1
|
Xu G, Zhang W, Du J, Cong J, Wang P, Li X, Si X, Wei B. Binding mechanism of inhibitors to DFG-in and DFG-out P38α deciphered using multiple independent Gaussian accelerated molecular dynamics simulations and deep learning. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2025; 36:101-126. [PMID: 40110797 DOI: 10.1080/1062936x.2025.2475407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 02/27/2025] [Indexed: 03/22/2025]
Abstract
P38α has been identified as a key target for drug design to treat a wide range of diseases. In this study, multiple independent Gaussian accelerated molecular dynamics (GaMD) simulations, deep learning (DL), and the molecular mechanics generalized Born surface area (MM-GBSA) method were used to investigate the binding mechanism of inhibitors (SB2, SK8, and BMU) to DFG-in and DFG-out P38α and clarify the effect of conformational differences in P38α on inhibitor binding. GaMD trajectory-based DL effectively identified important functional domains, such as the A-loop and N-sheet. Post-processing analysis on GaMD trajectories showed that binding of the three inhibitors profoundly affected the structural flexibility and dynamical behaviour of P38α situated at the DFG-in and DFG-out states. The MM-GBSA calculations not only revealed that differences in the binding ability of inhibitors are affected by DFG-in and DFG-out conformations of P38α, but also confirmed that van der Waals interactions are the primary force driving inhibitor-P38α binding. Residue-based free energy estimation identifies hot spots of inhibitor-P38α binding across DFG-in and DFG-out conformations, providing potential target sites for drug design towards P38α. This work is expected to offer valuable theoretical support for the development of selective inhibitors of P38α family members.
Collapse
Affiliation(s)
- G Xu
- Center for Medical Artificial Intelligence, Research Institute for Marine Traditional Chinese Medicine (Qingdao Academy of Chinese Medical Sciences), Shandong University of Traditional Chinese Medicine, Qingdao, China
| | - W Zhang
- Center for Medical Artificial Intelligence, Research Institute for Marine Traditional Chinese Medicine (Qingdao Academy of Chinese Medical Sciences), Shandong University of Traditional Chinese Medicine, Qingdao, China
| | - J Du
- Center for Medical Artificial Intelligence, Research Institute for Marine Traditional Chinese Medicine (Qingdao Academy of Chinese Medical Sciences), Shandong University of Traditional Chinese Medicine, Qingdao, China
| | - J Cong
- Center for Medical Artificial Intelligence, Research Institute for Marine Traditional Chinese Medicine (Qingdao Academy of Chinese Medical Sciences), Shandong University of Traditional Chinese Medicine, Qingdao, China
| | - P Wang
- Center for Medical Artificial Intelligence, Research Institute for Marine Traditional Chinese Medicine (Qingdao Academy of Chinese Medical Sciences), Shandong University of Traditional Chinese Medicine, Qingdao, China
| | - X Li
- Center for Medical Artificial Intelligence, Research Institute for Marine Traditional Chinese Medicine (Qingdao Academy of Chinese Medical Sciences), Shandong University of Traditional Chinese Medicine, Qingdao, China
| | - X Si
- Center for Medical Artificial Intelligence, Research Institute for Marine Traditional Chinese Medicine (Qingdao Academy of Chinese Medical Sciences), Shandong University of Traditional Chinese Medicine, Qingdao, China
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - B Wei
- Center for Medical Artificial Intelligence, Research Institute for Marine Traditional Chinese Medicine (Qingdao Academy of Chinese Medical Sciences), Shandong University of Traditional Chinese Medicine, Qingdao, China
| |
Collapse
|
2
|
Nayak SS, Krishna R. Phosphorylation at the D56 residue of MtrA in Mycobacterium tuberculosis enhances its DNA binding affinity by modulating inter-domain interaction. Comput Biol Chem 2024; 113:108222. [PMID: 39366081 DOI: 10.1016/j.compbiolchem.2024.108222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/15/2024] [Accepted: 09/20/2024] [Indexed: 10/06/2024]
Abstract
The response regulator, MtrA, plays a major role in adaptation to the host environment, cell division, replication, and dormancy activation of Mycobacterium tuberculosis (Mtb). The phosphorylation of the response regulator MtrA alters the downstream activity, typically involving changes in DNA binding activity. However, there is a substantial knowledge gap in understanding the phosphorylation-mediated structural changes in MtrA. Additionally, the active conformation of the protein has yet to be determined. Therefore, in this study, we have investigated the phosphorylation-induced conformational changes of MtrA using all-atom molecular dynamics simulations under various phosphorylation conditions. The results from this study demonstrate that the phosphorylation at D56 (pD56-MtrA) increases the compactness of the MtrA protein by stabilizing the inter-domain interaction between the regulatory domain and DNA binding domain. Notably, the higher occupancy H-bond (over 95 %) between Arg200-Asn100 in case of the pD56-MtrA condition, which is otherwise absent in the non-phosphorylated (uMtrA) condition, suggests the importance of this interaction in the active conformation of the protein. The dynamic cross-correlation analysis reveals that phosphorylation (especially pD56-MtrA) reduces the anti-correlated motions and increases correlated motions between different domains. Moreover, the higher DNA binding affinity of pD56-MtrA compared to uMtrA supported by molecular docking and MD simulation followed by MMPBSA analysis suggests that pD56-MtrA is the possible active conformation of the MtrA protein. Overall, this investigation elucidates the key structural changes in MtrA under different phosphorylated conditions, which might help in designing novel therapeutics against tuberculosis.
Collapse
Affiliation(s)
| | - Ramadas Krishna
- Department of Bioinformatics, Pondicherry University, Pondicherry 605014, India.
| |
Collapse
|
3
|
Ali W, Agarwal M, Jamal S, Gangwar R, Sharma R, Mubarak MM, Wani ZA, Ahmad Z, Khan A, Sheikh JA, Grover A, Bhaskar A, Dwivedi VP, Grover S. Revitalizing antimicrobial strategies: paromomycin and dicoumarol repurposed as potent inhibitors of M.tb's replication machinery via targeting the vital protein DnaN. Int J Biol Macromol 2024; 278:134652. [PMID: 39173789 DOI: 10.1016/j.ijbiomac.2024.134652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/04/2024] [Accepted: 08/08/2024] [Indexed: 08/24/2024]
Abstract
Despite the WHO's recommended treatment regimen, challenges such as patient non-adherence and the emergence of drug-resistant strains persist with TB claiming 1.5 million lives annually. In this study, we propose a novel approach by targeting the DNA replication-machinery of M.tb through drug-repurposing. The β2-Sliding clamp (DnaN), a key component of this complex, emerges as a potentially vulnerable target due to its distinct structure and lack of human homology. Leveraging TBVS, we screened ∼2600 FDA-approved drugs, identifying five potential DnaN inhibitors, by employing computational studies, including molecular-docking and molecular-dynamics simulations. The shortlisted compounds were subjected to in-vitro and ex-vivo studies, evaluating their anti-mycobacterial potential. Notably, Dicoumarol, Paromomycin, and Posaconazole exhibited anti-TB properties with a MIC value of 6.25, 3.12 and 50 μg/ml respectively, with Dicoumarol and Paromomycin, demonstrating efficacy in reducing live M.tb within macrophages. Biophysical analyses confirmed the strong binding-affinity of DnaNdrug complexes, validating our in-silico predictions. Moreover, RNA-Seq data revealed the upregulation of proteins associated with DNA repair and replication mechanisms upon Paromomycin treatment. This study explores repurposing FDA-approved drugs to target TB via the mycobacterial DNA replication-machinery, showing promising inhibitory effects. It sets the stage for further clinical research, demonstrating the potential of drug repurposing in TB treatment.
Collapse
Affiliation(s)
- Waseem Ali
- Jamia Hamdard, Department of Molecular Medicine, New Delhi 110062, India.
| | - Meetu Agarwal
- Jamia Hamdard, Department of Molecular Medicine, New Delhi 110062, India.
| | - Salma Jamal
- Jamia Hamdard, Department of Molecular Medicine, New Delhi 110062, India
| | - Rishabh Gangwar
- Jamia Hamdard, Department of Molecular Medicine, New Delhi 110062, India
| | - Rahul Sharma
- Jamia Hamdard, Department of Molecular Medicine, New Delhi 110062, India.
| | - Mohamad Mosa Mubarak
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India; Clinical Microbiology and PK-PD Division, CSIR-IIIM, Sanatnagar, Srinagar, J&K, India
| | - Zubair Ahmad Wani
- Clinical Microbiology and PK-PD Division, CSIR-IIIM, Sanatnagar, Srinagar, J&K, India
| | - Zahoor Ahmad
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India; Clinical Microbiology and PK-PD Division, CSIR-IIIM, Sanatnagar, Srinagar, J&K, India; Council of Scientific & Industrial Research (CSIR), Professor Academy of Scientific & Innovative Research (AcSIR), India.
| | - Areeba Khan
- Jamia Hamdard, Department of Molecular Medicine, New Delhi 110062, India
| | | | - Abhinav Grover
- Jawaharlal Nehru University, School of Biotechnology, New Delhi 110067, India.
| | - Ashima Bhaskar
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India.
| | - Ved Prakash Dwivedi
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India.
| | - Sonam Grover
- Jamia Hamdard, Department of Molecular Medicine, New Delhi 110062, India.
| |
Collapse
|
4
|
Mahapatra S, Jonniya NA, Koirala S, Kar P. Molecular dynamics simulations reveal phosphorylation-induced conformational dynamics of the fibroblast growth factor receptor 1 kinase. J Biomol Struct Dyn 2024; 42:2929-2941. [PMID: 37160693 DOI: 10.1080/07391102.2023.2209189] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/26/2023] [Indexed: 05/11/2023]
Abstract
The Fibroblast Growth Factor Receptor1 (FGFR1) kinase wields exquisite control on cell fate, proliferation, differentiation, and homeostasis. An imbalance of FGFR1 signaling leads to several pathogeneses of diseases ranging from multiple cancers to allergic and neurodegenerative disorders. In this study, we investigated the phosphorylation-induced conformational dynamics of FGFR1 in apo and ATP-bound states via all-atom molecular dynamics simulations. All simulations were performed for 2 × 2 µs. We have also investigated the energetics of the binding of ATP to FGFR1 using the molecular mechanics Poisson-Boltzmann scheme. Our study reveals that the FGFR1 kinase can reach a fully active configuration through phosphorylation and ATP binding. A 3-10 helix formation in the activation loop signifies its rearrangement leading to stability upon ATP binding. The interaction of phosphorylated tyrosine (pTyr654) with positively charged residues forms strong salt-bridge interactions, driving the compactness of the structure. The dynamic cross-correlation map reveals phosphorylation enhances correlated motions and reduces anti-correlated motions between different domains. We believe that the mechanistic understanding of large-conformational changes upon the activation of the FGFR1 kinase will aid the development of novel targeted therapeutics.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Subhasmita Mahapatra
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| | - Nisha Amarnath Jonniya
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| | - Suman Koirala
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| | - Parimal Kar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| |
Collapse
|
5
|
Ali W, Jamal S, Gangwar R, Ahmed F, Sharma R, Agarwal M, Sheikh JA, Grover A, Grover S. Targeting of essential mycobacterial replication enzyme DnaG primase revealed Mitoxantrone and Vapreotide as novel mycobacterial growth inhibitors. Mol Inform 2024; 43:e202300284. [PMID: 38123523 DOI: 10.1002/minf.202300284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/30/2023] [Accepted: 12/19/2023] [Indexed: 12/23/2023]
Abstract
Tuberculosis (TB) is the second leading cause of mortality after COVID-19, with a global death toll of 1.6 million in 2021. The escalating situation of drug-resistant forms of TB has threatened the current TB management strategies. New therapeutics with novel mechanisms of action are urgently required to address the current global TB crisis. The essential mycobacterial primase DnaG with no structural homology to homo sapiens presents itself as a good candidate for drug targeting. In the present study, Mitoxantrone and Vapreotide, two FDA-approved drugs, were identified as potential anti-mycobacterial agents. Both Mitoxantrone and Vapreotide exhibit a strong Minimum Inhibitory Concentration (MIC) of ≤25μg/ml against both the virulent (M.tb-H37Rv) and avirulent (M.tb-H37Ra) strains of M.tb. Extending the validations further revealed the inhibitory potential drugs in ex vivo conditions. Leveraging the computational high-throughput multi-level docking procedures from the pool of ~2700 FDA-approved compounds, Mitoxantrone and Vapreotide were screened out as potential inhibitors of DnaG. Extensive 200 ns long all-atoms molecular dynamic simulation of DnaGDrugs complexes revealed that both drugs bind strongly and stabilize the DnaG during simulations. Reduced solvent exposure and confined motions of the active centre of DnaG upon complexation with drugs indicated that both drugs led to the closure of the active site of DnaG. From this study's findings, we propose Mitoxantrone and Vapreotide as potential anti-mycobacterial agents, with their novel mechanism of action against mycobacterial DnaG.
Collapse
Affiliation(s)
- Waseem Ali
- Jamia Hamdard, Department of Molecular Medicine, New Delhi, 110062, India
| | - Salma Jamal
- Jamia Hamdard, Department of Molecular Medicine, New Delhi, 110062, India
| | - Rishabh Gangwar
- Jamia Hamdard, Department of Molecular Medicine, New Delhi, 110062, India
| | - Faraz Ahmed
- Jamia Hamdard, Department of Molecular Medicine, New Delhi, 110062, India
| | - Rahul Sharma
- Jamia Hamdard, Department of Molecular Medicine, New Delhi, 110062, India
| | - Meetu Agarwal
- Jamia Hamdard, Department of Molecular Medicine, New Delhi, 110062, India
| | | | - Abhinav Grover
- Jawaharlal Nehru University, School of Biotechnology, New Delhi, 110067, India
| | - Sonam Grover
- Jamia Hamdard, Department of Molecular Medicine, New Delhi, 110062, India
| |
Collapse
|
6
|
Behairy MY, Eid RA, Otifi HM, Mohammed HM, Alshehri MA, Asiri A, Aldehri M, Zaki MSA, Darwish KM, Elhady SS, El-Shaer NH, Eldeen MA. Unraveling Extremely Damaging IRAK4 Variants and Their Potential Implications for IRAK4 Inhibitor Efficacy. J Pers Med 2023; 13:1648. [PMID: 38138875 PMCID: PMC10744719 DOI: 10.3390/jpm13121648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 12/24/2023] Open
Abstract
Interleukin-1-receptor-associated kinase 4 (IRAK4) possesses a crucial function in the toll-like receptor (TLR) signaling pathway, and the dysfunction of this molecule could lead to various infectious and immune-related diseases in addition to cancers. IRAK4 genetic variants have been linked to various types of diseases. Therefore, we conducted a comprehensive analysis to recognize the missense variants with the most damaging impacts on IRAK4 with the employment of diverse bioinformatics tools to study single-nucleotide polymorphisms' effects on function, stability, secondary structures, and 3D structure. The residues' location on the protein domain and their conservation status were investigated as well. Moreover, docking tools along with structural biology were engaged in analyzing the SNPs' effects on one of the developed IRAK4 inhibitors. By analyzing IRAK4 gene SNPs, the analysis distinguished ten variants as the most detrimental missense variants. All variants were situated in highly conserved positions on an important protein domain. L318S and L318F mutations were linked to changes in IRAK4 secondary structures. Eight SNPs were revealed to have a decreasing effect on the stability of IRAK4 via both I-Mutant 2.0 and Mu-Pro tools, while Mu-Pro tool identified a decreasing effect for the G198E SNP. In addition, detrimental effects on the 3D structure of IRAK4 were also discovered for the selected variants. Molecular modeling studies highlighted the detrimental impact of these identified SNP mutant residues on the druggability of the IRAK4 ATP-binding site towards the known target inhibitor, HG-12-6, as compared to the native protein. The loss of important ligand residue-wise contacts, altered protein global flexibility, increased steric clashes, and even electronic penalties at the ligand-binding site interfaces were all suggested to be associated with SNP models for hampering the HG-12-6 affinity towards IRAK4 target protein. This given model lays the foundation for the better prediction of various disorders relevant to IRAK4 malfunction and sheds light on the impact of deleterious IRAK4 variants on IRAK4 inhibitor efficacy.
Collapse
Affiliation(s)
- Mohammed Y. Behairy
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Sadat City, Sadat City 32897, Egypt;
| | - Refaat A. Eid
- Department of Pathology, College of Medicine, King Khalid University, Abha P.O. Box 61421, Saudi Arabia; (R.A.E.); (H.M.O.)
| | - Hassan M. Otifi
- Department of Pathology, College of Medicine, King Khalid University, Abha P.O. Box 61421, Saudi Arabia; (R.A.E.); (H.M.O.)
| | - Heitham M. Mohammed
- Department of Anatomy, College of Medicine, King Khalid University, Abha P.O. Box 61421, Saudi Arabia; (H.M.M.); (M.A.); (M.S.A.Z.)
| | - Mohammed A. Alshehri
- Department of Child Health, College of Medicine, King Khalid University, Abha P.O. Box 62529, Saudi Arabia; (M.A.A.)
| | - Ashwag Asiri
- Department of Child Health, College of Medicine, King Khalid University, Abha P.O. Box 62529, Saudi Arabia; (M.A.A.)
| | - Majed Aldehri
- Department of Anatomy, College of Medicine, King Khalid University, Abha P.O. Box 61421, Saudi Arabia; (H.M.M.); (M.A.); (M.S.A.Z.)
| | - Mohamed Samir A. Zaki
- Department of Anatomy, College of Medicine, King Khalid University, Abha P.O. Box 61421, Saudi Arabia; (H.M.M.); (M.A.); (M.S.A.Z.)
| | - Khaled M. Darwish
- Department of Medicinal Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt;
| | - Sameh S. Elhady
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Nahla H. El-Shaer
- Department of Zoology, Faculty of Science, Zagazig University, Zagazig 44511, Egypt;
| | - Muhammad Alaa Eldeen
- Department of Zoology, Faculty of Science, Zagazig University, Zagazig 44511, Egypt;
| |
Collapse
|
7
|
Cooray S, Price-Kuehne F, Hong Y, Omoyinmi E, Burleigh A, Gilmour KC, Ahmad B, Choi S, Bahar MW, Torpiano P, Gagunashvili A, Jensen B, Bellos E, Sancho-Shimizu V, Herberg JA, Mankad K, Kumar A, Kaliakatsos M, Worth AJJ, Eleftheriou D, Whittaker E, Brogan PA. Neuroinflammation, autoinflammation, splenomegaly and anemia caused by bi-allelic mutations in IRAK4. Front Immunol 2023; 14:1231749. [PMID: 37744344 PMCID: PMC10516541 DOI: 10.3389/fimmu.2023.1231749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/14/2023] [Indexed: 09/26/2023] Open
Abstract
We describe a novel, severe autoinflammatory syndrome characterized by neuroinflammation, systemic autoinflammation, splenomegaly, and anemia (NASA) caused by bi-allelic mutations in IRAK4. IRAK-4 is a serine/threonine kinase with a pivotal role in innate immune signaling from toll-like receptors and production of pro-inflammatory cytokines. In humans, bi-allelic mutations in IRAK4 result in IRAK-4 deficiency and increased susceptibility to pyogenic bacterial infections, but autoinflammation has never been described. We describe 5 affected patients from 2 unrelated families with compound heterozygous mutations in IRAK4 (c.C877T (p.Q293*)/c.G958T (p.D320Y); and c.A86C (p.Q29P)/c.161 + 1G>A) resulting in severe systemic autoinflammation, massive splenomegaly and severe transfusion dependent anemia and, in 3/5 cases, severe neuroinflammation and seizures. IRAK-4 protein expression was reduced in peripheral blood mononuclear cells (PBMC) in affected patients. Immunological analysis demonstrated elevated serum tumor necrosis factor (TNF), interleukin (IL) 1 beta (IL-1β), IL-6, IL-8, interferon α2a (IFN-α2a), and interferon β (IFN-β); and elevated cerebrospinal fluid (CSF) IL-6 without elevation of CSF IFN-α despite perturbed interferon gene signature. Mutations were located within the death domain (DD; p.Q29P and splice site mutation c.161 + 1G>A) and kinase domain (p.Q293*/p.D320Y) of IRAK-4. Structure-based modeling of the DD mutation p.Q29P showed alteration in the alignment of a loop within the DD with loss of contact distance and hydrogen bond interactions with IRAK-1/2 within the myddosome complex. The kinase domain mutation p.D320Y was predicted to stabilize interactions within the kinase active site. While precise mechanisms of autoinflammation in NASA remain uncertain, we speculate that loss of negative regulation of IRAK-4 and IRAK-1; dysregulation of myddosome assembly and disassembly; or kinase active site instability may drive dysregulated IL-6 and TNF production. Blockade of IL-6 resulted in immediate and complete amelioration of systemic autoinflammation and anemia in all 5 patients treated; however, neuroinflammation has, so far proven recalcitrant to IL-6 blockade and the janus kinase (JAK) inhibitor baricitinib, likely due to lack of central nervous system penetration of both drugs. We therefore highlight that bi-allelic mutation in IRAK4 may be associated with a severe and complex autoinflammatory and neuroinflammatory phenotype that we have called NASA (neuroinflammation, autoinflammation, splenomegaly and anemia), in addition to immunodeficiency in humans.
Collapse
Affiliation(s)
- Samantha Cooray
- Infection, Immunity and Inflammation Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Fiona Price-Kuehne
- Infection, Immunity and Inflammation Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Ying Hong
- Infection, Immunity and Inflammation Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Ebun Omoyinmi
- Infection, Immunity and Inflammation Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Alice Burleigh
- Infection, Immunity and Inflammation Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
- Centre for Adolescent Rheumatology Versus Arthritis, University College London, London, United Kingdom
| | - Kimberly C. Gilmour
- Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Bilal Ahmad
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Mohammad W. Bahar
- Division of Structural Biology, University of Oxford, The Wellcome Centre for Human Genetics, Oxford, United Kingdom
| | - Paul Torpiano
- Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Andrey Gagunashvili
- Faculty of Life and Environmental Sciences, University of Iceland, Reykjavík, Iceland
| | - Barbara Jensen
- Infection, Immunity and Inflammation Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Evangelos Bellos
- Section of Paediatric Infectious Diseases, Imperial College London, London, United Kingdom
- Centre for Paediatrics and Child Health, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Vanessa Sancho-Shimizu
- Section of Paediatric Infectious Diseases, Imperial College London, London, United Kingdom
- Centre for Paediatrics and Child Health, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Jethro A. Herberg
- Section of Paediatric Infectious Diseases, Imperial College London, London, United Kingdom
- Department of Paediatric Infectious Diseases, St Mary’s Hospital, Imperial College NHS Healthcare Trust, London, United Kingdom
| | - Kshitij Mankad
- Department of Radiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Atul Kumar
- Department of Histopathology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Marios Kaliakatsos
- Department of Neurology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Austen J. J. Worth
- Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Despina Eleftheriou
- Infection, Immunity and Inflammation Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Elizabeth Whittaker
- Section of Paediatric Infectious Diseases, Imperial College London, London, United Kingdom
- Department of Paediatric Infectious Diseases, St Mary’s Hospital, Imperial College NHS Healthcare Trust, London, United Kingdom
| | - Paul A. Brogan
- Infection, Immunity and Inflammation Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| |
Collapse
|
8
|
Gosu V, Sasidharan S, Saudagar P, Radhakrishnan K, Lee HK, Shin D. Deciphering the intrinsic dynamics of unphosphorylated IRAK4 kinase bound to type I and type II inhibitors. Comput Biol Med 2023; 160:106978. [DOI: https:/doi.org/10.1016/j.compbiomed.2023.106978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2023]
|
9
|
Gosu V, Sasidharan S, Saudagar P, Radhakrishnan K, Lee HK, Shin D. Deciphering the intrinsic dynamics of unphosphorylated IRAK4 kinase bound to type I and type II inhibitors. Comput Biol Med 2023; 160:106978. [PMID: 37172355 DOI: 10.1016/j.compbiomed.2023.106978] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/07/2023] [Accepted: 04/23/2023] [Indexed: 05/14/2023]
Abstract
Interleukin-1 receptor-associated kinase 4 (IRAK4) is a vital protein involved in Toll-like and interleukin-1 receptor signal transduction. Several studies have reported regarding the crystal structure, dynamic properties, and interactions with inhibitors of the phosphorylated form of IRAK4. However, no dynamic properties of inhibitor-bound unphosphorylated IRAK4 have been previously studied. Herein, we report the intrinsic dynamics of unphosphorylated IRAK4 (uIRAK4) bound to type I and type II inhibitors. The corresponding apo and inhibitor-bound forms of uIRAK4 were subjected to three independent simulations of 500 ns (total 1.5 μs) each, and their trajectories were analyzed. The results indicated that all three systems were relatively stable, except for the type II inhibitor-bound form of uIRAK4, which exhibited less compact folding and higher solvent surface area. The intra-hydrogen bonds corroborated the structural deformation of the type-II inhibitor-bound complex, which could be attributed to the long molecular structure of the type-II inhibitor. Moreover, the type II inhibitor bound to uIRAK4 showed higher binding free energy with uIRAK4 than the type I inhibitor. The free energy landscape analysis showed a reorientation of Phe330 side chain from the DFG motif at different metastable states for all the systems. The intra-residual distance between residues Lys213, Glu233, Tyr262, and Phe330 suggests a functional interplay when the inhibitors are bound to uIRAK4, thereby hinting at their crucial role in the inhibition mechanism. Ultimately, the intrinsic dynamics study observed between type I/II inhibitor-bound forms of uIRAK4 may assist in better understanding the enzyme and designing therapeutic compounds.
Collapse
Affiliation(s)
- Vijayakumar Gosu
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Santanu Sasidharan
- Department of Biotechnology, National Institute of Technology, Warangal, Telangana, 506004, India
| | - Prakash Saudagar
- Department of Biotechnology, National Institute of Technology, Warangal, Telangana, 506004, India
| | - Kamalakannan Radhakrishnan
- Combinatorial Tumor Immunotherapy MRC, Chonnam National University Medical School, Hwasun-gun, Jeonnam, 58128, Republic of Korea
| | - Hak-Kyo Lee
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju, 54896, Republic of Korea; Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| | - Donghyun Shin
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| |
Collapse
|
10
|
Ahmad F, Lakshmi PTV, Arunachalam A. An in silico comparative study of curcumin and 2-deoxyuridine nucleoside derivatives: Reveals the role of angiogenin in ER stress-induced apoptosis signaling. Chem Biol Drug Des 2022; 101:1048-1081. [PMID: 36412086 DOI: 10.1111/cbdd.14184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 09/06/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022]
Abstract
Angiogenin (ANG) protein plays a crucial role in angiogenesis, neovascularization, and cancer metastasis in NSCLC (non-small cell lung cancer) via non-coding tiRNA. It protects the cell under ER (endoplasmic reticulum) stress-induced apoptosis through the translational reprogramming process. Although B82 (Curcumin derivatives) induces ER stress-induced apoptosis, its mechanism of action was not studied. Therefore, it was hypothesized that the ribonucleolytic activity of ANG may be regulated by B82, resulting in modulated ER stress signaling for apoptosis. Hence, we designed and proposed a synthesis scheme for RNA-based anti-angiogenic derivatives of 2-deoxyuridine nucleoside forming peptide bond with amino acids like serine (Ser-3) and para-hydroxy-phenyl glycine (Normtyr-1) and compared B82 with them to know the binding affinity with ANG, anti-angiogenic potential, and its probable mechanism of anti-RNase activity through MD simulation study. Therefore, using Gromos96 43a1 and 43a2 force fields, MD simulation was performed to investigate binding affinity, ligand-induced molecular surface area change, conformational change, and dynamics of catalytic site residues to predict ligand binding to ANG in this study. The obtained binding free energy (∆Gbind ) result showed the total average ∆Gbind as -113.480 ± 1.682 (Normtyr-1) > -53.038 ± 33.069 (B82) > -27.909 ± 16.438 (Ser-3) kJ/mole specify role of B82 in regulating ER stress signaling induced apoptosis through ANG ribonucleolytic activity inhibition, suitability of 43a2 force fields and methodology in ligand screening. It shows the crucial role of Leu115 and His13 residue involvement in total ∆Gbind contribution. Hence, based on the MD result, novel conformation of catalytic residues, and ∆Gbind , a promising combination candidate could be proposed for metastatic NSCLC therapy.
Collapse
Affiliation(s)
- Faizan Ahmad
- Department of Bioinformatics, Pondicherry University, Pondicherry, India
| | | | - Annamalai Arunachalam
- PG and Research Department of Botany Arignar Anna Government Arts College Villupuram Tamil Nadu India
| |
Collapse
|
11
|
Sasidharan S, Gosu V, Shin D, Nath S, Tripathi T, Saudagar P. Therapeutic p28 peptide targets essential H1N1 influenza virus proteins: insights from docking and molecular dynamics simulations. Mol Divers 2021; 25:1929-1943. [PMID: 33575983 PMCID: PMC7877518 DOI: 10.1007/s11030-021-10193-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/28/2021] [Indexed: 10/28/2022]
Abstract
The H1N1 influenza virus causes a severe disease that affects the human respiratory tract leading to millions of deaths every year. At present, certain vaccines and few drugs are used to control the virus during seasonal outbreaks. However, high mutation rates and genetic reassortment make it challenging to prevent and mitigate outbreaks, leading to pandemics. Thus, alternate therapies are required for its management and control. Here, we report that a bacterial protein, azurin, and its peptide derivatives p18 and p28 target critical proteins of the influenza virus in an effective manner. The molecular docking studies show that the p28 peptide could target C-PB1, NS1-ED, PB2-CBD, PB2-RBD, NP, and PA proteins. These complexes were further subjected to the simulation of molecular dynamics and binding free energy calculations. The data indicate that p28 has an unusually high affinity and forms stable complexes with the viral proteins C-PB1, PB2-CBD, PB2-RBD, and NP. We suggest that the azurin derivative p28 peptide can act as an anti-influenza agent as it can bind to multiple targets and neutralize the virus. Additional experimental studies need to be conducted to evaluate its safety and efficacy as an anti-H1N1 molecule.
Collapse
Affiliation(s)
- Santanu Sasidharan
- Department of Biotechnology, National Institute of Technology, Warangal, Telangana, 506004, India
| | - Vijayakumar Gosu
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Donghyun Shin
- The Animal Molecular Genetics and Breeding Center, Jeonbuk National University, Jeonju, 54896, Republic of Korea
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Subhradip Nath
- Department of Biotechnology, National Institute of Technology, Warangal, Telangana, 506004, India
| | - Timir Tripathi
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong, India
| | - Prakash Saudagar
- Department of Biotechnology, National Institute of Technology, Warangal, Telangana, 506004, India.
| |
Collapse
|
12
|
Khan A, Tahir Khan M, Saleem S, Junaid M, Ali A, Shujait Ali S, Khan M, Wei DQ. Structural insights into the mechanism of RNA recognition by the N-terminal RNA-binding domain of the SARS-CoV-2 nucleocapsid phosphoprotein. Comput Struct Biotechnol J 2020; 18:2174-2184. [PMID: 32837710 PMCID: PMC7419326 DOI: 10.1016/j.csbj.2020.08.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/05/2020] [Accepted: 08/05/2020] [Indexed: 01/18/2023] Open
Abstract
The emergence of recent SARS-CoV-2 has become a global health issue. This single-stranded positive-sense RNA virus is continuously spreading with increasing morbidities and mortalities. The proteome of this virus contains four structural and sixteen nonstructural proteins that ensure the replication of the virus in the host cell. However, the role of phosphoprotein (N) in RNA recognition, replicating, transcribing the viral genome, and modulating the host immune response is indispensable. Recently, the NMR structure of the N-terminal domain of the Nucleocapsid Phosphoprotein has been reported, but its precise structural mechanism of how the ssRNA interacts with it is not reported yet. Therefore, here, we have used an integrated computational pipeline to identify the key residues, which play an essential role in RNA recognition. We generated multiple variants by using an alanine scanning strategy and performed an extensive simulation for each system to signify the role of each interfacial residue. Our analyses suggest that residues T57A, H59A, S105A, R107A, F171A, and Y172A significantly affected the dynamics and binding of RNA. Furthermore, per-residue energy decomposition analysis suggests that residues T57, H59, S105 and R107 are the key hotspots for drug discovery. Thus, these residues may be useful as potential pharmacophores in drug designing.
Collapse
Affiliation(s)
- Abbas Khan
- State Key Lab of Microbial Metabolism, Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Muhammad Tahir Khan
- Department of Bioinformatics and Biosciences, Capital University of Science and Technology, Islamabad, Pakistan
| | - Shoaib Saleem
- National Center for Bioinformatics, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Muhammad Junaid
- State Key Lab of Microbial Metabolism, Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Arif Ali
- State Key Lab of Microbial Metabolism, Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Syed Shujait Ali
- Center for Biotechnology and Microbiology, University of Swat, Swat, Khyber Pakhtunkhwa, Pakistan
| | - Mazhar Khan
- The CAS Key Laboratory of Innate Immunity and Chronic Diseases, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China (USTC), Collaborative Innovation Center of Genetics and Development, Hefei 230027, Anhui, China
| | - Dong-Qing Wei
- State Key Lab of Microbial Metabolism, Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
- Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nashan District, Shenzhen, Guangdong 518055, China
| |
Collapse
|
13
|
Gosu V, Won K, Oh JD, Shin D. Conformational Changes Induced by S34Y and R98C Variants in the Death Domain of Myd88. Front Mol Biosci 2020; 7:27. [PMID: 32266286 PMCID: PMC7106778 DOI: 10.3389/fmolb.2020.00027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/10/2020] [Indexed: 11/13/2022] Open
Abstract
Myeloid differentiating factor 88 (Myd88) is a universal adaptor protein that plays a critical role in innate immunity by mediating TLR downstream signaling. Myd88 death domain (DD) forms an oligomeric complex by association with other DD-containing proteins such as IRAK4. Despite its universal role, polymorphisms in Myd88 can result in several diseases. Previous studies have suggested that, out of several non-synonymous single-nucleotide polymorphisms (nsSNPs), the variants S34Y and R98C in the DD of Myd88 disrupt the formation of the Myddosome complex. Therefore, we performed molecular dynamics (MD) simulations on wild-type (Myd88WT) and mutant (Myd88S34Y, Myd88R98C) DDs to evaluate the subtle conformational changes induced by these mutations. Our results suggest that the S34Y variant induces large structural transitions compared to the R98C variant as evidenced by residual flexibility at the variable loop regions, particularly in the H1-H2 loop, and variations in the collective modes of motion observed for wild-type and mutant Myd88 DDs. The residue interaction network strongly suggests a distortion in the interaction pattern at the location of the mutated residue between the wild type and mutants. Moreover, betweenness centrality values indicate that variations in the distribution of functionally important residues may be reflected by distinct residue signal transductions in both wild-type and mutant Myd88 DDs, which may influence the interaction with other DDs in TLR downstream signaling.
Collapse
Affiliation(s)
- Vijayakumar Gosu
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju-si, South Korea
| | - KyeongHye Won
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju-si, South Korea
| | - Jae-Don Oh
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju-si, South Korea
| | - Donghyun Shin
- The Animal Molecular Genetics and Breeding Center, Jeonbuk National University, Jeonju-si, South Korea
| |
Collapse
|
14
|
Jonniya N, Sk MF, Kar P. Investigating Phosphorylation-Induced Conformational Changes in WNK1 Kinase by Molecular Dynamics Simulations. ACS OMEGA 2019; 4:17404-17416. [PMID: 31656913 PMCID: PMC6812135 DOI: 10.1021/acsomega.9b02187] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/25/2019] [Indexed: 05/10/2023]
Abstract
The With-No-Lysine (WNK) kinase is considered to be a master regulator for various cation-chloride cotransporters involved in maintaining cell-volume and ion homeostasis. Here, we have investigated the phosphorylation-induced structural dynamics of the WNK1 kinase bound to an inhibitor via atomistic molecular dynamics simulations. Results from our simulations show that the phosphorylation at Ser382 could stabilize the otherwise flexible activation loop (A-loop). The intrahelix salt-bridge formed between Arg264 and Glu268 in the unphosphorylated system is disengaged after the phosphorylation, and Glu268 reorients itself and forms a stable salt-bridge with Arg348. The dynamic cross-correlation analysis shows that phosphorylation diminishes anticorrelated motions and increases correlated motions between different domains. Structural network analysis reveals that the phosphorylation causes structural rearrangements and shortens the communication path between the αC-helix and catalytic loop, making the binding pocket more suitable for accommodating the ligand. Overall, we have characterized the structural changes in the WNK kinase because of phosphorylation in the A-loop, which might help in designing rational drugs.
Collapse
|
15
|
Singh A, Somvanshi P, Grover A. Pyrazinamide drug resistance in RpsA mutant (∆438A) of Mycobacterium tuberculosis: Dynamics of essential motions and free-energy landscape analysis. J Cell Biochem 2019; 120:7386-7402. [PMID: 30390330 DOI: 10.1002/jcb.28013] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 10/10/2018] [Indexed: 01/24/2023]
Abstract
Pyrazinamide is an essential first-line antitubercular drug which plays pivotal role in tuberculosis treatment. It is a prodrug that requires amide hydrolysis by mycobacterial pyrazinamidase enzyme for conversion into pyrazinoic acid (POA). POA is known to target ribosomal protein S1 (RpsA), aspartate decarboxylase (PanD), and some other mycobacterial proteins. Spontaneous chromosomal mutations in RpsA have been reported for phenotypic resistance against pyrazinamide. We have constructed and validated 3D models of the native and Δ438A mutant form of RpsA protein. RpsA protein variants were then docked to POA and long range molecular dynamics simulations were carried out. Per residue binding free-energy calculations, free-energy landscape analysis, and essential dynamics analysis were performed to outline the mechanism underlying the high-level PZA resistance conferred by the most frequently occurring deletion mutant of RpsA. Our study revealed the conformational modulation of POA binding site due to the disruptive collective modes of motions and increased conformational flexibility in the mutant than the native form. Residue wise MMPBSA decomposition and protein-drug interaction pattern revealed the difference of energetically favorable binding site in the wild-type (WT) protein in comparison with the mutant. Analysis of size and shape of minimal energy landscape area delineated higher stability of the WT complex than the mutant form. Our study provides mechanistic insights into pyrazinamide resistance in Δ438A RpsA mutant, and the results arising out of this study will pave way for design of novel and effective inhibitors targeting the resistant strains of Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Aditi Singh
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.,Department of Biotechnology, TERI School of Advanced Studies, Vasant Kunj Institutional Area, New Delhi, India
| | - Pallavi Somvanshi
- Department of Biotechnology, TERI School of Advanced Studies, Vasant Kunj Institutional Area, New Delhi, India
| | - Abhinav Grover
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
16
|
Singh A, Das M, Grover A. Molecular mechanism of acetoacetyl-CoA enhanced kinetics for increased bioplastic production from Cupriavidus necator 428. J Biomol Struct Dyn 2019; 38:827-840. [PMID: 30836854 DOI: 10.1080/07391102.2019.1590239] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Polyhydroxyalkanoates are gaining importance due to their biodegradable nature and close analogy to plastics. Polyhydroxybutyrate (PHB) is the most widely used bioplastic from polyalkanoate family, which is produced by a legion of bacterial species via phbCAB operon encoding β-ketothiolase (PhaA), NADPH-dependent acetoacetyl-coenzyme A (acetoacetyl-CoA) reductase (PhaB) and polyhydroxyalkanoate synthase (PhaC). Augmentation in the activity of these enzymes is promising for increased PHB production which is achieved by enzyme engineering strategies including non-structural and structural approaches. Our study is deployed on directed evolution-based experimentally reported mutants of PhaB enzyme with increased efficiency due to impact on critical structural factors. We have analyzed and compared the native PhaB with two of its variants Q47L and T173S in complex with their cofactor i.e. NADPH as well as the substrate i.e. acetoacetyl-CoA, via long range molecular dynamics simulations. Interaction profile, MMPBSA, essential dynamics, and free energy landscape analysis revealed that the enzyme efficiency is critically affected by cofactor interactions. It was also observed that mutants have higher equilibrium constant with lesser but optimal affinity for substrate and cofactor than the wild type, which might be the reason for increased efficiency of the mutants via enhanced substrate and cofactor exchange rate. Our study provides insights into the cofactor and substrate binding affinities to PhaB enzyme at atomistic level, which will facilitate designing of highly efficient PhaB enzymes for increased PHB production. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Aditi Singh
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.,Department of Biotechnology, TERI School of Advanced Studies, Vasant Kunj, New Delhi, India
| | - Mriganko Das
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Abhinav Grover
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
17
|
Gosu V, Son S, Shin D, Song KD. Insights into the dynamic nature of the dsRNA-bound TLR3 complex. Sci Rep 2019; 9:3652. [PMID: 30842554 PMCID: PMC6403236 DOI: 10.1038/s41598-019-39984-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 02/01/2019] [Indexed: 01/26/2023] Open
Abstract
Toll-like receptor 3 (TLR3), an endosomal receptor crucial for immune responses upon viral invasion. The TLR3 ectodomain (ECD) is responsible for double-stranded RNA (dsRNA) recognition and mutational analysis suggested that TLR3 ECD C-terminal dimerization is essential for dsRNA binding. Moreover, the L412F polymorphism of TLR3 is associated with human diseases. Although the mouse structure of the TLR3-dsRNA complex provides valuable insights, the structural dynamic behavior of the TLR3-dsRNA complex in humans is not completely understood. Hence, in this study, we performed molecular dynamic simulations of human wild-type and mutant TLR3 complexes. Our results suggested that apoTLR3 ECD dimers are unlikely to be stable due to the distance between the monomers are largely varied during simulations. The observed interaction energies and hydrogen bonds in dsRNA-bound TLR3 wild-type and mutant complexes indicate the presence of a weak dimer interface at the TLR3 ECD C-terminal site, which is required for effective dsRNA binding. The L412F mutant exhibited similar dominant motion compared to wild-type. Additionally, we identified the distribution of crucial residues for signal propagation in TLR3-dsRNA complex through the evaluation of residue betweenness centrality (CB). The results of this study extend our understanding of TLR3-dsRNA complex, which may assist in TLR3 therapeutics.
Collapse
Affiliation(s)
- Vijayakumar Gosu
- Department of Animal Biotechnology, Chonbuk National University, Jeonju, 54896, Republic of Korea
| | - Seungwoo Son
- Department of Animal Biotechnology, Chonbuk National University, Jeonju, 54896, Republic of Korea
| | - Donghyun Shin
- Department of Animal Biotechnology, Chonbuk National University, Jeonju, 54896, Republic of Korea.
| | - Ki-Duk Song
- Department of Animal Biotechnology, Chonbuk National University, Jeonju, 54896, Republic of Korea. .,The Animal Molecular Genetics and Breeding Center, Chonbuk National University, Jeonju, 54896, Republic of Korea.
| |
Collapse
|
18
|
Singh A, Somvanshi P, Grover A. Drug repurposing against arabinosyl transferase (EmbC) of Mycobacterium tuberculosis: Essential dynamics and free energy minima based binding mechanics analysis. Gene 2019; 693:114-126. [PMID: 30716439 DOI: 10.1016/j.gene.2019.01.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/20/2018] [Accepted: 01/02/2019] [Indexed: 01/10/2023]
Abstract
Arabinosyl tranferases (embA, embB, embC) are the key enzymes responsible for biogenesis of arabinan domain of arabinogalactan (AG) and lipoarabinomannan (LAM), two major heteropolysaccharide constituents of the peculiar mycobacterial cell envelope. EmbC is predominantly responsible for LAM synthesis and has been commonly associated with Ethambutol resistance. We have screened the FDA library against EmbC to reposition a drug better than Ethambutol with higher binding affinity to Embc. High throughput virtual screening followed by extra precision docking using Glide gave two best leads i.e. Terlipressin and Amikacin with docking score of -11.39 kcal/mol and -10.71 kcal/mol, respectively. Binding mechanics of the selected drugs was elucidated through long range molecular dynamics simulations (100 ns) using binding free energy rescoring, essential dynamics and free energy minima based approaches, thus revealing the most stable binding modes of Terlipressin with EmbC. Our study establishes the EmbC binding potential of the repurposed drugs Terlipressin and Amikacin.
Collapse
Affiliation(s)
- Aditi Singh
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India; Department of Biotechnology, TERI School of Advanced Studies, Plot No. 10, Vasant Kunj Institutional Area, Vasant Kunj, New Delhi, 110070, India
| | - Pallavi Somvanshi
- Department of Biotechnology, TERI School of Advanced Studies, Plot No. 10, Vasant Kunj Institutional Area, Vasant Kunj, New Delhi, 110070, India.
| | - Abhinav Grover
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
19
|
Design of a Novel and Selective IRAK4 Inhibitor Using Topological Water Network Analysis and Molecular Modeling Approaches. Molecules 2018; 23:molecules23123136. [PMID: 30501110 PMCID: PMC6321621 DOI: 10.3390/molecules23123136] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 11/28/2018] [Accepted: 11/28/2018] [Indexed: 01/13/2023] Open
Abstract
Protein kinases are deeply involved in immune-related diseases and various cancers. They are a potential target for structure-based drug discovery, since the general structure and characteristics of kinase domains are relatively well-known. However, the ATP binding sites in protein kinases, which serve as target sites, are highly conserved, and thus it is difficult to develop selective kinase inhibitors. To resolve this problem, we performed molecular dynamics simulations on 26 kinases in the aqueous solution, and analyzed topological water networks (TWNs) in their ATP binding sites. Repositioning of a known kinase inhibitor in the ATP binding sites of kinases that exhibited a TWN similar to interleukin-1 receptor-associated kinase 4 (IRAK4) allowed us to identify a hit molecule. Another hit molecule was obtained from a commercial chemical library using pharmacophore-based virtual screening and molecular docking approaches. Pharmacophoric features of the hit molecules were hybridized to design a novel compound that inhibited IRAK4 at low nanomolar levels in the in vitro assay.
Collapse
|
20
|
Mishra P, Günther S. New insights into the structural dynamics of the kinase JNK3. Sci Rep 2018; 8:9435. [PMID: 29930333 PMCID: PMC6013471 DOI: 10.1038/s41598-018-27867-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 06/11/2018] [Indexed: 12/13/2022] Open
Abstract
In this work, we study the dynamics and the energetics of the all-atom structure of a neuronal-specific serine/threonine kinase c-Jun N-terminal kinase 3 (JNK3) in three states: unphosphorylated, phosphorylated, and ATP-bound phosphorylated. A series of 2 µs atomistic simulations followed by a conformational landscape mapping and a principal component analysis supports the mechanistic understanding of the JNK3 inactivation/activation process and also indicates key structural intermediates. Our analysis reveals that the unphosphorylated JNK3 undergoes the ‘open-to-closed’ movement via a two-step mechanism. Furthermore, the phosphorylation and ATP-binding allow the JNK3 kinase to attain a fully active conformation. JNK3 is a widely studied target for small-drugs used to treat a variety of neurological disorders. We believe that the mechanistic understanding of the large-conformational changes upon the activation of JNK3 will aid the development of novel targeted therapeutics.
Collapse
Affiliation(s)
- Pankaj Mishra
- Institute of Pharmaceutical Sciences, Research Group Pharmaceutical Bioinformatics, Albert-Ludwigs-University Freiburg, Hermann-Herder-Straße 9, 79104, Freiburg, Germany
| | - Stefan Günther
- Institute of Pharmaceutical Sciences, Research Group Pharmaceutical Bioinformatics, Albert-Ludwigs-University Freiburg, Hermann-Herder-Straße 9, 79104, Freiburg, Germany.
| |
Collapse
|
21
|
Kumar R, Maurya R, Saran S. Introducing a simple model system for binding studies of known and novel inhibitors of AMPK: a therapeutic target for prostate cancer. J Biomol Struct Dyn 2018; 37:781-795. [PMID: 29447108 DOI: 10.1080/07391102.2018.1441069] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Prostate cancer (PC) is one of the leading cancers in men, raising a serious health issue worldwide. Due to lack of suitable biomarker, their inhibitors and the platform for testing those inhibitors result in poor prognosis of PC. AMP-activated protein kinase (AMPK) is a highly conserved protein kinase found in eukaryotes that is involved in growth and development, and also acts as a therapeutic target for PC. The aim of the present study is to identify novel potent inhibitors of AMPK and propose a simple cellular model system for understanding its biology. Structural modelling and MD simulations were performed to construct and refine the 3D models of Dictyostelium and human AMPK. Binding mechanisms of different drug compounds were studied by performing molecular docking, molecular dynamics and MM-PBSA methods. Two novel drugs were isolated having higher binding affinity over the known drugs and hydrophobic forces that played a key role during protein-ligand interactions. The study also explored the simple cellular model system for drug screening and understanding the biology of a therapeutic target by performing in vitro experiments.
Collapse
Affiliation(s)
- Rakesh Kumar
- a School of Life Sciences , Jawaharlal Nehru University , New Delhi 110067 , India
| | - Ranjana Maurya
- a School of Life Sciences , Jawaharlal Nehru University , New Delhi 110067 , India
| | - Shweta Saran
- a School of Life Sciences , Jawaharlal Nehru University , New Delhi 110067 , India
| |
Collapse
|
22
|
Rout AK, Dehury B, Maharana J, Nayak C, Baisvar VS, Behera BK, Das BK. Deep insights into the mode of ATP-binding mechanism in Zebrafish cyclin-dependent protein kinase-like 1 (zCDKL1): A molecular dynamics approach. J Mol Graph Model 2018; 81:175-183. [PMID: 29574323 DOI: 10.1016/j.jmgm.2018.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/28/2018] [Accepted: 02/02/2018] [Indexed: 12/21/2022]
Abstract
In eukaryotes, the serine/threonine kinases (STKs) belonging to cyclin-dependent protein kinases (CDKs) play significant role in control of cell division and curb transcription in response to several extra and intra-cellular signals indispensable for enzymatic activity. The zebrafish cyclin-dependent protein kinase-like 1 protein (zCDKL1) shares a high degree of sequence and structural similarity with mammalian orthologs and express in brain, ovary, testis, and low levels in other tissues. Regardless of its importance in the developmental process, the structure, function and mode of ATP recognition have not been investigated yet due to lack of experimental data. Henceforth, to gain atomistic insights in to the structural dynamics and mode of ATP binding, a series of computational techniques involving theoretical modeling, docking, molecular dynamics (MD) simulations and MM/PBSA binding free energies were employed. The modeled bi-lobed zCDKL1 shares a high degree of secondary structure topology with human orthologs where ATP prefers to lie in the central cavity of the bi-lobed catalytic domain enclosed by strong hydrogen bonding, electrostatic and hydrophobic contacts. Long range MD simulation portrayed that catalytic domain of zCDKL1 to be highly rigid in nature as compared to the complex (zCDKL1-ATP) form. Comparative analysis with its orthologs revealed that conserved amino acids i.e., Ile10, Gly11, Glu12, Val18, Arg31, Phe80, Glu 130, Cys143 and Asp144 were crucial for ATP binding mechanism, which needs further investigation for legitimacy. MM/PBSA method revealed that van der Waals, electrostatic and polar solvation energy mostly contributes towards negative free energy. The implications of ATP binding mechanism inferred through these structural bioinformatics approaches will help in understanding the catalytic mechanisms of important STKs in eukaryotic system.
Collapse
Affiliation(s)
- Ajaya Kumar Rout
- Biotechnology Laboratory, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, West Bengal, India
| | - Budheswar Dehury
- Biomedical Informatics Centre, ICMR-Regional Medical Research Centre, Nalco Square, Chandrasekharpur, Bhubaneswar, 751023, Odisha, India
| | - Jitendra Maharana
- Department of Bioinformatics, Orissa University of Agriculture and Technology, Bhubaneswar, 751003, Odisha, India
| | - Chirasmita Nayak
- Department of Bioinformatics, Orissa University of Agriculture and Technology, Bhubaneswar, 751003, Odisha, India
| | - Vishwamitra Singh Baisvar
- Biotechnology Laboratory, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, West Bengal, India
| | - Bijay Kumar Behera
- Biotechnology Laboratory, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, West Bengal, India.
| | - Basanta Kumar Das
- Biotechnology Laboratory, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, West Bengal, India.
| |
Collapse
|
23
|
Previtali V, Trujillo C, Boisson JC, Khartabil H, Hénon E, Rozas I. Development of the first model of a phosphorylated, ATP/Mg 2+-containing B-Raf monomer by molecular dynamics simulations: a tool for structure-based design. Phys Chem Chem Phys 2017; 19:31177-31185. [PMID: 29139502 DOI: 10.1039/c7cp05038k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A model of phosphorylated and ATP-containing B-Raf protein kinase is needed as a tool for the structure-based design of new allosteric inhibitors, since no crystal structure of such a system has been resolved. Here, we present the development of such a model as well as a thorough analysis of its structural features. This model was prepared using a systematic molecular dynamics approach considering the presence or absence of both the phosphate group at the Thr599 site and the ATP molecule. Then, different structural features (i.e. DFG motif, Mg2+ binding loop, activation loop, phosphorylation site and αC-helix region) were analysed for each trajectory to validate the aimed 2pBRAF_ATP model. Moreover, the structure and activating interactions of this 2pBRAF_ATP model were found to be in agreement with previously reported information. Finally, the model was further validated by means of a molecular docking study with our previously developed lead compound I confirming that this ATP-containing, phosphorylated protein model is suitable for further structure-based design studies.
Collapse
Affiliation(s)
- Viola Previtali
- School of Chemistry Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
| | | | | | | | | | | |
Collapse
|
24
|
Friedman R. The molecular mechanism behind resistance of the kinase FLT3 to the inhibitor quizartinib. Proteins 2017; 85:2143-2152. [PMID: 28799176 DOI: 10.1002/prot.25368] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 08/07/2017] [Accepted: 08/08/2017] [Indexed: 12/31/2022]
Abstract
Fms-like tyrosine kinase 3 (FLT3) is a receptor tyrosine kinase that is a drug target for leukemias. Several potent inhibitors of FLT3 exist, and bind to the inactive form of the enzyme. Unfortunately, resistance due to mutations in the kinase domain of FLT3 limits the therapeutic effects of these inhibitors. As in many other cases, it is not straightforward to explain why certain mutations lead to drug resistance. Extensive fully atomistic molecular dynamics (MD) simulations of FLT3 were carried out with an inhibited form (FLT-quizartinib complex), a free (apo) form, and an active conformation. In all cases, both the wild type (wt) proteins and two resistant mutants (D835F and Y842H) were studied. Analysis of the simulations revealed that impairment of protein-drug interactions cannot explain the resistance mutations in question. Rather, it appears that the active state of the mutant forms is perturbed by the mutations. It is therefore likely that perturbation of deactivation of the protein (which is necessary for drug binding) is responsible for the reduced affinity of the drug to the mutants. Importantly, this study suggests that it is possible to explain the source of resistance by mutations in FLT3 by an analysis of unbiased MD simulations.
Collapse
Affiliation(s)
- Ran Friedman
- Department of Chemistry and Biomedical Sciences, Linnaeus University, 39 182 Kalmar, Sweden.,Centre of Excellence "Biomaterials Chemistry", Linnaeus University, 39 182 Kalmar, Sweden
| |
Collapse
|
25
|
Rungsung I, Ramaswamy A. Insights into the structural dynamics of Liver kinase B1 (LKB1) by the binding of STe20 Related Adapterα (STRADα) and Mouse protein 25α (MO25α) co-activators. J Biomol Struct Dyn 2016; 35:1138-1152. [PMID: 27160967 DOI: 10.1080/07391102.2016.1173593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
LKB1, the tumour suppressor, is found mutated in Peutz-Jeghers syndrome (PJS). The LKB1 is a serine-threonine kinase protein that is allosterically activated by the binding of STRADα and MO25α without phosphorylating the Thr212 present at activation loop. The present study aims to highlight the structural dynamics and complexation mechanism during the allosteric activation of LKB1 by these co-activators using molecular dynamics simulations. The all atom simulations performed on the complexes of LKB1 with ATP, STRADα, and MO25α for a period of 30 ns reveal that binding of STRADα and MO25α significantly stabilizes the highly flexible regions of LKB1 such as ATP binding region (β1-β2 loop), catalytic & activation loop segments and αG helix. Also, binding of STRADα and MO25α to LKB1 promotes coordinated motion between N- and C-lobes along with the catalytic & activation loops by forming H-bonds between LKB1 and co-activators, which further facilitate to establish the conserved attributes of active LKB1 such as (i) formation of salt bridge between Lys78 and Glu98, (ii) formation of stable hydrophobic R- and C-spines, and (iii) interaction between both catalytic and activation loops. Especially, the residues of LKB1 interacting with STRADα (Arg74, Glu342) and MO25α (Glu165, Pro203 and Phe204) are observed to play a significant role in stabilizing the (LKB1-ATP)-(STRADα-ATP)-MO25α complex. Overall, the present work highlighting the structural dynamics of LKB1 by the binding of allosteric co-activators is expected to provide a basic understanding on drug design specific to PJS syndrome.
Collapse
Affiliation(s)
- Ikrormi Rungsung
- a Centre for Bioinformatics, School of Life Sciences , Pondicherry University , Puducherry 605014 , India
| | - Amutha Ramaswamy
- a Centre for Bioinformatics, School of Life Sciences , Pondicherry University , Puducherry 605014 , India
| |
Collapse
|
26
|
Verma S, Goyal S, Tyagi C, Jamal S, Singh A, Grover A. BIM (BCL-2 interacting mediator of cell death) SAHB (stabilized α helix of BCL2) not always convinces BAX (BCL-2-associated X protein) for apoptosis. J Mol Graph Model 2016; 67:94-101. [PMID: 27262527 DOI: 10.1016/j.jmgm.2016.05.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 04/25/2016] [Accepted: 05/19/2016] [Indexed: 11/25/2022]
Abstract
The interaction of BAX (BCL-2-associated X protein) with BIM (BCL-2 interacting mediator of cell death) SAHB (stabilized α helix of BCL2) directly initiates BAX-mediated mitochondrial apoptosis. This molecular dynamics study reveals that BIM SAHB forms a stable complex with BAX but it remains in a non-functional conformation. N terminal of BAX folds towards the core which has been reported exposed in the functional monomer. The α1-α2 loop, which has been reported in open conformation in functional BAX, acquires a closed conformation during the simulation. BH3/α2 remains less exposed as compared to initial structure. The hydrophobic residues of BIM accommodates in the rear pocket of BAX during the simulation. A steep decrease in radius of gyration and solvent accessible surface area (SASA) indicates the complex folding to acquire a more stable but inactive conformation. Further the covariance matrix reveals that the backbone atoms' motions favour the inactive conformation of the complex. This is the first report on the non-functional BAX-BIM SAHB complex by molecular dynamics simulation in the best of our knowledge.
Collapse
Affiliation(s)
- Sharad Verma
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Sukriti Goyal
- Department of Bioscience and Biotechnology, Banasthali University, Tonk, Rajasthan 304022, India.
| | - Chetna Tyagi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Salma Jamal
- Department of Bioscience and Biotechnology, Banasthali University, Tonk, Rajasthan 304022, India.
| | - Aditi Singh
- Department of Biotechnology, TERI University, Vasant Kunj, New Delhi 110 070, India.
| | - Abhinav Grover
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
27
|
Verma S, Grover S, Tyagi C, Goyal S, Jamal S, Singh A, Grover A. Hydrophobic Interactions Are a Key to MDM2 Inhibition by Polyphenols as Revealed by Molecular Dynamics Simulations and MM/PBSA Free Energy Calculations. PLoS One 2016; 11:e0149014. [PMID: 26863418 PMCID: PMC4749206 DOI: 10.1371/journal.pone.0149014] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 01/26/2016] [Indexed: 11/19/2022] Open
Abstract
p53, a tumor suppressor protein, has been proven to regulate the cell cycle, apoptosis, and DNA repair to prevent malignant transformation. MDM2 regulates activity of p53 and inhibits its binding to DNA. In the present study, we elucidated the MDM2 inhibition potential of polyphenols (Apigenin, Fisetin, Galangin and Luteolin) by MD simulation and MM/PBSA free energy calculations. All polyphenols bind to hydrophobic groove of MDM2 and the binding was found to be stable throughout MD simulation. Luteolin showed the highest negative binding free energy value of -173.80 kJ/mol followed by Fisetin with value of -172.25 kJ/mol. It was found by free energy calculations, that hydrophobic interactions (vdW energy) have major contribution in binding free energy.
Collapse
Affiliation(s)
- Sharad Verma
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Sonam Grover
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Chetna Tyagi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Sukriti Goyal
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk, Rajasthan, India
| | - Salma Jamal
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk, Rajasthan, India
| | - Aditi Singh
- Department of Biotechnology, TERI University, Vasant Kunj, New Delhi, India
| | - Abhinav Grover
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
28
|
Agarwal T, Annamalai N, Maiti TK, Arsad H. Biophysical changes of ATP binding pocket may explain loss of kinase activity in mutant DAPK3 in cancer: A molecular dynamic simulation analysis. Gene 2015; 580:17-25. [PMID: 26748242 DOI: 10.1016/j.gene.2015.12.066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 12/29/2015] [Accepted: 12/30/2015] [Indexed: 12/31/2022]
Abstract
DAPK3 belongs to family of DAPK (death-associated protein kinases) and is involved in the regulation of progression of the cell cycle, cell proliferation, apoptosis and autophagy. It is considered as a tumor suppressor kinase, suggesting the loss of its function in case of certain specific mutations. The T112M, D161N and P216S mutations in DAPK3 have been observed in cancer patients. These DAPK3 mutants have been associated with very low kinase activity, which results in the cellular progression towards cancer. However, a clear understanding of the structural and biophysical variations that occur in DAPK3 with these mutations, resulting in the decreased kinase activity has yet not been deciphered. We performed a molecular dynamic simulation study to investigate such structural variations. Our results revealed that mutations caused a significant structural variation in DAPK3, majorly concentrated in the flexible loops that form part of the ATP binding pocket. Interestingly, D161N and P216S mutations collapsed the ATP binding pocket through flexible loops invasion, hindering ATP binding which resulted in very low kinase activity. On the contrary, T112M mutant DAPK3 reduces ATP binding potential through outward distortion of flexible loops. In addition, the mutant lacked characteristic features of the active protein kinase including proper interaction between HR/FD and DFG motifs, well structured hydrophobic spine and Lys42-Glu64 salt bridge interaction. These observations could possibly explain the underlying mechanism associated with the loss of kinase activity with T112M, D161N and P216S mutation in DAPK3.
Collapse
Affiliation(s)
- Tarun Agarwal
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal, Pin: 721302, India.
| | - Nithyanan Annamalai
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Bertam, Pulau Pinang, Malaysia.
| | - Tapas Kumar Maiti
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal, Pin: 721302, India.
| | - Hasni Arsad
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Bertam, Pulau Pinang, Malaysia.
| |
Collapse
|
29
|
Spellmon N, Holcomb J, Trescott L, Sirinupong N, Yang Z. Structure and function of SET and MYND domain-containing proteins. Int J Mol Sci 2015; 16:1406-28. [PMID: 25580534 PMCID: PMC4307310 DOI: 10.3390/ijms16011406] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 01/05/2015] [Indexed: 12/26/2022] Open
Abstract
SET (Suppressor of variegation, Enhancer of Zeste, Trithorax) and MYND (Myeloid-Nervy-DEAF1) domain-containing proteins (SMYD) have been found to methylate a variety of histone and non-histone targets which contribute to their various roles in cell regulation including chromatin remodeling, transcription, signal transduction, and cell cycle control. During early development, SMYD proteins are believed to act as an epigenetic regulator for myogenesis and cardiomyocyte differentiation as they are abundantly expressed in cardiac and skeletal muscle. SMYD proteins are also of therapeutic interest due to the growing list of carcinomas and cardiovascular diseases linked to SMYD overexpression or dysfunction making them a putative target for drug intervention. This review will examine the biological relevance and gather all of the current structural data of SMYD proteins.
Collapse
Affiliation(s)
- Nicholas Spellmon
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, 540 East Canfield Street, Detroit, MI 48201, USA.
| | - Joshua Holcomb
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, 540 East Canfield Street, Detroit, MI 48201, USA.
| | - Laura Trescott
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, 540 East Canfield Street, Detroit, MI 48201, USA.
| | - Nualpun Sirinupong
- Nutraceuticals and Functional Food Research and Development Center, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand.
| | - Zhe Yang
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, 540 East Canfield Street, Detroit, MI 48201, USA.
| |
Collapse
|
30
|
Chaudhary D, Robinson S, Romero DL. Recent Advances in the Discovery of Small Molecule Inhibitors of Interleukin-1 Receptor-Associated Kinase 4 (IRAK4) as a Therapeutic Target for Inflammation and Oncology Disorders. J Med Chem 2014; 58:96-110. [DOI: 10.1021/jm5016044] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Divya Chaudhary
- Nimbus Discovery, 25 First Street,
Suite 404, Cambridge, Massachusetts 02141, United States
| | - Shaughnessy Robinson
- Schrödinger Inc., 120 West Forty-Fifth
Street, New York, New York 10036, United States
| | - Donna L. Romero
- Nimbus Discovery, 25 First Street,
Suite 404, Cambridge, Massachusetts 02141, United States
| |
Collapse
|