1
|
Li T, Li F, Lin J, Zhang Y, Zhang Q, Sun Y, Chen X, Xu M, Wang X, Li Q. Deletion of c16orf45 in zebrafish results in a low fertilization rate and increased thigmotaxis. Dev Psychobiol 2020; 62:1003-1010. [PMID: 32421859 DOI: 10.1002/dev.21984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/28/2020] [Accepted: 04/13/2020] [Indexed: 11/06/2022]
Abstract
c16orf45 is located at 16p13.11, an important locus related to neurodevelopmental diseases. Clinical studies have demonstrated that c16orf45 is associated with various neurodevelopmental diseases. To further elucidate the effect of c16orf45 on neural development, we constructed a zebrafish model with a stably inherited c16orf45 deletion via CRISPR/Cas9 technology. We found that deletion of c16orf45 significantly reduced the zebrafish fertilization rate, and both females and males showed reduced fertility. Meanwhile, the homozygous c16orf45 knockout zebrafish showed a developmental delay at 24 hr postfertilization (hpf). However, morphological changes were not apparent after 2 days postfertilization (dpf). Notably, the results of behavioral experiments revealed increased thigmotaxis in c16orf45- / - zebrafish at 2 months. In conclusion, these findings demonstrate that c16orf45 plays an important role in nervous system and reproductive system.
Collapse
Affiliation(s)
- Tingting Li
- Translational Medical Center for Developmental and Disease, Shanghai Key Laboratory of Birth Defect, Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai, China
| | - Fei Li
- Translational Medical Center for Developmental and Disease, Shanghai Key Laboratory of Birth Defect, Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai, China
| | - Jia Lin
- Translational Medical Center for Developmental and Disease, Shanghai Key Laboratory of Birth Defect, Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai, China
| | - Yinglan Zhang
- Translational Medical Center for Developmental and Disease, Shanghai Key Laboratory of Birth Defect, Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai, China
| | - Qi Zhang
- Translational Medical Center for Developmental and Disease, Shanghai Key Laboratory of Birth Defect, Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai, China
| | - Yanhe Sun
- Translational Medical Center for Developmental and Disease, Shanghai Key Laboratory of Birth Defect, Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai, China
| | - Xudong Chen
- Translational Medical Center for Developmental and Disease, Shanghai Key Laboratory of Birth Defect, Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai, China
| | - Mingqing Xu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xu Wang
- Cancer Metabolism Laboratory, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Qiang Li
- Translational Medical Center for Developmental and Disease, Shanghai Key Laboratory of Birth Defect, Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
2
|
Sugino K, Clark E, Schulmann A, Shima Y, Wang L, Hunt DL, Hooks BM, Tränkner D, Chandrashekar J, Picard S, Lemire AL, Spruston N, Hantman AW, Nelson SB. Mapping the transcriptional diversity of genetically and anatomically defined cell populations in the mouse brain. eLife 2019; 8:38619. [PMID: 30977723 PMCID: PMC6499542 DOI: 10.7554/elife.38619] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 04/11/2019] [Indexed: 01/27/2023] Open
Abstract
Understanding the principles governing neuronal diversity is a fundamental goal for neuroscience. Here, we provide an anatomical and transcriptomic database of nearly 200 genetically identified cell populations. By separately analyzing the robustness and pattern of expression differences across these cell populations, we identify two gene classes contributing distinctly to neuronal diversity. Short homeobox transcription factors distinguish neuronal populations combinatorially, and exhibit extremely low transcriptional noise, enabling highly robust expression differences. Long neuronal effector genes, such as channels and cell adhesion molecules, contribute disproportionately to neuronal diversity, based on their patterns rather than robustness of expression differences. By linking transcriptional identity to genetic strains and anatomical atlases, we provide an extensive resource for further investigation of mouse neuronal cell types.
Collapse
Affiliation(s)
- Ken Sugino
- Janelia Research CampusAshburnUnited States
| | | | | | | | - Lihua Wang
- Janelia Research CampusAshburnUnited States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Abstract
Protein function can be regulated via post-translational modifications by numerous enzymatic and non-enzymatic mechanisms, including oxidation of cysteine and methionine residues. Redox-dependent regulatory mechanisms have been identified for nearly every cellular process, but the major paradigm has been that cellular components are oxidized (damaged) by reactive oxygen species (ROS) in a relatively unspecific way, and then reduced (repaired) by designated reductases. While this scheme may work with cysteine, it cannot be ascribed to other residues, such as methionine, whose reaction with ROS is too slow to be biologically relevant. However, methionine is clearly oxidized in vivo and enzymes for its stereoselective reduction are present in all three domains of life. Here, we revisit the chemistry and biology of methionine oxidation, with emphasis on its generation by enzymes from the monooxygenase family. Particular attention is placed on MICALs, a recently discovered family of proteins that harbor an unusual flavin-monooxygenase domain with an NADPH-dependent methionine sulfoxidase activity. Based on structural and kinetic information we provide a rational framework to explain MICAL mechanism, inhibition, and regulation. Methionine residues that are targeted by MICALs are reduced back by methionine sulfoxide reductases, suggesting that reversible methionine oxidation may be a general mechanism analogous to the regulation by phosphorylation by kinases/phosphatases. The identification of new enzymes that catalyze the oxidation of methionine will open a new area of research at the forefront of redox signaling.
Collapse
Affiliation(s)
- Bruno Manta
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Vadim N Gladyshev
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
4
|
Kanemitsu Y, Fujitani M, Fujita Y, Zhang S, Su YQ, Kawahara Y, Yamashita T. The RNA-binding protein MARF1 promotes cortical neurogenesis through its RNase activity domain. Sci Rep 2017; 7:1155. [PMID: 28442784 PMCID: PMC5430739 DOI: 10.1038/s41598-017-01317-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 03/27/2017] [Indexed: 01/14/2023] Open
Abstract
Cortical neurogenesis is a fundamental process of brain development that is spatiotemporally regulated by both intrinsic and extrinsic cues. Although recent evidence has highlighted the significance of transcription factors in cortical neurogenesis, little is known regarding the role of RNA-binding proteins (RBPs) in the post-transcriptional regulation of cortical neurogenesis. Here, we report that meiosis arrest female 1 (MARF1) is an RBP that is expressed during neuronal differentiation. Cortical neurons expressed the somatic form of MARF1 (sMARF1) but not the oocyte form (oMARF1). sMARF1 was enriched in embryonic brains, and its expression level decreased as brain development progressed. Overexpression of sMARF1 in E12.5 neuronal progenitor cells promoted neuronal differentiation, whereas sMARF1 knockdown decreased neuronal progenitor differentiation in vitro. We also examined the function of sMARF1 in vivo using an in utero electroporation technique. Overexpression of sMARF1 increased neuronal differentiation, whereas knockdown of sMARF1 inhibited differentiation in vivo. Moreover, using an RNase domain deletion mutant of sMARF1, we showed that the RNase domain is required for the effects of sMARF1 on cortical neurogenesis in vitro. Our results further elucidate the mechanisms of post-transcriptional regulation of cortical neurogenesis by RBPs.
Collapse
Affiliation(s)
- Yoshitaka Kanemitsu
- Department of Molecular Neuroscience, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Interdisciplinary Program for Biomedical Sciences, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Masashi Fujitani
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan. .,Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0872, Japan. .,Department of Anatomy and Neuroscience, Hyogo College of Medicine, 1-1, Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan.
| | - Yuki Fujita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Suxiang Zhang
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - You-Qiang Su
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, Jiangsu Province, China
| | - Yukio Kawahara
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan. .,Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
5
|
A chromosome 16p13.11 microduplication causes hyperactivity through dysregulation of miR-484/protocadherin-19 signaling. Mol Psychiatry 2017; 22:364-374. [PMID: 27378146 PMCID: PMC5322274 DOI: 10.1038/mp.2016.106] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 05/18/2016] [Accepted: 05/23/2016] [Indexed: 12/17/2022]
Abstract
Chromosome 16p13.11 microduplication is a risk factor associated with various neurodevelopmental disorders such as attention-deficit/hyperactivity disorder, intellectual disabilities, developmental delay and autistic spectrum disorder. The underlying molecular mechanism of this genetic variation remained unknown, but its core genetic locus-conserved across mice and humans-contains seven genes. Here, we generated bacterial artificial chromosome-transgenic mice carrying a human 16p13.11 locus, and these mice showed the behavioral hyperactivity phenotype. We identified miR-484 as the responsible gene using a combination of expression and functional analyses. Mature miR-484 was expressed during active cortical neurogenesis, and overexpression of miR-484 decreased proliferation and increased neural progenitor differentiation in vivo. Luciferase screening identified the 3'-untranslated region of protocadherin-19 (Pcdh19) as a target of miR-484. The effect of miR-484 on neurogenesis was rescued by ectopic PCDH19 expression. These results demonstrate that miR-484 promotes neurogenesis by inhibiting PCDH19. Dysregulation of neurogenesis by imbalanced miR-484/PCDH19 expression contributes to the pathogenesis of 16p13.11 microduplication syndrome.
Collapse
|
6
|
Analysis of gene expression in the nervous system identifies key genes and novel candidates for health and disease. Neurogenetics 2017; 18:81-95. [PMID: 28190221 PMCID: PMC5359387 DOI: 10.1007/s10048-017-0509-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 01/20/2017] [Indexed: 01/09/2023]
Abstract
The incidence of neurodegenerative diseases in the developed world has risen over the last century, concomitant with an increase in average human lifespan. A major challenge is therefore to identify genes that control neuronal health and viability with a view to enhancing neuronal health during ageing and reducing the burden of neurodegeneration. Analysis of gene expression data has recently been used to infer gene functions for a range of tissues from co-expression networks. We have now applied this approach to transcriptomic datasets from the mammalian nervous system available in the public domain. We have defined the genes critical for influencing neuronal health and disease in different neurological cell types and brain regions. The functional contribution of genes in each co-expression cluster was validated using human disease and knockout mouse phenotypes, pathways and gene ontology term annotation. Additionally a number of poorly annotated genes were implicated by this approach in nervous system function. Exploiting gene expression data available in the public domain allowed us to validate key nervous system genes and, importantly, to identify additional genes with minimal functional annotation but with the same expression pattern. These genes are thus novel candidates for a role in neurological health and disease and could now be further investigated to confirm their function and regulation during ageing and neurodegeneration.
Collapse
|
7
|
Hamasaki H, Fujitani M, Yamashita T. NME2 associates with PTPσ to transduce signals from chondroitin sulfate proteoglycans. Biochem Biophys Res Commun 2016; 471:522-7. [PMID: 26896769 DOI: 10.1016/j.bbrc.2016.02.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 02/11/2016] [Indexed: 11/18/2022]
Abstract
Chondroitin sulfate proteoglycans (CSPGs) are a major component of glial scars, inhibiting axonal growth in the central nervous system. Protein tyrosine phosphatase, receptor type S (PTPσ) has been identified as a receptor for CSPGs, whereas its downstream signaling pathway remains to be fully understood. Here, we report that nucleoside diphosphate kinase 2 (NME2) interacts with PTPσ. We screened proteins associated with PTPσ by mass spectrometry, and obtained NME2. Immunoprecipitation analysis revealed that NME2 associated with the PTPσ intracellular domain in HEK-293T cells. NME2 was expressed in the cytoplasm and nucleus of cortical neurons, and knockdown of NME2 in the cortical neurons completely rescued neurite outgrowth inhibition induced by CSPGs. These results demonstrate that NME2 associates with PTPσ to elicit neurite outgrowth inhibition in response to CSPGs.
Collapse
Affiliation(s)
- Hajime Hamasaki
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan; JST, CREST, 5, Sanbancho, Chiyoda-ku, Tokyo, 102-0075, Japan; Faculty of Medicine, MD Scientist Training Program, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0872, Japan
| | - Masashi Fujitani
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan; JST, CREST, 5, Sanbancho, Chiyoda-ku, Tokyo, 102-0075, Japan; Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0872, Japan; Department of Anatomy and Neuroscience, Hyogo College of Medicine, 1-1, Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan.
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan; JST, CREST, 5, Sanbancho, Chiyoda-ku, Tokyo, 102-0075, Japan.
| |
Collapse
|