and management context.
Collapse
Affiliation(s)
- Nele Horemans
- Belgian Nuclear Research Centre, Boeretang 200, B-2400, Mol, Belgium; Centre for Environmental Research, University of Hasselt, Agoralaan, 3590, Diepenbeek, Belgium.
| | - David J Spurgeon
- Centre for Ecology and Hydrology, MacLean Building, Benson Lane, Wallingford, Oxon, OX10 8BB, UK
| | - Catherine Lecomte-Pradines
- Institut de Radioprotection et de Sûreté Nucléaire, PSE-ENV/SRTE/LECO, Cadarache, Saint Paul Lez Durance, France
| | - Eline Saenen
- Belgian Nuclear Research Centre, Boeretang 200, B-2400, Mol, Belgium
| | - Clare Bradshaw
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91, Stockholm, Sweden
| | - Deborah Oughton
- Centre for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences, 1430, Aas, Norway
| | - Ilze Rasnaca
- Centre for Ecology and Hydrology, MacLean Building, Benson Lane, Wallingford, Oxon, OX10 8BB, UK
| | - Jorke H Kamstra
- Faculty of Veterinary Medicine, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Christelle Adam-Guillermin
- Institut de Radioprotection et de Sûreté Nucléaire, PSE-SANTE, Cadarache, Saint Paul Lez Durance, France
| |
Collapse
|
30
|
Rong X, Sun-Waterhouse D, Wang D, Jiang Y, Li F, Chen Y, Zhao S, Li D. The Significance of Regulatory MicroRNAs: Their Roles in Toxicodynamics of Mycotoxins and in the Protection Offered by Dietary Therapeutics Against Mycotoxin-Induced Toxicity. Compr Rev Food Sci Food Saf 2018; 18:48-66. [DOI: 10.1111/1541-4337.12412] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/11/2018] [Accepted: 11/02/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Xue Rong
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes; the College of Food Science and Engineering, Shandong Agricultural Univ.; Taian Shandong 271018 P. R. China
| | - Dongxiao Sun-Waterhouse
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes; the College of Food Science and Engineering, Shandong Agricultural Univ.; Taian Shandong 271018 P. R. China
- School of Chemical Sciences; The Univ. of Auckland; Private Bag Auckland 92019 New Zealand
| | - Dan Wang
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes; the College of Food Science and Engineering, Shandong Agricultural Univ.; Taian Shandong 271018 P. R. China
- Shandong Inst. of Pomology; Taian Shandong 271000 P. R. China
| | - Yang Jiang
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes; the College of Food Science and Engineering, Shandong Agricultural Univ.; Taian Shandong 271018 P. R. China
| | - Feng Li
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes; the College of Food Science and Engineering, Shandong Agricultural Univ.; Taian Shandong 271018 P. R. China
| | - Yilun Chen
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes; the College of Food Science and Engineering, Shandong Agricultural Univ.; Taian Shandong 271018 P. R. China
| | - Shancang Zhao
- Central Laboratory of Shandong Academy of Agricultural Sciences; Key Laboratory of Test Technology on Food Quality and Safety of Shandong Province; Jinan Shandong 250100 P. R. China
| | - Dapeng Li
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes; the College of Food Science and Engineering, Shandong Agricultural Univ.; Taian Shandong 271018 P. R. China
| |
Collapse
|
31
|
Electrochemical immunosensor for ochratoxin A detection based on Au octahedron plasmonic colloidosomes. Anal Chim Acta 2018; 1032:114-121. [DOI: 10.1016/j.aca.2018.05.035] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 04/26/2018] [Accepted: 05/10/2018] [Indexed: 11/20/2022]
|
32
|
Gao Y, Li S, Bao X, Luo C, Yang H, Wang J, Zhao S, Zheng N. Transcriptional and Proteomic Analysis Revealed a Synergistic Effect of Aflatoxin M1 and Ochratoxin A Mycotoxins on the Intestinal Epithelial Integrity of Differentiated Human Caco-2 Cells. J Proteome Res 2018; 17:3128-3142. [DOI: 10.1021/acs.jproteome.8b00241] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yanan Gao
- Milk and Dairy Product Inspection Center of the Ministry of Agriculture, Beijing 100193, PR China
| | - Songli Li
- Milk and Dairy Product Inspection Center of the Ministry of Agriculture, Beijing 100193, PR China
| | - Xiaoyu Bao
- Milk and Dairy Product Inspection Center of the Ministry of Agriculture, Beijing 100193, PR China
| | - Chaochao Luo
- Milk and Dairy Product Inspection Center of the Ministry of Agriculture, Beijing 100193, PR China
| | - Huaigu Yang
- Milk and Dairy Product Inspection Center of the Ministry of Agriculture, Beijing 100193, PR China
| | - Jiaqi Wang
- Milk and Dairy Product Inspection Center of the Ministry of Agriculture, Beijing 100193, PR China
| | - Shengguo Zhao
- Milk and Dairy Product Inspection Center of the Ministry of Agriculture, Beijing 100193, PR China
| | - Nan Zheng
- Milk and Dairy Product Inspection Center of the Ministry of Agriculture, Beijing 100193, PR China
| |
Collapse
|
33
|
A comparison between the effects of ochratoxin A and aristolochic acid on the inflammation and oxidative stress in the liver and kidney of weanling piglets. Naunyn Schmiedebergs Arch Pharmacol 2018; 391:1147-1156. [DOI: 10.1007/s00210-018-1538-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 07/13/2018] [Indexed: 10/28/2022]
|
34
|
Chen W, Li C, Zhang B, Zhou Z, Shen Y, Liao X, Yang J, Wang Y, Li X, Li Y, Shen XL. Advances in Biodetoxification of Ochratoxin A-A Review of the Past Five Decades. Front Microbiol 2018; 9:1386. [PMID: 29997599 PMCID: PMC6028724 DOI: 10.3389/fmicb.2018.01386] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/06/2018] [Indexed: 12/11/2022] Open
Abstract
Ochratoxin A (OTA) is a toxic secondary fungal metabolite that widely takes place in various kinds of foodstuffs and feeds. Human beings and animals are inevitably threatened by OTA as a result. Therefore, it is necessary to adopt various measures to detoxify OTA-contaminated foods and feeds. Biological detoxification methods, with better safety, flavor, nutritional quality, organoleptic properties, availability, and cost-effectiveness, are more promising than physical and chemical detoxification methods. The state-of-the-art research advances of OTA biodetoxification by degradation, adsorption, or enzymes are reviewed in the present paper. Researchers have discovered a good deal of microorganisms that could degrade and/or adsorb OTA, including actinobacteria, bacteria, filamentous fungi, and yeast. The degradation of OTA to non-toxic or less toxic OTα via the hydrolysis of the amide bond is the most important OTA biodegradation mechanism. The most important influence factor of OTA adsorption capacity of microorganisms is cell wall components. A large number of microorganisms with good OTA degradation and/or adsorption ability, as well as some OTA degradation enzymes isolated or cloned from microorganisms and animal pancreas, have great application prospects in food and feed industries.
Collapse
Affiliation(s)
- Wenying Chen
- School of Public Health, Zunyi Medical University, Zunyi, China
- Experimental Teaching Demonstration Center for Preventive Medicine of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Chen Li
- School of Public Health, Zunyi Medical University, Zunyi, China
| | - Boyang Zhang
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Zheng Zhou
- School of Public Health, Zunyi Medical University, Zunyi, China
- Experimental Teaching Demonstration Center for Preventive Medicine of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Yingbin Shen
- Department of Food Science and Engineering, School of Science and Engineering, Jinan University, Guangzhou, China
| | - Xin Liao
- School of Public Health, Zunyi Medical University, Zunyi, China
| | - Jieyeqi Yang
- School of Public Health, Zunyi Medical University, Zunyi, China
| | - Yan Wang
- Department of Food Quality and Safety, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaohong Li
- Department of Food and Bioengineering, Beijing Agricultural Vocational College, Beijing, China
| | - Yuzhe Li
- China National Center for Food Safety Risk Assessment, Beijing, China
| | - Xiao L. Shen
- School of Public Health, Zunyi Medical University, Zunyi, China
- Experimental Teaching Demonstration Center for Preventive Medicine of Guizhou Province, Zunyi Medical University, Zunyi, China
| |
Collapse
|
35
|
Zheng N, Gao YN, Liu J, Wang HW, Wang JQ. Individual and combined cytotoxicity assessment of zearalenone with ochratoxin A or α-zearalenol by full factorial design. Food Sci Biotechnol 2018; 27:251-259. [PMID: 30263747 PMCID: PMC6049762 DOI: 10.1007/s10068-017-0197-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/26/2017] [Accepted: 08/30/2017] [Indexed: 11/30/2022] Open
Abstract
The combined mycotoxins zearalenone (ZEA) with ochratoxin A (OTA) or α-zearalenol (α-ZOL) are frequently found together in milk. Toxicological data concerning the combined effects of these mycotoxins are sparse. In present study, individual and combined ZEA, OTA and α-ZOL caused cytotoxicity and oxidative damage, including reductions in intracellular superoxide dismutase and glutathione peroxidase activities and glutathione content, along with increases in malonaldehyde content on human Hep G2 cells after 48 h of exposure. Among individual mycotoxins, OTA had the greatest cytotoxic effect followed by α-ZOL. Compared with individual mycotoxins, combinations produced more serious negative effects, more importantly, ZEA + OTA was antagonistic for these effects, whereas ZEA + α-ZOL was antagonistic at low concentrations, but synergistic at high concentrations of ZEA, which were evaluated by 3 × 3 full factorial analysis and estimated marginal means plots. Our results also demonstrated a significant correlation between cytotoxicity and oxidative damage in response to these combinations.
Collapse
Affiliation(s)
- N. Zheng
- Ministry of Agriculture Laboratory of Quality and Safety Risk Assessment for Dairy Products (Beijing), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193 People’s Republic of China
| | - Y. N. Gao
- Ministry of Agriculture Laboratory of Quality and Safety Risk Assessment for Dairy Products (Beijing), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193 People’s Republic of China
| | - J. Liu
- China National Research Institute of Food and Fermentation Industries, Beijing, 100027 People’s Republic of China
| | - H. W. Wang
- Ministry of Agriculture Laboratory of Quality and Safety Risk Assessment for Dairy Products (Beijing), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| | - J. Q. Wang
- Ministry of Agriculture Laboratory of Quality and Safety Risk Assessment for Dairy Products (Beijing), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193 People’s Republic of China
| |
Collapse
|
36
|
Zinc enhances the cellular energy supply to improve cell motility and restore impaired energetic metabolism in a toxic environment induced by OTA. Sci Rep 2017; 7:14669. [PMID: 29116164 PMCID: PMC5676743 DOI: 10.1038/s41598-017-14868-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 10/12/2017] [Indexed: 02/08/2023] Open
Abstract
Exogenous nutrient elements modulate the energetic metabolism responses that are prerequisites for cellular homeostasis and metabolic physiology. Although zinc is important in oxidative stress and cytoprotection processes, its role in the regulation of energetic metabolism remains largely unknown. In this study, we found that zinc stimulated aspect in cell motility and was essential in restoring the Ochratoxin A (OTA)-induced energetic metabolism damage in HEK293 cells. Moreover, using zinc supplementation and zinc deficiency models, we observed that zinc is conducive to mitochondrial pyruvate transport, oxidative phosphorylation, carbohydrate metabolism, lipid metabolism and ultimate energy metabolism in both normal and toxic-induced oxidative stress conditions in vitro, and it plays an important role in restoring impaired energetic metabolism. This zinc-mediated energetic metabolism regulation could also be helpful for DNA maintenance, cytoprotection and hereditary cancer traceability. Therefore, zinc can widely adjust energetic metabolism and is essential in restoring the impaired energetic metabolism of cellular physiology.
Collapse
|
37
|
Mechanistic roles of microRNAs in hepatocarcinogenesis: A study of thioacetamide with multiple doses and time-points of rats. Sci Rep 2017; 7:3054. [PMID: 28596526 PMCID: PMC5465221 DOI: 10.1038/s41598-017-02798-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 04/19/2017] [Indexed: 02/06/2023] Open
Abstract
Environmental chemicals exposure is one of the primary factors for liver toxicity and hepatocarcinoma. Thioacetamide (TAA) is a well-known hepatotoxicant and could be a liver carcinogen in humans. The discovery of early and sensitive microRNA (miRNA) biomarkers in liver injury and tumor progression could improve cancer diagnosis, prognosis, and management. To study this, we performed next generation sequencing of the livers of Sprague-Dawley rats treated with TAA at three doses (4.5, 15 and 45 mg/kg) and four time points (3-, 7-, 14- and 28-days). Overall, 330 unique differentially expressed miRNAs (DEMs) were identified in the entire TAA-treatment course. Of these, 129 DEMs were found significantly enriched for the “liver cancer” annotation. These results were further complemented by pathway analysis (Molecular Mechanisms of Cancer, p53-, TGF-β-, MAPK- and Wnt-signaling). Two miRNAs (rno-miR-34a-5p and rno-miR-455-3p) out of 48 overlapping DEMs were identified to be early and sensitive biomarkers for TAA-induced hepatocarcinogenicity. We have shown significant regulatory associations between DEMs and TAA-induced liver carcinogenesis at an earlier stage than histopathological features. Most importantly, miR-34a-5p is the most suitable early and sensitive biomarker for TAA-induced hepatocarcinogenesis due to its consistent elevation during the entire treatment course.
Collapse
|
38
|
A Review: Epigenetic Mechanism in Ochratoxin A Toxicity Studies. Toxins (Basel) 2017; 9:toxins9040113. [PMID: 28333080 PMCID: PMC5408187 DOI: 10.3390/toxins9040113] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 03/09/2017] [Accepted: 03/21/2017] [Indexed: 12/22/2022] Open
Abstract
Ochratoxin A (OTA) is a natural contaminant that has displayed nephrotoxicity and hepatotoxicity in mammals. It contaminates a great variety of foodstuffs and threatens people's lives. The molecular mechanism of OTA-induced toxicity has been studied since 1965. Moreover, epigenetic mechanisms are also studied in OTA-induced toxicity. Additionally, the mode of OTA epigenetic research has been advanced in research hotspots. However, there is still no epigenetic study of OTA-induced toxicity. In this review, we discuss the relationship between these epigenetic mechanisms and OTA-induced toxicity. We found that studies on the epigenetic mechanisms of OTA-induced toxicity all chose the whole kidney or liver as the model, which cannot reveal the real change in DNA methylation or miRNAs or histone in the target sites of OTA. Our recommendations are as follows: (1) the specific target site of OTA should be detected by advanced technologies; and (2) competing endogenous RNAs (ceRNA) should be explored with OTA.
Collapse
|
39
|
Limited Link between Oxidative Stress and Ochratoxin A-Induced Renal Injury in an Acute Toxicity Rat Model. Toxins (Basel) 2016; 8:toxins8120373. [PMID: 27983637 PMCID: PMC5198567 DOI: 10.3390/toxins8120373] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 12/07/2016] [Accepted: 12/08/2016] [Indexed: 01/05/2023] Open
Abstract
Ochratoxin A (OTA) displays nephrotoxicity and hepatotoxicity. However, in the acute toxicity rat model, there is no evidence on the relationship between OTA and nephrotoxicity and hepatotoxicity. Based on this, the integrated analysis of physiological status, damage biomarkers, oxidative stress, and DNA damage were performed. After OTA treatment, the body weight decreased and AST, ALP, TP, and BUN levels in serum increased. Hydropic degeneration, swelling, vacuolization, and partial drop occurred in proximal tubule epithelial cells. PCNA and Kim-1 were dose-dependently increased in the kidney, but Cox-2 expression and proliferation were not found in the liver. In OTA-treated kidneys, the mRNA expressions of Kim-1, Cox-2, Lcn2, and Clu were dose-dependently increased. The mRNA expressions of Vim and Cox-2 were decreased in OTA-treated livers. Some oxidative stress indicators were altered in the kidneys (ROS and SOD) and livers (SOD and GSH). DNA damage and oxidative DNA damage were not found. In conclusion, there is a limited link between oxidative stress and OTA-induced renal injury in an acute toxicity rat model.
Collapse
|
40
|
Zhao T, Shen XL, Chen W, Liao X, Yang J, Wang Y, Zou Y, Fang C. Advances in research of nephrotoxicity and toxic antagonism of ochratoxin A. TOXIN REV 2016. [DOI: 10.1080/15569543.2016.1243560] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
41
|
Emblica officinalis (Amla): A review for its phytochemistry, ethnomedicinal uses and medicinal potentials with respect to molecular mechanisms. Pharmacol Res 2016; 111:180-200. [DOI: 10.1016/j.phrs.2016.06.013] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 06/07/2016] [Accepted: 06/12/2016] [Indexed: 02/06/2023]
|
42
|
Zhao J, Qi X, Dai Q, He X, Dweep H, Guo M, Luo Y, Gretz N, Luo H, Huang K, Xu W. Toxicity study of ochratoxin A using HEK293 and HepG2 cell lines based on microRNA profiling. Hum Exp Toxicol 2016; 36:8-22. [PMID: 26893291 DOI: 10.1177/0960327116632048] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Ochratoxin A (OTA) induced DNA damage, cytotoxicity, and apoptosis in mammalian cell lines. Micro RNAs (miRNAs) are involved in physiological and developmental processes and contribute to cancer development and progression. In our study, high-throughput miRNA profiling and Kyoto Encyclopedia of Genes and Genomes analysis were applied to comparatively study the toxicity of OTA in HEK293 cells and HepG2 cells treated with 25 μM OTA for 24 h. In these two cells, the same changing miRNAs were mostly related to signal transduction pathways, whereas the different changing miRNAs were mostly related to human cancer pathways. DGCR8, Dicer1, and Drosha were significantly suppressed in HEK293 cells, indicating an impairment of miRNA biogenesis. The damage seemed more extensive in HEK293 cells. Cell models and in vivo models were also compared. Many miRNAs in vitro were markedly different from those in vivo; however, OTA toxicity was observed both in vitro and in vivo. The classification of deregulated pathways is similar. The biogenesis of miRNA was impaired in both lines. In conclusion, deregulated miRNAs in vitro are mostly related to human cancer and signal transduction pathways. The deregulated pathways in vivo are similar to those in vitro.
Collapse
Affiliation(s)
- J Zhao
- 1 Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - X Qi
- 1 Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Q Dai
- 1 Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - X He
- 1 Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - H Dweep
- 2 Medical Research Center, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - M Guo
- 1 Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Y Luo
- 1 Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - N Gretz
- 2 Medical Research Center, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - H Luo
- 3 State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - K Huang
- 1 Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - W Xu
- 1 Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,4 Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
43
|
Toxicology of DNA Adducts Formed Upon Human Exposure to Carcinogens. ADVANCES IN MOLECULAR TOXICOLOGY 2016. [DOI: 10.1016/b978-0-12-804700-2.00007-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
44
|
Modulation of the xenobiotic transformation system and inflammatory response by ochratoxin A exposure using a co-culture system of Caco-2 and HepG2 cells. Food Chem Toxicol 2015; 86:245-52. [PMID: 26505656 DOI: 10.1016/j.fct.2015.10.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/21/2015] [Accepted: 10/13/2015] [Indexed: 12/28/2022]
Abstract
Cytotoxicity of ochratoxin A (OTA) was evaluated using the MTS assay, and membrane integrity was measured using transepithelial electrical resistance (TEER). A transwell system was used to investigate the effect of OTA on the expression of the CYP450 (1A1, 2A6, 2B6, 3A4 and 3A5), NAT2, COX-2, LOX-5, and MRP2 genes in Caco-2 and HepG2 cells. TEER decreased by a mean of 63.2% after 24 h in Caco-2 differentiated cells without inducing cell detachment; revealing damage to the intestinal epithelial cell tight junction proteins and an increase in cell permeability. Gene expression analysis showed that modulation of gene expression by OTA was higher in Caco-2 cells than in HepG2 cells, and generally, the duration of exposure to OTA had a more significant effect than the OTA dose. A general OTA down-regulation effect was observed in Caco-2 cells, in contrast with the down- and up-regulation observed in HepG2 cells. In Caco-2 cells, CYP1A1 was the gene with the highest regulation, followed by CYP3A4 and CYP3A5. Conversely, in HepG2 cells, CYP2B6 was highly regulated at 3 and 12 h compared to the other cytochromes; CYP1A1 was slightly modulated during the first 12 h, but an overexpression was observed at 24 h. Our data support the involvement of the COX-2 and 5-LOX genes in liver metabolism of OTA. On the basis of the gene expression analysis, the results suggest a possible impairment in OTA secretion at the intestinal and hepatic level due to MRP2 repression. In addition, we provide evidence of the effect of OTA on NAT2 gene expression, which had not been reported before.
Collapse
|
45
|
Zhang Y, Qi X, Zheng J, Luo Y, Huang K, Xu W. High-Throughput Tag-Sequencing Analysis of Early Events Induced by Ochratoxin A in HepG-2 Cells. J Biochem Mol Toxicol 2015; 30:29-36. [DOI: 10.1002/jbt.21739] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 07/20/2015] [Accepted: 08/02/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Yu Zhang
- Laboratory of Food Safety, College of Food Science and Nutritional Engineering; China Agricultural University; Beijing 100083 People's Republic of China
- Beijing Engineering and Technology Research Center of Food Additives; Beijing Technology & Business University (BTBU); Beijing 100048 People's Republic of China
| | - Xiaozhe Qi
- Laboratory of Food Safety, College of Food Science and Nutritional Engineering; China Agricultural University; Beijing 100083 People's Republic of China
| | - Juanjuan Zheng
- Laboratory of Food Safety, College of Food Science and Nutritional Engineering; China Agricultural University; Beijing 100083 People's Republic of China
| | - YunBo Luo
- Laboratory of Food Safety, College of Food Science and Nutritional Engineering; China Agricultural University; Beijing 100083 People's Republic of China
- The Supervision, Inspection & Testing Center of Genetically Modified Organisms; Ministry of Agriculture; Beijing 100083 People's Republic of China
| | - Kunlun Huang
- Laboratory of Food Safety, College of Food Science and Nutritional Engineering; China Agricultural University; Beijing 100083 People's Republic of China
- The Supervision, Inspection & Testing Center of Genetically Modified Organisms; Ministry of Agriculture; Beijing 100083 People's Republic of China
| | - Wentao Xu
- Laboratory of Food Safety, College of Food Science and Nutritional Engineering; China Agricultural University; Beijing 100083 People's Republic of China
| |
Collapse
|
46
|
Li X, Gao J, Huang K, Qi X, Dai Q, Mei X, Xu W. Dynamic changes of global DNA methylation and hypermethylation of cell adhesion-related genes in rat kidneys in response to ochratoxin A. WORLD MYCOTOXIN J 2015. [DOI: 10.3920/wmj2014.1795] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ochratoxin A (OTA), which is found in a variety of food products, is associated with the development of nephrotoxicity and carcinogenicity in rats and has raised public health concerns. A previous study in our laboratory indicated that OTA exposure induced cytotoxicity by decreasing global DNA methylation in vitro. However, the relationship between OTA-induced nephrotoxicity and DNA methylation changes in vivo remains unclear. The object of this study was to investigate whether OTA can change global DNA methylation or alter the expression of several critical tumour-related genes by inducing methylation modifications before carcinogenesis. We focused on the mechanism of action of OTA in regard to DNA methylation, including the expression of DNA methyltransferases and the regulation of specific cell signalling pathways. Dynamic and dose-dependent changes of global DNA methylation were observed during OTA-induced nephrotoxicity and probably associated with the expression of DNA methyltransferase 1. 13-week exposure of OTA caused hypermethylation in the promoters of critical cell adhesion-related genes, E-cadherin and N-cadherin, leading to reduction of the corresponding mRNA expression, accompanied by transcriptional activation of the Wnt and PI3K/AKT pathways. These findings suggested that long-term OTA exposure could disrupt DNA methylation profile, which might be one of the possible mechanisms of OTA-induced nephrotoxicity.
Collapse
Affiliation(s)
- X. Li
- Laboratory of food safety and molecular biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China P.R
| | - J. Gao
- Laboratory of food safety and molecular biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China P.R
| | - K. Huang
- Laboratory of food safety and molecular biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China P.R
- Laboratory of Food quality and safety, Beijing 100083, China P.R
| | - X. Qi
- Laboratory of food safety and molecular biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China P.R
| | - Q. Dai
- Laboratory of food safety and molecular biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China P.R
| | - X. Mei
- Laboratory of food safety and molecular biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China P.R
| | - W. Xu
- Laboratory of food safety and molecular biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China P.R
- Laboratory of Food quality and safety, Beijing 100083, China P.R
| |
Collapse
|
47
|
Xia K, He X, Dai Q, Cheng WH, Qi X, Guo M, Luo Y, Huang K, Zhao C, Xu W. Discovery of systematic responses and potential biomarkers induced by ochratoxin A using metabolomics. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2014; 31:1904-13. [PMID: 25255040 DOI: 10.1080/19440049.2014.957249] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ochratoxin A (OTA) is known to be nephrotoxic and hepatotoxic in rodents when exposed orally. To understand the systematic responses to OTA exposure, GC-MS- and (1)H-NMR-based metabolomic techniques together with histopathological assessments were applied to analyse the urine and plasma of OTA-exposed rats. It was found that OTA exposure caused significant elevation of amino acids (alanine, glycine, leucine etc.), pentose (ribose, glucitol, xylitol etc.) and nucleic acid metabolites (pseudouridine, adenosine, uridine). Moreover, myo-inositol, trimethylamine-oxide (TMAO), pseudouridine and leucine were identified as potential biomarkers for OTA toxicity. The primary pathways included the pentose phosphate pathway (PPP), the Krebs cycle (TCA), the creatine pathway and gluconeogenesis. The activated PPP was attributed to the high requirements for nicotinamide adenine dinucleotide phosphate (NADPH), which is involved in OTA metabolism through cytochrome P450. The elevated gluconeogenesis and TCA suggest that energy metabolism was involved. The up-regulated synthesis of creatinine reveals the elevated catabolism of proteins. These findings provide an overview of systematic responses to OTA exposure and metabolomic insight into the toxicological mechanism of OTA.
Collapse
Affiliation(s)
- Kai Xia
- a Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering , China Agricultural University , Beijing , China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Sharma P, Manderville RA, Wetmore SD. Structural and energetic characterization of the major DNA adduct formed from the food mutagen ochratoxin A in the NarI hotspot sequence: influence of adduct ionization on the conformational preferences and implications for the NER propensity. Nucleic Acids Res 2014; 42:11831-45. [PMID: 25217592 PMCID: PMC4191402 DOI: 10.1093/nar/gku821] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The nephrotoxic food mutagen ochratoxin A (OTA) produces DNA adducts in rat kidneys, the major lesion being the C8-linked-2′-deoxyguanosine adduct (OTB-dG). Although research on other adducts stresses the importance of understanding the structure of the associated adducted DNA, site-specific incorporation of OTB-dG into DNA has yet to be attempted. The present work uses a robust computational approach to determine the conformational preferences of OTB-dG in three ionization states at three guanine positions in the NarI recognition sequence opposite cytosine. Representative adducted DNA helices were derived from over 2160 ns of simulation and ranked via free energies. For the first time, a close energetic separation between three distinct conformations is highlighted, which indicates OTA-adducted DNA likely adopts a mixture of conformations regardless of the sequence context. Nevertheless, the preferred conformation depends on the flanking bases and ionization state due to deviations in discrete local interactions at the lesion site. The structural characteristics of the lesion thus discerned have profound implications regarding its repair propensity and mutagenic outcomes, and support recent experiments suggesting the induction of double-strand breaks and deletion mutations upon OTA exposure. This combined structural and energetic characterization of the OTB-dG lesion in DNA will encourage future biochemical experiments on this potentially genotoxic lesion.
Collapse
Affiliation(s)
- Purshotam Sharma
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, T1K 3M4, Canada
| | - Richard A Manderville
- Department of Chemistry and Toxicology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Stacey D Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, T1K 3M4, Canada
| |
Collapse
|
49
|
Qi X, Yu T, Zhu L, Gao J, He X, Huang K, Luo Y, Xu W. Ochratoxin A induces rat renal carcinogenicity with limited induction of oxidative stress responses. Toxicol Appl Pharmacol 2014; 280:543-9. [PMID: 25218026 DOI: 10.1016/j.taap.2014.08.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 08/27/2014] [Accepted: 08/28/2014] [Indexed: 10/24/2022]
Abstract
Ochratoxin A (OTA) has displayed nephrotoxicity and renal carcinogenicity in mammals, however, no clear mechanisms have been identified detailing the relationship between oxidative stress and these toxicities. This study was performed to clarify the relationship between oxidative stress and the renal carcinogenicity induced by OTA. Rats were treated with 70 or 210 μg/kg b.w. OTA for 4 or 13 weeks. In the rats administrated with OTA for 13 weeks, the kidney was damaged seriously. Cytoplasmic vacuolization was observed in the outer stripe of the outer medulla. Karyomegaly was prominent in the tubular epithelium. Kidney injury molecule-1 (Kim-1) was detected in the outer stripe of the outer medulla in both low- and high-dose groups. OTA increased the mRNA levels of clusterin in rat kidneys. Interestingly, OTA did not significantly alter the oxidative stress level in rat liver and kidney. Yet, some indications related to proliferation and carcinogenicity were observed. A dose-related increase in proliferating cell nuclear antigen (PCNA) was observed at 4 weeks in both liver and kidney, but at 13 weeks, only in the kidney. OTA down-regulated reactive oxygen species (ROS) and up-regulated vimentin and lipocalin 2 in rat kidney at 13 weeks. The p53 gene was decreased in both liver and kidney at 13 weeks. These results suggest that OTA caused apparent kidney damage within 13 weeks but exerted limited effect on oxidative stress parameters. It implies that cell proliferation is the proposed mode of action for OTA-induced renal carcinogenicity.
Collapse
Affiliation(s)
- Xiaozhe Qi
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Tao Yu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Liye Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jing Gao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xiaoyun He
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083, China
| | - Kunlun Huang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083, China
| | - Yunbo Luo
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083, China
| | - Wentao Xu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083, China.
| |
Collapse
|