1
|
Abstract
The field of phosphoinositide signaling has expanded significantly in recent years. Phosphoinositides (also known as phosphatidylinositol phosphates or PIPs) are universal signaling molecules that directly interact with membrane proteins or with cytosolic proteins containing domains that directly bind phosphoinositides and are recruited to cell membranes. Through the activities of phosphoinositide kinases and phosphoinositide phosphatases, seven distinct phosphoinositide lipid molecules are formed from the parent molecule, phosphatidylinositol. PIP signals regulate a wide range of cellular functions, including cytoskeletal assembly, membrane budding and fusion, ciliogenesis, vesicular transport, and signal transduction. Given the many excellent reviews on phosphoinositide kinases, phosphoinositide phosphatases, and PIPs in general, in this review, we discuss recent studies and advances in PIP lipid signaling in the retina. We specifically focus on PIP lipids from vertebrate (e.g., bovine, rat, mouse, toad, and zebrafish) and invertebrate (e.g., Drosophila, horseshoe crab, and squid) retinas. We also discuss the importance of PIPs revealed from animal models and human diseases, and methods to study PIP levels both in vitro and in vivo. We propose that future studies should investigate the function and mechanism of activation of PIP-modifying enzymes/phosphatases and further unravel PIP regulation and function in the different cell types of the retina.
Collapse
Affiliation(s)
- Raju V S Rajala
- Departments of Ophthalmology, Physiology, and Cell Biology, and Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104.
| |
Collapse
|
2
|
Finkelstein S, Gospe SM, Schuhmann K, Shevchenko A, Arshavsky VY, Lobanova ES. Phosphoinositide Profile of the Mouse Retina. Cells 2020; 9:cells9061417. [PMID: 32517352 PMCID: PMC7349851 DOI: 10.3390/cells9061417] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/18/2020] [Accepted: 06/04/2020] [Indexed: 12/24/2022] Open
Abstract
Phosphoinositides are known to play multiple roles in eukaryotic cells. Although dysregulation of phosphoinositide metabolism in the retina has been reported to cause visual dysfunction in animal models and human patients, our understanding of the phosphoinositide composition of the retina is limited. Here, we report a characterization of the phosphoinositide profile of the mouse retina and an analysis of the subcellular localization of major phosphorylated phosphoinositide forms in light-sensitive photoreceptor neurons. Using chromatography of deacylated phosphatidylinositol headgroups, we established PI(4,5)P2 and PI(4)P as two major phosphorylated phosphoinositides in the retina. Using high-resolution mass spectrometry, we revealed 18:0/20:4 and 16:0/20:4 as major fatty-acyl chains of retinal phosphoinositides. Finally, analysis of fluorescent phosphoinositide sensors in rod photoreceptors demonstrated distinct subcellular distribution patterns of major phosphoinositides. The PI(4,5)P2 reporter was enriched in the inner segments and synapses, but was barely detected in the light-sensitive outer segments. The PI(4)P reporter was mostly found in the outer and inner segments and the areas around nuclei, but to a lesser degree in the synaptic region. These findings provide support for future mechanistic studies defining the biological significance of major mono- (PI(4)P) and bisphosphate (PI(4,5)P2) phosphatidylinositols in photoreceptor biology and retinal health.
Collapse
Affiliation(s)
- Stella Finkelstein
- Department of Ophthalmology, Duke University, Durham, NC 27710, USA; (S.F.); (S.M.G.III); (V.Y.A.)
| | - Sidney M. Gospe
- Department of Ophthalmology, Duke University, Durham, NC 27710, USA; (S.F.); (S.M.G.III); (V.Y.A.)
| | - Kai Schuhmann
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany; (K.S.); (A.S.)
| | - Andrej Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany; (K.S.); (A.S.)
| | - Vadim Y. Arshavsky
- Department of Ophthalmology, Duke University, Durham, NC 27710, USA; (S.F.); (S.M.G.III); (V.Y.A.)
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Ekaterina S. Lobanova
- Department of Ophthalmology, University of Florida, Gainesville, FL 32610, USA
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, USA
- Correspondence:
| |
Collapse
|
3
|
Boughton BA, Thomas ORB, Demarais NJ, Trede D, Swearer SE, Grey AC. Detection of small molecule concentration gradients in ocular tissues and humours. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 55:e4460. [PMID: 31654531 DOI: 10.1002/jms.4460] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/02/2019] [Accepted: 10/17/2019] [Indexed: 06/10/2023]
Abstract
The eye is an elegant organ consisting of a number of tissues and fluids with specialised functions that together allow it to effectively transmit and transduce light input to the brain for visual perception. One key determinant of this integrated function is the spatial relationship of ocular tissues. Biomolecular distributions within the main ocular tissues cornea, lens, and retina have been studied extensively in isolation, yet the potential for metabolic communication between ocular tissues via the ocular humours has been difficult to visualise. To address this limitation, the current study presents a method to map spatial distributions of metabolites and small molecules in whole eyes, including ocular humours. Using a tape-transfer system and freeze-drying, the spatial distribution of ocular small molecules was investigated in mouse, rat, fish (black bream), and rabbit eyes using negative ion mode MALDI imaging mass spectrometry. Full-scan imaging was used for discovery experiments, while MS/MS imaging for identification and localisation was also demonstrated. In all eyes, metabolites such as glutathione and phospholipids were localised in the main ocular tissues. In addition, in rodent eyes, major metabolites were distributed relatively uniformly in ocular humours. In contrast, both uniform and spatially defined ocular metabolite distributions were observed in the black bream eye. Tissue and ocular humour distributions were reproducible, as demonstrated by the three-dimensional analysis of a mouse eye, and able to be captured with high spatial resolution analysis. The presented method could be used to further investigate the role of inter-tissue metabolism in ocular health, and to support the development of therapeutics to treat major ocular diseases.
Collapse
Affiliation(s)
- Berin A Boughton
- Metabolomics Australia, University of Melbourne, Melbourne, Australia
| | - Oliver R B Thomas
- School of BioSciences, University of Melbourne, Melbourne, Australia
| | - Nicholas J Demarais
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | | | - Stephen E Swearer
- School of BioSciences, University of Melbourne, Melbourne, Australia
| | - Angus C Grey
- School of Medical Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
4
|
Khanna H. More Than Meets the Eye: Current Understanding of RPGR Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1074:521-538. [PMID: 29721984 DOI: 10.1007/978-3-319-75402-4_64] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
This article summarizes the recent advances in our understanding of a major retinal disease gene RPGR (retinitis pigmentosa GTPase regulator), mutations in which are associated with majority of X-linked forms of retinal degenerations. A great deal of work has been done to uncover the ciliary localization of RPGR and its interacting proteins in the retina. However, the molecular mechanisms of action of RPGR in the photoreceptors are still unclear. Recent studies have begun to shed light on the intracellular pathways in which RPGR is likely involved. The deregulation of such pathways may underlie the pathogenesis of severe retinal degeneration associated with RPGR. With the recent advances in the gene augmentation therapy for RPGR-associated disease, there is a lot of excitement in the field. Patients with RPGR mutations, however, present with clinically heterogeneous manifestations. It is therefore imperative to examine the function of RPGR in detail, so that we can design patient-oriented therapeutic strategies for this disease.
Collapse
Affiliation(s)
- Hemant Khanna
- Department of Ophthalmology and Neurobiology, UMASS Medical School, Worcester, MA, USA.
| |
Collapse
|
5
|
Rajala RVS. Therapeutic Benefits from Nanoparticles: The Potential Significance of Nanoscience in Retinal Degenerative Diseases. JOURNAL OF MOLECULAR BIOLOGY & THERAPEUTICS 2019; 1:44-55. [PMID: 34528026 PMCID: PMC8439377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Several nanotechnology podiums have gained remarkable attention in the area of medical sciences, including diagnostics and treatment. In the past decade, engineered multifunctional nanoparticles have served as drug and gene carriers. The most important aspect of translating nanoparticles from the bench to bedside is safety. These nanoparticles should not elicit any immune response and should not be toxic to humans or the environment. Lipid-based nanoparticles have been shown to be the least toxic for in vivo applications, and significant progress has been made in gene and drug delivery employing lipid-based nanoassemblies. Several excellent reviews and reports discuss the general use and application of lipid-based nanoparticles; our review focuses on the application of lipid-based nanoparticles for the treatment of ocular diseases, and recent advances in and updates on their use.
Collapse
Affiliation(s)
- Raju V S Rajala
- Departments of Ophthalmology, Physiology and Cell Biology, University of Oklahoma Health Sciences Center, Dean McGee Eye Institute, Oklahoma City, OK 73104, USA
| |
Collapse
|
6
|
Activation of oncogenic tyrosine kinase signaling promotes insulin receptor-mediated cone photoreceptor survival. Oncotarget 2018; 7:46924-46942. [PMID: 27391439 PMCID: PMC5216914 DOI: 10.18632/oncotarget.10447] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 06/26/2016] [Indexed: 01/18/2023] Open
Abstract
In humans, daylight vision is primarily mediated by cone photoreceptors. These cells die in age-related retinal degenerations. Prolonging the life of cones for even one decade would have an enormous beneficial effect on usable vision in an aging population. Photoreceptors are postmitotic, but shed 10% of their outer segments daily, and must synthesize the membrane and protein equivalent of a proliferating cell each day. Although activation of oncogenic tyrosine kinase and inhibition of tyrosine phosphatase signaling is known to be essential for tumor progression, the cellular regulation of this signaling in postmitotic photoreceptor cells has not been studied. In the present study, we report that a novel G-protein coupled receptor–mediated insulin receptor (IR) signaling pathway is regulated by non-receptor tyrosine kinase Src through the inhibition of protein tyrosine phosphatase IB (PTP1B). We demonstrated the functional significance of this pathway through conditional deletion of IR and PTP1B in cones, in addition to delaying the death of cones in a mouse model of cone degeneration by activating the Src. This is the first study demonstrating the molecular mechanism of a novel signaling pathway in photoreceptor cells, which provides a window of opportunity to save the dying cones in retinal degenerative diseases.
Collapse
|
7
|
Tzima E, Serifi I, Tsikari I, Alzualde A, Leonardos I, Papamarcaki T. Transcriptional and Behavioral Responses of Zebrafish Larvae to Microcystin-LR Exposure. Int J Mol Sci 2017; 18:ijms18020365. [PMID: 28208772 PMCID: PMC5343900 DOI: 10.3390/ijms18020365] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 01/29/2017] [Accepted: 02/02/2017] [Indexed: 12/29/2022] Open
Abstract
Microcystins are cyclic heptapeptides that constitute a diverse group of toxins produced by cyanobacteria. One of the most toxic variants of this family is microcystin-LR (MCLR) which is a potent inhibitor of protein phosphatase 2A (PP2A) and induces cytoskeleton alterations. In this study, zebrafish larvae exposed to 500 μg/L of MCLR for four days exhibited a 40% reduction of PP2A activity compared to the controls, indicating early effects of the toxin. Gene expression profiling of the MCLR-exposed larvae using microarray analysis revealed that keratin 96 (krt96) was the most downregulated gene, consistent with the well-documented effects of MCLR on cytoskeleton structure. In addition, our analysis revealed upregulation in all genes encoding for the enzymes of the retinal visual cycle, including rpe65a (retinal pigment epithelium-specific protein 65a), which is critical for the larval vision. Quantitative real-time PCR (qPCR) analysis confirmed the microarray data, showing that rpe65a was significantly upregulated at 50 μg/L and 500 μg/L MCLR in a dose-dependent manner. Consistent with the microarray data, MCLR-treated larvae displayed behavioral alterations such as weakening response to the sudden darkness and hypoactivity in the dark. Our work reveals new molecular targets for MCLR and provides further insights into the molecular mechanisms of MCLR toxicity during early development.
Collapse
Affiliation(s)
- Eleni Tzima
- Laboratory of Biological Chemistry, Medical School, University of Ioannina, 45110 Ioannina, Greece.
- Division of Biomedical Research, Foundation for Research and Technology-Hellas, Institute of Molecular Biology and Biotechnology, 45110 Ιοannina, Greece.
| | - Iliana Serifi
- Laboratory of Biological Chemistry, Medical School, University of Ioannina, 45110 Ioannina, Greece.
- Division of Biomedical Research, Foundation for Research and Technology-Hellas, Institute of Molecular Biology and Biotechnology, 45110 Ιοannina, Greece.
| | - Ioanna Tsikari
- Laboratory of Biological Chemistry, Medical School, University of Ioannina, 45110 Ioannina, Greece.
| | | | - Ioannis Leonardos
- Laboratory of Zoology, Department of Biological Applications and Technologies, University of Ioannina, 45110 Ioannina, Greece.
| | - Thomais Papamarcaki
- Laboratory of Biological Chemistry, Medical School, University of Ioannina, 45110 Ioannina, Greece.
- Division of Biomedical Research, Foundation for Research and Technology-Hellas, Institute of Molecular Biology and Biotechnology, 45110 Ιοannina, Greece.
| |
Collapse
|
8
|
Kim SH, Song HE, Kim SJ, Woo DC, Chang S, Choi WG, Kim MJ, Back SH, Yoo HJ. Quantitative structural characterization of phosphatidylinositol phosphates from biological samples. J Lipid Res 2016; 58:469-478. [PMID: 27940482 DOI: 10.1194/jlr.d069989] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 12/06/2016] [Indexed: 12/31/2022] Open
Abstract
The aspects of cellular metabolism controlled by phosphatidylinositol phosphates (PtdInsPs) have been broadly expanded, and these phospholipids have drawn tremendous attention as pleiotropic signaling molecules. PtdInsPs analysis using LC/MS/MS has remained challenging due to the strong hydrophilicity of these lipids. Multiple reaction monitoring (MRM) or a neutral loss scan has been performed to quantitatively measure PtdInsPs after chemical derivatization on the phosphate groups of inositol moieties. Only predefined PtdInsPs can be measured in MRM mode, and fatty acyl compositions of sn-1 and sn-2 positions of PtdInsPs cannot be obtained from a neutral loss scan. In our present study, we developed a simple LC/MS/MS method for structural identification of sn-1 and sn-2 fatty acids of PtdInsPs and their relative quantitation. Precursor ion scans of sn-1 monoacylglycerols (MAGs) of PtdInsPs provided structural information about the lipids, and ammonium adduction enhanced signal intensities of PtdInsPs. The relative amount of observed PtdInsPs in biological samples could be compared using chromatographic peak areas from the neutral loss scans. Using precursor ion scans of sn-1 MAG and neutral loss scans of headgroups, major PtdInsPs in cells and tissues were successfully identified with structural information of sn-1 and sn-2 fatty acids, and their relative amounts in different samples were compared.
Collapse
Affiliation(s)
- Su Hee Kim
- Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Ha Eun Song
- Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Su Jung Kim
- Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Dong Cheol Woo
- Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea.,Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Suhwan Chang
- Division of Biomedical Sciences, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Woo Gyun Choi
- School of Biological Sciences, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Mi Jeong Kim
- School of Biological Sciences, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Sung Hoon Back
- School of Biological Sciences, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Hyun Ju Yoo
- Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea .,Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| |
Collapse
|
9
|
|