1
|
Rodríguez-Palma EJ, Loya-Lopez S, Allen K, Cruz-Almeida Y, Khanna R. The contribution of clock genes BMAL1 and PER2 in osteoarthritis-associated pain. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2025; 17:100177. [PMID: 39850977 PMCID: PMC11754085 DOI: 10.1016/j.ynpai.2024.100177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/14/2024] [Accepted: 12/14/2024] [Indexed: 01/25/2025]
Abstract
Joint pain is the primary symptom of osteoarthritis (OA) and the main motivator for patients to seek medical care. OA-related pain significantly restricts joint function and diminishes quality of life. Despite the availability of various pain-relieving medications for OA, current treatment strategies often fall short in delivering adequate pain relief. Furthermore, long-term use of pain medications for OA management is frequently linked with notable side effects and toxicities, suggesting the need to explore new potential targets to treat pain in OA patients. In this context, clock genes, particularly brain and muscle aryl hydrocarbon receptor nuclear translocator-like 1 (BMAL1) and period circadian protein homolog 2 (PER2), known for their role in circadian rhythms, represent promising opportunities for pharmacological interventions due to their involvement in both the development and maintenance of OA pain. While BMAL1 and PER2 have been extensively studied in neuropathic and inflammatory pain, their specific contributions to OA pain remain less clear, demanding further investigation. This narrative review aims to synthesize the relationship between OA pain and the BMAL1 and PER2 signaling pathways, ultimately exploring the potential therapeutic role of clock genes in addressing this challenging condition.
Collapse
Affiliation(s)
- Erick J. Rodríguez-Palma
- Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Santiago Loya-Lopez
- Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Kyle Allen
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA
- Pain Research & Intervention Center of Excellence (PRICE), University of Florida, Gainesville, FL, USA
- Pain Research and Integrated Neuroscience Center (PRINC), College of Medicine, University of Florida, Gainesville, FL, USA
| | - Yenisel Cruz-Almeida
- Pain Research & Intervention Center of Excellence (PRICE), University of Florida, Gainesville, FL, USA
- Pain Research and Integrated Neuroscience Center (PRINC), College of Medicine, University of Florida, Gainesville, FL, USA
| | - Rajesh Khanna
- Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, FL, USA
- Pain Research & Intervention Center of Excellence (PRICE), University of Florida, Gainesville, FL, USA
- Pain Research and Integrated Neuroscience Center (PRINC), College of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
2
|
Janoski JR, Aiello I, Lundberg CW, Finkielstein CV. Circadian clock gene polymorphisms implicated in human pathologies. Trends Genet 2024; 40:834-852. [PMID: 38871615 DOI: 10.1016/j.tig.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 06/15/2024]
Abstract
Circadian rhythms, ~24 h cycles of physiological and behavioral processes, can be synchronized by external signals (e.g., light) and persist even in their absence. Consequently, dysregulation of circadian rhythms adversely affects the well-being of the organism. This timekeeping system is generated and sustained by a genetically encoded endogenous mechanism composed of interlocking transcriptional/translational feedback loops that generate rhythmic expression of core clock genes. Genome-wide association studies (GWAS) and forward genetic studies show that SNPs in clock genes influence gene regulation and correlate with the risk of developing various conditions. We discuss genetic variations in core clock genes that are associated with various phenotypes, their implications for human health, and stress the need for thorough studies in this domain of circadian regulation.
Collapse
Affiliation(s)
- Jesse R Janoski
- Integrated Cellular Responses Laboratory, Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA; Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Ignacio Aiello
- Integrated Cellular Responses Laboratory, Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA
| | - Clayton W Lundberg
- Integrated Cellular Responses Laboratory, Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA; Academy of Integrated Sciences, College of Science, Virginia Tech, Blacksburg, VA, USA
| | - Carla V Finkielstein
- Integrated Cellular Responses Laboratory, Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA; Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA; Molecular Diagnostics Laboratory, Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA; Academy of Integrated Sciences, College of Science, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
3
|
Zou X, Ptáček LJ, Fu YH. The Genetics of Human Sleep and Sleep Disorders. Annu Rev Genomics Hum Genet 2024; 25:259-285. [PMID: 38669479 DOI: 10.1146/annurev-genom-121222-120306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Healthy sleep is vital for humans to achieve optimal health and longevity. Poor sleep and sleep disorders are strongly associated with increased morbidity and mortality. However, the importance of good sleep continues to be underrecognized. Mechanisms regulating sleep and its functions in humans remain mostly unclear even after decades of dedicated research. Advancements in gene sequencing techniques and computational methodologies have paved the way for various genetic analysis approaches, which have provided some insights into human sleep genetics. This review summarizes our current knowledge of the genetic basis underlying human sleep traits and sleep disorders. We also highlight the use of animal models to validate genetic findings from human sleep studies and discuss potential molecular mechanisms and signaling pathways involved in the regulation of human sleep.
Collapse
Affiliation(s)
- Xianlin Zou
- Department of Neurology, University of California, San Francisco, California, USA; , ,
| | - Louis J Ptáček
- Department of Neurology, University of California, San Francisco, California, USA; , ,
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, California, USA
- Weill Institute for Neurosciences, University of California, San Francisco, California, USA
- Institute of Human Genetics, University of California, San Francisco, California, USA
| | - Ying-Hui Fu
- Institute of Human Genetics, University of California, San Francisco, California, USA
- Department of Neurology, University of California, San Francisco, California, USA; , ,
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, California, USA
- Weill Institute for Neurosciences, University of California, San Francisco, California, USA
| |
Collapse
|
4
|
Mao B, Xie Z, Liu M, Gong Y, Wang H, Yang S, Liao M, Xiao T, Tang S, Wang Y, Yang YD. Associations of chronotype with anxiety, depression and insomnia among general adult population: A cross-sectional study in Hubei, China. J Affect Disord 2024; 351:250-258. [PMID: 38280566 DOI: 10.1016/j.jad.2024.01.188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 01/06/2024] [Accepted: 01/18/2024] [Indexed: 01/29/2024]
Abstract
BACKGROUND The relationship between chronotype and anxiety, depression, and insomnia was inconsistent. We aimed to assess the association between chronotype and mental health and the potential moderating effect of age and socioeconomic status (SES). METHODS A multi-stage sampling cross-sectional study with 12,544 adults was conducted. Chronotype, anxiety, depression, and insomnia were investigated by 5-item Morning and Evening, 7-item Generalized Anxiety Disorder, 9-item Patient Health, and the 7-item Insomnia Severity Index Questionnaires. Logistic regression was conducted. RESULTS The predominant chronotype was morning chronotype (69.2 %), followed by 27.6 % intermediate and 3.2 % evening chronotype. The prevalence of anxiety, depression, and insomnia was 0.7 %, 1.9 %, and 9.6 %, respectively. Compared with intermediate chronotype, morning chronotype participants had a lower risk of anxiety (OR = 0.28,95%CI:0.18-0.44), depression (OR = 0.54,95%CI:0.41-0.72) and insomnia (OR = 0.67,95%CI:0.58-0.77), while evening chronotype participants had a higher risk of depression (OR = 1.98,95%CI:1.06-3.71) but not anxiety or insomnia. Interactions between chronotype with age and SES on insomnia (Pinteraction < 0.05) were found. A more profound association between morning chronotype and insomnia was observed in <65 years participants (OR = 0.59,95%CI:0.50-0.71) and those with monthly household income ≥10,000yuan (OR = 0.21,95%CI:0.12-0.35), compared with their counterparts. LIMITATIONS The cross-sectional design limited causal conclusions. Only adults were included; the findings could not be generalized to children. CONCLUSIONS The morning chronotype might be protective for anxiety, depression, and insomnia, while the evening chronotype might be a risk factor for depression. Future studies are needed to assess the efficacy of chronotype-focused intervention for mental health. Insomnia prevention efforts should pay more attention to the elderly and those with lower incomes.
Collapse
Affiliation(s)
- Bin Mao
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410081, China
| | - Zhongliang Xie
- Department of Psychiatry, Honghu Mental Health Center, Shimatou Street 126, Honghu, Jingzhou 434021, China
| | - Mengjiao Liu
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Yue Gong
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410081, China
| | - Huicai Wang
- Department of Psychiatry, Honghu Mental Health Center, Shimatou Street 126, Honghu, Jingzhou 434021, China
| | - Shuwang Yang
- Institute of Chronic Non-Communicable Disease Control and Prevention, Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, China
| | - Ming Liao
- Department of Psychiatry, Honghu Mental Health Center, Shimatou Street 126, Honghu, Jingzhou 434021, China
| | - Tianli Xiao
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410081, China
| | - Shiming Tang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ying Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Yi-De Yang
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410081, China..
| |
Collapse
|
5
|
Gubin D. Chronotherapeutic Approaches. CHRONOBIOLOGY AND CHRONOMEDICINE 2024:536-577. [DOI: 10.1039/bk9781839167553-00536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
Abstract
The chapter provides a comprehensive review of current approaches to personalized chronodiagnosis and chronotherapy. We discuss circadian clock drug targets that aim to affect cellular clock machinery, circadian mechanisms of pharmacokinetics/pharmacodynamics, and chronotherapeutic approaches aimed at increasing treatment efficacy and minimizing its side effects. We explore how chronotherapy can combat acquired and compensatory drug resistance. Non-pharmacological interventions for clock preservation and enhancement are also overviewed, including light treatment, melatonin, sleep scheduling, time-restricted feeding, physical activity, and exercise.
Collapse
Affiliation(s)
- Denis Gubin
- aTyumen State Medical University, Tyumen, Russia
- bTyumen Cardiology Research Center, Tomsk National Research Medical Center, Russian Academy of Science, Tomsk, Russia
| |
Collapse
|
6
|
Lévi FA, Okyar A, Hadadi E, Innominato PF, Ballesta A. Circadian Regulation of Drug Responses: Toward Sex-Specific and Personalized Chronotherapy. Annu Rev Pharmacol Toxicol 2024; 64:89-114. [PMID: 37722720 DOI: 10.1146/annurev-pharmtox-051920-095416] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Today's challenge for precision medicine involves the integration of the impact of molecular clocks on drug pharmacokinetics, toxicity, and efficacy toward personalized chronotherapy. Meaningful improvements of tolerability and/or efficacy of medications through proper administration timing have been confirmed over the past decade for immunotherapy and chemotherapy against cancer, as well as for commonly used pharmacological agents in cardiovascular, metabolic, inflammatory, and neurological conditions. Experimental and human studies have recently revealed sexually dimorphic circadian drug responses. Dedicated randomized clinical trials should now aim to issue personalized circadian timing recommendations for daily medical practice, integrating innovative technologies for remote longitudinal monitoring of circadian metrics, statistical prediction of molecular clock function from single-timepoint biopsies, and multiscale biorhythmic mathematical modelling. Importantly, chronofit patients with a robust circadian function, who would benefit most from personalized chronotherapy, need to be identified. Conversely, nonchronofit patients could benefit from the emerging pharmacological class of chronobiotics targeting the circadian clock.
Collapse
Affiliation(s)
- Francis A Lévi
- Chronotherapy, Cancers and Transplantation Research Unit, Faculty of Medicine, Paris-Saclay University, Villejuif, France;
- Gastrointestinal and General Oncology Service, Paul-Brousse Hospital, Assistance Publique-Hôpitaux de Paris, Villejuif, France
- Department of Statistics, University of Warwick, Coventry, United Kingdom
| | - Alper Okyar
- Faculty of Pharmacy, Department of Pharmacology, Istanbul University, Beyazit-Istanbul, Turkey
| | - Eva Hadadi
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Laboratory for Myeloid Cell Immunology, Center for Inflammation Research VIB, Zwijnaarde, Belgium
| | - Pasquale F Innominato
- Oncology Department, Ysbyty Gwynedd Hospital, Betsi Cadwaladr University Health Board, Bangor, United Kingdom
- Warwick Medical School and Cancer Research Centre, University of Warwick, Coventry, United Kingdom
| | - Annabelle Ballesta
- Inserm Unit 900, Cancer Systems Pharmacology, Institut Curie, MINES ParisTech CBIO-Centre for Computational Biology, PSL Research University, Saint-Cloud, France
| |
Collapse
|
7
|
Dang T, Russel WA, Saad T, Dhawka L, Ay A, Ingram KK. Risk for Seasonal Affective Disorder (SAD) Linked to Circadian Clock Gene Variants. BIOLOGY 2023; 12:1532. [PMID: 38132358 PMCID: PMC10741218 DOI: 10.3390/biology12121532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
Molecular pathways affecting mood are associated with circadian clock gene variants and are influenced, in part, by the circadian clock, but the molecular mechanisms underlying this link are poorly understood. We use machine learning and statistical analyses to determine the circadian gene variants and clinical features most highly associated with symptoms of seasonality and seasonal affective disorder (SAD) in a deeply phenotyped population sample. We report sex-specific clock gene effects on seasonality and SAD symptoms; genotypic combinations of CLOCK3111/ZBTB20 and PER2/PER3B were significant genetic risk factors for males, and CRY2/PER3C and CRY2/PER3-VNTR were significant risk factors for females. Anxiety, eveningness, and increasing age were significant clinical risk factors for seasonality and SAD for females. Protective factors for SAD symptoms (in females only) included single gene variants: CRY1-GG and PER3-VNTR-4,5. Clock gene effects were partially or fully mediated by diurnal preference or chronotype, suggesting multiple indirect effects of clock genes on seasonality symptoms. Interestingly, protective effects of CRY1-GG, PER3-VNTR-4,5, and ZBTB20 genotypes on seasonality and depression were not mediated by chronotype, suggesting some clock variants have direct effects on depressive symptoms related to SAD. Our results support previous links between CRY2, PER2, and ZBTB20 genes and identify novel links for CLOCK and PER3 with symptoms of seasonality and SAD. Our findings reinforce the sex-specific nature of circadian clock influences on seasonality and SAD and underscore the multiple pathways by which clock variants affect downstream mood pathways via direct and indirect mechanisms.
Collapse
Affiliation(s)
- Thanh Dang
- Department of Computer Science, Colgate University, Hamilton, NY 13346, USA; (T.D.); (T.S.)
| | - William A. Russel
- Department of Biology, Colgate University, Hamilton, NY 13346, USA; (W.A.R.); (A.A.)
| | - Tazmilur Saad
- Department of Computer Science, Colgate University, Hamilton, NY 13346, USA; (T.D.); (T.S.)
- Department of Mathematics, Colgate University, Hamilton, NY 13346, USA
| | - Luvna Dhawka
- Feil Family Brain & Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ahmet Ay
- Department of Biology, Colgate University, Hamilton, NY 13346, USA; (W.A.R.); (A.A.)
- Department of Mathematics, Colgate University, Hamilton, NY 13346, USA
| | - Krista K. Ingram
- Department of Biology, Colgate University, Hamilton, NY 13346, USA; (W.A.R.); (A.A.)
| |
Collapse
|
8
|
Ventresca C, Mohamed W, Russel WA, Ay A, Ingram KK. Machine learning analyses reveal circadian clock features predictive of anxiety among UK biobank participants. Sci Rep 2023; 13:22304. [PMID: 38102312 PMCID: PMC10724169 DOI: 10.1038/s41598-023-49644-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023] Open
Abstract
Mood disorders, including depression and anxiety, affect almost one-fifth of the world's adult population and are becoming increasingly prevalent. Mutations in circadian clock genes have previously been associated with mood disorders both directly and indirectly through alterations in circadian phase, suggesting that the circadian clock influences multiple molecular pathways involved in mood. By targeting previously identified single nucleotide polymorphisms (SNPs) that have been implicated in anxiety and depressive disorders, we use a combination of statistical and machine learning techniques to investigate associations with the generalized anxiety disorder assessment (GAD-7) scores in a UK Biobank sample of 90,882 individuals. As in previous studies, we observed that females exhibited higher GAD-7 scores than males regardless of genotype. Interestingly, we found no significant effects on anxiety from individual circadian gene variants; only circadian genotypes with multiple SNP variants showed significant associations with anxiety. For both sexes, severe anxiety is associated with a 120-fold increase in odds for individuals with CRY2_AG(rs1083852)/ZBTB20_TT(rs1394593) genotypes and is associated with a near 40-fold reduction in odds for individuals with PER3-A_CG(rs228697)/ZBTB20_TT(rs1394593) genotypes. We also report several sex-specific associations with anxiety. In females, the CRY2/ZBTB20 genotype combination showed a > 200-fold increase in odds of anxiety and PER3/ZBTB20 and CRY1 /PER3-A genotype combinations also appeared as female risk factors. In males, CRY1/PER3-A and PER3-B/ZBTB20 genotype combinations were associated with anxiety risk. Mediation analysis revealed direct associations of CRY2/ZBTB20 variant genotypes with moderate anxiety in females and CRY1/PER3-A variant genotypes with severe anxiety in males. The association of CRY1/PER3-A variant genotypes with severe anxiety in females was partially mediated by extreme evening chronotype. Our results reinforce existing findings that females exhibit stronger anxiety outcomes than males, and provide evidence for circadian gene associations with anxiety, particularly in females. Our analyses only identified significant associations using two-gene combinations, underscoring the importance of combined gene effects on anxiety risk. We describe novel, robust associations between gene combinations involving the ZBTB20 SNP (rs1394593) and risk of anxiety symptoms in a large population sample. Our findings also support previous findings that the ZBTB20 SNP is an important factor in mood disorders, including seasonal affective disorder. Our results suggest that reduced expression of this gene significantly modulates the risk of anxiety symptoms through direct influences on mood-related pathways. Together, these observations provide novel links between the circadian clockwork and anxiety symptoms and identify potential molecular pathways through which clock genes may influence anxiety risk.
Collapse
Affiliation(s)
- Cole Ventresca
- Department of Mathematics, Colgate University, Hamilton, NY, USA
- Department of Computer Science, Colgate University, Hamilton, NY, USA
| | - Wael Mohamed
- Department of Computer Science, Colgate University, Hamilton, NY, USA
- Department of Psychological and Brain Sciences, Colgate University, Hamilton, NY, USA
| | | | - Ahmet Ay
- Department of Mathematics, Colgate University, Hamilton, NY, USA
- Department of Biology, Colgate University, Hamilton, NY, USA
| | - Krista K Ingram
- Department of Biology, Colgate University, Hamilton, NY, USA.
| |
Collapse
|
9
|
Nambiema A, Lisan Q, Vaucher J, Perier MC, Boutouyrie P, Danchin N, Thomas F, Guibout C, Solelhac G, Heinzer R, Jouven X, Marques-Vidal P, Empana JP. Healthy sleep score changes and incident cardiovascular disease in European prospective community-based cohorts. Eur Heart J 2023; 44:4968-4978. [PMID: 37860848 PMCID: PMC10719494 DOI: 10.1093/eurheartj/ehad657] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/20/2023] [Accepted: 07/25/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND AND AIMS Evidence on the link between sleep patterns and cardiovascular diseases (CVDs) in the community essentially relies on studies that investigated one single sleep pattern at one point in time. This study examined the joint effect of five sleep patterns at two time points with incident CVD events. METHODS By combining the data from two prospective studies, the Paris Prospective Study III (Paris, France) and the CoLaus|PsyCoLaus study (Lausanne, Switzerland), a healthy sleep score (HSS, range 0-5) combining five sleep patterns (early chronotype, sleep duration of 7-8 h/day, never/rarely insomnia, no sleep apnoea, and no excessive daytime sleepiness) was calculated at baseline and follow-up. RESULTS The study sample included 11 347 CVD-free participants aged 53-64 years (44.6% women). During a median follow-up of 8.9 years [interquartile range (IQR): 8.0-10.0], 499 first CVD events occurred (339 coronary heart disease (CHD) and 175 stroke). In multivariate Cox analysis, the risk of CVD decreased by 18% [hazard ratio (HR) 0.82, 95% confidence interval (CI) 0.76-0.89] per one-point increment in the HSS. After a median follow-up of 6.0 years (IQR: 4.0-8.0) after the second follow-up, 262 first CVD events occurred including 194 CHD and 72 stroke. After adjusting for baseline HSS and covariates, the risk of CVD decreased by 16% (HR 0.84, 95% CI 0.73-0.97) per unit higher in the follow-up HSS over 2-5 years. CONCLUSIONS Higher HSS and HSS improvement over time are associated with a lower risk of CHD and stroke in the community.
Collapse
Affiliation(s)
- Aboubakari Nambiema
- Université Paris Cité, INSERM U970, Paris Cardiovascular Research Centre (PARCC), Integrative Epidemiology of Cardiovascular Disease, 56 rue Leblanc, Paris 75015, France
| | - Quentin Lisan
- Université Paris Cité, INSERM U970, Paris Cardiovascular Research Centre (PARCC), Integrative Epidemiology of Cardiovascular Disease, 56 rue Leblanc, Paris 75015, France
- Department of Head and Neck Surgery, Foch Hospital, Suresnes, France
| | - Julien Vaucher
- Department of Medicine, Internal Medicine, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Marie-Cecile Perier
- Université Paris Cité, INSERM U970, Paris Cardiovascular Research Centre (PARCC), Integrative Epidemiology of Cardiovascular Disease, 56 rue Leblanc, Paris 75015, France
| | - Pierre Boutouyrie
- Université Paris Cité, INSERM U970, Paris Cardiovascular Research Centre (PARCC), Cellular, Molecular and Pathophysiological Mechanisms of Heart Failure, APHP, DMU CARTE, Pharmacology, Paris, France
| | - Nicolas Danchin
- Preventive and Clinical Investigation Center (IPC), Paris, France
| | | | - Catherine Guibout
- Université Paris Cité, INSERM U970, Paris Cardiovascular Research Centre (PARCC), Integrative Epidemiology of Cardiovascular Disease, 56 rue Leblanc, Paris 75015, France
| | - Geoffroy Solelhac
- Center for Investigation and Research in Sleep, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Raphael Heinzer
- Center for Investigation and Research in Sleep, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Xavier Jouven
- Université Paris Cité, INSERM U970, Paris Cardiovascular Research Centre (PARCC), Integrative Epidemiology of Cardiovascular Disease, 56 rue Leblanc, Paris 75015, France
| | - Pedro Marques-Vidal
- Center for Investigation and Research in Sleep, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Jean-Philippe Empana
- Université Paris Cité, INSERM U970, Paris Cardiovascular Research Centre (PARCC), Integrative Epidemiology of Cardiovascular Disease, 56 rue Leblanc, Paris 75015, France
| |
Collapse
|
10
|
Jiménez-Correa U, Bonilla N, Álvarez-García HB, Méndez-Alonzo G, Barrera-Medina A, Santana-Miranda R, Poblano A, Marín-Agudelo HA. Delayed sleep phase disorder during the COVID-19 pandemic and its health implications. CNS Spectr 2023; 28:581-586. [PMID: 36852604 DOI: 10.1017/s109285292300007x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Circadian rhythm sleep disorders are alterations that are characterized by a shift in the sleep-wake cycle relative to day and night, such as the delayed sleep phase disorder (DSPD), which is a retard of at least 2 hours in the sleep start. Typically, the patient falls asleep after 2 a.m. and wakes up after 10 a.m. and with symptom of sleep onset insomnia. The prevalence of DSPD in young adults is 0.48%, increasing to 3.3% in adolescents. Interestingly, patients with COVID-19 infection report anxiety due to the intensive care unit lockdown and constant exposure to bright light. In addition, post-COVID patients have an increased risk of developing DSPD. For example, in adolescent post-COVID patients, the prevalence of DSPD increases to 63.3%. Patients with DSPD also have alterations in metabolic health, poor school performance, cognitive impairment, and a higher risk of developing other diseases. The objective of the present review is therefore to describe the characteristics of DSPD during the COVID-19 pandemic and to outline its possible implications for physical health (eg, metabolism) and mental health (eg, anxiety or depression).
Collapse
Affiliation(s)
- Ulises Jiménez-Correa
- Clinic of Sleep Disorders, National University of Mexico (UNAM), Mexico City, México
| | - Naylea Bonilla
- Clinic of Sleep Disorders, National University of Mexico (UNAM), Mexico City, México
| | | | - Gerardo Méndez-Alonzo
- Clinic of Sleep Disorders, National University of Mexico (UNAM), Mexico City, México
- Department of Neurology, MIG Hospital, Mexico City, México
| | - Andrés Barrera-Medina
- Clinic of Sleep Disorders, National University of Mexico (UNAM), Mexico City, México
| | | | - Adrián Poblano
- Clinic of Sleep Disorders, National University of Mexico (UNAM), Mexico City, México
- Laboratory of Cognitive Neurophysiology, National Institute of Rehabilitation, Mexico City, México
| | | |
Collapse
|
11
|
Belin AC, Barloese MC. The genetics and chronobiology of cluster headache. Cephalalgia 2023; 43:3331024231208126. [PMID: 37851671 DOI: 10.1177/03331024231208126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
BACKGROUND/HYPOTHESIS Cluster headache displays uniquely rhythmic patterns in its attack manifestation. This strong chronobiological influence suggests that part of the pathophysiology of cluster headache is distinctly different from migraine and has prompted genetic investigations probing these systems. METHODS This is a narrative overview of the cluster headache chronobiological phenotype from the point of view of genetics covering existing knowledge, highlighting the specific challenges in cluster headache and suggesting novel research approaches to overcome these. RESULTS The chronobiological features of cluster headache are a hallmark of the disorder and while discrepancies between study results do exist, the main findings are highly reproducible across populations and time. Particular findings in subgroups indicate that the heritability of the disorder is linked to chronobiological systems. Meanwhile, genetic markers of circadian rhythm genes have been implicated in cluster headache, but with conflicting results. However, in two recently published genome wide association studies two of the identified four loci include genes with an involvement in circadian rhythm, MER proto-oncogene, tyrosine kinase and four and a half LIM domains 5. These findings strengthen the involvement of circadian rhythm in cluster headache pathophysiology. CONCLUSION/INTERPRETATION Studying chronobiology and genetics in cluster headache presents challenges unique to the disorder. Researchers are overcoming these challenges by pooling various data from different cohorts and performing meta-analyses providing novel insights into a classically enigmatic disorder. Further progress can likely be made by combining deep pheno- and genotyping.
Collapse
Affiliation(s)
- Andrea Carmine Belin
- Centre for Cluster Headache, Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Mads Christian Barloese
- Department of Functional and Diagnostic Imaging, Hvidovre Hospital, Hvidovre, Denmark
- Danish Headache Center, Department of Neurology, Rigshospitalet-Glostrup, University of Copenhagen, Glostrup, Denmark
| |
Collapse
|
12
|
Takahashi M, Fukazawa M, Tahara Y, Kim HK, Tanisawa K, Ito T, Nakaoka T, Higuchi M, Shibata S. Association between circadian clock gene expressions and meal timing in young and older adults. Chronobiol Int 2023; 40:1235-1243. [PMID: 37722714 DOI: 10.1080/07420528.2023.2256855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 09/03/2023] [Indexed: 09/20/2023]
Abstract
Ageing is associated with a decline in circadian clock systems, which correlates with the development of ageing-associated diseases. Chrononutrition is a field of chronobiology that examines the relationship between the timing of meal/nutrition and circadian clock systems. Although there is growing evidence regarding the role of chrononutrition in the prevention of lifestyle and ageing-related diseases, the optimal timing of meal intake to regulate the circadian clock in humans remains unknown. In this study, we investigated the relationship between clock gene expression and meal timing in young and older adults. In this cross-sectional study, we enrolled 51 healthy young men and 35 healthy older men (age, mean±standard deviation: 24 ± 4 and 70 ± 4 y, respectively). Under daily living conditions, beard follicle cells were collected at 4-h intervals over a 24-h period to evaluate clock gene expression. Participants were asked to record the timing of habitual sleep and wake-up, breakfast, lunch, and dinner. From these data, we calculated "From bedtime to breakfast time," "From wake up to first meal time," and "From dinner to bed time." NR1D1 and PER3 expressions in older adults at 06:00 h were significantly higher than those in young adults (P = 0.001). There were significant differences in the peak time for NR1D2 (P = 0.003) and PER3 (P = 0.049) expression between young and older adults. "From bedtime to breakfast time" was significantly longer in older adults than in young adults. In contrast, "From dinner to bed time" was significantly shorter in older adults than in young adults. Moreover, higher rhythmicity of NR1D1 correlated with longer "From bedtime to breakfast time" (r = -0.470, P = 0.002) and shorter "From wake up to first meal time" in young adults (r = 0.302, P = 0.032). Higher rhythmicity of PER3 correlated with longer "From bedtime to breakfast time" in older adults (r = -0.342, P = 0.045). These results suggest that the peak time of clock gene expression in older adults may be phase-advanced compared to that in young adults. In addition, a longer fasting duration from bedtime to breakfast in both young and older adults and earlier intake of meals after waking up in young adults may correlate with robust clock gene expression rhythms.
Collapse
Affiliation(s)
- Masaki Takahashi
- Institute for Liberal Arts, Tokyo Institute of Technology, Tokyo, Japan
| | - Mayuko Fukazawa
- Faculty of Science and Engineering, Waseda University, Shinjuku, Japan
| | - Yu Tahara
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hyeon-Ki Kim
- Department of Physical Activity Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Kumpei Tanisawa
- Faculty of Sports Sciences, Waseda University, Tokorozawa, Japan
| | - Tomoko Ito
- Department of Food and Nutrition, Tokyo Kasei University, Tokyo, Japan
| | - Takashi Nakaoka
- Japan Organization of Occupational Health and Safety, Kawasaki, Japan
| | - Mitsuru Higuchi
- Faculty of Sports Sciences, Waseda University, Tokorozawa, Japan
| | - Shigenobu Shibata
- Faculty of Science and Engineering, Waseda University, Shinjuku, Japan
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
13
|
Gršković P, Korać P. Circadian Gene Variants in Diseases. Genes (Basel) 2023; 14:1703. [PMID: 37761843 PMCID: PMC10531145 DOI: 10.3390/genes14091703] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/19/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
The circadian rhythm is a self-sustaining 24 h cycle that regulates physiological processes within the body, including cycles of alertness and sleepiness. Cells have their own intrinsic clock, which consists of several proteins that regulate the circadian rhythm of each individual cell. The core of the molecular clock in human cells consists of four main circadian proteins that work in pairs. The CLOCK-BMAL1 heterodimer and the PER-CRY heterodimer each regulate the other pair's expression, forming a negative feedback loop. Several other proteins are involved in regulating the expression of the main circadian genes, and can therefore also influence the circadian rhythm of cells. This review focuses on the existing knowledge regarding circadian gene variants in both the main and secondary circadian genes, and their association with various diseases, such as tumors, metabolic diseases, cardiovascular diseases, and sleep disorders.
Collapse
Affiliation(s)
| | - Petra Korać
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10 000 Zagreb, Croatia;
| |
Collapse
|
14
|
Bi W, Zhou W, Zhang P, Sun Y, Yue W, Lee S. Scalable mixed model methods for set-based association studies on large-scale categorical data analysis and its application to exome-sequencing data in UK Biobank. Am J Hum Genet 2023; 110:762-773. [PMID: 37019109 PMCID: PMC10183366 DOI: 10.1016/j.ajhg.2023.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/13/2023] [Indexed: 04/07/2023] Open
Abstract
The ongoing release of large-scale sequencing data in the UK Biobank allows for the identification of associations between rare variants and complex traits. SAIGE-GENE+ is a valid approach to conducting set-based association tests for quantitative and binary traits. However, for ordinal categorical phenotypes, applying SAIGE-GENE+ with treating the trait as quantitative or binarizing the trait can cause inflated type I error rates or power loss. In this study, we propose a scalable and accurate method for rare-variant association tests, POLMM-GENE, in which we used a proportional odds logistic mixed model to characterize ordinal categorical phenotypes while adjusting for sample relatedness. POLMM-GENE fully utilizes the categorical nature of phenotypes and thus can well control type I error rates while remaining powerful. In the analyses of UK Biobank 450k whole-exome-sequencing data for five ordinal categorical traits, POLMM-GENE identified 54 gene-phenotype associations.
Collapse
Affiliation(s)
- Wenjian Bi
- Department of Medical Genetics, School of Basic Medical Sciences, Peking University, Beijing, China; Center for Medical Genetics, School of Basic Medical Sciences, Peking University, Beijing, China; Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing, China.
| | - Wei Zhou
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Peipei Zhang
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, China
| | - Yaoyao Sun
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China; NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Weihua Yue
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China; NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China; Henan Key Lab of Biological Psychiatry, the Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China; Chinese Institute for Brain Research, Beijing, China
| | - Seunggeun Lee
- Graduate School of Data Science, Seoul National University, Seoul, Korea.
| |
Collapse
|
15
|
Lozano-Tovar S, Rodríguez-Agudelo Y, Dávila-Ortiz de Montellano DJ, Pérez-Aldana BE, Ortega-Vázquez A, Monroy-Jaramillo N. Relationship between APOE, PER2, PER3 and OX2R Genetic Variants and Neuropsychiatric Symptoms in Patients with Alzheimer's Disease. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4412. [PMID: 36901420 PMCID: PMC10001852 DOI: 10.3390/ijerph20054412] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/20/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Alzheimer's disease (AD) is characterized by the presence of neuropsychiatric or behavioral and psychological symptoms of dementia (BPSD). BPSD have been associated with the APOE_ε4 allele, which is also the major genetic AD risk factor. Although the involvement of some circadian genes and orexin receptors in sleep and behavioral disorders has been studied in some psychiatric pathologies, including AD, there are no studies considering gene-gene interactions. The associations of one variant in PER2, two in PER3, two in OX2R and two in APOE were evaluated in 31 AD patients and 31 cognitively healthy subjects. Genotyping was performed using real-time PCR and capillary electrophoresis from blood samples. The allelic-genotypic frequencies of variants were calculated for the sample study. We explored associations between allelic variants with BPSD in AD patients based on the NPI, PHQ-9 and sleeping disorders questionnaires. Our results showed that the APOE_ε4 allele is an AD risk variant (p = 0.03). The remaining genetic variants did not reveal significant differences between patients and controls. The PER3_rs228697 variant showed a nine-fold increased risk for circadian rhythm sleep-wake disorders in Mexican AD patients, and our gene-gene interaction analysis identified a novel interaction between PERIOD and APOE gene variants. These findings need to be further confirmed in larger samples.
Collapse
Affiliation(s)
- Susana Lozano-Tovar
- Facultad de Psicología, Universidad Nacional Autónoma de México (UNAM), Circuito Ciudad Universitaria Avenida, C.U., Mexico City 04510, Mexico
| | - Yaneth Rodríguez-Agudelo
- Laboratorio de Neuropsicología Clínica, Instituto Nacional de Neurología y Neurocirugía, “Manuel Velasco Suárez”, Mexico City 14269, Mexico
| | | | - Blanca Estela Pérez-Aldana
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Mexico City 04960, Mexico
| | - Alberto Ortega-Vázquez
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Unidad Xochimilco, Mexico City 04960, Mexico
| | - Nancy Monroy-Jaramillo
- Departamento de Genética, Instituto Nacional de Neurología y Neurocirugía, “Manuel Velasco Suárez”, Mexico City 14269, Mexico
| |
Collapse
|
16
|
Kunorozva L, Rae DE, Roden LC. Dim light melatonin onset following simulated eastward travel is earlier in young males genotyped as PER35/5 than PER34/4. Chronobiol Int 2022; 39:1611-1623. [PMID: 36324294 DOI: 10.1080/07420528.2022.2139184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Inter-individual variability exists in recovery from jetlag following travel across time zones. Part of this variation may be due to genetic differences at the variable number tandem repeat (VNTR) polymorphism of the PERIOD3 (PER3) gene as this polymorphism has been associated with chronotype and sleep, as well as sensitivity to blue light on melatonin suppression. To test this hypothesis we conducted a laboratory-based study to compare re-entrainment in males genotyped as PER34/4 (n = 8) and PER35/5 (n = 8) following simulated eastward travel across six time zones. The recovery strategy included morning blue-enriched light exposure and appropriately-timed meals during the first 24 h after simulated travel. Dim light melatonin onset (DLMO), sleep characteristics, perceived sleepiness levels (Stanford Sleepiness Scale), and resting metabolic parameters were measured during constant routine periods before and after simulated travel. While DLMO time was similar between the two groups prior to simulated eastward travel (p = .223), it was earlier in the PER35/5 group (17h23 (17h15; 17h37)) than the PER34/4 group (18h05 (17h53; 18h12)) afterwards (p = .046). During resynchronisation, perceived sleepiness and metabolic parameters were similar to pre-travel in both groups but sleep was more disturbed in the PER35/5 group (total sleep time: p = .008, sleep efficiency: p = .008, wake after sleep onset: p = .023). The PER3 VNTR genotype may influence the efficacy of re-entrainment following trans-meridian travel when blue-enriched light exposure is incorporated into the recovery strategy on the first day following travel.
Collapse
Affiliation(s)
- Lovemore Kunorozva
- Department of Molecular and Cell Biology, University of Cape Town, Private Bag Rondebosch, Cape Town, South Africa.,Division of Sleep Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Dale E Rae
- Health through Physical Activity, Lifestyle and Sport Research Centre & Division of Physiological Sciences, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Laura C Roden
- Department of Molecular and Cell Biology, University of Cape Town, Private Bag Rondebosch, Cape Town, South Africa.,Health through Physical Activity, Lifestyle and Sport Research Centre & Division of Physiological Sciences, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Centre for Sport, Exercise and Life Sciences/School of Life Sciences, Coventry University, Coventry, UK
| |
Collapse
|
17
|
Overton R, Zafar A, Attia Z, Ay A, Ingram KK. Machine Learning Analyses Reveal Circadian Features Predictive of Risk for Sleep Disturbance. Nat Sci Sleep 2022; 14:1887-1900. [PMID: 36304418 PMCID: PMC9595061 DOI: 10.2147/nss.s379888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/21/2022] [Indexed: 11/05/2022] Open
Abstract
Introduction Sleep disturbances often co-occur with mood disorders, with poor sleep quality affecting over a quarter of the global population. Recent advances in sleep and circadian biology suggest poor sleep quality is linked to disruptions in circadian rhythms, including significant associations between sleep features and circadian clock gene variants. Methods Here, we employ machine learning techniques, combined with statistical approaches, in a deeply phenotyped population to explore associations between clock genotypes, circadian phenotypes (diurnal preference and circadian phase), and risk for sleep disturbance symptoms. Results As found in previous studies, evening chronotypes report high levels of sleep disturbance symptoms. Using molecular chronotyping by measuring circadian phase, we extend these findings and show that individuals with a mismatch between circadian phase and diurnal preference report higher levels of sleep disturbance. We also report novel synergistic interactions in genotype combinations of Period 3, Clock and Cryptochrome variants (PER3B (rs17031614)/ CRY1 (rs228716) and CLOCK3111 (rs1801260)/ CRY2 (rs10838524)) that yield strong associations with sleep disturbance, particularly in males. Conclusion Our results indicate that both direct and indirect mechanisms may impact sleep quality; sex-specific clock genotype combinations predictive of sleep disturbance may represent direct effects of clock gene function on downstream pathways involved in sleep physiology. In addition, the mediation of clock gene effects on sleep disturbance indicates circadian influences on the quality of sleep. Unraveling the complex molecular mechanisms at the intersection of circadian and sleep physiology is vital for understanding how genetic and behavioral factors influencing circadian phenotypes impact sleep quality. Such studies provide potential targets for further study and inform efforts to improve non-invasive therapeutics for sleep disorders.
Collapse
Affiliation(s)
| | - Aziz Zafar
- Department of Biology, Colgate University, Hamilton, NY, USA
- Department of Mathematics, Colgate University, Hamilton, NY, USA
| | - Ziad Attia
- Department of Biology, Colgate University, Hamilton, NY, USA
- Department of Computer Science, Colgate University, Hamilton, NY, USA
| | - Ahmet Ay
- Department of Biology, Colgate University, Hamilton, NY, USA
- Department of Mathematics, Colgate University, Hamilton, NY, USA
| | - Krista K Ingram
- Department of Biology, Colgate University, Hamilton, NY, USA
| |
Collapse
|
18
|
Effects of Work Stress and Period3 Gene Polymorphism and Their Interaction on Sleep Quality of Non-Manual Workers in Xinjiang, China: A Cross-Sectional Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19116843. [PMID: 35682425 PMCID: PMC9180753 DOI: 10.3390/ijerph19116843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 02/05/2023]
Abstract
Work stress has been found to be associated with sleep quality in various occupational groups, and genetic factors such as variable number tandem repeat polymorphism in the Period3 (Per3) gene also influence the circadian sleep-wake process. Therefore, the present study aimed to evaluate the sleep quality status of non-manual workers in Xinjiang, China and to analyse the effects of work stress and Per3 gene polymorphism and their interaction on sleep quality. A cluster sampling method was used to randomly select 1700 non-manual workers in Urumqi, Xinjiang. The work stress and sleep quality of these workers were evaluated using the Effort−Reward Imbalance Inventory (ERI) and the Pittsburgh Sleep Quality Index (PSQI). Next, 20% of the questionnaire respondents were randomly selected for genetic polymorphism analysis. The polymerase chain reaction-restriction fragment length polymorphism technique was used to determine Per3 gene polymorphism. The detection rate of sleep quality problems differed between the different work stress groups (p < 0.05), suggesting that non-manual workers with high levels of work stress are more likely to have sleep quality problems. Regression analysis revealed that the Per3 gene (OR = 3.315, 95% CI: 1.672−6.574) was the influencing factor for poor sleep quality after adjusting for confounding factors, such as occupation, length of service, education, and monthly income. Interaction analysis showed that Per34/5,5/5 × high work stress (OR = 2.511, 95% CI: 1.635−3.855) had a higher risk of developing sleep quality problems as compared to Per34/4 × low work stress after adjusting for confounding factors. The structural equation modelling showed no mediating effect between work stress and Per3 gene polymorphism. The results of this study show that both work stress and Per3 gene polymorphism independently affect sleep quality of nonmanual workers from Xinjiang, and the interaction between these two factors may increase the risk of sleep quality problems. Therefore, to improve sleep quality, individuals with genetic susceptibility should avoid or reduce as much as possible self-stimulation by work-related exposures such as high levels of external work stress.
Collapse
|
19
|
Biscontin A, Zarantonello L, Russo A, Costa R, Montagnese S. Toward a Molecular Approach to Chronotype Assessment. J Biol Rhythms 2022; 37:272-282. [PMID: 35583112 DOI: 10.1177/07487304221099365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The aim of the present study was to develop a Polygenic Score-based model for molecular chronotype assessment. Questionnaire-based phenotypical chronotype assessment was used as a reference. In total, 54 extremely morning/morning (MM/M; 35 females, 39.7 ± 3.8 years) and 44 extremely evening/evening (EE/E; 20 females, 27.3 ± 7.7 years) individuals donated a buccal DNA sample for genotyping by sequencing of the entire genetic variability of 19 target genes known to be involved in circadian rhythmicity and/or sleep duration. Targeted genotyping was performed using the single primer enrichment technology and a specifically designed panel of 5526 primers. Among 2868 high-quality polymorphisms, a cross-validation approach lead to the identification of 83 chronotype predictive variants, including previously known and also novel chronotype-associated polymorphisms. A large (35 single-nucleotide polymorphisms [SNPs]) and also a small (13 SNPs) panel were obtained, both with an estimated predictive validity of approximately 80%. Potential mechanistic hypotheses for the role of some of the newly identified variants in modulating chronotype are formulated. Once validated in independent populations encompassing the whole range of chronotypes, the identified panels might become useful within the setting of both circadian public health initiatives and precision medicine.
Collapse
Affiliation(s)
| | | | - Antonella Russo
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Rodolfo Costa
- Department of Biology, University of Padova, Padova, Italy.,Institute of Neuroscience, National Research Council, Padova, Italy.,Chronobiology Section, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | | |
Collapse
|
20
|
Zafar A, Overton R, Attia Z, Ay A, Ingram K. Machine learning and expression analyses reveal circadian clock features predictive of anxiety. Sci Rep 2022; 12:5508. [PMID: 35365695 PMCID: PMC8975926 DOI: 10.1038/s41598-022-09421-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/21/2022] [Indexed: 11/09/2022] Open
Abstract
Mood disorders, including generalized anxiety disorder, are associated with disruptions in circadian rhythms and are linked to polymorphisms in circadian clock genes. Molecular mechanisms underlying these connections may be direct-via transcriptional activity of clock genes on downstream mood pathways in the brain, or indirect-via clock gene influences on the phase and amplitude of circadian rhythms which, in turn, modulate physiological processes influencing mood. Employing machine learning combined with statistical approaches, we explored clock genotype combinations that predict risk for anxiety symptoms in a deeply phenotyped population. We identified multiple novel circadian genotypes predictive of anxiety, with the PER3(rs17031614)-AG/CRY1(rs2287161)-CG genotype being the strongest predictor of anxiety risk, particularly in males. Molecular chronotyping, using clock gene expression oscillations, revealed that advanced circadian phase and robust circadian amplitudes are associated with high levels of anxiety symptoms. Further analyses revealed that individuals with advanced phases and pronounced circadian misalignment were at higher risk for severe anxiety symptoms. Our results support both direct and indirect influences of clock gene variants on mood: while sex-specific clock genotype combinations predictive of anxiety symptoms suggest direct effects on mood pathways, the mediation of PER3 effects on anxiety via diurnal preference measures and the association of circadian phase with anxiety symptoms provide evidence for indirect effects of the molecular clockwork on mood. Unraveling the complex molecular mechanisms underlying the links between circadian physiology and mood is essential to identifying the core clock genes to target in future functional studies, thereby advancing the development of non-invasive treatments for anxiety-related disorders.
Collapse
Affiliation(s)
- Aziz Zafar
- Department of Biology, Colgate University, 13 Oak Drive, Hamilton, NY, 13346, USA
| | - Rebeccah Overton
- Department of Biology, Colgate University, 13 Oak Drive, Hamilton, NY, 13346, USA
| | - Ziad Attia
- Department of Biology, Colgate University, 13 Oak Drive, Hamilton, NY, 13346, USA
| | - Ahmet Ay
- Department of Biology, Colgate University, 13 Oak Drive, Hamilton, NY, 13346, USA.
| | - Krista Ingram
- Department of Biology, Colgate University, 13 Oak Drive, Hamilton, NY, 13346, USA.
| |
Collapse
|
21
|
Role of Sleep Restriction in Daily Rhythms of Expression of Hypothalamic Core Clock Genes in Mice. Curr Issues Mol Biol 2022; 44:609-625. [PMID: 35723328 PMCID: PMC8929085 DOI: 10.3390/cimb44020042] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 12/12/2022] Open
Abstract
Lack of sleep time is a menace to modern people, and it leads to chronic diseases and mental illnesses. Circadian processes control sleep, but little is known about how sleep affects the circadian system. Therefore, we performed a 28-day sleep restriction (SR) treatment in mice. Sleep restriction disrupted the clock genes’ circadian rhythm. The circadian rhythms of the Cry1 and Per1/2/3 genes disappeared. The acrophase of the clock genes (Bmal1, Clock, Rev-erbα, and Rorβ) that still had a circadian rhythm was advanced, while the acrophase of negative clock gene Cry2 was delayed. Clock genes’ upstream signals ERK and EIFs also had circadian rhythm disorders. Accompanied by changes in the central oscillator, the plasma output signal (melatonin, corticosterone, IL-6, and TNF-α) had an advanced acrophase. While the melatonin mesor was decreased, the corticosterone, IL-6, and TNF-α mesor was increased. Our results indicated that chronic sleep loss could disrupt the circadian rhythm of the central clock through ERK and EIFs and affect the output signal downstream of the core biological clock.
Collapse
|
22
|
Eo YJ, Park J, Kim S, Lee KN, Lee SM, Kim DH, Kim C, Do YR. Estimation of melatonin level and core body temperature: heart rate and heart rate variability as circadian rhythm markers. BIOL RHYTHM RES 2022. [DOI: 10.1080/09291016.2021.2024408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Yun Jae Eo
- Department of Chemistry, Kookmin University, Seoul, Republic of Korea
| | - Jingyu Park
- School of Electrical Engineering, Kookmin University, Seoul, Republic of Korea
| | - Seohyeon Kim
- School of Electrical Engineering, Kookmin University, Seoul, Republic of Korea
| | - Keyong Nam Lee
- Department of Chemistry, Kookmin University, Seoul, Republic of Korea
| | - Seung Min Lee
- School of Electrical Engineering, Kookmin University, Seoul, Republic of Korea
- Circadian ICT Research Center, Kookmin University, Seoul, Republic of Korea
| | - Dae Hwan Kim
- School of Electrical Engineering, Kookmin University, Seoul, Republic of Korea
- Circadian ICT Research Center, Kookmin University, Seoul, Republic of Korea
| | - Changwook Kim
- Circadian ICT Research Center, Kookmin University, Seoul, Republic of Korea
| | - Young Rag Do
- Department of Chemistry, Kookmin University, Seoul, Republic of Korea
- Circadian ICT Research Center, Kookmin University, Seoul, Republic of Korea
| |
Collapse
|
23
|
PER Gene Family Polymorphisms in Relation to Cluster Headache and Circadian Rhythm in Sweden. Brain Sci 2021; 11:brainsci11081108. [PMID: 34439727 PMCID: PMC8393578 DOI: 10.3390/brainsci11081108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 11/16/2022] Open
Abstract
The trigeminal autonomic cephalalgia, cluster headache (CH), is one of the most painful disorders known to man. One of the disorder's most striking features is the reported diurnal rhythmicity of the attacks. For a majority of patients, the headache attacks occur at approximately the same time every day. Genetic variants of genes involved in the circadian rhythm such as Period Circadian Regulator 1, 2, and 3 (PER1, 2 and 3) are hypothesized to have an effect on the rhythmicity of the attacks. Six PER1, 2 and 3 genetic markers; the indel rs57875989 and five single nucleotide polymorphisms (SNPs), rs2735611, rs2304672, rs934945, rs10462020, and rs228697, were genotyped, using TaqMan® or regular polymerase chain reaction (PCR), in a Swedish CH case control material. Logistic regression showed no association between CH and any of the six genetic variants; rs57875989, p = 0.523; rs2735611, p = 0.416; rs2304672, p = 0.732; rs934945, p = 0.907; rs10462020, p = 0.726; and rs228697, p = 0.717. Furthermore, no difference in allele frequency was found for patients reporting diurnal rhythmicity of attacks, nor were any of the variants linked to diurnal preference. The results of this study indicate no involvement of these PER genetic variants in CH or diurnal phenotype in Sweden.
Collapse
|
24
|
Papatsimpa C, Schlangen LJM, Smolders KCHJ, Linnartz JPMG, de Kort YAW. The interindividual variability of sleep timing and circadian phase in humans is influenced by daytime and evening light conditions. Sci Rep 2021; 11:13709. [PMID: 34211005 PMCID: PMC8249410 DOI: 10.1038/s41598-021-92863-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/17/2021] [Indexed: 02/06/2023] Open
Abstract
Human cognitive functioning shows circadian variations throughout the day. However, individuals largely differ in their timing during the day of when they are more capable of performing specific tasks and when they prefer to sleep. These interindividual differences in preferred temporal organization of sleep and daytime activities define the chronotype. Since a late chronotype is associated with adverse mental and physical consequences, it is of vital importance to study how lighting environments affect chronotype. Here, we use a mathematical model of the human circadian pacemaker to understand how light in the built environment changes the chronotype distribution in the population. In line with experimental findings, we show that when individuals spend their days in relatively dim light conditions, this not only results in a later phase of their biological clock but also increases interindividual differences in circadian phase angle of entrainment and preferred sleep timing. Increasing daytime illuminance results in a more narrow distribution of sleep timing and circadian phase, and this effect is more pronounced for longer photoperiods. The model results demonstrate that modern lifestyle changes the chronotype distribution towards more eveningness and more extreme differences in eveningness. Such model-based predictions can be used to design guidelines for workplace lighting that help limiting circadian phase differences, and craft new lighting strategies that support human performance, health and wellbeing.
Collapse
Affiliation(s)
- C. Papatsimpa
- grid.6852.90000 0004 0398 8763Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - L. J. M. Schlangen
- grid.6852.90000 0004 0398 8763Department of Industrial Engineering and Innovation Sciences, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - K. C. H. J. Smolders
- grid.6852.90000 0004 0398 8763Department of Industrial Engineering and Innovation Sciences, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - J.-P. M. G. Linnartz
- grid.6852.90000 0004 0398 8763Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands ,grid.510043.3Signify, Eindhoven, The Netherlands
| | - Y. A. W. de Kort
- grid.6852.90000 0004 0398 8763Department of Industrial Engineering and Innovation Sciences, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
25
|
Azevedo PGD, Miranda LR, Nicolau ES, Alves RB, Bicalho MAC, Couto PP, Ramos AV, Souza RPD, Longhi R, Friedman E, Marco LD, Bastos-Rodrigues L. Genetic association of the PERIOD3 (PER3) Clock gene with extreme obesity. Obes Res Clin Pract 2021; 15:334-338. [PMID: 34215556 DOI: 10.1016/j.orcp.2021.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 07/28/2020] [Accepted: 06/11/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND Obesity has reached epidemic proportions worldwide, affecting life quality and span. Susceptibility to obesity is partly mediated by genetic differences. Indeed, several genes from the clock gene family have already been shown to be intimately associated with obesity in diverse ethnic groups. In the present study, an association between BMI and the rs707467, rs228697 and rs228729 PER3 (Period Circadian Clock 3) polymorphisms in subjects with class II (BMI ≥ 35.0-39.9 kg/m2) and class III obesity (>40 kg/m2, extreme obesity) were carried out using TaqMan real-time PCR. Overall, 259 Brazilian adults were genotyped, of whom 122 had class II or III obesity (BMI ≥ 35.0 kg/m2) and 137 were controls having normal weight (BMI > 18.5 and <24.9 kg/m2). RESULTS PER3 tag SNP (rs228729) shows a significant association with extreme obesity (1000 permutation p = 0.03 and p = 0.04), for genotype and allele frequency respectively) and a haplotype among the three assessed SNPs (alleles G/T/A, rs228697, rs228729, and rs707467, respectively, 1000 permutation p = 0.03) was significantly more prevalent in the group with obesity. CONCLUSION This exploratory association study suggests that PER3 rs228729 may be associated with extreme obesity in Brazilian adults, however, replication is needed.
Collapse
Affiliation(s)
- Pedro Guimarães de Azevedo
- Centro de Tecnologia em Medicina Molecular, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100, Brazil
| | - Luana Reis Miranda
- Centro de Tecnologia em Medicina Molecular, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100, Brazil
| | - Eduardo Souza Nicolau
- Centro de Tecnologia em Medicina Molecular, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100, Brazil
| | - Rayane Benfica Alves
- Centro de Tecnologia em Medicina Molecular, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100, Brazil
| | | | - Patrícia Pereira Couto
- Centro de Tecnologia em Medicina Molecular, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100, Brazil
| | | | - Renan Pedra de Souza
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rafael Longhi
- Department of Nutrition, Universidade Federal de Minas Gerais, Belo Horizonte, MG 35010-177, Brazil
| | - Eitan Friedman
- The Suzanne Levy Gertner Oncogenetics Unit, Chaim Sheba Medical Center, Tel Hashomer, the Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Luiz De Marco
- Department of Surgery, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luciana Bastos-Rodrigues
- Department of Nutrition, Universidade Federal de Minas Gerais, Belo Horizonte, MG 35010-177, Brazil.
| |
Collapse
|
26
|
Salazar P, Konda S, Sridhar A, Arbieva Z, Daviglus M, Darbar D, Rehman J. Common genetic variation in circadian clock genes are associated with cardiovascular risk factors in an African American and Hispanic/Latino cohort. IJC HEART & VASCULATURE 2021; 34:100808. [PMID: 34141862 PMCID: PMC8188044 DOI: 10.1016/j.ijcha.2021.100808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 12/14/2022]
Abstract
Misalignment of the internal circadian time with external physical time due to environmental factors or due to genetic variantion in circadian clock genes has been associated with increased incidence of cardiovascular risk factors. Common genetic variation in circadian genes in the United States have been identified predominantly in European ancestry individuals. We therefore examined the association between circadian clock single nucleotide polymorphisms (SNPs) in Clock, Cry1, Cry2, Bmal1 and Per3 genes and cardiovascular risk factors in African Americans and Hispanic/Latinos. We analyzed 17 candidate circadian SNPs in 1,166 subjects who self-identified as African-American or Hispanic/Latino and were enrolled in the UIC Cohort of Patients, Family and Friends. We found significant differences in the minor allele frequencies between African American and Hispanic/Latino subjects. Our analyses also established ethnic-specific SNPs that are associated with cardiovascular risk factors. In Hispanic/Latinos, the rs6850524 in Clock was associated with increased risk for hypertension, meanwhile rs12649507, rs4864546, and rs4864548 reduced the risk, also rs8192440 (Cry1) reduced the risk for type 2 diabetes. In African Americans, the Clock rs1801260 and rs6850524 were negatively associated with the presence of obesity; Bmal1 rs11022775 reduced the risk for dyslipidemia; and the Cry2 rs2292912 increased the risk for dyslipidemia and diabetes. Genetic variations in candidate circadian-clock genes are associated with risk factors for cardiovascular disease in African-Americans and Hispanic/Latinos. Our findings may help to improve cardiovascular risk assessment as well as better understand how circadian misalignment impacts cardiovascular risk in diverse populations.
Collapse
Affiliation(s)
- Pablo Salazar
- Department of Medicine, Division of Cardiology, University of Illinois at Chicago, Chicago, IL, USA
| | - Sreenivas Konda
- Division of Epidemiology and Biostatics, School of Public Health, University of Illinois at Chicago, Chicago, IL, USA
| | - Arvind Sridhar
- Department of Medicine, Division of Cardiology, University of Illinois at Chicago, Chicago, IL, USA
| | - Zarema Arbieva
- Genomics Core, Research Resources Center, University of Illinois at Chicago, Chicago, IL, USA
| | - Martha Daviglus
- Department of Medicine, Division of Cardiology, University of Illinois at Chicago, Chicago, IL, USA
- Institute for Minority Health Research, University of Illinois at Chicago, Chicago, IL, USA
| | - Dawood Darbar
- Department of Medicine, Division of Cardiology, University of Illinois at Chicago, Chicago, IL, USA
- Corresponding authors at: The University of Illinois, College of Medicine, 835 South Wolcott Avenue, RM. E403, Mailcode 868, Chicago, IL 60612, USA.
| | - Jalees Rehman
- Department of Medicine, Division of Cardiology, University of Illinois at Chicago, Chicago, IL, USA
- Department of Pharmacology and Regenerative Medicine, The University of Illinois, College of Medicine, Chicago, IL, USA
- Corresponding authors at: The University of Illinois, College of Medicine, 835 South Wolcott Avenue, RM. E403, Mailcode 868, Chicago, IL 60612, USA.
| |
Collapse
|
27
|
Peng X, Li J, Han B, Zhu Y, Cheng D, Li Q, Du J. Association of occupational stress, period circadian regulator 3 (PER3) gene polymorphism and their interaction with poor sleep quality. J Sleep Res 2021; 31:e13390. [PMID: 34060156 DOI: 10.1111/jsr.13390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/21/2021] [Accepted: 04/28/2021] [Indexed: 11/29/2022]
Abstract
Occupational stress is associated with sleep quality among workers and the human variable number tandem repeat (VNTR) polymorphism of the period circadian regulator 3 (PER3) gene relates to sleep-wake regulation. The main aims of the present study were to examine the effects of PER3 VNTR genotypes, occupational stress, and their interactions on sleep quality. A cross-sectional study was conducted and 729 workers were recruited in Sichuan. Sleep quality were assessed using the Pittsburgh Sleep Quality Index. Occupational stress was measured using the Generic Job Stress Questionnaire. PER3 genotypes were determined with polymerase chain reaction. High and medium occupational stress were linked to a higher risk of poor sleep quality than low levels. Unconditional logistic regression indicated that PER3 genotype was significantly associated with sleep quality, and an increased risk of poor sleep of >1.5-times was observed in those with the allele 5 compared to allele 4. The 5/5 genotype was associated with both sleep latency and sleep duration. Crossover analysis showed an occupational stress × PER3 interaction. Compared to subjects with both low and medium occupational stress and 4/4 + 4/5 genotype, those with both high occupational stress and 5/5 genotype had a higher risk of poor sleep quality. Stratified logistic analyses found that compared with low and medium occupational stress, high occupational stress increased the risk of poor sleep by more than five-times in 5/5 genotype carriers. Occupational stress and PER3 genotype had both separate and combined effects on poor sleep quality of workers. The results suggest that occupational stress may increase the risk of poor sleep quality through interaction with the PER3 gene polymorphism.
Collapse
Affiliation(s)
- Xiaoli Peng
- School of Public Health, Chengdu Medical College, Chengdu, China
| | - Ju Li
- School of Public Health, Chengdu Medical College, Chengdu, China
| | - Bin Han
- School of Public Health, Chengdu Medical College, Chengdu, China
| | - Yanfeng Zhu
- School of Public Health, Chengdu Medical College, Chengdu, China
| | - Daomei Cheng
- School of Public Health, Chengdu Medical College, Chengdu, China
| | - Qiyu Li
- School of Public Health, Chengdu Medical College, Chengdu, China
| | - Jingchang Du
- School of Public Health, Chengdu Medical College, Chengdu, China
| |
Collapse
|
28
|
Duffy JF, Abbott SM, Burgess HJ, Crowley SJ, Emens JS, Epstein LJ, Gamble KL, Hasler BP, Kristo DA, Malkani RG, Rahman SA, Thomas SJ, Wyatt JK, Zee PC, Klerman EB. Workshop report. Circadian rhythm sleep-wake disorders: gaps and opportunities. Sleep 2021; 44:zsaa281. [PMID: 33582815 PMCID: PMC8120340 DOI: 10.1093/sleep/zsaa281] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 10/02/2020] [Indexed: 01/09/2023] Open
Abstract
This White Paper presents the results from a workshop cosponsored by the Sleep Research Society (SRS) and the Society for Research on Biological Rhythms (SRBR) whose goals were to bring together sleep clinicians and sleep and circadian rhythm researchers to identify existing gaps in diagnosis and treatment and areas of high-priority research in circadian rhythm sleep-wake disorders (CRSWD). CRSWD are a distinct class of sleep disorders caused by alterations of the circadian time-keeping system, its entrainment mechanisms, or a misalignment of the endogenous circadian rhythm and the external environment. In these disorders, the timing of the primary sleep episode is either earlier or later than desired, irregular from day-to-day, and/or sleep occurs at the wrong circadian time. While there are incomplete and insufficient prevalence data, CRSWD likely affect at least 800,000 and perhaps as many as 3 million individuals in the United States, and if Shift Work Disorder and Jet Lag are included, then many millions more are impacted. The SRS Advocacy Taskforce has identified CRSWD as a class of sleep disorders for which additional high-quality research could have a significant impact to improve patient care. Participants were selected for their expertise and were assigned to one of three working groups: Phase Disorders, Entrainment Disorders, and Other. Each working group presented a summary of the current state of the science for their specific CRSWD area, followed by discussion from all participants. The outcome of those presentations and discussions are presented here.
Collapse
Affiliation(s)
- Jeanne F Duffy
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Sabra M Abbott
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Helen J Burgess
- Department of Psychiatry, University of Michigan, Ann Arbor, MI
| | - Stephanie J Crowley
- Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL
| | - Jonathan S Emens
- Department of Psychiatry, Oregon Health & Science University, Portland, OR
| | - Lawrence J Epstein
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Karen L Gamble
- Department of Psychiatry University of Alabama at Birmingham, Birmingham, AL
| | - Brant P Hasler
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - David A Kristo
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Roneil G Malkani
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Shadab A Rahman
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - S Justin Thomas
- Department of Psychiatry University of Alabama at Birmingham, Birmingham, AL
| | - James K Wyatt
- Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL
| | - Phyllis C Zee
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Elizabeth B Klerman
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
29
|
Filiz Ozsoy, Yigit S, Nursal AF, Kulu M, Karakus N. The Impact of PER3 VNTR Polymorphism on the Development of Schizophrenia in a Turkish Population. CYTOL GENET+ 2021. [DOI: 10.3103/s0095452721020109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Sleep, Circadian Rhythmicity and Response to Chronotherapy in University Students: Tips from Chronobiology Practicals. J Circadian Rhythms 2021; 19:1. [PMID: 33552216 PMCID: PMC7824979 DOI: 10.5334/jcr.202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Chronobiology is not routinely taught to biology or medical students in most European countries. Here we present the results of the chronobiology practicals of a group of students of the University of Padova, with a view to highlight some interesting features of this group, and to share a potentially interesting cross-faculty teaching experience. Thirty-eight students (17 males; 22.9 ± 1.6 yrs) completed a set of self-administered electronic sleep quality [Pittsburgh Sleep Quality Index (PSQI)], chronotype and sleepiness [Epworth Sleepiness Scale (ESS)] questionnaires. They then went on to complete sleep diaries for two weeks. Sixteen also wore an actigraph, 8 wore wireless sensors for skin temperature, and 8 underwent a course of chronotherapy aimed at anticipating their sleep-wake timing. Analyses were performed as practicals, together with the students. Average PSQI score was 5.4 ± 1.9, with 15 (39%) students being poor sleepers. Average ESS score was 6.5 ± 3.3, with 3 (8%) students exhibiting excessive daytime sleepiness. Seven classified themselves as definitely/moderately morning, 25 as intermediates, 6 as moderately/definitely evening. Students went to bed/fell asleep significantly later on weekends, it took them less to fall asleep and they woke up/got up significantly later. Diary-reported sleep onset time coincided with the expected decrease in proximal skin temperature. Finally, during chronotherapy they took significantly less time to fall asleep. In conclusion, significant abnormalities in the sleep-wake patterns of a small group of university students were observed, and the students seemed to benefit from chronotherapy. We had a positive impression of our teaching experience, and the chronobiology courses obtained excellent student feedback.
Collapse
|
31
|
Melatonin (MEL) and its use in circadian rhythm sleep-wake disorders: Recommendations of the French Medical and Research Sleep Society (SFRMS). Rev Neurol (Paris) 2021; 177:235-244. [PMID: 33446328 DOI: 10.1016/j.neurol.2020.07.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/24/2020] [Accepted: 07/07/2020] [Indexed: 11/20/2022]
Abstract
The French society of medical research on sleep (SFRMS) appointed a group of experts to conduct a consensus conference in order to study the indications and prescription status of exogenous melatonin (MEL). Eleven sleep physicians/researchers investigated in subgroups the use of MEL in different domains of healthcare in line with their subspecialties (circadian sleep/wake rhythm disorders, psychiatric disorders, neurological disorders, pediatric and neurodevelopmental disorders). In this article we present a summary of the main conclusions of the expert group on MEL therapy in circadian sleep/wake rhythm disorders such us delayed sleep-wake disorder, non-24-hour sleep wake rhythm disorder and jet lag.
Collapse
|
32
|
Magee M, Sletten TL, Murray JM, Gordon CJ, Lovato N, Bartlett DJ, Kennaway DJ, Lockley SW, Lack LC, Grunstein RR, Archer SN, Rajaratnam SMW. A PERIOD3 variable number tandem repeat polymorphism modulates melatonin treatment response in delayed sleep-wake phase disorder. J Pineal Res 2020; 69:e12684. [PMID: 32682347 DOI: 10.1111/jpi.12684] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 06/09/2020] [Accepted: 07/09/2020] [Indexed: 12/15/2022]
Abstract
We examined whether a polymorphism of the PERIOD3 gene (PER3; rs57875989) modulated the sleep-promoting effects of melatonin in Delayed Sleep-Wake Phase Disorder (DSWPD). One hundred and four individuals (53 males; 29.4 ±10.0 years) with DSWPD and a delayed dim light melatonin onset (DLMO) collected buccal swabs for genotyping (PER34/4 n = 43; PER3 5 allele [heterozygous and homozygous] n = 60). Participants were randomised to placebo or 0.5 mg melatonin taken 1 hour before desired bedtime (or ~1.45 hours before DLMO), with sleep attempted at desired bedtime (4 weeks; 5-7 nights/week). We assessed sleep (diary and actigraphy), Pittsburgh Sleep Quality Index (PSQI), Insomnia Severity Index (ISI), Patient-Reported Outcomes Measurement Information System (PROMIS: Sleep Disturbance, Sleep-Related Impairment), Sheehan Disability Scale (SDS) and Patient- and Clinician-Global Improvement (PGI-C, CGI-C). Melatonin treatment response on actigraphic sleep onset time did not differ between genotypes. For PER34/4 carriers, self-reported sleep onset time was advanced by a larger amount and sleep onset latency (SOL) was shorter in melatonin-treated patients compared to those receiving placebo (P = .008), while actigraphic sleep efficiency in the first third of the sleep episode (SE T1) did not differ. For PER3 5 carriers, actigraphic SOL and SE T1 showed a larger improvement with melatonin (P < .001). Melatonin improved ISI (P = .005), PROMIS sleep disturbance (P < .001) and sleep-related impairment (P = .017), SDS (P = .019), PGI-C (P = .028) and CGI-C (P = .016) in PER34/4 individuals only. Melatonin did not advance circadian phase. Overall, PER34/4 DSWPD patients have a greater response to melatonin treatment. PER3 genotyping may therefore improve DSWPD patient outcomes.
Collapse
Affiliation(s)
- Michelle Magee
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Victoria, Australia
- Cooperative Research Centre for Alertness, Safety and Productivity, Clayton, Victoria, Australia
- Centre for Neuroscience of Speech, Department of Audiology and Speech Pathology, University of Melbourne, Parkville, Victoria, Australia
| | - Tracey L Sletten
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Victoria, Australia
- Cooperative Research Centre for Alertness, Safety and Productivity, Clayton, Victoria, Australia
| | - Jade M Murray
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Victoria, Australia
- Cooperative Research Centre for Alertness, Safety and Productivity, Clayton, Victoria, Australia
| | - Christopher J Gordon
- Cooperative Research Centre for Alertness, Safety and Productivity, Clayton, Victoria, Australia
- Woolcock Institute of Medical Research, Sydney, NSW, Australia
- Sydney Nursing School, The University of Sydney, Sydney, NSW, Australia
| | - Nicole Lovato
- Cooperative Research Centre for Alertness, Safety and Productivity, Clayton, Victoria, Australia
- Adelaide Institute for Sleep Health: A Flinders Centre of Research Excellence, School of Medicine, Flinders University, Adelaide, South Australia, Australia
| | - Delwyn J Bartlett
- Cooperative Research Centre for Alertness, Safety and Productivity, Clayton, Victoria, Australia
- Woolcock Institute of Medical Research, Sydney, NSW, Australia
| | - David J Kennaway
- Robinson Research Institute, Adelaide School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Steven W Lockley
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Victoria, Australia
- Cooperative Research Centre for Alertness, Safety and Productivity, Clayton, Victoria, Australia
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Leon C Lack
- Adelaide Institute for Sleep Health: A Flinders Centre of Research Excellence, School of Medicine, Flinders University, Adelaide, South Australia, Australia
| | - Ronald R Grunstein
- Cooperative Research Centre for Alertness, Safety and Productivity, Clayton, Victoria, Australia
- Woolcock Institute of Medical Research, Sydney, NSW, Australia
| | - Simon N Archer
- Surrey Sleep Research Centre, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Shantha M W Rajaratnam
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Victoria, Australia
- Cooperative Research Centre for Alertness, Safety and Productivity, Clayton, Victoria, Australia
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
33
|
Panjeh S, Pompeia S, Archer SN, Pedrazzoli M, von Schantz M, Cogo-Moreira H. What are we measuring with the morningness-eveningness questionnaire? Exploratory factor analysis across four samples from two countries. Chronobiol Int 2020; 38:234-247. [PMID: 32993374 DOI: 10.1080/07420528.2020.1815758] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Individual variability in diurnal preference or chronotype is commonly assessed with self-report scales such as the widely used morningness-eveningness questionnaire (MEQ). We sought to investigate the MEQ's internal consistency by applying exploratory factor analysis (EFA) to determine the number of underlying latent factors in four different adult samples, two each from the United Kingdom and Brazil (total N = 3,457). We focused on factors that were apparent in all samples, irrespective of particular sociocultural diversity and geographical characteristics, so as to show a common core reproducible structure across samples. Results showed a three-factor solution with acceptable to good model fit indexes in all studied populations. Twelve of the 19 MEQ items in the three-correlated factor solution loaded onto the same factors across the four samples. This shows that the scale measures three distinguishable, yet correlated constructs: (1) items related to how people feel in the morning, which we termed efficiency of dissipation of sleep pressure (recovery process) (items 1, 3, 4, 5, 7, 9, 13, and 19); (2) items related to how people feel before sleep, which we called sensitivity to buildup of sleep pressure (items 2, 10, and 12); and (3) peak time of cognitive arousal (item 11). Although the third factor was not regarded as consistent since only one item was common among all samples, it might represent subjective amplitude. These results suggested that the latent constructs of the MEQ reflect dissociable homeostatic processes in addition to a less consistent propensity for cognitive arousal at different times of the day. By analyzing answers to MEQ items that compose these latent factors, it may be possible to extract further knowledge of factors that affect morningness-eveningness.
Collapse
Affiliation(s)
- Sareh Panjeh
- Departamento de Psiquiatria, Universidade Federal de São Paulo , São Paulo, Brazil
| | - Sabine Pompeia
- Departamento de Psicobiologia, Universidade Federal de São Paulo , São Paulo, Brazil
| | - Simon N Archer
- Faculty of Health and Medical Sciences, University of Surrey , Guildford, UK
| | - Mario Pedrazzoli
- Escola de Arte, Ciências E Humanidades, Universidade de São Paulo , São Paulo, Brazil
| | - Malcolm von Schantz
- Faculty of Health and Medical Sciences, University of Surrey , Guildford, UK
| | - Hugo Cogo-Moreira
- Departamento de Psiquiatria, Universidade Federal de São Paulo , São Paulo, Brazil
| |
Collapse
|
34
|
Weiss C, Woods K, Filipowicz A, Ingram KK. Sleep Quality, Sleep Structure, and PER3 Genotype Mediate Chronotype Effects on Depressive Symptoms in Young Adults. Front Psychol 2020; 11:2028. [PMID: 32982844 PMCID: PMC7479229 DOI: 10.3389/fpsyg.2020.02028] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 07/21/2020] [Indexed: 11/13/2022] Open
Abstract
Depression and its related mood disorders are a major global health issue that disproportionately affects young adults. A number of factors that influence depressive symptoms are particularly relevant to the young adult developmental stage, including sleep loss, poor sleep quality, and the tendency toward eveningness in circadian preferences. However, relatively few studies have examined the relationship between sleep and circadian phenotypes, and their respective influences on mood, or considered potential molecular mechanisms driving these associations. Here, we use a multi-year, cross-sectional study of 806 primarily undergraduates to examine the relationships between sleep-wake chronotype, sleep disturbance, depression and genotypes associated with the PER3 variable number of tandom repeats (VNTR) polymorphism-circadian gene variants associated with both chronotype and sleep homeostatic drive. In addition, we use objective, Fitbit-generated sleep structure data on a subset of these participants (n = 67) to examine the relationships between chronotype, depression scores, actual measures of sleep duration, social jetlag, and the percent of deep and rapid eye movement (REM) sleep per night. In this population, chronotype is weakly associated with depressive symptoms and moderately correlated with self-reported sleep disturbance. Sleep disturbance is significantly associated with depression scores, but objective sleep parameters are not directly correlated with Beck Depression Inventory (BDI-II) scores, with the exceptions of a moderate correlation between social jetlag and depression scores in females and a marginal correlation between sleep duration and depression scores. Multiple regression and path analyses reveal that chronotype effects on depressive symptoms in this population are mediated largely by sleep disturbance. The PER3 VNTR genotype significantly predicts depressive symptoms in a model with objective sleep parameters, but it does not significantly predict depressive symptoms in a model with chronotype or subjective sleep disturbance. Interestingly, PER35,5 genotypes, in males only, are independently related to chronotype and depression scores. Our results support hypotheses linking subjective sleep quality and chronotype and provide a first step in understanding how objective sleep structure may be linked to chronotype and depressive symptoms. Our results also suggest that circadian gene variants may show sex-specific effects linking sleep duration and sleep structure to depression.
Collapse
Affiliation(s)
- Chloe Weiss
- Department of Biology, Colgate University, Hamilton, NY, United States
| | - Kerri Woods
- Department of Biology, Colgate University, Hamilton, NY, United States
| | - Allan Filipowicz
- Samuel Curtis Johnson Graduate School of Management, Cornell University, Ithaca, NY, United States
| | - Krista K. Ingram
- Department of Biology, Colgate University, Hamilton, NY, United States
| |
Collapse
|
35
|
Drogou C, Sauvet F, Erblang M, Detemmerman L, Derbois C, Erkel MC, Boland A, Deleuze JF, Gomez-Merino D, Chennaoui M. Genotyping on blood and buccal cells using loop-mediated isothermal amplification in healthy humans. ACTA ACUST UNITED AC 2020; 26:e00468. [PMID: 32461926 PMCID: PMC7240324 DOI: 10.1016/j.btre.2020.e00468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/23/2020] [Accepted: 05/10/2020] [Indexed: 12/11/2022]
Abstract
Genetic variations contribute to phenotypic individual vulnerabilities to sleep debt. LAMP-MC is a recently developed method to characterize Single Nucleotide Polymorphism. Detection is performed directly from whole blood or buccal cells. LAMP-MC method produced specific melting curves for 5 sleep debt-related SNPs. High concordance of results was observed between LAMP-MC and Taqman referent method.
Genetic variations contribute to phenotypic individual vulnerabilities to sleep debt, particularly for five single nucleotide polymorphisms (SNPs). Loop-mediated isothermal amplification and melting curve analysis (LAMP-MC) is a recently developed method to characterize SNPs. The aim of present study was to evaluate the LAMP-MC method on blood and buccal cells for detection of five SNPs of interest in healthy humans. We first analyzed signals obtained from LAMP-MC method on 42 samples. Then we compared the results with those of referent TaqMan method. The LAMP-MC method produced specific melting curves for the five SNPs. A high concordance of genotyping results was observed between the two methods for rs5751876_ADORA2A, rs1800629_TNF-α, rs73598374_ADA and rs228697_PER3 in blood and saliva (Cohen’s kappa coefficient >0.80). A good agreement ( = 0.61) was observed for rs4680_COMT in blood only. LAMP-MC is a simple and reliable method to study genetic influences on health, sleep debt-related performance impairments and countermeasures.
Collapse
Affiliation(s)
- Catherine Drogou
- Institut de Recherche Biomédicale des Armées (IRBA), Brétigny sur Orge, France.,Université de Paris, Equipe d'Accueil VIgilance FAtigue et SOmmeil (VIFASOM), EA 7330, Paris, France
| | - Fabien Sauvet
- Institut de Recherche Biomédicale des Armées (IRBA), Brétigny sur Orge, France.,Université de Paris, Equipe d'Accueil VIgilance FAtigue et SOmmeil (VIFASOM), EA 7330, Paris, France
| | - Mégane Erblang
- Institut de Recherche Biomédicale des Armées (IRBA), Brétigny sur Orge, France.,Université de Paris, Equipe d'Accueil VIgilance FAtigue et SOmmeil (VIFASOM), EA 7330, Paris, France
| | | | - Céline Derbois
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), Evry, France
| | - Marie Claire Erkel
- Institut de Recherche Biomédicale des Armées (IRBA), Brétigny sur Orge, France
| | - Anne Boland
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), Evry, France
| | - Jean François Deleuze
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), Evry, France
| | - Danielle Gomez-Merino
- Institut de Recherche Biomédicale des Armées (IRBA), Brétigny sur Orge, France.,Université de Paris, Equipe d'Accueil VIgilance FAtigue et SOmmeil (VIFASOM), EA 7330, Paris, France
| | - Mounir Chennaoui
- Institut de Recherche Biomédicale des Armées (IRBA), Brétigny sur Orge, France.,Université de Paris, Equipe d'Accueil VIgilance FAtigue et SOmmeil (VIFASOM), EA 7330, Paris, France
| |
Collapse
|
36
|
Genetics of Circadian and Sleep Measures in Adults: Implications for Sleep Medicine. CURRENT SLEEP MEDICINE REPORTS 2020. [DOI: 10.1007/s40675-020-00165-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
37
|
Alternations of Circadian Clock Genes Expression and Oscillation in Obstructive Sleep Apnea. J Clin Med 2019; 8:jcm8101634. [PMID: 31590444 PMCID: PMC6832256 DOI: 10.3390/jcm8101634] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/27/2019] [Accepted: 10/03/2019] [Indexed: 11/20/2022] Open
Abstract
Circadian misalignment plays an important role in disease processes and can affect disease severity, treatment outcomes, and even survivorship. In this study, we aim to investigate whether expression and daily oscillation patterns of core circadian clock genes were disturbed in patients with obstructive sleep apnea/hypopnea (OSA) syndrome. We performed real-time quantitative reverse transcriptase-polymerase chain reactions to examine the expression of the nine core circadian clock genes in leukocytes of peripheral blood collected at 12 AM, 6 AM, 12 PM, and 6 PM from 133 patients with OSA and 11 normal controls. Daily expression patterns of the nine circadian clock genes were observed in normal controls, but three of these genes (BMAL1, CLOCK, CRY2) were disrupted in patients with OSA. The expressions of eight circadian clock genes (except PER1) at midnight were significantly downregulated in patients with severe OSA. Binary logistic regression analysis selected CRY1 and PER3 as independent factors for severe OSA and showed that the combined expressions of CRY1 and PER3 enhanced the capability of predicting severe OSA (Odds ratio, 5.800; 95% CI, 1.978 to 17.004; p = 0.001). Our results show that combined expressions of CRY1 and PER3 at midnight could be a potential predictor for severe OSA.
Collapse
|
38
|
A missense variant in PER2 is associated with delayed sleep-wake phase disorder in a Japanese population. J Hum Genet 2019; 64:1219-1225. [PMID: 31527662 DOI: 10.1038/s10038-019-0665-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/04/2019] [Accepted: 08/20/2019] [Indexed: 12/31/2022]
Abstract
Delayed sleep-wake phase disorder (DSWPD) is a subtype of circadian rhythm sleep-wake disorders, and is characterized by an inability to fall asleep until late at night and wake up at a socially acceptable time in the morning. The study aim was to identify low-frequency nonsense and missense variants that are associated with DSWPD. Candidate variants in circadian rhythm-related genes were extracted by integration of genetic variation databases and in silico assessment. We narrowed down the candidates to six variants. To examine whether the six variants are associated with DSWPD, we performed an association study in 236 Japanese patients with DSWPD and 1436 controls. A low-frequency missense variant (p.Val1205Met) in PER2 showed a significant association with DSWPD (2.5% in cases and 1.1% in controls, P = 0.026, odds ratio (OR) = 2.32). The variant was also associated with idiopathic hypersomnia known to have a tendency toward phase delay (P = 0.038, OR = 2.07). PER2 forms a heterodimer with CRY, and the heterodimer plays an important role in the regulation of circadian rhythms. Val1205 is located in the CRY-binding domain of PER2 and was hypothesized to interact with CRY. The p.Val1205Met substitution could be a potential genetic marker for DSWPD.
Collapse
|
39
|
Helvaci N, Oguz SH, Kabacam S, Karabulut E, Akbiyik F, Alikasifoglu M, Gurlek A. Clock gene PERIOD3 polymorphism is associated with susceptibility to Graves’ disease but not to Hashimoto’s thyroiditis. Chronobiol Int 2019; 36:1343-1350. [DOI: 10.1080/07420528.2019.1642909] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Nafiye Helvaci
- Department of Endocrinology and Metabolism, Hacettepe University School of Medicine, Ankara, Turkey
| | - Seda Hanife Oguz
- Department of Endocrinology and Metabolism, Hacettepe University School of Medicine, Ankara, Turkey
| | - Serkan Kabacam
- Department of Medical Genetics, Hacettepe University School of Medicine, Ankara, Turkey
| | - Erdem Karabulut
- Department of Biostatistics, Hacettepe University School of Medicine, Ankara, Turkey
| | - Filiz Akbiyik
- Department of Medical Biochemistry, Hacettepe University School of Medicine, Ankara, Turkey
| | - Mehmet Alikasifoglu
- Department of Medical Genetics, Hacettepe University School of Medicine, Ankara, Turkey
| | - Alper Gurlek
- Department of Endocrinology and Metabolism, Hacettepe University School of Medicine, Ankara, Turkey
| |
Collapse
|
40
|
Takakura J, Fujimori S, Takahashi K, Hijioka Y, Honda Y. Site-specific hourly resolution wet bulb globe temperature reconstruction from gridded daily resolution climate variables for planning climate change adaptation measures. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2019; 63:787-800. [PMID: 30798364 DOI: 10.1007/s00484-019-01692-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 02/08/2019] [Accepted: 02/11/2019] [Indexed: 06/09/2023]
Abstract
Changes in the environmental heat stress need to be properly evaluated to manage the risk of heat-related illnesses, particularly in the context of climate change. The wet bulb globe temperature (WBGT) is a useful index for evaluating heat stress and anticipating conditions related to heat-related illness in the present climate, but projecting the WBGT with a sufficiently high temporal and spatial resolution remains challenging for future climate conditions. In this study, we developed a methodological framework for estimating the site-specific hourly resolution WBGT based on the output of general circulation models using only simple calculations. The method was applied to six sites in Japan and its performance was evaluated. The proposed method could reproduce the site-specific hourly resolution WBGT with a high accuracy. Based on the developed framework, we constructed future (2090s) projections under two different greenhouse gas emission pathways. These projections showed a consistent rise in the WBGT and thus the capacity to perform physically demanding activities is expected to decrease. To demonstrate the usefulness of the projected WBGT in planning adaptation measures, we identified the optimal working schedules which would minimize outdoor workers' exposure to heat at a specific site. The results show that a substantial shift in the working time is required in the future if outdoor workers are to compensate the effect of increased heat exposure only by changing their working hours. This methodological framework and the projections will provide local practitioners with useful information to manage the increased risk of heat stress under climate change.
Collapse
Affiliation(s)
- Jun'ya Takakura
- National Institute for Environmental Studies, 16-2, Onogawa, Tsukuba, 305-8506, Japan.
| | - Shinichiro Fujimori
- Kyoto University, 361, C1-3, Kyoto University Katsura Campus, Nishikyo-ku, Kyoto, 615-8540, Japan
| | - Kiyoshi Takahashi
- National Institute for Environmental Studies, 16-2, Onogawa, Tsukuba, 305-8506, Japan
| | - Yasuaki Hijioka
- National Institute for Environmental Studies, 16-2, Onogawa, Tsukuba, 305-8506, Japan
| | - Yasushi Honda
- University of Tsukuba, 1-1-1, Tennodai, Tsukuba, 305-8577, Japan
| |
Collapse
|
41
|
Nguyen C, Murray G, Anderson S, Filipowicz A, Ingram KK. In vivo molecular chronotyping, circadian misalignment, and high rates of depression in young adults. J Affect Disord 2019; 250:425-431. [PMID: 30878655 DOI: 10.1016/j.jad.2019.03.050] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 01/15/2019] [Accepted: 03/07/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND Young adults are disproportionately affected by depression and related mental disorders. Circadian misalignment (a phase advance or delay in the body's internal clock timing) is thought to exert adverse effects on downstream physiological processes regulating mood. Circadian disruption may represent an additional, under-appreciated risk factor affecting young adults. Here, we test the hypothesis that depression in young adults is associated with circadian misalignment-the lack of concordance between an individual's endogenous rhythm and their external social and academic environment. METHODS We screened 528 individuals for morningness-eveningness diurnal preference and sleep-wake chronotype. We selected individuals with extreme scores (n = 130) for estimation of circadian phase by measuring clock gene mRNA oscillations in hair follicles (a peripheral clock). Using an independent, data-driven cluster analysis, we define the circadian misalignment of both advanced- and delayed-phase individuals from clock gene mRNA expression levels. We compare depression (BDI-II), anxiety (STAI), social jetlag, sleep duration, and sleep disturbance (PROMIS) scores between misaligned individuals and control individuals of intermediate chronotype (n = 173). RESULTS We demonstrate that depression scores in young adults are significantly higher in individuals with circadian phase delays and in individuals with a mismatch between circadian behavioral phenotypes and circadian molecular phase. Evening-type individuals with circadian phase delays are 20 times more likely and mismatched individuals are 5-8 times more likely to be depressed than control individuals. Sleep disturbance shows a similar relationship with circadian phenotypes, but the mood effects described in this study are independent of sleep duration, social jetlag and gender. LIMITATIONS Our study examined peripheral clock genes that represents a circadian rhythm potentially influenced by both intrinsic and external, environmental factors. Our study population spanned a limited age-group and our results cannot distinguish between cause and effect of circadian, sleep and mood variables. CONCLUSIONS Our study validates previous theoretical predictions of circadian effects on mood disorders and highlights a critical, hidden risk factor affecting mood in young adults-circadian disruption.
Collapse
Affiliation(s)
- Chi Nguyen
- Department of Biology, Colgate University, Hamilton, NY 13346, USA
| | - Gillian Murray
- Department of Biology, Colgate University, Hamilton, NY 13346, USA
| | - Sarah Anderson
- Department of Biology, Colgate University, Hamilton, NY 13346, USA
| | - Allan Filipowicz
- Cornell SC Johnson College of Business, Cornell University, Ithaca, NY 14850, USA
| | - Krista K Ingram
- Department of Biology, Colgate University, Hamilton, NY 13346, USA.
| |
Collapse
|
42
|
Is it Time to Change Radiotherapy: The Dawning of Chronoradiotherapy? Clin Oncol (R Coll Radiol) 2019; 31:326-335. [DOI: 10.1016/j.clon.2019.02.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 02/15/2019] [Indexed: 11/23/2022]
|
43
|
Off the Clock: From Circadian Disruption to Metabolic Disease. Int J Mol Sci 2019; 20:ijms20071597. [PMID: 30935034 PMCID: PMC6480015 DOI: 10.3390/ijms20071597] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/20/2019] [Accepted: 03/27/2019] [Indexed: 12/18/2022] Open
Abstract
Circadian timekeeping allows appropriate temporal regulation of an organism’s internal metabolism to anticipate and respond to recurrent daily changes in the environment. Evidence from animal genetic models and from humans under circadian misalignment (such as shift work or jet lag) shows that disruption of circadian rhythms contributes to the development of obesity and metabolic disease. Inappropriate timing of food intake and high-fat feeding also lead to disruptions of the temporal coordination of metabolism and physiology and subsequently promote its pathogenesis. This review illustrates the impact of genetically or environmentally induced molecular clock disruption (at the level of the brain and peripheral tissues) and the interplay between the circadian system and metabolic processes. Here, we discuss some mechanisms responsible for diet-induced circadian desynchrony and consider the impact of nutritional cues in inter-organ communication, with a particular focus on the communication between peripheral organs and brain. Finally, we discuss the relay of environmental information by signal-dependent transcription factors to adjust the timing of gene oscillations. Collectively, a better knowledge of the mechanisms by which the circadian clock function can be compromised will lead to novel preventive and therapeutic strategies for obesity and other metabolic disorders arising from circadian desynchrony.
Collapse
|
44
|
Saeed Y, Zee PC, Abbott SM. Clinical neurophysiology of circadian rhythm sleep-wake disorders. HANDBOOK OF CLINICAL NEUROLOGY 2019; 161:369-380. [PMID: 31307614 DOI: 10.1016/b978-0-444-64142-7.00061-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Circadian rhythms are the endogenous near-24-h oscillations in physiologic processes. In mammals the suprachiasmatic nucleus serves as the primary circadian pacemaker, and it maintains rhythmicity at a genetic level through a complex transcription-translation feedback loop of core circadian clock genes. The circadian clock is entrained to the environment through daily exposure to light and melatonin. Disruption of these endogenous rhythms or the ability to entrain to the surrounding environment results in the circadian rhythm sleep-wake disorders (CRSWDs). Patients with CRSWDs can present with either late sleep/wake times (delayed sleep-wake phase disorder), early sleep/wake times (advanced sleep-wake phase disorder), inconsistent sleep/wake times (irregular sleep-wake rhythm disorder) or sleep-wake times that move progressively later each day (non-24-h sleep-wake rhythm disorder). Diagnosis of these disorders relies on the use of sleep logs and/or actigraphy to demonstrate the daily patterns of rest and activity. Treatment of the CRSWDs focuses on sleep hygiene and strategically timed light and melatonin.
Collapse
Affiliation(s)
- Yumna Saeed
- Department of Neurology, Center for Circadian and Sleep Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Phyllis C Zee
- Department of Neurology, Center for Circadian and Sleep Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.
| | - Sabra M Abbott
- Department of Neurology, Center for Circadian and Sleep Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
45
|
Park J, Sung JY, Kim DK, Kong ID, Hughes TL, Kim N. Genetic association of human Corticotropin-Releasing Hormone Receptor 1 (CRHR1) with Internet gaming addiction in Korean male adolescents. BMC Psychiatry 2018; 18:396. [PMID: 30572854 PMCID: PMC6302290 DOI: 10.1186/s12888-018-1974-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 12/05/2018] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND The number of people with Internet gaming addiction (IGA) is increasing around the world. IGA is known to be associated with personal characteristics, psychosocial factors, and physiological factors. However, few studies have examined the genetic factors related to IGA. This study aimed to investigate the association between IGA and stress-related genetic variants. METHODS This cross-sectional study was conducted with 230 male high school students in a South Korean city. We selected five stress-related candidate genes: DAT1, DRD4, NET8, CHRNA4, and CRHR1. The DAT1 and DRD4 genes were genotyped by polymerase chain reaction, and the NET8, CHRNA4, and CRHR1 genes were genotyped by pyrosequencing analysis. We performed a Chi-square test to examine the relationship of these five candidate genes to IGA. RESULTS Having the AA genotype and the A allele of the CRHR1 gene (rs28364027) was associated with higher odds of belonging to the IGA participant group (p = .016 and p = .021, respectively) than to the non-IGA group. By contrast, the DAT1, DRD4, NET8, and CHRNA4 gene polymorphisms showed no significant difference between the IGA group and control group. CONCLUSIONS These results indicate that polymorphism of the CRHR1 gene may play an important role in IGA susceptibility in the Korean adolescent male population. These findings provide a justification and foundation for further investigation of genetic factors related to IGA.
Collapse
Affiliation(s)
- Jooyeon Park
- College of Nursing, Keimyung University, Daegu, Republic of Korea
| | - Jin-Young Sung
- Department of Medical Genetics, School of Medicine, Keimyung University, Daegu, Republic of Korea
| | - Dae-Kwang Kim
- Department of Medical Genetics, School of Medicine, Keimyung University, Daegu, Republic of Korea
| | - In Deok Kong
- Department of Physiology, Wonju College of Medicine, Yonsei University, Wonju, Republic of Korea
| | - Tonda L Hughes
- School of Nursing and Department of Psychiatry, Columbia University, New York City, USA
| | - Nahyun Kim
- College of Nursing, Keimyung University, Daegu, Republic of Korea.
| |
Collapse
|
46
|
Vilor-Tejedor N, Alemany S, Cáceres A, Bustamante M, Mortamais M, Pujol J, Sunyer J, González JR. Sparse multiple factor analysis to integrate genetic data, neuroimaging features, and attention-deficit/hyperactivity disorder domains. Int J Methods Psychiatr Res 2018; 27:e1738. [PMID: 30105890 PMCID: PMC6877273 DOI: 10.1002/mpr.1738] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 05/17/2018] [Accepted: 06/26/2018] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVES We proposed the application of a multivariate cross-sectional framework based on a combination of a variable selection method and a multiple factor analysis (MFA) in order to identify complex meaningful biological signals related to attention-deficit/hyperactivity disorder (ADHD) symptoms and hyperactivity/inattention domains. METHODS The study included 135 children from the general population with genomic and neuroimaging data. ADHD symptoms were assessed using a questionnaire based on ADHD-DSM-IV criteria. In all analyses, the raw sum scores of the hyperactivity and inattention domains and total ADHD were used. The analytical framework comprised two steps. First, zero-inflated negative binomial linear model via penalized maximum likelihood (LASSO-ZINB) was performed. Second, the most predictive features obtained with LASSO-ZINB were used as input for the MFA. RESULTS We observed significant relationships between ADHD symptoms and hyperactivity and inattention domains with white matter, gray matter regions, and cerebellum, as well as with loci within chromosome 1. CONCLUSIONS Multivariate methods can be used to advance the neurobiological characterization of complex diseases, improving the statistical power with respect to univariate methods, allowing the identification of meaningful biological signals in Imaging Genetic studies.
Collapse
Affiliation(s)
- Natàlia Vilor-Tejedor
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain.,Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Barcelonabeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
| | - Silvia Alemany
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Alejandro Cáceres
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Mariona Bustamante
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain.,Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Marion Mortamais
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Jesús Pujol
- MRI Research Unit, Hospital del Mar, and Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM G21, Barcelona, Spain
| | - Jordi Sunyer
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Juan R González
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| |
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW Sleep timing, quantity, and quality are controlled by homeostatic and circadian systems. Circadian clock systems are present in all cells and organs and their timing is determined by a transcriptional-translational feedback loop of circadian genes. Individual cellular clocks are synchronized by the central body clock, situated in the suprachiasmatic nucleus, which communicates with them through humoral and neural signals including melatonin. The circadian system controls both the circadian period: (i.e., the length of the intrinsic clock), but also the circadian phase (i.e., the clock timing). An important determinant of the circadian system is light exposure. In most humans, the circadian period is slightly longer than 24 h and without regular resetting it tends to drift, leading to progressively later bedtimes and wake times and a tendency to cycle though periods of normal and abnormal sleep. Blind patients are thus at an increased risk of abnormal circadian function. The purpose of this article is to review recent research and clinical management of circadian rhythm disorders in blind patients. RECENT FINDINGS Blind patients can present delayed and advanced sleep phase disorders but the most common abnormality in totally blind patients without light perception is non-24-hour sleep-wake disorder (N24SWD). This is rare in the general population but may affect up to 50% of blind patients without light perception. The diagnosis of a circadian rhythm disorder in the blind is complex. New screening tools have been developed but actigraphy and repeated melatonin profiles over 24 h remain essential. Circadian disorders in the blind are frequent, especially in the patients without light perception. They require accurate diagnosis in order to target treatment. Determining the precise nature of a sleep disorder in blind patients with a suspected circadian rhythm abnormality is complex and requires a detailed clinical history with sleep diaries and the use of actigraphy and melatonin profiles.
Collapse
|
48
|
Abstract
Although individual athletic performance generally tends to peak in the evening, individuals who exhibit a strong diurnal preference perform better closer to their circadian peak. Time-of-day performance effects are influenced by circadian phenotype (diurnal preference and chronotype-sleep-wake patterns), homeostatic energy reserves and, potentially, genotype, yet little is known about how these factors influence physiological effort. Here, we investigate the effects of time of day, diurnal preference, chronotype, and PER3 (a circadian clock gene) genotype on both effort and performance in a population of Division I collegiate swimmers (n = 27). Participants competed in 200m time trials at 7:00 and 19:00 and were sampled pre- and post-trial for salivary α-amylase levels (as a measure of physiological effort), allowing for per-individual measures of performance and physiological effort. Hair samples were collected for genotype analysis (a variable-number tandem-repeat (VNTR) and a single nucleotide polymorphism (SNP) in PER3). Our results indicate significant and parallel time-of-day by circadian phenotype effects on swim performance and effort; evening-type swimmers swam on average 6% slower with 50% greater α-amylase levels in the morning than they did in the evening, and morning types required 5-7 times more effort in the evening trial to achieve the same performance result as the morning trial. In addition, our results suggest that these performance effects may be influenced by gene (circadian clock gene PER3 variants) by environment (time of day) interactions. Participants homozygous for the PER34,4 length variant (rs57875989) or who possess a single G-allele at PER3 SNP rs228697 swam 3-6% slower in the morning. Overall, these results suggest that intra-individual variation in athletic performance and effort with time of day is associated with circadian phenotype and PER3 genotype.
Collapse
|
49
|
Archer SN, Schmidt C, Vandewalle G, Dijk DJ. Phenotyping of PER3 variants reveals widespread effects on circadian preference, sleep regulation, and health. Sleep Med Rev 2018; 40:109-126. [PMID: 29248294 DOI: 10.1016/j.smrv.2017.10.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 10/16/2017] [Accepted: 10/30/2017] [Indexed: 12/29/2022]
Abstract
Period3 (Per3) is one of the most robustly rhythmic genes in humans and animals. It plays a significant role in temporal organisation in peripheral tissues. The effects of PER3 variants on many phenotypes have been investigated in targeted and genome-wide studies. PER3 variants, especially the human variable number tandem repeat (VNTR), associate with diurnal preference, mental disorders, non-visual responses to light, brain and cognitive responses to sleep loss/circadian misalignment. Introducing the VNTR into mice alters responses to sleep loss and expression of sleep homeostasis-related genes. Several studies were limited in size and some findings were not replicated. Nevertheless, the data indicate a significant contribution of PER3 to sleep and circadian phenotypes and diseases, which may be connected by common pathways. Thus, PER3-dependent altered light sensitivity could relate to high retinal PER3 expression and may contribute to altered brain response to light, diurnal preference and seasonal mood. Altered cognitive responses during sleep loss/circadian misalignment and changes to slow wave sleep may relate to changes in wake/activity-dependent patterns of hypothalamic gene expression involved in sleep homeostasis and neural network plasticity. Comprehensive characterisation of effects of clock gene variants may provide new insights into the role of circadian processes in health and disease.
Collapse
Affiliation(s)
- Simon N Archer
- Sleep Research Centre, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XP, UK.
| | - Christina Schmidt
- GIGA-Research, Cyclotron Research Centre-In Vivo Imaging Unit, University of Liège, Belgium; Psychology and Neuroscience of Cognition Research Unit (PsyNCog), Faculty of Psychology and Educational Sciences, University of Liège, Belgium
| | - Gilles Vandewalle
- GIGA-Research, Cyclotron Research Centre-In Vivo Imaging Unit, University of Liège, Belgium
| | - Derk-Jan Dijk
- Sleep Research Centre, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XP, UK
| |
Collapse
|
50
|
Hida A, Kitamura S, Kadotani H, Uchiyama M, Ebisawa T, Inoue Y, Kamei Y, Mishima K. Lack of association between PER3 variable number tandem repeat and circadian rhythm sleep-wake disorders. Hum Genome Var 2018; 5:17. [PMID: 30083361 PMCID: PMC6043536 DOI: 10.1038/s41439-018-0017-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 05/27/2018] [Indexed: 12/02/2022] Open
Abstract
Circadian rhythm sleep–wake disorders (CRSWDs) are characterized by disturbed sleep–wake patterns. We genotyped a PER3 variable number tandem repeat (VNTR) in 248 CRSWD individuals and 925 controls and found no significant association between the VNTR and CRSWDs or morningness–eveningness (diurnal) preferences in the Japanese population. Although the VNTR has been associated with circadian and sleep phenotypes in some other populations, the polymorphism may not be a universal genetic marker.
Collapse
Affiliation(s)
- Akiko Hida
- 1Department of Sleep-Wake Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, 187-8553 Japan
| | - Shingo Kitamura
- 1Department of Sleep-Wake Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, 187-8553 Japan
| | - Hiroshi Kadotani
- 2Department of Sleep and Behavioral Sciences, Shiga University of Medical Science, Shiga, 520-2192 Japan
| | - Makoto Uchiyama
- 3Department of Psychiatry, Nihon University School of Medicine, Tokyo, 173-8610 Japan
| | - Takashi Ebisawa
- Yokohama Clinic for Psychosomatic Medicine and Psychiatry, Medical Corporation Warakukai, Kanagawa, 220-0004 Japan
| | - Yuichi Inoue
- 5Department of Somnology, Tokyo Medical University, Tokyo, 160-8402 Japan.,Yoyogi Sleep Disorder Center, Tokyo, 151-0053 Japan
| | - Yuichi Kamei
- 7Department of Laboratory Medicine, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, 187-8551 Japan
| | - Kazuo Mishima
- 1Department of Sleep-Wake Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, 187-8553 Japan
| |
Collapse
|