1
|
Lu X, Du X, Zhong D, Li R, Cao J, Huang S, Wang Y. Nanopore Environmental Analysis. JACS AU 2025; 5:1570-1590. [PMID: 40313842 PMCID: PMC12042043 DOI: 10.1021/jacsau.5c00114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/26/2025] [Accepted: 03/12/2025] [Indexed: 05/03/2025]
Abstract
As global pollution continues to escalate, timely and accurate monitoring is essential for guiding pollution governance and safeguarding public health. The increasing diversity of pollutants across environmental matrices poses a significant challenge for instrumental analysis methods, which often require labor-intensive and time-consuming sample pretreatment. Nanopore technology, an emerging single-molecule technique, presents a promising solution by enabling the rapid identification of multiple targets within complex mixtures with minimal sample preparation. A wide range of pollutants have been characterized using natural biological nanopores or artificial solid-state nanopores, and their distinct advantages include simple sample preparation, high sensitivity, and rapid onsite analysis. In particular, long-read nanopore sequencing has led to dramatic improvements in the analyses of environmental microbial communities, allows species-level taxonomic assignment using amplicon sequencing, and simplifies the assembly of metagenomes. In this Perspective, we review the latest advancements in analyzing chemical and biological pollutants through nanopore sensing and sequencing techniques. We also explore the challenges that remain in this rapidly evolving field and provide an outlook on the potential for nanopore environmental analysis to transform pollution monitoring, risk assessment, and public health protection.
Collapse
Affiliation(s)
- Xiaofeng Lu
- State
Key Laboratory of Pollution Control and Resource Reuse, School of
the Environment, Nanjing University, Nanjing 210023, China
- Institute
for the Environment and Health, Nanjing
University Suzhou Campus, Suzhou 215163, China
| | - Xiaoyu Du
- State
Key Laboratory of Pollution Control and Resource Reuse, School of
the Environment, Nanjing University, Nanjing 210023, China
- Institute
for the Environment and Health, Nanjing
University Suzhou Campus, Suzhou 215163, China
| | - Dong Zhong
- State
Key Laboratory of Pollution Control and Resource Reuse, School of
the Environment, Nanjing University, Nanjing 210023, China
- Institute
for the Environment and Health, Nanjing
University Suzhou Campus, Suzhou 215163, China
| | - Renjie Li
- State
Key Laboratory of Pollution Control and Resource Reuse, School of
the Environment, Nanjing University, Nanjing 210023, China
- Institute
for the Environment and Health, Nanjing
University Suzhou Campus, Suzhou 215163, China
| | - Junjie Cao
- State
Key Laboratory of Pollution Control and Resource Reuse, School of
the Environment, Nanjing University, Nanjing 210023, China
- Institute
for the Environment and Health, Nanjing
University Suzhou Campus, Suzhou 215163, China
| | - Shuo Huang
- State
Key Laboratory of Analytical Chemistry for Life Sciences, School of
Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, China
- Chemistry
and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Yuqin Wang
- State
Key Laboratory of Pollution Control and Resource Reuse, School of
the Environment, Nanjing University, Nanjing 210023, China
- Institute
for the Environment and Health, Nanjing
University Suzhou Campus, Suzhou 215163, China
| |
Collapse
|
2
|
Zhang Y, Hu C, Liu R, He S, Yang J, Yao W, Li Y, Guo X. Protein nanopore-based sensors for public health analyte detection. J Mater Chem B 2024; 12:9845-9862. [PMID: 39258387 DOI: 10.1039/d4tb01149j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
High-throughput and label-free protein nanopore-based sensors are extensively used in DNA sequencing, single-protein analysis, molecular sensing and chemical catalysis with single channel recording. These technologies show great potential for identifying various harmful substances linked to public health by addressing the limitations of current portability and the speed of existing techniques. In this review, we provide an overview of the fundamental principles of nanopore sensing, with a focus on chemical modification and genetic engineering strategies aimed at enhancing the detection sensitivity and identification accuracy of protein nanopores. The engineered protein nanopores enable direct sensing, while the introduction of aptamers and substrates enables indirect sensing, translating the physical structure and chemical properties of analytes into readable signals. These scientific discoveries and engineering efforts have provided new prospects for detecting and monitoring trace hazardous substances.
Collapse
Affiliation(s)
- Yanhua Zhang
- Dongguan Key Laboratory of Public Health Laboratory Science, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| | - Chan Hu
- Dongguan Key Laboratory of Public Health Laboratory Science, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| | - Ronghui Liu
- School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China.
| | - Shujun He
- Dongguan Key Laboratory of Public Health Laboratory Science, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| | - Jie Yang
- Dongguan Key Laboratory of Public Health Laboratory Science, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| | - Wen Yao
- Dongguan Key Laboratory of Public Health Laboratory Science, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| | - Yi Li
- School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China.
| | - Xinrong Guo
- Dongguan Key Laboratory of Public Health Laboratory Science, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| |
Collapse
|
3
|
Szymczyk A, Popiołek M, Baran D, Olszewski M, Ziółkowski R, Malinowska E. Aptamer and Electrochemical Aptasensor towards Selenate Ions (SeO 42-). Int J Mol Sci 2024; 25:6660. [PMID: 38928366 PMCID: PMC11203472 DOI: 10.3390/ijms25126660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/13/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
Selenium is an essential inorganic compound in human and animal nutrition, involved in the proper functioning of the body. As a micronutrient, it actively contributes to the regulation of various metabolic activities, i.e., thyroid hormone, and protection against oxidative stress. However, Se exhibits a narrow concentration window between having a positive effect and exerting a toxic effect. In higher doses, it negatively affects living organisms and causes DNA damage through the formation of free radicals. Increased reactivity of Se anions can also disrupt the integrity and function of DNA-repairing proteins. As the permissible concentration of Se in drinking water is 10 µg/L, it is vital to develop sensitive and robust methods of Se detection in aqueous samples. In this study, for the first time, we proposed a selective aptamer for selenate ion detection, chosen following the SELEX process, and its application in the construction of an electrochemical aptasensor towards SeO42- ions. Measurement conditions such as the used redox marker and pH value of the measurement solution were chosen. The proposed aptasensor is characterized by good selectivity and an LOD of 1 nM. Conditions for biosensor regeneration and storage were also investigated in this research.
Collapse
Affiliation(s)
- Anna Szymczyk
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Stanisława Noakowskiego 3, 00-664 Warsaw, Poland; (A.S.); (M.P.); (D.B.); (E.M.)
- Doctoral School, Warsaw University of Technology, Plac Politechniki 1, 00-661 Warsaw, Poland
| | - Martyna Popiołek
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Stanisława Noakowskiego 3, 00-664 Warsaw, Poland; (A.S.); (M.P.); (D.B.); (E.M.)
| | - Dominika Baran
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Stanisława Noakowskiego 3, 00-664 Warsaw, Poland; (A.S.); (M.P.); (D.B.); (E.M.)
| | - Marcin Olszewski
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Koszykowa 75, 00-664 Warsaw, Poland;
| | - Robert Ziółkowski
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Stanisława Noakowskiego 3, 00-664 Warsaw, Poland; (A.S.); (M.P.); (D.B.); (E.M.)
| | - Elżbieta Malinowska
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Stanisława Noakowskiego 3, 00-664 Warsaw, Poland; (A.S.); (M.P.); (D.B.); (E.M.)
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
| |
Collapse
|
4
|
Chingarande RG, Tian K, Kuang Y, Sarangee A, Hou C, Ma E, Ren J, Hawkins S, Kim J, Adelstein R, Chen S, Gillis KD, Gu LQ. Real-time label-free detection of dynamic aptamer-small molecule interactions using a nanopore nucleic acid conformational sensor. Proc Natl Acad Sci U S A 2023; 120:e2108118120. [PMID: 37276386 PMCID: PMC10268594 DOI: 10.1073/pnas.2108118120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 04/14/2023] [Indexed: 06/07/2023] Open
Abstract
Nucleic acids can undergo conformational changes upon binding small molecules. These conformational changes can be exploited to develop new therapeutic strategies through control of gene expression or triggering of cellular responses and can also be used to develop sensors for small molecules such as neurotransmitters. Many analytical approaches can detect dynamic conformational change of nucleic acids, but they need labeling, are expensive, and have limited time resolution. The nanopore approach can provide a conformational snapshot for each nucleic acid molecule detected, but has not been reported to detect dynamic nucleic acid conformational change in response to small -molecule binding. Here we demonstrate a modular, label-free, nucleic acid-docked nanopore capable of revealing time-resolved, small molecule-induced, single nucleic acid molecule conformational transitions with millisecond resolution. By using the dopamine-, serotonin-, and theophylline-binding aptamers as testbeds, we found that these nucleic acids scaffolds can be noncovalently docked inside the MspA protein pore by a cluster of site-specific charged residues. This docking mechanism enables the ion current through the pore to characteristically vary as the aptamer undergoes conformational changes, resulting in a sequence of current fluctuations that report binding and release of single ligand molecules from the aptamer. This nanopore tool can quantify specific ligands such as neurotransmitters, elucidate nucleic acid-ligand interactions, and pinpoint the nucleic acid motifs for ligand binding, showing the potential for small molecule biosensing, drug discovery assayed via RNA and DNA conformational changes, and the design of artificial riboswitch effectors in synthetic biology.
Collapse
Affiliation(s)
- Rugare G. Chingarande
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO65211
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO65211
| | - Kai Tian
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO65211
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO65211
| | - Yu Kuang
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO65211
| | - Aby Sarangee
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO65211
| | - Chengrui Hou
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO65211
| | - Emily Ma
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO65211
| | - Jarett Ren
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO65211
| | - Sam Hawkins
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO65211
| | - Joshua Kim
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO65211
| | - Ray Adelstein
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO65211
| | - Sally Chen
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO65211
| | - Kevin D. Gillis
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO65211
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO65211
| | - Li-Qun Gu
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO65211
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO65211
| |
Collapse
|
5
|
Li K, Liu Y, Lou B, Tan Y, Chen L, Liu Z. DNA-Guided Metallization of Nanomaterials and Their Biomedical Applications. Molecules 2023; 28:molecules28093922. [PMID: 37175332 PMCID: PMC10180097 DOI: 10.3390/molecules28093922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Precise control of the structure of metallic nanomaterials is critical for the advancement of nanobiotechnology. As DNA (deoxyribonucleic acid) can readily modify various moieties, such as sulfhydryl, carboxyl, and amino groups, using DNA as a directing ligand to modulate the morphology of nanomaterials is a promising strategy. In this review, we focus on the use of DNA as a template to control the morphology of metallic nanoparticles and their biomedical applications, discuss the use of DNA for the metallization of gold and silver, explore the factors that influence the process, and outline its biomedical applications. This review aims to provide valuable insights into the DNA-guided growth of nanomaterials. The challenges and future directions are also discussed.
Collapse
Affiliation(s)
- Ke Li
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Yanfei Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Beibei Lou
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Yifu Tan
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Liwei Chen
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Zhenbao Liu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
- Molecular Imaging Research Center of Central South University, Changsha 410008, China
| |
Collapse
|
6
|
Tan X, Lv C, Chen H. Advances of nanopore-based sensing techniques for contaminants evaluation of food and agricultural products. Crit Rev Food Sci Nutr 2022; 63:10866-10879. [PMID: 35687354 DOI: 10.1080/10408398.2022.2085238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Food safety assurance systems are becoming more stringent in response to the growing food safety problems. Rapid, sensitive, and reliable detection technology is a prerequisite for the establishment of food safety assurance systems. Nanopore technology has been taken as one of the emerging technology capable of dealing with the detection of harmful contaminants as efficiently as possible due to the advantage of label-free, high-throughput, amplification-free, and rapid detection features. Start with the history of nanopore techniques, this review introduced the underlying knowledge of detection mechanism of nanopore-based sensing techniques. Meanwhile, sensing interfaces for the construction of nanopore sensors are comprehensively summarized. Moreover, this review covers the current advances of nanopore techniques in the application of food safety screening. Currently, the establishment of nanopore sensing devices is mainly based on the blocking current phenomenon. Sensing interfaces including biological nanopores, solid-state nanopores, DNA origami, and de novo designed nanopores can be used in the manufacture of sensing devices. Food harmful substances, including heavy metals, veterinary drugs, pesticide residues, food toxins, and other harmful substances can be quickly determined by nanopore-based sensors. Moreover, the combination of nanopore techniques with advanced materials has become one of the most effective methods to improve sensing properties.
Collapse
Affiliation(s)
- Xiaoyi Tan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Chenyan Lv
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Hai Chen
- College of Food Science, Southwest University, Chongqing, China
| |
Collapse
|
7
|
Bhatti H, Jawed R, Ali I, Iqbal K, Han Y, Lu Z, Liu Q. Recent advances in biological nanopores for nanopore sequencing, sensing and comparison of functional variations in MspA mutants. RSC Adv 2021; 11:28996-29014. [PMID: 35478559 PMCID: PMC9038099 DOI: 10.1039/d1ra02364k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/09/2021] [Indexed: 12/14/2022] Open
Abstract
Biological nanopores are revolutionizing human health by the great myriad of detection and diagnostic skills. Their nano-confined area and ingenious shape are suitable to investigate a diverse range of molecules that were difficult to identify with the previous techniques. Additionally, high throughput and label-free detection of target analytes instigated the exploration of new bacterial channel proteins such as Fragaceatoxin C (FraC), Cytolysin A (ClyA), Ferric hydroxamate uptake component A (FhuA) and Curli specific gene G (CsgG) along with the former ones, like α-hemolysin (αHL), Mycobacterium smegmatis porin A (MspA), aerolysin, bacteriophage phi 29 and Outer membrane porin G (OmpG). Herein, we discuss some well-known biological nanopores but emphasize on MspA and compare the effects of site-directed mutagenesis on the detection ability of its mutants in view of the surface charge distribution, voltage threshold and pore-analyte interaction. We also discuss illustrious and latest advances in biological nanopores for past 2-3 years due to limited space. Last but not the least, we elucidate our perspective for selecting a biological nanopore and propose some future directions to design a customized nanopore that would be suitable for DNA sequencing and sensing of other nontrivial molecules in question.
Collapse
Affiliation(s)
- Huma Bhatti
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University No. 2 Sipailou Nanjing 210096 People's Republic of China +86-25-83793283 +86-25-83793283
| | - Rohil Jawed
- School of Life Science and Technology, Southeast University No. 2 Sipailou Nanjing 210096 People's Republic of China
| | - Irshad Ali
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University No. 2 Sipailou Nanjing 210096 People's Republic of China +86-25-83793283 +86-25-83793283
| | - Khurshid Iqbal
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University No. 2 Sipailou Nanjing 210096 People's Republic of China +86-25-83793283 +86-25-83793283
| | - Yan Han
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University No. 2 Sipailou Nanjing 210096 People's Republic of China +86-25-83793283 +86-25-83793283
| | - Zuhong Lu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University No. 2 Sipailou Nanjing 210096 People's Republic of China +86-25-83793283 +86-25-83793283
| | - Quanjun Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University No. 2 Sipailou Nanjing 210096 People's Republic of China +86-25-83793283 +86-25-83793283
| |
Collapse
|
8
|
Bhai S, Ganguly B. Role of pH in the stability of cytosine-cytosine mismatch and canonical AT and GC base pairs mediated with silver ion: a DFT study. Struct Chem 2021. [DOI: 10.1007/s11224-021-01814-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Roozbahani GM, Chen X, Zhang Y, Wang L, Guan X. Nanopore detection of metal ions: Current status and future directions. SMALL METHODS 2020; 4:2000266. [PMID: 33365387 PMCID: PMC7751931 DOI: 10.1002/smtd.202000266] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Indexed: 05/27/2023]
Abstract
In this review, we highlight recent research efforts that aimed at developing nanopore sensors for detection of metal ions, which play a crucial role in environmental safety and human health. Protein pores use three stochastic sensing-based strategies for metal ion detection. The first strategy is to construct engineered nanopores with metal ion binding sites, so that the interaction between the target analytes and the nanopore can slow the movement of metal ions in the nano-channel. Second, large molecules such as nucleic acids and especially peptides could be utilized as external selective molecular probes to detect metal ions based on the conformational change of the ligand molecules induced by the metal ion-ligand chelation / coordination interaction. Third, enzymatic reactions can also be used as an alternative to the molecule probe strategy in the situation that a sensitive and selective probe molecule for the target analyte is difficult to obtain. On the other hand, by taking advantage of steady-state analysis, synthetic nanopores mainly use two strategies (modification and modification-free) to detect metals. Given the advantages of high sensitivity & selectivity, and label-free detection, nanopore-based metal ion sensors should find useful application in many fields, including environmental monitoring, medical diagnosis, and so on.
Collapse
Affiliation(s)
| | - Xiaohan Chen
- Department of Chemistry, Illinois Institute of Technology, Chicago, Illinois, 60616, USA
| | - Youwen Zhang
- Department of Chemistry, Illinois Institute of Technology, Chicago, Illinois, 60616, USA
| | - Liang Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- The University of Chinese Academy of Science, Beijing, 100049, China
| | - Xiyun Guan
- Department of Chemistry, Illinois Institute of Technology, Chicago, Illinois, 60616, USA
| |
Collapse
|
10
|
Dragomir IS, Bucataru IC, Schiopu I, Luchian T. Unzipping Mechanism of Free and Polyarginine-Conjugated DNA-PNA Duplexes, Preconfined Inside the α-Hemolysin Nanopore. Anal Chem 2020; 92:7800-7807. [PMID: 32367708 DOI: 10.1021/acs.analchem.0c00976] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this work, comparative studies on DNA-PNA and polyarginine-conjugated DNA-PNA duplexes unzipping inside the α-hemolysin nanopore (α-HL) are presented. We identified significant differences in the blockade currents, as the applied voltage across the nanopore facilitated the duplex capture inside the nanopore's vestibule against the constriction region, subsequent cDNA strand insertion inside the nanopore's β-barrel past the constriction site, its complete unzip from the duplex, and translocation. We observed that inside the voltage-biased nanopore, polyarginine-conjugated DNA-PNA duplexes dehybridize faster than their DNA-PNA counterparts and proposed a model to describe the duplex unzipping. This study identifies key particularities of DNA-PNA duplex unzipping as it takes place inside the nanopore and being preceded by entrapment in the vestibule domain of the α-HL. Our results are a crucial step toward understanding the nucleic acids duplexes unzipping kinetics variability, in confined, variable geometries.
Collapse
Affiliation(s)
- Isabela S Dragomir
- Interdisciplinary Research Department, Alexandru I. Cuza University, 700506 Iasi, Romania
| | - Ioana C Bucataru
- Department of Physics, Alexandru I. Cuza University, 700506 Iasi, Romania
| | - Irina Schiopu
- Interdisciplinary Research Department, Alexandru I. Cuza University, 700506 Iasi, Romania
| | - Tudor Luchian
- Department of Physics, Alexandru I. Cuza University, 700506 Iasi, Romania
| |
Collapse
|
11
|
Tian K, Chen X, Luan B, Lin M, Mustapha A, Gu LQ. Single Locked Nucleic Acid-enhanced nanopore genetic discrimination of pathogenic serotypes and cancer driver mutations. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2019; 2018:4492-4495. [PMID: 30441349 DOI: 10.1109/embc.2018.8513177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Rapid and accurate detection of single-nucleotide polymorphism (SNP) in pathogenic mutants is crucial for broad fields from food safety monitoring to disease diagnostics and prognosis. Here, we developed a nanopore single-molecule sensor, coupled with the locked nucleic acid (LNA) technique, to accurately discriminate SNPs for detection of Shiga toxin producing Escherichia coli (STEC) O157:H7 pathogen serotype, and cancer-derived driver mutations EGFR L858R and KRAS G12D. This sensitive method, with a simplified, low cost, easy-to-operate LNA design, can be applied in food science and medical detection that need rapid and accurate determination of genetic variations.
Collapse
|
12
|
Sarap CS, Partovi-Azar P, Fyta M. Enhancing the optical detection of mutants from healthy DNA with diamondoids. J Mater Chem B 2019. [DOI: 10.1039/c9tb00122k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A polarized laser pulse can distinguish between healthy and mutated DNA nucleotides hydrogen bonded to small diamond cages.
Collapse
Affiliation(s)
| | - Pouya Partovi-Azar
- Institute of Chemistry
- Martin Luther University Halle-Wittenberg
- 06120 Halle (Saale)
- Germany
| | - Maria Fyta
- Institute for Computational Physics
- Universität Stuttgart
- 70569 Stuttgart
- Germany
| |
Collapse
|
13
|
Shi R, Nejad MI, Zhang X, Gu LQ, Gates KS. Generation and Single-Molecule Characterization of a Sequence-Selective Covalent Cross-Link Mediated by Mechlorethamine at a C–C Mismatch in Duplex DNA for Discrimination of a Disease-Relevant Single Nucleotide Polymorphism. Bioconjug Chem 2018; 29:3810-3816. [DOI: 10.1021/acs.bioconjchem.8b00663] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Ruicheng Shi
- Department of Bioengineering and Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri 65211, United States
| | | | - Xinyue Zhang
- Department of Bioengineering and Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri 65211, United States
| | - Li-Qun Gu
- Department of Bioengineering and Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri 65211, United States
| | | |
Collapse
|
14
|
Ciuca A, Asandei A, Schiopu I, Apetrei A, Mereuta L, Seo CH, Park Y, Luchian T. Single-Molecule, Real-Time Dissecting of Peptide Nucleic Acid-DNA Duplexes with a Protein Nanopore Tweezer. Anal Chem 2018; 90:7682-7690. [PMID: 29799733 DOI: 10.1021/acs.analchem.8b01568] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Peptide nucleic acids (PNAs) are artificial, oligonucleotides analogues, where the sugar-phosphate backbone has been substituted with a peptide-like N-(2-aminoethyl)glycine backbone. Because of their inherent benefits, such as increased stability and enhanced binding affinity toward DNA or RNA substrates, PNAs are intensively studied and considered beneficial for the fields of materials and nanotechnology science. Herein, we designed cationic polypeptide-functionalized, 10-mer PNAs, and demonstrated the feasible detection of hybridization with short, complementary DNA substrates, following analytes interaction with the vestibule entry of an α-hemolysin (α-HL) nanopore. The opposite charged state at the polypeptide-functionalized PNA-DNA duplex extremities, facilitated unzipping of a captured duplex at the lumen entry of a voltage-biased nanopore, followed by monomers threading. These processes were resolvable and identifiable in real-time, from the temporal profile of the ionic current through a nanopore accompanying conformational changes of a single PNA-DNA duplex inside the α-HL nanopore. By employing a kinetic description within the discrete Markov chains theory, we proposed a minimalist kinetic model to successfully describe the electric force-induced strand separation in the duplex. The distinct interactions of the duplex at either end of the nanopore present powerful opportunities for introducing new generations of force-spectroscopy nanopore-based platforms, enabling from the same experiment duplex detection and assessment of interstrand base pairing energy.
Collapse
Affiliation(s)
- Andrei Ciuca
- Department of Physics , Alexandru I. Cuza University , Iasi 700506 , Romania
| | - Alina Asandei
- Interdisciplinary Research Department , Alexandru I. Cuza University , Iasi 700506 , Romania
| | - Irina Schiopu
- Interdisciplinary Research Department , Alexandru I. Cuza University , Iasi 700506 , Romania
| | - Aurelia Apetrei
- Department of Physics , Alexandru I. Cuza University , Iasi 700506 , Romania
| | - Loredana Mereuta
- Department of Physics , Alexandru I. Cuza University , Iasi 700506 , Romania
| | - Chang Ho Seo
- Department of Bioinformatics , Kongju National University , Kongju 32588 , South Korea
| | - Yoonkyung Park
- Department of Biomedical Science and Research Center for Proteinaceous Materials (RCPM) , Chosun University , Gwangju 61452 , South Korea
| | - Tudor Luchian
- Department of Physics , Alexandru I. Cuza University , Iasi 700506 , Romania
| |
Collapse
|
15
|
Tian K, Chen X, Luan B, Singh P, Yang Z, Gates KS, Lin M, Mustapha A, Gu LQ. Single Locked Nucleic Acid-Enhanced Nanopore Genetic Discrimination of Pathogenic Serotypes and Cancer Driver Mutations. ACS NANO 2018; 12:4194-4205. [PMID: 29664612 PMCID: PMC6157732 DOI: 10.1021/acsnano.8b01198] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Accurate and rapid detection of single-nucleotide polymorphism (SNP) in pathogenic mutants is crucial for many fields such as food safety regulation and disease diagnostics. Current detection methods involve laborious sample preparations and expensive characterizations. Here, we investigated a single locked nucleic acid (LNA) approach, facilitated by a nanopore single-molecule sensor, to accurately determine SNPs for detection of Shiga toxin producing Escherichia coli (STEC) serotype O157:H7, and cancer-derived EGFR L858R and KRAS G12D driver mutations. Current LNA applications that require incorporation and optimization of multiple LNA nucleotides. But we found that in the nanopore system, a single LNA introduced in the probe is sufficient to enhance the SNP discrimination capability by over 10-fold, allowing accurate detection of the pathogenic mutant DNA mixed in a large amount of the wild-type DNA. Importantly, the molecular mechanistic study suggests that such a significant improvement is due to the effect of the single-LNA that both stabilizes the fully matched base-pair and destabilizes the mismatched base-pair. This sensitive method, with a simplified, low cost, easy-to-operate LNA design, could be generalized for various applications that need rapid and accurate identification of single-nucleotide variations.
Collapse
Affiliation(s)
- Kai Tian
- Department of Bioengineering and Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri 65211, United States
| | - Xiaowei Chen
- Food Science Program, Division of Food Systems and Bioengineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Binquan Luan
- Computational Biology Center, IBM Thomas J. Watson Research, Yorktown Heights, New York 10598, United States
| | - Prashant Singh
- Food Science Program, Division of Food Systems and Bioengineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Zhiyu Yang
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Kent S. Gates
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Mengshi Lin
- Food Science Program, Division of Food Systems and Bioengineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Azlin Mustapha
- Food Science Program, Division of Food Systems and Bioengineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Li-Qun Gu
- Department of Bioengineering and Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
16
|
Zeng T, Fleming AM, Ding Y, Ren H, White HS, Burrows CJ. Nanopore Analysis of the 5-Guanidinohydantoin to Iminoallantoin Isomerization in Duplex DNA. J Org Chem 2018; 83:3973-3978. [PMID: 29490132 DOI: 10.1021/acs.joc.8b00317] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In DNA, guanine oxidation yields diastereomers of 5-guanidinohydantoin (Gh) as one of the major products. In nucleosides and single-stranded DNA, Gh is in a pH-dependent equilibrium with its constitutional isomer iminoallantoin (Ia). Herein, the isomerization reaction between Gh and Ia was monitored in duplex DNA using a protein nanopore by measuring the ionic current when duplex DNA interacts with the pore under an electrophoretic force. Monitoring current levels in this single-molecule method proved to be superior for analysis of population distributions in an equilibrating mixture of four isomers in duplex DNA as a function of pH. The results identified Gh as a major isomer observed when base paired with A, C, or G at pH 6.4-8.4, and Ia was a minor isomer of the reaction mixture that was only observed when the pH was >7.4 in the duplex DNA context. The present results suggest that Gh will be the dominant isomer in duplex DNA under physiological conditions regardless of the base-pairing partner in the duplex.
Collapse
Affiliation(s)
- Tao Zeng
- Department of Chemistry , University of Utah , Salt Lake City , Utah 84112-0850 , United States
| | - Aaron M Fleming
- Department of Chemistry , University of Utah , Salt Lake City , Utah 84112-0850 , United States
| | - Yun Ding
- Department of Chemistry , University of Utah , Salt Lake City , Utah 84112-0850 , United States
| | - Hang Ren
- Department of Chemistry , University of Utah , Salt Lake City , Utah 84112-0850 , United States
| | - Henry S White
- Department of Chemistry , University of Utah , Salt Lake City , Utah 84112-0850 , United States
| | - Cynthia J Burrows
- Department of Chemistry , University of Utah , Salt Lake City , Utah 84112-0850 , United States
| |
Collapse
|
17
|
Wang Y, Tian K, Du X, Shi RC, Gu LQ. Remote Activation of a Nanopore for High-Performance Genetic Detection Using a pH Taxis-Mimicking Mechanism. Anal Chem 2017; 89:13039-13043. [PMID: 29183111 PMCID: PMC6174115 DOI: 10.1021/acs.analchem.7b03979] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Aerolysin protein pore has been widely used for sensing peptides and proteins. However, only a few groups explored this nanopore for nucleic acids detection. The challenge is the extremely low capture efficiency for nucleic acids (>10 bases), which severely lowers the sensitivity of an aerolysin-based genetic biosensor. Here we reported a simple and easy-to-operate approach to noncovalently transform aerolysin into a highly nucleic acids-sensitive nanopore. Through a remote pH-modulation mechanism, we simply lower the pH on one side of the pore, then aerolysin is immediately "activated" and enabled to capture target DNA/RNA efficiently from the opposite side of the pore. This mechanism also decelerates DNA translocation, a desired property for sequencing and gene detection, allowing temporal separation of DNAs in different lengths. This method provides insight into the nanopore engineering for biosensing, making aerolysin applicable in genetic and epigenetic detections of long nucleic acids.
Collapse
Affiliation(s)
- Yong Wang
- Virginia G. Piper Biodesign Center for Personalized Diagnostics, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Kai Tian
- Department of Bioengineering and Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri 65211, United States
| | - Xiao Du
- Department of Bioengineering and Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri 65211, United States
| | - Rui-Cheng Shi
- Department of Bioengineering and Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri 65211, United States
| | - Li-Qun Gu
- Department of Bioengineering and Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
18
|
Gu LQ, Gates KS, Wang MX, Li G. What is the potential of nanolock- and nanocross-nanopore technology in cancer diagnosis? Expert Rev Mol Diagn 2017; 18:113-117. [PMID: 29171309 DOI: 10.1080/14737159.2018.1410060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Li-Qun Gu
- a Department of Bioengineering and Dalton Cardiovascular Research Center , University of Missouri , Columbia , MO , USA
| | - Kent S Gates
- b Department of Chemistry and Department of Biochemistry , University of Missouri , Columbia , MO , USA
| | - Michael X Wang
- c Department of Pathology and Immunology , Washington University School of Medicine , St. Louis , MO , USA
| | - Guangfu Li
- d Department of Surgery and Ellis Fischel Cancer Center , University of Missouri , Columbia , MO , USA
| |
Collapse
|
19
|
Zhang X, Zhang D, Zhao C, Tian K, Shi R, Du X, Burcke AJ, Wang J, Chen SJ, Gu LQ. Nanopore electric snapshots of an RNA tertiary folding pathway. Nat Commun 2017; 8:1458. [PMID: 29133841 PMCID: PMC5684407 DOI: 10.1038/s41467-017-01588-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 09/29/2017] [Indexed: 12/22/2022] Open
Abstract
The chemical properties and biological mechanisms of RNAs are determined by their tertiary structures. Exploring the tertiary structure folding processes of RNA enables us to understand and control its biological functions. Here, we report a nanopore snapshot approach combined with coarse-grained molecular dynamics simulation and master equation analysis to elucidate the folding of an RNA pseudoknot structure. In this approach, single RNA molecules captured by the nanopore can freely fold from the unstructured state without constraint and can be programmed to terminate their folding process at different intermediates. By identifying the nanopore signatures and measuring their time-dependent populations, we can “visualize” a series of kinetically important intermediates, track the kinetics of their inter-conversions, and derive the RNA pseudoknot folding pathway. This approach can potentially be developed into a single-molecule toolbox to investigate the biophysical mechanisms of RNA folding and unfolding, its interactions with ligands, and its functions. While RNA folding is critical for its function, study of this process is challenging. Here, the authors combine nanopore single-molecule manipulation with theoretical analysis to follow the folding of an RNA pseudoknot, monitoring the intermediate states and the kinetics of their interconversion.
Collapse
Affiliation(s)
- Xinyue Zhang
- Department of Bioengineering, University of Missouri, Columbia, MO, 65211, USA.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, 65211, USA
| | - Dong Zhang
- Department of Physics, University of Missouri, Columbia, MO, 65211, USA
| | - Chenhan Zhao
- Department of Physics, University of Missouri, Columbia, MO, 65211, USA
| | - Kai Tian
- Department of Bioengineering, University of Missouri, Columbia, MO, 65211, USA.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, 65211, USA
| | - Ruicheng Shi
- Department of Bioengineering, University of Missouri, Columbia, MO, 65211, USA
| | - Xiao Du
- Department of Bioengineering, University of Missouri, Columbia, MO, 65211, USA
| | - Andrew J Burcke
- Department of Bioengineering, University of Missouri, Columbia, MO, 65211, USA
| | - Jing Wang
- Department of Bioengineering, University of Missouri, Columbia, MO, 65211, USA
| | - Shi-Jie Chen
- Department of Physics, University of Missouri, Columbia, MO, 65211, USA. .,Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA. .,Informatics Institute, University of Missouri, Columbia, MO, 65211, USA.
| | - Li-Qun Gu
- Department of Bioengineering, University of Missouri, Columbia, MO, 65211, USA. .,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
20
|
Yu J, Cao C, Long YT. Selective and Sensitive Detection of Methylcytosine by Aerolysin Nanopore under Serum Condition. Anal Chem 2017; 89:11685-11689. [DOI: 10.1021/acs.analchem.7b03133] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Jie Yu
- Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P.R. China
| | - Chan Cao
- Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P.R. China
| | - Yi-Tao Long
- Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P.R. China
| |
Collapse
|
21
|
Wang Y, Tian K, Shi R, Gu A, Pennella M, Alberts L, Gates KS, Li G, Fan H, Wang MX, Gu LQ. Nanolock-Nanopore Facilitated Digital Diagnostics of Cancer Driver Mutation in Tumor Tissue. ACS Sens 2017; 2:975-981. [PMID: 28750524 DOI: 10.1021/acssensors.7b00235] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Cancer driver mutations are clinically significant biomarkers. In precision medicine, accurate detection of these oncogenic changes in patients would enable early diagnostics of cancer, individually tailored targeted therapy, and precise monitoring of treatment response. Here we investigated a novel nanolock-nanopore method for single-molecule detection of a serine/threonine protein kinase gene BRAF V600E mutation in tumor tissues of thyroid cancer patients. The method lies in a noncovalent, mutation sequence-specific nanolock. We found that the nanolock formed on the mutant allele/probe duplex can separate the duplex dehybridization procedure into two sequential steps in the nanopore. Remarkably, this stepwise unzipping kinetics can produce a unique nanopore electric marker, with which a single DNA molecule of the cancer mutant allele can be unmistakably identified in various backgrounds of the normal wild-type allele. The single-molecule sensitivity for mutant allele enables both binary diagnostics and quantitative analysis of mutation occurrence. In the current configuration, the method can detect the BRAF V600E mutant DNA lower than 1% in the tumor tissues. The nanolock-nanopore method can be adapted to detect a broad spectrum of both transversion and transition DNA mutations, with applications from diagnostics to targeted therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hongxin Fan
- Department
of Pathology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, United States
| | | | | |
Collapse
|
22
|
Johnson RP, Fleming AM, Perera RT, Burrows CJ, White HS. Dynamics of a DNA Mismatch Site Held in Confinement Discriminate Epigenetic Modifications of Cytosine. J Am Chem Soc 2017; 139:2750-2756. [PMID: 28125225 DOI: 10.1021/jacs.6b12284] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The identification and discrimination of four epigenetic modifications to cytosine in the proposed active demethylation cycle is demonstrated at the single-molecule level, without the need for chemical pretreatment or labeling. The wild-type protein nanopore α-hemolysin is used to capture individual DNA duplexes containing a single cytosine-cytosine mismatch. The mismatch is held at the latch constriction of α-hemolysin, which is used to monitor the kinetics of base-flipping at the mismatch site. Base-flipping and the subsequent interactions between the DNA and the protein are dramatically altered when one of the cytosine bases is replaced with methyl-, hydroxymethyl-, formyl-, or carboxylcytosine. As well as providing a route to single-molecule analysis of important epigenetic markers in DNA, our results provide important insights into how the introduction of biologically relevant, but poorly understood, modifications to cytosine affect the local conformational dynamics of a DNA duplex in a confined environment.
Collapse
Affiliation(s)
- Robert P Johnson
- Department of Chemistry, University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Aaron M Fleming
- Department of Chemistry, University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Rukshan T Perera
- Department of Chemistry, University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Cynthia J Burrows
- Department of Chemistry, University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Henry S White
- Department of Chemistry, University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| |
Collapse
|
23
|
Perera RT, Fleming AM, Peterson AM, Heemstra JM, Burrows CJ, White HS. Unzipping of A-Form DNA-RNA, A-Form DNA-PNA, and B-Form DNA-DNA in the α-Hemolysin Nanopore. Biophys J 2016; 110:306-314. [PMID: 26789754 DOI: 10.1016/j.bpj.2015.11.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/03/2015] [Accepted: 11/16/2015] [Indexed: 01/04/2023] Open
Abstract
Unzipping of double-stranded nucleic acids by an electric field applied across a wild-type α-hemolysin (αHL) nanopore provides structural information about different duplex forms. In this work, comparative studies on A-form DNA-RNA duplexes and B-form DNA-DNA duplexes with a single-stranded tail identified significant differences in the blockage current and the unzipping duration between the two helical forms. We observed that the B-form duplex blocks the channel 1.9 ± 0.2 pA more and unzips ∼15-fold more slowly than an A-form duplex at 120 mV. We developed a model to describe the dependence of duplex unzipping on structure. We demonstrate that the wider A-form duplex (d = 2.4 nm) is unable to enter the vestibule opening of αHL on the cis side, leading to unzipping outside of the nanopore with higher residual current and faster unzipping times. In contrast, the smaller B-form duplexes (d = 2.0 nm) enter the vestibule of αHL, resulting in decreased current blockages and slower unzipping. We investigated the effects of varying the length of the single-stranded overhang, and studied A-form DNA-PNA duplexes to provide additional support for the proposed model. This study identifies key differences between A- and B-form duplex unzipping that will be important in the design of future probe-based methods for detecting DNA or RNA.
Collapse
Affiliation(s)
- Rukshan T Perera
- Department of Chemistry, University of Utah, Salt Lake City, Utah
| | - Aaron M Fleming
- Department of Chemistry, University of Utah, Salt Lake City, Utah
| | | | | | | | - Henry S White
- Department of Chemistry, University of Utah, Salt Lake City, Utah.
| |
Collapse
|
24
|
Johnson RP, Fleming AM, Beuth LR, Burrows CJ, White HS. Base Flipping within the α-Hemolysin Latch Allows Single-Molecule Identification of Mismatches in DNA. J Am Chem Soc 2016; 138:594-603. [PMID: 26704521 PMCID: PMC4828915 DOI: 10.1021/jacs.5b10710] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A method for identifying and differentiating DNA duplexes containing the mismatched base pairs CC and CA at single molecule resolution with the protein pore α-hemolysin (αHL) is presented. Unique modulating current signatures are observed for duplexes containing the CC and CA mismatches when the mismatch site in the duplex is situated in proximity to the latch constriction of αHL during DNA residence inside the pore. The frequency and current amplitude of the modulation states are dependent on the mismatch type (CC or CA) permitting easy discrimination of these mismatches from one another, and from a fully complementary duplex that exhibits no modulation. We attribute the modulating current signatures to base flipping and subsequent interaction with positively charged lysine residues at the latch constriction of αHL. Our hypothesis is supported by the extended residence times of DNA duplexes within the pore when a mismatch is in proximity to the latch constriction, and by the loss of the two-state current signature in low pH buffers (<6.3), where the protonation of one of the cytosine bases increases the stability of the intrahelical state.
Collapse
Affiliation(s)
- Robert P Johnson
- Department of Chemistry, University of Utah , 315 S. 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Aaron M Fleming
- Department of Chemistry, University of Utah , 315 S. 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Laura R Beuth
- Department of Chemistry, University of Utah , 315 S. 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Cynthia J Burrows
- Department of Chemistry, University of Utah , 315 S. 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Henry S White
- Department of Chemistry, University of Utah , 315 S. 1400 East, Salt Lake City, Utah 84112-0850, United States
| |
Collapse
|
25
|
Zhang X, Price NE, Fang X, Yang Z, Gu LQ, Gates KS. Characterization of Interstrand DNA-DNA Cross-Links Using the α-Hemolysin Protein Nanopore. ACS NANO 2015; 9:11812-9. [PMID: 26563913 PMCID: PMC4826734 DOI: 10.1021/acsnano.5b03923] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Nanopore-based sensors have been studied extensively as potential tools for DNA sequencing, characterization of epigenetic modifications such as 5-methylcytosine, and detection of microRNA biomarkers. In the studies described here, the α-hemolysin protein nanopore embedded in a lipid bilayer was used for the detection and characterization of interstrand cross-links in duplex DNA. Interstrand cross-links are important lesions in medicinal chemistry and toxicology because they prevent the strand separation that is required for read-out of genetic information from DNA in cells. In addition, interstrand cross-links are used for the stabilization of duplex DNA in structural biology and materials science. Cross-linked DNA fragments produced unmistakable current signatures in the nanopore experiment. Some cross-linked substrates gave irreversible current blocks of >10 min, while others produced long current blocks (10-100 s) before the double-stranded DNA cross-link translocated through the α-hemolysin channel in a voltage-driven manner. The duration of the current block for the different cross-linked substrates examined here may be dictated by the stability of the duplex region left in the vestibule of the nanopore following partial unzipping of the cross-linked DNA. Construction of calibration curves measuring the frequency of cross-link blocking events (1/τon) as a function of cross-link concentration enabled quantitative determination of the amounts of cross-linked DNA present in samples. The unique current signatures generated by cross-linked DNA in the α-HL nanopore may enable the detection and characterization of DNA cross-links that are important in toxicology, medicine, and materials science.
Collapse
Affiliation(s)
- Xinyue Zhang
- University of Missouri, Department of Bioengineering and Dalton Cardiovascular Research Center, Columbia, MO 65211
| | - Nathan E. Price
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211
| | - Xi Fang
- University of Missouri, Department of Bioengineering and Dalton Cardiovascular Research Center, Columbia, MO 65211
| | - Zhiyu Yang
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211
| | - Li-Qun Gu
- University of Missouri, Department of Bioengineering and Dalton Cardiovascular Research Center, Columbia, MO 65211
- Address correspondence to: ; phone: (573) 882-6763 and ; phone: (573) 882-2057
| | - Kent S. Gates
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211
- University of Missouri, Department of Biochemistry, Columbia, MO 65211
- Address correspondence to: ; phone: (573) 882-6763 and ; phone: (573) 882-2057
| |
Collapse
|
26
|
Ding Y, Fleming AM, White HS, Burrows CJ. Differentiation of G:C vs A:T and G:C vs G:mC Base Pairs in the Latch Zone of α-Hemolysin. ACS NANO 2015; 9:11325-32. [PMID: 26506108 PMCID: PMC4876701 DOI: 10.1021/acsnano.5b05055] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The α-hemolysin (α-HL) nanopore can detect DNA strands under an electrophoretic force via many regions of the channel. Our laboratories previously demonstrated that trapping duplex DNA in the vestibule of wild-type α-HL under force could distinguish the presence of an abasic site compared to a G:C base pair positioned in the latch zone at the top of the vestibule. Herein, a series of duplexes were probed in the latch zone to establish if this region can detect more subtle features of base pairs beyond the complete absence of a base. The results of these studies demonstrate that the most sensitive region of the latch can readily discriminate duplexes in which one G:C base pair is replaced by an A:T. Additional experiments determined that while neither 8-oxo-7,8-dihydroguanine nor 7-deazaguanine opposite C could be differentiated from a G:C base pair, in contrast, the epigenetic marker 5-methylcytosine, when present in both strands of the duplex, yielded new blocking currents when compared to strands with unmodified cytosine. The results are discussed with respect to experimental design for utilization of the latch zone of α-HL to probe specific regions of genomic samples.
Collapse
Affiliation(s)
| | | | - Henry S. White
- To whom correspondence should be addressed: Telephone: (801) 585-7290 or (801) 585-6256, or
| | - Cynthia J. Burrows
- To whom correspondence should be addressed: Telephone: (801) 585-7290 or (801) 585-6256, or
| |
Collapse
|
27
|
Dairaku T, Furuita K, Sato H, Kondo Y, Kojima C, Ono A, Tanaka Y. Exploring a DNA Sequence for the Three-Dimensional Structure Determination of a Silver(I)-Mediated C-C Base Pair in a DNA Duplex By (1)H NMR Spectroscopy. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2015; 34:877-900. [PMID: 26576739 DOI: 10.1080/15257770.2015.1088160] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recently, we discovered novel silver(I)-mediated cytosine-cytosine base pair (C-Ag(I)-C) in DNA duplexes. To understand the properties of these base pairs, we searched for a DNA sequence that can be used in NMR structure determination. After extensive sequence optimizations, a non-symmetric 15-base-paired DNA duplex with a single C-Ag(I)-C base pair flanked by 14 A-T base pairs was selected. In spite of its challenging length for NMR measurements (30 independent residues) with small sequence variation, we could assign most non-exchangeable protons (254 out of 270) and imino protons for structure determination.
Collapse
Affiliation(s)
- Takenori Dairaku
- a Graduate School of Pharmaceutical Sciences, Tohoku University, Aobayama, Aoba-ku , Sendai , Miyagi , Japan
| | - Kyoko Furuita
- b Institute for Protein Research, Osaka University , Suita , Osaka , Japan
| | - Hajime Sato
- c Bruker BioSpin K.K. , Yokohama , Kanagawa , Japan
| | - Yoshinori Kondo
- a Graduate School of Pharmaceutical Sciences, Tohoku University, Aobayama, Aoba-ku , Sendai , Miyagi , Japan
| | - Chojiro Kojima
- b Institute for Protein Research, Osaka University , Suita , Osaka , Japan
| | - Akira Ono
- d Department of Material & Life Chemistry , Kangawa University, Kanagawa-ku , Yokohama , Kanagawa , Japan
| | - Yoshiyuki Tanaka
- a Graduate School of Pharmaceutical Sciences, Tohoku University, Aobayama, Aoba-ku , Sendai , Miyagi , Japan.,e Laboratory of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University , Yamashiro-cho , Tokushima , Japan
| |
Collapse
|
28
|
Wang Y, Gu LQ. Biomedical diagnosis perspective of epigenetic detections using alpha-hemolysin nanopore. AIMS MATERIALS SCIENCE 2015; 2:448-472. [PMID: 30931380 PMCID: PMC6436813 DOI: 10.3934/matersci.2015.4.448] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The α-hemolysin nanopore has been studied for applications in DNA sequencing, various single-molecule detections, biomolecular interactions, and biochips. The detection of single molecules in a clinical setting could dramatically improve cancer detection and diagnosis as well as develop personalized medicine practices for patients. This brief review shortly presents the current solid state and protein nanopore platforms and their applications like biosensing and sequencing. We then elaborate on various epigenetic detections (like microRNA, G-quadruplex, DNA damages, DNA modifications) with the most widely used alpha-hemolysin pore from a biomedical diagnosis perspective. In these detections, a nanopore electrical current signature was generated by the interaction of a target with the pore. The signature often was evidenced by the difference in the event duration, current level, or both of them. An ideal signature would provide obvious differences in the nanopore signals between the target and the background molecules. The development of cancer biomarker detection techniques and nanopore devices have the potential to advance clinical research and resolve health problems. However, several challenges arise in applying nanopore devices to clinical studies, including super low physiological concentrations of biomarkers resulting in low sensitivity, complex biological sample contents resulting in false signals, and fast translocating speed through the pore resulting in poor detections. These issues and possible solutions are discussed.
Collapse
Affiliation(s)
- Yong Wang
- Department of Biological Engineering, Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - Li-qun Gu
- Department of Biological Engineering, Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, MO 65211, USA
| |
Collapse
|
29
|
Zhu D, Chao J, Pei H, Zuo X, Huang Q, Wang L, Huang W, Fan C. Coordination-mediated programmable assembly of unmodified oligonucleotides on plasmonic silver nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2015; 7:11047-11052. [PMID: 25899209 DOI: 10.1021/acsami.5b03066] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
DNA-decorated metal nanoparticles have found numerous applications, most of which rely on thiolated DNA (SH-DNA)-modified gold nanoparticles (AuNPs). Whereas silver nanoparticles (AgNPs) are known to have stronger plasmonic properties than AuNPs, modification of AgNPs with SH-DNA is technically challenging, partially due to the instability of Ag-S bonding. Here we demonstrate a facile approach to self-assemble unmodified DNA on AgNPs by exploiting intrinsic silver-cytosine (Ag-C) coordination. The strong Ag-C coordination allows for the ready formation of DNA-AgNP conjugates, which show favorable stability under conditions of high ionic strength and high temperature. These nanoconjugates possess much higher efficient molecular recognition capability and faster hybridization kinetics than thiolated DNA-modified AgNPs. More importantly, we could programmably tune the DNA density on AgNPs with the regulation of silver-cytosine coordination numbers, which in turn modulated their hybridizability. We further demonstrated that these DNA-AgNP conjugates could serve as excellent building blocks for assembling silver and hybrid silver-gold nanostructures with superior plasmonic properties.
Collapse
|
30
|
Wang Y, Montana V, Grubišić V, Stout RF, Parpura V, Gu LQ. Nanopore sensing of botulinum toxin type B by discriminating an enzymatically cleaved Peptide from a synaptic protein synaptobrevin 2 derivative. ACS APPLIED MATERIALS & INTERFACES 2015; 7:184-92. [PMID: 25511125 PMCID: PMC4296922 DOI: 10.1021/am5056596] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Botulinum neurotoxins (BoNTs) are the most lethal toxin known to human. Biodefense requires early and rapid detection of BoNTs. Traditionally, BoNTs can be detected by looking for signs of botulism in mice that receive an injection of human material, serum or stool. While the living animal assay remains the most sensitive approach, it is costly, slow and associated with legal and ethical constrains. Various biochemical, optical and mechanical methods have been developed for BoNTs detection with improved speed, but with lesser sensitivity. Here, we report a novel nanopore-based BoNT type B (BoNT-B) sensor that monitors the toxin's enzymatic activity on its substrate, a recombinant synaptic protein synaptobrevin 2 derivative. By analyzing the modulation of the pore current caused by the specific BoNT-B-digested peptide as a marker, the presence of BoNT-B at a subnanomolar concentration was identified within minutes. The nanopore detector would fill the niche for a much needed rapid and highly sensitive detection of neurotoxins, and provide an excellent system to explore biophysical mechanisms for biopolymer transportation.
Collapse
Affiliation(s)
- Yong Wang
- Department
of Bioengineering and Dalton Cardiovascular Research
Center, University of Missouri, Columbia, Missouri 65211, United States
- Dr. Yong Wang. E-mail:
| | - Vedrana Montana
- Department
of Neurobiology, Center for Glial Biology in Medicine,
Atomic Force Microscopy & Nanotechnology Laboratories, Civitan
International Research Center, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| | - Vladimir Grubišić
- Department
of Neurobiology, Center for Glial Biology in Medicine,
Atomic Force Microscopy & Nanotechnology Laboratories, Civitan
International Research Center, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Randy F. Stout
- Department
of Neurobiology, Center for Glial Biology in Medicine,
Atomic Force Microscopy & Nanotechnology Laboratories, Civitan
International Research Center, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
- Department of Neuroscience, Albert Einstein
College of Medicine, Bronx, New
York, New York 10461, United States
| | - Vladimir Parpura
- Department
of Neurobiology, Center for Glial Biology in Medicine,
Atomic Force Microscopy & Nanotechnology Laboratories, Civitan
International Research Center, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
- Dr. Vladimir Parpura.
E-mail:
| | - Li-Qun Gu
- Department
of Bioengineering and Dalton Cardiovascular Research
Center, University of Missouri, Columbia, Missouri 65211, United States
- Dr. Li-Qun Gu. E-mail:
| |
Collapse
|
31
|
Wang Y, Ritzo B, Gu LQ. Silver(I) ions modulate the stability of DNA duplexes containing cytosine, methylcytosine and hydroxymethylcytosine at different salt concentrations. RSC Adv 2014; 5:2655-2658. [PMID: 31007904 DOI: 10.1039/c4ra14490b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Silver(I) ions can stabilize cytosine-cytosine, cytosine (C)-methylcytosine (5mC) and cytosine-hydroxymethylcytosine (5hmC) mismatched-base pairs. While cytosine modifications regulate DNA stability to regulate cellular functions, silver ions can modulate the stability of C-C, C-5mC and C-5hmC containing DNA duplexes in a salt concentration dependent manner.
Collapse
Affiliation(s)
- Yong Wang
- Department of Biological Engineering, University of Missouri, 134 research park, Columbia, MO 65211, USA. ; Tel: +1 573 8822086
| | - Brandon Ritzo
- Department of Biological Engineering, University of Missouri, 134 research park, Columbia, MO 65211, USA. ; Tel: +1 573 8822086
| | - Li-Qun Gu
- Department of Biological Engineering, University of Missouri, 134 research park, Columbia, MO 65211, USA. ; Tel: +1 573 8822086
| |
Collapse
|