1
|
Rasool A, Sri S, Zulfajri M, Sri Herwahyu Krismastuti F. Nature inspired nanomaterials, advancements in green synthesis for biological sustainability. INORG CHEM COMMUN 2024; 169:112954. [DOI: 10.1016/j.inoche.2024.112954] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
2
|
Polli AD, Oliveira Junior VAD, Ribeiro MADS, Polonio JC, Rosini B, Oliveira JADS, Bini RD, Golias HC, Fávaro-Polonio CZ, Orlandelli RC, Vicentini VEP, Cotica LF, Peralta RM, Pamphile JA, Azevedo JL. Synthesis, characterization, and reusability of novel nanobiocomposite of endophytic fungus Aspergillus flavus and magnetic nanoparticles (Fe 3O 4) with dye bioremediation potential. CHEMOSPHERE 2023; 340:139956. [PMID: 37640209 DOI: 10.1016/j.chemosphere.2023.139956] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/14/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023]
Abstract
The incorrect disposal of textile dyes, such as Reactive Black 5 (RB5), causes several problems for living beings and the quality of the environment. Nanobiocomposites (NBC) produced from endophytic fungi (potentially remediation dyes-agents) and magnetic nanoparticles have high biotechnological potential due to their superparamagnetic behavior, which would allow their recovery through the magnetic field after the bioremediation process. This work aimed to obtain a new nanobiocomposite from the interaction of magnetite nanoparticles (Fe3O4) with the endophyte Aspergillus flavus (Af-CL-7) to evaluate its bioremediation capacity and to reduce the toxicity of RB5 and its reuse. Before obtaining the NBC, Af-CL-7 showed discoloration of RB5 and it was tolerant to all tested concentrations of this dye. The discovery of the nanobiocomposite textile dye bioremediator product presents a significant environmental advantage by addressing the issue of water pollution caused by textile dyes. The NBC called Af-Fe3O4 was successfully obtained with the magnetized endophyte, and their magnetic properties were verified by VSM analysis and by action of magnetic fields generated by Nd-Fe-B magnets SEM analyzes showed that the nanoparticles did not cause any damage to the hypha morphology, and TEM analyzes confirmed the presence of nanoparticles in the fungus wall and also inside the cell. The NBC Af-Fe3O4 and Af-CL-7 showed, respectively, 96.1% and 92.2% of RB5 discoloration in the first use, 91.1% e 86.2% of discoloration in the validation test, and 89.0% in NBC reuse. In the toxicological bioassay with Lactuca sativa seeds, NBC showed a positive reduction in the toxicity of RB5 after treatment, allowing the hypocotyl growth to be statistically similar to the control with water. Thus, we highlight the promising obtaining process of NBC that could be applied in bioremediation of contaminated waters, wherein the industrial economic cost will depend on the fermentation efficiency, biomass production and nanoparticle synthesis.
Collapse
Affiliation(s)
- Andressa Domingos Polli
- Laboratory of Microbial Biotechnology. Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, 87020-900, Maringá, Paraná, Brazil
| | - Verci Alves de Oliveira Junior
- Laboratory of Microbial Biotechnology. Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, 87020-900, Maringá, Paraná, Brazil
| | - Marcos Alessandro Dos Santos Ribeiro
- Laboratory of Microbial Biotechnology. Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, 87020-900, Maringá, Paraná, Brazil
| | - Julio Cesar Polonio
- Laboratory of Microbial Biotechnology. Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, 87020-900, Maringá, Paraná, Brazil.
| | - Bianca Rosini
- Laboratory of Microbial Biotechnology. Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, 87020-900, Maringá, Paraná, Brazil
| | - João Arthur Dos Santos Oliveira
- Laboratory of Microbial Biotechnology. Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, 87020-900, Maringá, Paraná, Brazil
| | | | - Halison Correia Golias
- Academic Department of Humanities, Federal Technological University of Paraná, Apucarana, Paraná, Brazil
| | - Cintia Zani Fávaro-Polonio
- Laboratory of Microbial Biotechnology. Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, 87020-900, Maringá, Paraná, Brazil
| | - Ravely Casarotti Orlandelli
- Laboratory of Microbial Biotechnology. Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, 87020-900, Maringá, Paraná, Brazil
| | | | | | | | - João Alencar Pamphile
- Laboratory of Microbial Biotechnology. Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, 87020-900, Maringá, Paraná, Brazil
| | - João Lúcio Azevedo
- Department of Genetics, College of Agriculture "Luiz de Queiroz", University of São Paulo, 13418-900, Piracicaba, São Paulo, Brazil
| |
Collapse
|
3
|
Berhe MG, Gebreslassie YT. Biomedical Applications of Biosynthesized Nickel Oxide Nanoparticles. Int J Nanomedicine 2023; 18:4229-4251. [PMID: 37534055 PMCID: PMC10390717 DOI: 10.2147/ijn.s410668] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/10/2023] [Indexed: 08/04/2023] Open
Abstract
Nickel oxide nanoparticles have gained tremendous attention recently in a variety of scientific domains thanks to their characteristic chemical, physical, optical, and biological properties. Due to the diversity of applications in various fields, different physicochemical methods have been used to synthesize nickel oxide nanoparticles. However, most conventional methods use hazardous chemicals during synthesis and become liable for potential health risks, while others are expensive and require a lot of energy to synthesize nanoparticles. As a result, the nanoparticles become less biocompatible and biologically inefficient. Biogenic synthesis of nanoparticles is currently proposed as a valuable alternative to the physical and chemical methods, as it is a simple, non-toxic, cheap, green and facile approach. This synthetic method uses biological substrates such as plant extracts, microorganisms, and other biological products to synthesize nickel oxide nanoparticles. The various phytochemicals from plant extracts, enzymes or proteins from microorganisms, and other biological derivatives play as reducing, stabilizing, and capping agents to provide bioactive and biocompatible nickel oxide nanoscale material. This review discusses current findings and trends in the biogenic synthesis of nickel oxide nanoparticles and their biological activities such as antibacterial, antifungal, antileishmanial, and anticancer, with an emphasis on antimicrobial and anticancer activity along with their mechanistic elucidation. Overall, this thorough study provides insight into the possibilities for the future development of green nickel oxide nanoparticles as therapeutic agents for a variety of ailments.
Collapse
Affiliation(s)
- Mearg Gidey Berhe
- Department of Physics, College of Natural and Computational Science, Adigrat University, Adigrat, Ethiopia
| | - Yemane Tadesse Gebreslassie
- Department of Chemistry, College of Natural and Computational Science, Adigrat University, Adigrat, Ethiopia
| |
Collapse
|
4
|
Loshchinina EA, Vetchinkina EP, Kupryashina MA. Diversity of Mycogenic Oxide and Chalcogenide Nanoparticles: A Review. Biomimetics (Basel) 2023; 8:224. [PMID: 37366819 DOI: 10.3390/biomimetics8020224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/15/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023] Open
Abstract
Oxide and chalcogenide nanoparticles have great potential for use in biomedicine, engineering, agriculture, environmental protection, and other research fields. The myco-synthesis of nanoparticles with fungal cultures, their metabolites, culture liquids, and mycelial and fruit body extracts is simple, cheap and environmentally friendly. The characteristics of nanoparticles, including their size, shape, homogeneity, stability, physical properties and biological activity, can be tuned by changing the myco-synthesis conditions. This review summarizes the data on the diversity of oxide and chalcogenide nanoparticles produced by various fungal species under different experimental conditions.
Collapse
Affiliation(s)
- Ekaterina A Loshchinina
- Laboratory of Microbiology, Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 410049 Saratov, Russia
| | - Elena P Vetchinkina
- Laboratory of Microbiology, Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 410049 Saratov, Russia
| | - Maria A Kupryashina
- Laboratory of Microbiology, Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 410049 Saratov, Russia
| |
Collapse
|
5
|
Mycosynthesis of Metal-Containing Nanoparticles-Fungal Metal Resistance and Mechanisms of Synthesis. Int J Mol Sci 2022; 23:ijms232214084. [PMID: 36430561 PMCID: PMC9696665 DOI: 10.3390/ijms232214084] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022] Open
Abstract
In the 21st century, nanomaterials play an increasingly important role in our lives with applications in many sectors, including agriculture, biomedicine, and biosensors. Over the last two decades, extensive research has been conducted to find ways to synthesise nanoparticles (NPs) via mediation with fungi or fungal extracts. Mycosynthesis can potentially be an energy-efficient, highly adjustable, environmentally benign alternative to conventional physico-chemical procedures. This review investigates the role of metal toxicity in fungi on cell growth and biochemical levels, and how their strategies of resistance, i.e., metal chelation, biomineral formation, biosorption, bioaccumulation, compartmentalisation, and efflux of metals from cells, contribute to the synthesis of metal-containing NPs used in different applications, e.g., biomedical, antimicrobial, catalytic, biosensing, and precision agriculture. The role of different synthesis conditions, including that of fungal biomolecules serving as nucleation centres or templates for NP synthesis, reducing agents, or capping agents in the synthesis process, is also discussed. The authors believe that future studies need to focus on the mechanism of NP synthesis, as well as on the influence of such conditions as pH, temperature, biomass, the concentration of the precursors, and volume of the fungal extracts on the efficiency of the mycosynthesis of NPs.
Collapse
|
6
|
Schardosim RFDC, Cardozo TR, de Souza AP, Seeber A, Flores WH, Lehmann M, Dihl RR. Cyto-genotoxicity of crystalline and amorphous niobium (V) oxide nanoparticles in CHO-K1 cells. Toxicol Res (Camb) 2022; 11:765-773. [PMID: 36337238 PMCID: PMC9618107 DOI: 10.1093/toxres/tfac054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/27/2022] [Accepted: 07/20/2022] [Indexed: 08/28/2023] Open
Abstract
Niobium (V) oxide nanoparticles (NINPs) have been widely and increasingly applied in various health products and industrial processes. This merits further study of their toxicity. Here, we investigated the potential of NINPs to induce DNA damage, cytotoxicity, and chromosome instability in cultured CHO-K1 cells. NINPs were physico-chemically characterized. As assessed by comet assay, crystalline and amorphous NINPs were genotoxic at the highest concentrations evaluated. The cytokinesis-block micronucleus assay demonstrated that a 24-h treatment with NINPs, for the crystalline and the amorphous samples, significantly reduced the nuclear division cytotoxicity index. In addition, a 4-h treatment period of crystalline NINPs increased micronucleus (MNi) frequencies. MNi, nucleoplasmic bridges and nuclear buds were detected after exposure of the cells for 24 h to crystalline NINPs. In the amorphous sample, chromosome instability was restricted to the induction of MNi, in the 24-h treatment, detected at all tested concentrations. The fluorescence and dark field microscopy demonstrated the uptake of NINPs by CHO-K1 cells and an intracellular distribution outlining the nucleus. Our data advance understanding of the cytotoxic and genotoxic effects of NINPs and should be taken into consideration when setting up guidelines for their use in industrial or health products.
Collapse
Affiliation(s)
- Raíne Fogliati De Carli Schardosim
- Laboratory of Genetic Toxicity and Cellular Toxic-Genetics Analysis, Graduate Program in Molecular and Cellular Biology Applied to Health, Lutheran University of Brazil (ULBRA), Avenida Farroupilha, 8001, 92425-900, Canoas, RS, Brazil
| | - Tatiane Rocha Cardozo
- Laboratory of Genetic Toxicity and Cellular Toxic-Genetics Analysis, Graduate Program in Molecular and Cellular Biology Applied to Health, Lutheran University of Brazil (ULBRA), Avenida Farroupilha, 8001, 92425-900, Canoas, RS, Brazil
- Research Group on Nanostructured Materials, Federal University of the Pampa, Campus Bagé, Avenida Maria Anunciação Gomes de Godoy, 1650, 96413-172, RS, Brazil
| | - Ana Paula de Souza
- Laboratory of Genetic Toxicity and Cellular Toxic-Genetics Analysis, Graduate Program in Molecular and Cellular Biology Applied to Health, Lutheran University of Brazil (ULBRA), Avenida Farroupilha, 8001, 92425-900, Canoas, RS, Brazil
| | - Allan Seeber
- Research Group on Nanostructured Materials, Federal University of the Pampa, Campus Bagé, Avenida Maria Anunciação Gomes de Godoy, 1650, 96413-172, RS, Brazil
| | - Wladimir Hernandez Flores
- Research Group on Nanostructured Materials, Federal University of the Pampa, Campus Bagé, Avenida Maria Anunciação Gomes de Godoy, 1650, 96413-172, RS, Brazil
| | - Maurício Lehmann
- Laboratory of Genetic Toxicity and Cellular Toxic-Genetics Analysis, Graduate Program in Molecular and Cellular Biology Applied to Health, Lutheran University of Brazil (ULBRA), Avenida Farroupilha, 8001, 92425-900, Canoas, RS, Brazil
| | - Rafael Rodrigues Dihl
- Laboratory of Genetic Toxicity and Cellular Toxic-Genetics Analysis, Graduate Program in Molecular and Cellular Biology Applied to Health, Lutheran University of Brazil (ULBRA), Avenida Farroupilha, 8001, 92425-900, Canoas, RS, Brazil
- Postgraduate Program in Dentistry, Lutheran University of Brazil (ULBRA), Avenida Farroupilha, 8001, 92425-900, Canoas, RS, Brazil
| |
Collapse
|
7
|
Investigation of Protein Corona Formed around Biologically Produced Gold Nanoparticles. MATERIALS 2022; 15:ma15134615. [PMID: 35806737 PMCID: PMC9267809 DOI: 10.3390/ma15134615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 02/01/2023]
Abstract
Although there are several research articles on the detection and characterization of protein corona on the surface of various nanoparticles, there are no detailed studies on the formation, detection, and characterization of protein corona on the surface of biologically produced gold nanoparticles (AuNPs). AuNPs were prepared from Fusarium oxysporum at two different temperatures and characterized by spectrophotometry, Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and energy-dispersive X-ray spectroscopy (EDS). The zeta potential of AuNPs was determined using a Zetasizer. AuNPs were incubated with 3 different concentrations of mouse plasma, and the hard protein corona was detected first by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and then by electrospray liquid chromatography–mass spectrometry (LC-MS). The profiles were compared to AuNPs alone that served as control. The results showed that round and oval AuNPs with sizes below 50 nm were produced at both temperatures. The AuNPs were stable after the formation of the protein corona and had sizes larger than 86 nm, and their zeta potential remained negative. We found that capping agents in the control samples contained small peptides/amino acids but almost no protein(s). After hard protein corona formation, we identified plasma proteins present on the surface of AuNPs. The identified plasma proteins may contribute to the AuNPs being shielded from phagocytizing immune cells, which makes the AuNPs a promising candidate for in vivo drug delivery. The protein corona on the surface of biologically produced AuNPs differed depending on the capping agents of the individual AuNP samples and the plasma concentration.
Collapse
|
8
|
Narender SS, Varma VS, Sai Srikar C, Ruchitha J, Adarsh Varma P, Praveen BVS. Nickel Oxide Nanoparticles: A Brief Review of Their Synthesis, Characterization, and Applications. Chem Eng Technol 2022. [DOI: 10.1002/ceat.202100442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- S. Sai Narender
- Department of Chemical Engineering B V Raju Institute of Technology Narsapur, Medak 502313 Telangana India
| | - V. Siddhartha Varma
- Department of Chemical Engineering B V Raju Institute of Technology Narsapur, Medak 502313 Telangana India
| | - Ch. Sai Srikar
- Department of Chemical Engineering B V Raju Institute of Technology Narsapur, Medak 502313 Telangana India
| | - J. Ruchitha
- Department of Chemical Engineering B V Raju Institute of Technology Narsapur, Medak 502313 Telangana India
| | - P. Adarsh Varma
- Department of Chemical Engineering B V Raju Institute of Technology Narsapur, Medak 502313 Telangana India
| | - B. V. S. Praveen
- Department of Chemical Engineering B V Raju Institute of Technology Narsapur, Medak 502313 Telangana India
| |
Collapse
|
9
|
Hashem AH, Al Abboud MA, Alawlaqi MM, Abdelghany TM, Hasanin M. Synthesis of Nanocapsules Based on Biosynthesized Nickel Nanoparticles and Potato Starch: Antimicrobial, Antioxidant, and Anticancer Activity. STARCH-STARKE 2021. [DOI: 10.1002/star.202100165] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Amr H. Hashem
- Botany and Microbiology Department Faculty of Science Al‐Azhar University Cairo 11884 Egypt
| | | | | | - Tarek M. Abdelghany
- Botany and Microbiology Department Faculty of Science Al‐Azhar University Cairo 11884 Egypt
| | - Mohamed Hasanin
- Cellulose & Paper Department National Research Centre 33 El‐Bohouth St. (Former El‐Tahrir St.), Dokki Giza P.O. 12622 Egypt
| |
Collapse
|
10
|
Iqbal S, Jabeen F, Chaudhry AS, Shah MA, Batiha GES. Toxicity assessment of metallic nickel nanoparticles in various biological models: An interplay of reactive oxygen species, oxidative stress, and apoptosis. Toxicol Ind Health 2021; 37:635-651. [PMID: 34491146 DOI: 10.1177/07482337211011008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Nickel nanoparticles (Ni-NPs) are widely used for multiple purposes in industries. Ni-NPs exposure is detrimental to ecosystems owing to widespread use, and so their toxicity is important to consider for real-world applications. This review mainly focuses on the notable pathophysiological activities of Ni-NPs in various research models. Ni-NPs are stated to be more toxic than bulk forms because of their larger surface area to volume ratio and are reported to provoke toxicity through reactive oxygen species generation, which leads to the upregulation of nuclear factor-κB and promotes further signaling cascades. Ni-NPs may contribute to provoking oxidative stress and apoptosis. Hypoxia-inducible factor 1α and mitogen-activated protein kinases pathways are involved in Ni-NPs associated toxicity. Ni-NPs trigger the transcription factors p-p38, p-JNK, p-ERK1/2, interleukin (IL)-3, TNF-α, IL-13, Fas, Cyt c, Bax, Bid protein, caspase-3, caspase-8, and caspase-9. Moreover, Ni-NPs have an occupational vulnerability and were reported to induce lung-related disorders owing to inhalation. Ni-NPs may cause serious effects on reproduction as Ni-NPs induced deleterious effects on reproductive cells (sperm and eggs) in animal models and provoked hormonal alteration. However, recent studies have provided limited knowledge regarding the important checkpoints of signaling pathways and less focused on the toxic limitation of Ni-NPs in humans, which therefore needs to be further investigated.
Collapse
Affiliation(s)
- Shabnoor Iqbal
- Department of Zoology, Government College University Faisalabad, Pakistan
| | - Farhat Jabeen
- Department of Zoology, Government College University Faisalabad, Pakistan
| | - Abdul Shakoor Chaudhry
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Muhammad Ajmal Shah
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Al-Beheira, Egypt
| |
Collapse
|
11
|
Microbacterium sp. MRS-1, a potential bacterium for cobalt reduction and synthesis of less/non-toxic cobalt oxide nanoparticles (Co3O4). BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2020. [DOI: 10.1186/s43088-020-00070-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Abstract
Background
Detoxification of heavy metal pollutants in wastewater has become a serious problem to surrounding environment. This research was conducted to utilize a potential heavy metal-resistant bacterium for the remediation of cobalt metal and simultaneous synthesis of cobalt oxide nanoparticles in the form of powder for various industrial applications. Metal oxide nanoparticles have great applications in electrochemical devices such as supercapacitors, biosensors, and batteries.
Method
A heavy metal-resistant bacterium Microbacterium sp. MRS-1 isolated from electroplating industrial effluent reduced cobalt ions from an initial concentration of 200 mg/L to 26 mg/L were analyzed by atomic absorption spectroscopy. Instrumental analysis of bacterially synthesized Co3O4 has been characterized. Cytotoxicity of synthesized nanoparticles was assessed by MTT assay.
Results
Microbacterium sp. MRS-1 isolated from electroplating industrial effluent was found to be suitable for cobalt oxide nanoparticles as it showed tolerance towards high concentration of metal. The nutrient broth containing metal solution and Microbacterium sp. MRS-1 showed color change from light pink to dark pink indicated the formation of extracellular nanoparticles. It also converted soluble cobalt salts into less soluble cobalt oxide nanoparticles outside the cell which allows easy recovery of nanoparticles without the destruction of cells and simultaneous detoxification of toxic metal ions. Electron microscopic imaging verified that nanoparticles were predominantly surrounding the bacterial cells and SEM imaging revealed that the produced particles were in the range of 10–100 nm in size. XRD spectrum exhibited 2θ values were corresponding to cubic face-centered cobalt oxide (Co3O4) nanoparticles.
Conclusion
The present study investigated new prospective for eco-friendly detoxification of toxic heavy metal Co from metal-polluted sites and the production of cobalt oxide nanoparticles in powder form for clinical and other industrial applications.
Collapse
|
12
|
Oxidation of carbon monoxide over various nickel oxide catalysts in different conditions: A review. CHEMICAL ENGINEERING JOURNAL ADVANCES 2020. [DOI: 10.1016/j.ceja.2020.100008] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
13
|
Anticancerous Activity of Transition Metal Oxide Nanoparticles. Nanobiomedicine (Rij) 2020. [DOI: 10.1007/978-981-32-9898-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
14
|
Żarowska B, Koźlecki T, Piegza M, Jaros-Koźlecka K, Robak M. New Look on Antifungal Activity of Silver Nanoparticles (AgNPs). Pol J Microbiol 2019; 68:515-525. [PMID: 31880895 PMCID: PMC7260703 DOI: 10.33073/pjm-2019-051] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/18/2019] [Accepted: 10/19/2019] [Indexed: 01/23/2023] Open
Abstract
The progress of research on silver nanoparticles (AgNPs) has led to their inclusion in many consumer products (chemicals, cosmetics, clothing, water filters, and medical devices) as a biocide. Despite the widespread use of AgNPs, their biocidal activity is not yet fully understood and is usually associated with various factors (size, composition, surface, red-ox potential, and concentration) and, obviously, specific features of microorganisms. There are merely a few studies concerning the interaction of molds with AgNPs. Therefore, the determination of the minimal AgNPs concentration required for effective growth suppression of five fungal species (Paecilomyces variotii, Penicillium pinophilum, Chaetomium globosum, Trichoderma virens, and Aspergillus brasiliensis), involved in the deterioration of construction materials, was particularly important. Inhibition of bacteria (Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli) and yeasts (Candida albicans and Yarrowia lipolytica) was also assessed as the control of AgNPs effectiveness. AgNPs at the concentrations of 9–10.7 ppm displayed high inhibitory activity against moulds, yeast, and bacteria. The TEM images revealed that 20 nm AgNPs migrated into bacterial, yeast, and fungal cells but aggregated in larger particles (50–100 nm) exclusively inside eukaryotic cells. The aggregation of 20 nm AgNPs and particularly their accumulation in the cell wall, observed for A. brasiliensis cells, are described here for the first time.
Collapse
Affiliation(s)
- Barbara Żarowska
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences , Wrocław , Poland
| | - Tomasz Koźlecki
- Department of Chemical Engineering, Wrocław University of Technology , Wrocław , Poland
| | - Michał Piegza
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences , Wrocław , Poland
| | | | - Małgorzata Robak
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences , Wrocław , Poland
| |
Collapse
|
15
|
Abdelwahab M, Salahuddin N, Gaber M, Mousa M. Poly(3-hydroxybutyrate)/polyethylene glycol-NiO nanocomposite for NOR delivery: Antibacterial activity and cytotoxic effect against cancer cell lines. Int J Biol Macromol 2018; 114:717-727. [DOI: 10.1016/j.ijbiomac.2018.03.050] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 03/07/2018] [Accepted: 03/12/2018] [Indexed: 11/25/2022]
|
16
|
Molnár Z, Bódai V, Szakacs G, Erdélyi B, Fogarassy Z, Sáfrán G, Varga T, Kónya Z, Tóth-Szeles E, Szűcs R, Lagzi I. Green synthesis of gold nanoparticles by thermophilic filamentous fungi. Sci Rep 2018; 8:3943. [PMID: 29500365 PMCID: PMC5834445 DOI: 10.1038/s41598-018-22112-3] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/16/2018] [Indexed: 02/08/2023] Open
Abstract
Alternative methods, including green synthetic approaches for the preparation of various types of nanoparticles are important to maintain sustainable development. Extracellular or intracellular extracts of fungi are perfect candidates for the synthesis of metal nanoparticles due to the scalability and cost efficiency of fungal growth even on industrial scale. There are several methods and techniques that use fungi-originated fractions for synthesis of gold nanoparticles. However, there is less knowledge about the drawbacks and limitations of these techniques. Additionally, identification of components that play key roles in the synthesis is challenging. Here we show and compare the results of three different approaches for the synthesis of gold nanoparticles using either the extracellular fraction, the autolysate of the fungi or the intracellular fraction of 29 thermophilic fungi. We observed the formation of nanoparticles with different sizes (ranging between 6 nm and 40 nm) and size distributions (with standard deviations ranging between 30% and 70%) depending on the fungi strain and experimental conditions. We found by using ultracentrifugal filtration technique that the size of reducing agents is less than 3 kDa and the size of molecules that can efficiently stabilize nanoparticles is greater than 3 kDa.
Collapse
Affiliation(s)
| | | | | | | | - Zsolt Fogarassy
- Centre for Energy Research, Institute of Technical Physics and Materials Science, Budapest, Hungary
| | - György Sáfrán
- Centre for Energy Research, Institute of Technical Physics and Materials Science, Budapest, Hungary
| | - Tamás Varga
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary
| | - Zoltán Kónya
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary
- MTA-SZTE Reaction Kinetics and Surface Chemistry Research Group, University of Szeged, Szeged, Hungary
| | - Eszter Tóth-Szeles
- Department of Physics, Budapest University of Technology and Economics, Budapest, Hungary
| | - Rózsa Szűcs
- Department of Physics, Budapest University of Technology and Economics, Budapest, Hungary
- MTA-BME Computer Driven Chemistry Research Group, Budapest University of Technology and Economics, H-1111, Szent Gellért tér 4, Budapest, Hungary
| | - István Lagzi
- Department of Physics, Budapest University of Technology and Economics, Budapest, Hungary.
- MTA-BME Condensed Matter Research Group, Budapest University of Technology and Economics, Budapest, Hungary.
| |
Collapse
|
17
|
Neethu S, Midhun SJ, Sunil MA, Soumya S, Radhakrishnan EK, Jyothis M. Efficient visible light induced synthesis of silver nanoparticles by Penicillium polonicum ARA 10 isolated from Chetomorpha antennina and its antibacterial efficacy against Salmonella enterica serovar Typhimurium. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 180:175-185. [PMID: 29453129 DOI: 10.1016/j.jphotobiol.2018.02.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 01/19/2018] [Accepted: 02/05/2018] [Indexed: 11/26/2022]
Abstract
The green synthesis of silver nanoparticles (AgNPs) using biological systems such as fungi has evolved to become an important area of nanobiotechnology. Herein, we report for the first time the light-induced extracellular synthesis of silver nanoparticles using algicolous endophytic fungus Penicillium polonicum ARA 10, isolated from the marine green alga Chetomorpha antennina. Parametric optimization, including the concentration of AgNO3, fungal biomass, ratio of cell filtrate and AgNO3, pH, reaction time and presence of light, was done for rapid AgNPs production. The obtained silver nanoparticles (AgNPs) were characterized by UV-Visible spectroscopy, Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy and Transmission electron microscopy (HRTEM-EDAX). The AgNPs showed a characteristic UV-visible peak at 430 nm with an average size of 10-15 nm. The NH stretches in FTIR indicate the presence of protein molecules. The Raman vibrational bands suggest that the molecules responsible for the reduction and stability of AgNPs were extracellular proteins produced by P.polonicum. Antibacterial evaluation of AgNPs against the major foodborne bacterial pathogen Salmonella enterica serovar Typhimurium MTCC 1251, was assessed by well diffusion, Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) assay. Killing kinetic studies revealed complete killing of the bacterial cells within 4 h and the bactericidal nature of synthesized nanoparticles was confirmed by fluorescent microscopy and scanning electron microscopy. Furthermore, the bactericidal studies with Transmission electron microscopy (TEM) at different time intervals explored the presence of AgNPs in the cell wall of S.Typhimurium at about 30 min and the complete bacterial lysis was found at 24 h. The current research opens an insight into the green synthesis of AgNPs and the mechanism of bacterial lysis by direct damage to the cell wall.
Collapse
Affiliation(s)
- Sahadevan Neethu
- School of BioSciences, Mahatma Gandhi University, Kottayam, Kerala, India
| | | | - M A Sunil
- School of BioSciences, Mahatma Gandhi University, Kottayam, Kerala, India
| | - Soman Soumya
- School of BioSciences, Mahatma Gandhi University, Kottayam, Kerala, India
| | - E K Radhakrishnan
- School of BioSciences, Mahatma Gandhi University, Kottayam, Kerala, India
| | - Mathew Jyothis
- School of BioSciences, Mahatma Gandhi University, Kottayam, Kerala, India.
| |
Collapse
|
18
|
Salvadori MR, Ando RA, Nascimento CAO, Corrêa B. Dead biomass of Amazon yeast: A new insight into bioremediation and recovery of silver by intracellular synthesis of nanoparticles. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2017; 52:1112-1120. [PMID: 28763240 DOI: 10.1080/10934529.2017.1340754] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This investigation was undertaken to describe a natural process for the removal of silver and the simultaneous recovery of Ag/Ag2O nanoparticles by dead biomass of the yeast Rhodotorula mucilaginosa. The removal of silver ions from aqueous solution and the synthesis of Ag/Ag2O nanoparticles were analyzed based on physicochemical factors and equilibrium concentration, combined with transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and infrared spectroscopy (FTIR). A successful process for the synthesis of Ag/Ag2O nanoparticles was obtained, following the Langmuir isotherm model, showing a high biosorption capacity of silver (49.0 mg g-1). The nanoparticles were spherical, had an average size of 11.0 nm, were synthesized intracellularly and capped by yeast proteins. This sustainable protocol is an attractive platform for the industrial-scale production of silver nanoparticles and of a silver nanobiosorbent.
Collapse
Affiliation(s)
- Marcia R Salvadori
- a Department of Microbiology , Biomedical Institute II, University of São Paulo , São Paulo , Brazil
| | - Rômulo A Ando
- b Department of Fundamental Chemistry , Institute of Chemistry, University of São Paulo , São Paulo , Brazil
| | | | - Benedito Corrêa
- a Department of Microbiology , Biomedical Institute II, University of São Paulo , São Paulo , Brazil
| |
Collapse
|
19
|
Majumder R, Sheikh L, Naskar A, Vineeta, Mukherjee M, Tripathy S. Depletion of Cr(VI) from aqueous solution by heat dried biomass of a newly isolated fungus Arthrinium malaysianum: A mechanistic approach. Sci Rep 2017; 7:11254. [PMID: 28900147 PMCID: PMC5595784 DOI: 10.1038/s41598-017-10160-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 07/27/2017] [Indexed: 11/09/2022] Open
Abstract
For the first time, the heat dried biomass of a newly isolated fungus Arthrinium malaysianum was studied for the toxic Cr(VI) adsorption, involving more than one mechanism like physisorption, chemisorption, oxidation-reduction and chelation. The process was best explained by the pseudo-second order kinetic model and Redlich-Peterson isotherm with maximum predicted biosorption capacity (Qm) of 100.69 mg g−1. Film-diffusion was the rate-controlling step and the adsorption was spontaneous, endothermic and entropy-driven. The mode of interactions between Cr(VI) ions and fungal biomass were investigated by several methods [Fourier Transform-Infrared Spectroscopy (FT-IR), X-ray Diffraction (XRD) and Energy-Dispersive X-ray spectroscopy (EDX)]. X-ray Photoelectron Spectroscopy (XPS) studies confirmed significant reduction of Cr(VI) into non-toxic Cr(III) species. Further, a modified methodology of Atomic Force Microscopy was successfully attempted to visualize the mycelial ultra-structure change after chromium adsorption. The influence of pH, biomass dose and contact time on Cr(VI) depletion were evaluated by Response Surface Model (RSM). FESEM-EDX analysis also exhibited arsenic (As) and lead (Pb) peaks on fungus surface upon treating with synthetic solutions of NaAsO2 and Pb(NO3)2 respectively. Additionally, the biomass could also remove chromium from industrial effluents, suggesting the fungal biomass as a promising adsorbent for toxic metals removal.
Collapse
Affiliation(s)
- Rajib Majumder
- Structural Biology & Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, 700032, India
| | - Lubna Sheikh
- Structural Biology & Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, 700032, India
| | - Animesh Naskar
- Department of Food Technology and Biochemical Engineering, Jadavpur University, Kolkata, 700032, India
| | - Vineeta
- Structural Biology & Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, 700032, India
| | - Manabendra Mukherjee
- Surface Physics and Material Science Division, Saha Institute of Nuclear Physics, Kolkata, 700064, India
| | - Sucheta Tripathy
- Structural Biology & Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, 700032, India.
| |
Collapse
|
20
|
Khalil AT, Ovais M, Ullah I, Ali M, Shinwari ZK, Hassan D, Maaza M. Sageretia thea (Osbeck.) modulated biosynthesis of NiO nanoparticles and their in vitro pharmacognostic, antioxidant and cytotoxic potential. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:838-852. [DOI: 10.1080/21691401.2017.1345928] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ali Talha Khalil
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
- Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation Somerset West, Western Cape, South Africa
- UNESCO-UNISA Africa chair in Nanoscience and Nanotechnology, College of Graduate Studies, University of South Africa, Pretoria, South Africa
| | - Muhammad Ovais
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ikram Ullah
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Ali
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Zabta Khan Shinwari
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
- Pakistan Academy of Sciences, Islamabad, Pakistan
| | - Dilawar Hassan
- Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation Somerset West, Western Cape, South Africa
- UNESCO-UNISA Africa chair in Nanoscience and Nanotechnology, College of Graduate Studies, University of South Africa, Pretoria, South Africa
| | - Malik Maaza
- Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation Somerset West, Western Cape, South Africa
- UNESCO-UNISA Africa chair in Nanoscience and Nanotechnology, College of Graduate Studies, University of South Africa, Pretoria, South Africa
| |
Collapse
|
21
|
Green methods for the synthesis of metal nanoparticles using biogenic reducing agents: a review. REV CHEM ENG 2017. [DOI: 10.1515/revce-2017-0005] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Metal nanoparticles are being extensively used in a variety of sectors, including drug delivery, cancer treatment, wastewater treatment, DNA analysis, antibacterial agents, biosensors and catalysts. Unlike chemically produced nanoparticles, biosynthesized metal nanoparticles based on green chemistry perspectives impose limited hazards to the environment and are relatively biocompatible. This review is therefore focused on green methods for nanoparticle synthesis by emphasizing on microbial synthesis using bacteria, fungi, algae, and yeasts, as well as phytosynthesis using plant extracts. Furthermore, a detailed description of bioreducing and capping/stabilizing agents involved in the biosynthesis mechanism using these green sources is presented.
Collapse
|
22
|
Hussain MM, Rahman MM, Asiri AM. Ultrasensitive and selective 4-aminophenol chemical sensor development based on nickel oxide nanoparticles decorated carbon nanotube nanocomposites for green environment. J Environ Sci (China) 2017; 53:27-38. [PMID: 28372752 DOI: 10.1016/j.jes.2016.03.028] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/02/2016] [Accepted: 03/07/2016] [Indexed: 05/12/2023]
Abstract
Nickel oxide nanoparticles decorated carbon nanotube nanocomposites (NiO·CNT NCs) were prepared in a basic medium by using facile wet-chemical routes. The optical, morphological, and structural properties of NiO·CNT NCs were characterized using Fourier transformed infra-red (FT-IR), Ultra-violet visible (UV/Vis) spectroscopy, field-emission scanning electron microscopy (FESEM), X-ray energy dispersed spectroscopy (XEDS), X-ray photoelectron spectroscopy (XPS), and powder X-ray diffraction (XRD) methods. Selective 4-aminophenol (4-AP) chemical sensor was developed by a flat glassy carbon electrode (GCE, surface area: 0.0316cm2) fabricated with a thin-layer of NCs. Electrochemical responses including higher sensitivity, large dynamic range (LDR), limit of detection (LOD), and long-term stability towards 4-AP were obtained using the fabricated chemical sensors. The calibration curve was found linear (R2=0.914) over a wide range of 4-AP concentration (0.1nmol/L-0.1mol/L). In perspective of slope (2×10-5μA/μM), LOD and sensitivity were calculated as 15.0±0.1pM and ~6.33×10-4μA/(μM·cm) respectively. The synthesized NiO·CNT NCs using a wet-chemical method is a significant route for the development of ultrasensitive and selective phenolic sensor based on nano-materials for environmental toxic substances. It is suggested that a pioneer and selective development of 4-AP sensitive sensor using NiO·CNT NCs by a facile and reliable current vs voltage (I-V) method for the major application of toxic agents in biological, green environmental, and health-care fields in near future.
Collapse
Affiliation(s)
- Mohammad Musarraf Hussain
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, P.O. Box 80203, Saudi Arabia; Center of Excellence for Advanced Material Research (CEAMR), King Abdulaziz University, Jeddah 21589, P.O. Box 80203, Saudi Arabia
| | - Mohammed M Rahman
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, P.O. Box 80203, Saudi Arabia; Center of Excellence for Advanced Material Research (CEAMR), King Abdulaziz University, Jeddah 21589, P.O. Box 80203, Saudi Arabia.
| | - Abdullah M Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, P.O. Box 80203, Saudi Arabia; Center of Excellence for Advanced Material Research (CEAMR), King Abdulaziz University, Jeddah 21589, P.O. Box 80203, Saudi Arabia
| |
Collapse
|
23
|
Imran Din M, Rani A. Recent Advances in the Synthesis and Stabilization of Nickel and Nickel Oxide Nanoparticles: A Green Adeptness. Int J Anal Chem 2016; 2016:3512145. [PMID: 27413375 PMCID: PMC4930827 DOI: 10.1155/2016/3512145] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 05/16/2016] [Accepted: 05/24/2016] [Indexed: 11/25/2022] Open
Abstract
Green protocols for the synthesis of nanoparticles have been attracting a lot of attention because they are eco-friendly, rapid, and cost-effective. Nickel and nickel oxide nanoparticles have been synthesized by green routes and characterized for impact of green chemistry on the properties and biological effects of nanoparticles in the last five years. Green synthesis, properties, and applications of nickel and nickel oxide nanoparticles have been reported in the literature. This review summarizes the synthesis of nickel and nickel oxide nanoparticles using different biological systems. This review also provides comparative overview of influence of chemical synthesis and green synthesis on structural properties of nickel and nickel oxide nanoparticles and their biological behavior. It concludes that green methods for synthesis of nickel and nickel oxide nanoparticles are better than chemical synthetic methods.
Collapse
Affiliation(s)
- Muhammad Imran Din
- Institute of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan
| | - Aneela Rani
- Institute of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan
| |
Collapse
|
24
|
Kumari M, Mishra A, Pandey S, Singh SP, Chaudhry V, Mudiam MKR, Shukla S, Kakkar P, Nautiyal CS. Physico-Chemical Condition Optimization during Biosynthesis lead to development of Improved and Catalytically Efficient Gold Nano Particles. Sci Rep 2016; 6:27575. [PMID: 27273371 PMCID: PMC4897682 DOI: 10.1038/srep27575] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 05/16/2016] [Indexed: 11/16/2022] Open
Abstract
Biosynthesis of nanoparticles has gained great attention in making the process cost-effective and eco-friendly, but there are limited reports which describe the interdependency of physical parameters for tailoring the dimension and geometry of nanoparticles during biological synthesis. In the present study, gold nanoparticles (GNPs) of various shapes and sizes were obtained by modulating different physical parameters using Trichoderma viride filtrate. The particles were characterized on the basis of visual observation, dynamic light scattering, UV-visible spectroscopy, transmission electron microscopy, fourier transform infrared spectroscopy, and X ray diffraction. While the size varied from 2-500 nm, the shapes obtained were nanospheres, nanotriangles, nanopentagons, nanohexagons, and nanosheets. Changing the parameters such as pH, temperature, time, substrate, and culture filtrate concentration influenced the size and geometry of nanoparticles. Catalytic activity of the biosynthesized GNP was evaluated by UV-visible spectroscopy and confirmed by gas chromatography-mass spectrometric analysis for the conversion of 4-nitrophenol into 4-aminophenol which was strongly influenced by their structure and dimension. Common practices for biodegradation are traditional, expensive, require large amount of raw material, and time taking. Controlling shapes and sizes of nanoparticles could revolutionize the process of biodegradation that can remove all the hurdles in current scenario.
Collapse
Affiliation(s)
- Madhuree Kumari
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226 001, India
| | - Aradhana Mishra
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226 001, India
| | - Shipra Pandey
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226 001, India
| | | | - Vasvi Chaudhry
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226 001, India
| | - Mohana Krishna Reddy Mudiam
- CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow, 226 001, India
| | - Shatrunajay Shukla
- CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow, 226 001, India
| | - Poonam Kakkar
- CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow, 226 001, India
| | | |
Collapse
|
25
|
Xue B, He D, Gao S, Wang D, Yokoyama K, Wang L. Biosynthesis of silver nanoparticles by the fungus Arthroderma fulvum and its antifungal activity against genera of Candida, Aspergillus and Fusarium. Int J Nanomedicine 2016; 11:1899-906. [PMID: 27217752 PMCID: PMC4862354 DOI: 10.2147/ijn.s98339] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The objective of this study was to find one or more fungal strains that could be utilized to biosynthesize antifungal silver nanoparticles (AgNPs). Using morphological and molecular methods, Arthroderma fulvum was identified as the most effective fungal strain for synthesizing AgNPs. The UV-visible range showed a single peak at 420 nm, which corresponded to the surface plasmon absorbance of AgNPs. X-ray diffraction and transmission electron microscopy demonstrated that the biosynthesized AgNPs were crystalline in nature with an average diameter of 15.5±2.5 nm. Numerous factors could potentially affect the process of biosynthesis, and the main factors are discussed here. Optimization results showed that substrate concentration of 1.5 mM, alkaline pH, reaction temperature of 55°C, and reaction time of 10 hours were the optimum conditions for AgNP biosynthesis. Biosynthesized AgNPs showed considerable activity against the tested fungal strains, including Candida spp., Aspergillus spp., and Fusarium spp., especially Candida spp.
Collapse
Affiliation(s)
- Baiji Xue
- Department of Pathogenobiology, Jilin University Mycology Research Center, Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, People’s Republic of China
| | - Dan He
- Department of Pathogenobiology, Jilin University Mycology Research Center, Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, People’s Republic of China
| | - Song Gao
- Department of Pathogenobiology, Jilin University Mycology Research Center, Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, People’s Republic of China
| | - Dongyang Wang
- Department of Pathogenobiology, Jilin University Mycology Research Center, Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, People’s Republic of China
| | - Koji Yokoyama
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Li Wang
- Department of Pathogenobiology, Jilin University Mycology Research Center, Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
26
|
Silva LP, Bonatto CC, Polez VLP. Green Synthesis of Metal Nanoparticles by Fungi: Current Trends and Challenges. ADVANCES AND APPLICATIONS THROUGH FUNGAL NANOBIOTECHNOLOGY 2016. [DOI: 10.1007/978-3-319-42990-8_4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
27
|
Salvadori MR, Ando RA, Muraca D, Knobel M, Oller Nascimento CA, Corrêa B. Magnetic nanoparticles of Ni/NiO nanostructured in film form synthesized by dead organic matrix of yeast. RSC Adv 2016. [DOI: 10.1039/c6ra07274g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Schematic of the synthesis of Ni/NiO magnetic nanoparticles organized in film form by a dead organic matrix of yeast.
Collapse
Affiliation(s)
| | - Rômulo Augusto Ando
- Department of Fundamental Chemistry
- Institute of Chemistry
- University of São Paulo
- São Paulo
- Brazil
| | - Diego Muraca
- Gleb Wataghin Physics Institute
- University of Campinas (UNICAMP)
- Campinas
- Brazil
| | - Marcelo Knobel
- Gleb Wataghin Physics Institute
- University of Campinas (UNICAMP)
- Campinas
- Brazil
| | | | - Benedito Corrêa
- Department of Microbiology
- Biomedical Institute II
- University of São Paulo
- São Paulo
- Brazil
| |
Collapse
|
28
|
Salvadori MR, Ando RA, Oller Nascimento CA, Corrêa B. Extra and intracellular synthesis of nickel oxide nanoparticles mediated by dead fungal biomass. PLoS One 2015; 10:e0129799. [PMID: 26043111 PMCID: PMC4456161 DOI: 10.1371/journal.pone.0129799] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 05/12/2015] [Indexed: 11/21/2022] Open
Abstract
The use of dead biomass of the fungus Hypocrea lixii as a biological system is a new, effective and environmentally friendly bioprocess for the production and uptake of nickel oxide nanoparticles (NPs), which has become a promising field in nanobiotechnology. Dead biomass of the fungus was successfully used to convert nickel ions into nickel oxide NPs in aqueous solution. These NPs accumulated intracellularly and extracellularly on the cell wall surface through biosorption. The average size, morphology and location of the NPs were characterized by transmission electron microscopy, high-resolution transmission electron microscopy, scanning electron microscopy, and energy dispersive X-ray spectroscopy. The NPs were mainly spherical and extra and intracellular NPs had an average size of 3.8 nm and 1.25 nm, respectively. X-ray photoelectron spectroscopy analysis confirmed the formation of nickel oxide NPs. Infrared spectroscopy detected the presence of functional amide groups, which are probable involved in particle binding to the biomass. The production of the NPs by dead biomass was analyzed by determining physicochemical parameters and equilibrium concentrations. The present study opens new perspectives for the biosynthesis of nanomaterials, which could become a potential biosorbent for the removal of toxic metals from polluted sites.
Collapse
Affiliation(s)
- Marcia Regina Salvadori
- Departamento de Microbiologia, Instituto de Ciências Biomédicas II, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- * E-mail:
| | - Rômulo Augusto Ando
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | | | - Benedito Corrêa
- Departamento de Microbiologia, Instituto de Ciências Biomédicas II, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
29
|
Madhu R, Veeramani V, Chen SM, Veerakumar P, Liu SB. Functional Porous Carbon/Nickel Oxide Nanocomposites as Binder-Free Electrodes for Supercapacitors. Chemistry 2015; 21:8200-6. [DOI: 10.1002/chem.201500247] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Indexed: 01/05/2023]
|
30
|
Javed KR, Ahmad M, Ali S, Butt MZ, Nafees M, Butt AR, Nadeem M, Shahid A. Comparison of doxorubicin anticancer drug loading on different metal oxide nanoparticles. Medicine (Baltimore) 2015; 94:e617. [PMID: 25789952 PMCID: PMC4602492 DOI: 10.1097/md.0000000000000617] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Nanomaterials are being vigorously investigated for their use in anticancer drug delivery regimes or as biomarkers agents and are considered to be a candidate to provide a way to combat severe weaknesses of anticancer drug pharmacokinetics, such as their nonspecificity. Because of this weakness, a bigger proportion of the drug-loaded nanomaterials flow toward healthy tissues and result in undesirable side effects. It is very important to evaluate drug loading and release efficiency of various nanomaterials to find out true pharmacokinetics of these drugs.This observational study aims to evaluate various surface functionalized and naked nanomaterials for their drug loading capability and consequently strengthens the Reporting of Observational Studies in Epidemiology (STROBE). We analyzed naked and coated nanoparticles of transition metal oxides for their further loading with doxorubicin, a representative water-soluble anticancer drug.Various uncoated and polyethylene glycol-coated metal oxide nanoparticles were synthesized and loaded with anticancer drug using simple stirring of the nanoparticles in a saturated aqueous solution of the drug. Results showed that surface-coated nanoparticles have higher drug-loading capabilities; however, certain naked metal oxide nanoparticles, such as cobalt oxide nanoparticles, can load a sufficient amount of drug.
Collapse
Affiliation(s)
- Khalid Rashid Javed
- From the Department of Physics (KR, SA, MZB, MN, ARB), Government College University (GCU); Pakistan Council for Scientific and Industrial Research (PCSIR) (KR); Department of Medical Physics (MA, AS), Institute of Nuclear Medicine and Oncology (INMOL); Department of Physics (MA), The University of Lahore, Lahore, Pakistan; and Department of Physics (MN), Faculty of Science, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | | | | | | | | | | | | | | |
Collapse
|