1
|
Handojo EL, Durant S, Zanker JM, Meso AI. Illusory speeding-up and slowing-down of objects moving at constant speed emerges from natural motion detection algorithms. Proc Biol Sci 2025; 292:20242219. [PMID: 40169022 PMCID: PMC11961266 DOI: 10.1098/rspb.2024.2219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/18/2024] [Accepted: 03/03/2025] [Indexed: 04/03/2025] Open
Abstract
The footsteps illusion is a perceptual illusion in which two bars moving at the same constant speed on a stripey background are seen as alternately accelerating and decelerating like footsteps. The cortical mechanisms that give rise to footsteps and similar illusions remain to be fully understood and may reveal important neural computations. Using an implementation of the biologically inspired correlational model of motion detection, the 2-Dimensional Motion Detector, this study had three aims. First, reproducing perceptual speed oscillations in model simulations. Second, mapping empirical reports of multiple illusion configurations onto model outputs. Third, inferring from the successful model, the perceptual role of multi-scale spatio-temporal channels. We developed a 2-Dimensional Motion Detector implementation adding a global (single value) frame-by-frame dynamic readout to quantify continuous and oscillating response components. We confirmed that an expected signature oscillatory motion response corresponded to the footsteps illusion, demonstrating that its amplitude varied according to empirically measured illusion strength. We showed that with a global readout, the inherent pattern and contrast dependence of correlation detectors is sufficient to reproduce the surprising perceptual illusion. This evidence suggests spacetime correlation may be a fundamental sensory computation across species, with complementary filtering and global pooling operations adapted for various complex phenomena.
Collapse
Affiliation(s)
- Emmeline L. Handojo
- Faculty of Life Sciences and Medicine, King's College London, London, UK
- Department of Neuroimaging, King's College London, London, UK
| | - Szonya Durant
- Department of Psychology, Royal Holloway University of London, Egham, UK
| | - Johannes M. Zanker
- Department of Psychology, Royal Holloway University of London, Egham, UK
| | | |
Collapse
|
2
|
Wu N, Zhou B, Agrochao M, Clark DA. Broken time-reversal symmetry in visual motion detection. Proc Natl Acad Sci U S A 2025; 122:e2410768122. [PMID: 40048271 PMCID: PMC11912477 DOI: 10.1073/pnas.2410768122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 01/09/2025] [Indexed: 03/12/2025] Open
Abstract
Our intuition suggests that when a movie is played in reverse, our perception of motion at each location in the reversed movie will be perfectly inverted compared to the original. This intuition is also reflected in classical theoretical and practical models of motion estimation, in which velocity flow fields invert when inputs are reversed in time. However, here we report that this symmetry of motion perception upon time reversal is broken in real visual systems. We designed a set of visual stimuli to investigate time reversal symmetry breaking in the fruit fly Drosophila's well-studied optomotor rotation behavior. We identified a suite of stimuli with a wide variety of properties that can uncover broken time reversal symmetry in fly behavioral responses. We then trained neural network models to predict the velocity of scenes with both natural and artificial contrast distributions. Training with naturalistic contrast distributions yielded models that broke time reversal symmetry, even when the training data themselves were time reversal symmetric. We show analytically and numerically that the breaking of time reversal symmetry in the model responses can arise from contrast asymmetry in the training data, but can also arise from other features of the contrast distribution. Furthermore, shallower neural network models can exhibit stronger symmetry breaking than deeper ones, suggesting that less flexible neural networks may be more prone to time reversal symmetry breaking. Overall, these results reveal a surprising feature of biological motion detectors and suggest that it could arise from constrained optimization in natural environments.
Collapse
Affiliation(s)
| | - Baohua Zhou
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT06511
| | - Margarida Agrochao
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT06511
| | - Damon A. Clark
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT06511
- Department of Physics, Yale University, New Haven, CT06511
- Department of Neuroscience, Yale University, New Haven, CT06511
- Quantitative Biology Institute, Yale University, New Haven, CT06511
- Wu Tsai Institute, Yale University, New Haven, CT06511
| |
Collapse
|
3
|
Di Santo S, Dipoppa M, Keller A, Roth M, Scanziani M, Miller KD. Contextual modulation emerges by integrating feedforward and feedback processing in mouse visual cortex. Cell Rep 2025; 44:115088. [PMID: 39709599 DOI: 10.1016/j.celrep.2024.115088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/27/2024] [Accepted: 11/27/2024] [Indexed: 12/24/2024] Open
Abstract
Sensory systems use context to infer meaning. Accordingly, context profoundly influences neural responses to sensory stimuli. However, a cohesive understanding of the circuit mechanisms governing contextual effects across different stimulus conditions is still lacking. Here we present a unified circuit model of mouse visual cortex that accounts for the main standard forms of contextual modulation. This data-driven and biologically realistic circuit, including three primary inhibitory cell types, sheds light on how bottom-up, top-down, and recurrent inputs are integrated across retinotopic space to generate contextual effects in layer 2/3. We establish causal relationships between neural responses, geometrical features of the inputs, and the connectivity patterns. The model not only reveals how a single canonical cortical circuit differently modulates sensory response depending on context but also generates multiple testable predictions, offering insights that apply to broader neural circuitry.
Collapse
Affiliation(s)
- Serena Di Santo
- Center for Theoretical Neuroscience and Mortimer B Zuckerman Mind Brain Behavior Institute, Columbia University, New York City, NY 10027, USA; Departamento de Electromagnetismo y Física de la Materia and Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, 18071 Granada, Spain.
| | - Mario Dipoppa
- Center for Theoretical Neuroscience and Mortimer B Zuckerman Mind Brain Behavior Institute, Columbia University, New York City, NY 10027, USA; Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Andreas Keller
- Department of Biomedicine, University of Basel, 4056 Basel, Switzerland; Department of Physiology, University of California, San Francisco, San Francisco, CA 94143, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Morgane Roth
- Department of Biomedicine, University of Basel, 4056 Basel, Switzerland; Department of Physiology, University of California, San Francisco, San Francisco, CA 94143, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Massimo Scanziani
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94143, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kenneth D Miller
- Center for Theoretical Neuroscience and Mortimer B Zuckerman Mind Brain Behavior Institute, Columbia University, New York City, NY 10027, USA; Department of Neuroscience, Swartz Program in Theoretical Neuroscience, Kavli Institute for Brain Science, College of Physicians and Surgeons and Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York City, NY 10027, USA
| |
Collapse
|
4
|
Yakhlef V, Magalhães-Sant’Ana M, Pereira AL, Azevedo A. A Global Survey on the Perception of Conservationists Regarding Animal Consciousness. Animals (Basel) 2025; 15:341. [PMID: 39943112 PMCID: PMC11816229 DOI: 10.3390/ani15030341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/04/2025] [Accepted: 01/16/2025] [Indexed: 02/16/2025] Open
Abstract
Human perceptions of animal consciousness have evolved over time, influencing how they are treated. This study aimed to assess perceptions of animal consciousness in people working in conservation. An online survey of 87 participants evaluated their perceptions of animals' capabilities across 10 dimensions of consciousness, including self-consciousness, learning, and reasoning. The sum of the answers to the questions was validated as a "perception index" using a principal component analysis. Next, its variation according to taxonomic, demographic, professional factors, and the duration, type, and frequency of interaction with animals was assessed with generalized linear models and stepwise model selection. Participants' perceptions varied with taxonomic class and the level of education, with mammals obtaining higher indexes than birds (-0.14; 95% confidence interval [CI] -0.24, -0.03, p < 0.01) or reptiles (-0.41; 95% CI -0.55, -0.27, p < 0.01), and respondents holding a PhD exhibiting higher perception indexes than those with BScs (-0.19; 95% CI -0.32, -0.06, p < 0.01) or lower education (-0.18; 95% CI -0.32, -0.03, p = 0.01). The attribution of consciousness followed a phylogenetic pattern, but several exceptions (e.g., the octopus and raven) were noted on a finer scale supporting a multifactorial influence on the perception of animal consciousness that emerges upon a baseline phylogenetic pattern. Finally, the results suggest that conservationists are influenced by culture and scientific knowledge, as much as their personal experiences, when evaluating animals' perceptions, highlighting the need for further research on the convergence between perception, belief, and evidence.
Collapse
Affiliation(s)
- Valentine Yakhlef
- CIVG—Vasco da Gama Research Center/EUVG—Vasco da Gama University School, Avenida José R. Sousa Fernandes 197, 3020-210 Coimbra, Portugal; (A.L.P.); (A.A.)
| | - Manuel Magalhães-Sant’Ana
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisbon, Portugal;
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Ana Luísa Pereira
- CIVG—Vasco da Gama Research Center/EUVG—Vasco da Gama University School, Avenida José R. Sousa Fernandes 197, 3020-210 Coimbra, Portugal; (A.L.P.); (A.A.)
- CISAS—Center for Research and Development in Agrifood Systems and Sustainability, Escola Superior Agrária, Instituto Politécnico de Viana do Castelo, 4900-347 Viana do Castelo, Portugal
| | - Alexandre Azevedo
- CIVG—Vasco da Gama Research Center/EUVG—Vasco da Gama University School, Avenida José R. Sousa Fernandes 197, 3020-210 Coimbra, Portugal; (A.L.P.); (A.A.)
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisbon, Portugal;
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), 1300-477 Lisbon, Portugal
| |
Collapse
|
5
|
Clark DA, Fitzgerald JE. Optimization in Visual Motion Estimation. Annu Rev Vis Sci 2024; 10:23-46. [PMID: 38663426 PMCID: PMC11998607 DOI: 10.1146/annurev-vision-101623-025432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Sighted animals use visual signals to discern directional motion in their environment. Motion is not directly detected by visual neurons, and it must instead be computed from light signals that vary over space and time. This makes visual motion estimation a near universal neural computation, and decades of research have revealed much about the algorithms and mechanisms that generate directional signals. The idea that sensory systems are optimized for performance in natural environments has deeply impacted this research. In this article, we review the many ways that optimization has been used to quantitatively model visual motion estimation and reveal its underlying principles. We emphasize that no single optimization theory has dominated the literature. Instead, researchers have adeptly incorporated different computational demands and biological constraints that are pertinent to the specific brain system and animal model under study. The successes and failures of the resulting optimization models have thereby provided insights into how computational demands and biological constraints together shape neural computation.
Collapse
Affiliation(s)
- Damon A Clark
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, USA;
| | - James E Fitzgerald
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA
- Department of Neurobiology, Northwestern University, Evanston, Illinois, USA;
| |
Collapse
|
6
|
Wu N, Zhou B, Agrochao M, Clark DA. Broken time reversal symmetry in visual motion detection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.08.598068. [PMID: 38915608 PMCID: PMC11195140 DOI: 10.1101/2024.06.08.598068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Our intuition suggests that when a movie is played in reverse, our perception of motion in the reversed movie will be perfectly inverted compared to the original. This intuition is also reflected in many classical theoretical and practical models of motion detection. However, here we demonstrate that this symmetry of motion perception upon time reversal is often broken in real visual systems. In this work, we designed a set of visual stimuli to investigate how stimulus symmetries affect time reversal symmetry breaking in the fruit fly Drosophila's well-studied optomotor rotation behavior. We discovered a suite of new stimuli with a wide variety of different properties that can lead to broken time reversal symmetries in fly behavioral responses. We then trained neural network models to predict the velocity of scenes with both natural and artificial contrast distributions. Training with naturalistic contrast distributions yielded models that break time reversal symmetry, even when the training data was time reversal symmetric. We show analytically and numerically that the breaking of time reversal symmetry in the model responses can arise from contrast asymmetry in the training data, but can also arise from other features of the contrast distribution. Furthermore, shallower neural network models can exhibit stronger symmetry breaking than deeper ones, suggesting that less flexible neural networks promote some forms of time reversal symmetry breaking. Overall, these results reveal a surprising feature of biological motion detectors and suggest that it could arise from constrained optimization in natural environments.
Collapse
Affiliation(s)
- Nathan Wu
- Yale College, New Haven, CT 06511, USA
| | - Baohua Zhou
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Margarida Agrochao
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Damon A. Clark
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
- Department of Physics, Yale University, New Haven, CT 06511, USA
- Department of Neuroscience, Yale University, New Haven, CT 06511, USA
- Quantitative Biology Institute, Yale University, New Haven, CT 06511, USA
- Wu Tsai Institute, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
7
|
Karaduman A, Karoglu-Eravsar ET, Adams MM, Kafaligonul H. Passive exposure to visual motion leads to short-term changes in the optomotor response of aging zebrafish. Behav Brain Res 2024; 460:114812. [PMID: 38104637 DOI: 10.1016/j.bbr.2023.114812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/10/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
Numerous studies have shown that prior visual experiences play an important role in sensory processing and adapting behavior in a dynamic environment. A repeated and passive presentation of visual stimulus is one of the simplest procedures to manipulate acquired experiences. Using this approach, we aimed to investigate exposure-based visual learning of aging zebrafish and how cholinergic intervention is involved in exposure-induced changes. Our measurements included younger and older wild-type zebrafish and achesb55/+ mutants with decreased acetylcholinesterase activity. We examined both within-session and across-day changes in the zebrafish optomotor responses to repeated and passive exposure to visual motion. Our findings revealed short-term (within-session) changes in the magnitude of optomotor response (i.e., the amount of position shift by fish as a response to visual motion) rather than long-term and persistent effects across days. Moreover, the observed short-term changes were age- and genotype-dependent. Compared to the initial presentations of motion within a session, the magnitude of optomotor response to terminal presentations decreased in the older zebrafish. There was a similar robust decrease specific to achesb55/+ mutants. Taken together, these results point to short-term (within-session) alterations in the motion detection of adult zebrafish and suggest differential effects of neural aging and cholinergic system on the observed changes. These findings further provide important insights into adult zebrafish optomotor response to visual motion and contribute to understanding this reflexive behavior in the short- and long-term stimulation profiles.
Collapse
Affiliation(s)
- Aysenur Karaduman
- Interdisciplinary Neuroscience Program, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Türkiye; Department of Molecular Biology and Genetics Zebrafish Facility, Bilkent University, Ankara, Türkiye; National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Türkiye
| | - Elif Tugce Karoglu-Eravsar
- Interdisciplinary Neuroscience Program, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Türkiye; Department of Molecular Biology and Genetics Zebrafish Facility, Bilkent University, Ankara, Türkiye; National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, Türkiye; Department of Psychology, Selcuk University, Konya, Türkiye
| | - Michelle M Adams
- Interdisciplinary Neuroscience Program, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Türkiye; Department of Molecular Biology and Genetics Zebrafish Facility, Bilkent University, Ankara, Türkiye; National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Türkiye; National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, Türkiye; Department of Psychology, Bilkent University, Ankara, Türkiye
| | - Hulusi Kafaligonul
- Interdisciplinary Neuroscience Program, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Türkiye; Department of Molecular Biology and Genetics Zebrafish Facility, Bilkent University, Ankara, Türkiye; National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Türkiye; National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, Türkiye.
| |
Collapse
|
8
|
Karaduman A, Karoglu-Eravsar ET, Kaya U, Aydin A, Adams MM, Kafaligonul H. Zebrafish optomotor response to second-order motion illustrates that age-related changes in motion detection depend on the activated motion system. Neurobiol Aging 2023; 130:12-21. [PMID: 37419077 DOI: 10.1016/j.neurobiolaging.2023.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/06/2023] [Accepted: 06/06/2023] [Indexed: 07/09/2023]
Abstract
Various aspects of visual functioning, including motion perception, change with age. Yet, there is a lack of comprehensive understanding of age-related alterations at different stages of motion processing and in each motion system. To understand the effects of aging on second-order motion processing, we investigated optomotor responses (OMR) in younger and older wild-type (AB-strain) and acetylcholinesterase (achesb55/+) mutant zebrafish. The mutant fish with decreased levels of acetylcholinesterase have been shown to have delayed age-related cognitive decline. Compared to previous results on first-order motion, we found distinct changes in OMR to second-order motion. The polarity of OMR was dependent on age, such that second-order stimulation led to mainly negative OMR in the younger group while older zebrafish had positive responses. Hence, these findings revealed an overall aging effect on the detection of second-order motion. Moreover, neither the genotype of zebrafish nor the spatial frequency of motion significantly changed the response magnitude. Our findings support the view that age-related changes in motion detection depend on the activated motion system.
Collapse
Affiliation(s)
- Aysenur Karaduman
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Türkiye; Interdisciplinary Neuroscience Program, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Türkiye; Department of Molecular Biology and Genetics Zebrafish Facility, Bilkent University, Ankara, Türkiye
| | - Elif Tugce Karoglu-Eravsar
- Interdisciplinary Neuroscience Program, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Türkiye; Department of Molecular Biology and Genetics Zebrafish Facility, Bilkent University, Ankara, Türkiye; National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, Türkiye; Department of Psychology, Selcuk University, Konya, Türkiye
| | - Utku Kaya
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI
| | - Alaz Aydin
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Türkiye; Department of Cognitive Science, Informatics Institute, Middle East Technical University, Ankara, Türkiye
| | - Michelle M Adams
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Türkiye; Interdisciplinary Neuroscience Program, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Türkiye; Department of Molecular Biology and Genetics Zebrafish Facility, Bilkent University, Ankara, Türkiye; National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, Türkiye; Department of Psychology, Bilkent University, Ankara, Türkiye
| | - Hulusi Kafaligonul
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Türkiye; Interdisciplinary Neuroscience Program, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Türkiye; Department of Molecular Biology and Genetics Zebrafish Facility, Bilkent University, Ankara, Türkiye; National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, Türkiye.
| |
Collapse
|
9
|
Mair A, Dadda M, Kitaoka A, Agrillo C. Illu-Shoal Choice: An Exploration of Different Means for Enrichment of Captive Zebrafish. Animals (Basel) 2023; 13:2640. [PMID: 37627431 PMCID: PMC10451799 DOI: 10.3390/ani13162640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/23/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Fish of any variety are nowadays being kept captive for several purposes, from recreational to alimentary to research. It is possible that we humans often underestimate or misunderstand the basic, natural needs of the species we use for our purposes. Sociality is likely to play an extensive and fundamental role in the quality of life of animals such as zebrafish. This study aimed to develop a dummy conspecific that included depth and motion illusions in order to assess whether these stimuli could represent a valid alternative to a conspecific in triggering shoaling behaviour in a well-known model in genetics and neuroscience, the zebrafish (Dario rerio). We thus replaced the natural livery of a zebrafish shape with three visual illusions: the Ouchi-Spillmann illusion, which generates an effect of local tilting motion; and another two which should create pictorial cues of tridimensionality. Via a binary shoal choice test, we assessed the time spent close to each of the three artificial dummies compared to neutral control stimuli such as grey ellipses. We found no preference for the illusory patterns, suggesting that the illusion was not perceived or, alternatively, that the perception of the illusion was not enough to elicit recognition of the dummy as conspecific and subsequent social behaviours.
Collapse
Affiliation(s)
- Alberto Mair
- Department of General Psychology, University of Padua, 35131 Padova, Italy; (M.D.); (C.A.)
| | - Marco Dadda
- Department of General Psychology, University of Padua, 35131 Padova, Italy; (M.D.); (C.A.)
| | - Akiyoshi Kitaoka
- Department of Psychology, Ritsumeikan University, Osaka 567-8570, Japan;
| | - Christian Agrillo
- Department of General Psychology, University of Padua, 35131 Padova, Italy; (M.D.); (C.A.)
- Padua Neuroscience Center, University of Padua, 35131 Padova, Italy
| |
Collapse
|
10
|
Kirubeswaran OR, Storrs KR. Inconsistent illusory motion in predictive coding deep neural networks. Vision Res 2023; 206:108195. [PMID: 36801664 DOI: 10.1016/j.visres.2023.108195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/19/2023]
Abstract
Why do we perceive illusory motion in some static images? Several accounts point to eye movements, response latencies to different image elements, or interactions between image patterns and motion energy detectors. Recently PredNet, a recurrent deep neural network (DNN) based on predictive coding principles, was reported to reproduce the "Rotating Snakes" illusion, suggesting a role for predictive coding. We begin by replicating this finding, then use a series of "in silico" psychophysics and electrophysiology experiments to examine whether PredNet behaves consistently with human observers and non-human primate neural data. A pretrained PredNet predicted illusory motion for all subcomponents of the Rotating Snakes pattern, consistent with human observers. However, we found no simple response delays in internal units, unlike evidence from electrophysiological data. PredNet's detection of motion in gradients seemed dependent on contrast, but depends predominantly on luminance in humans. Finally, we examined the robustness of the illusion across ten PredNets of identical architecture, retrained on the same video data. There was large variation across network instances in whether they reproduced the Rotating Snakes illusion, and what motion, if any, they predicted for simplified variants. Unlike human observers, no network predicted motion for greyscale variants of the Rotating Snakes pattern. Our results sound a cautionary note: even when a DNN successfully reproduces some idiosyncrasy of human vision, more detailed investigation can reveal inconsistencies between humans and the network, and between different instances of the same network. These inconsistencies suggest that predictive coding does not reliably give rise to human-like illusory motion.
Collapse
Affiliation(s)
| | - Katherine R Storrs
- Department of Experimental Psychology, Justus Liebig University Giessen, Germany; Centre for Mind, Brain and Behaviour (CMBB), University of Marburg and Justus Liebig University Giessen, Germany; School of Psychology, University of Auckland, New Zealand
| |
Collapse
|
11
|
Seeing Things: A Community Science Investigation into Motion Illusion Susceptibility in Domestic Cats ( Felis silvestris catus) and Dogs ( Canis lupus familiaris). Animals (Basel) 2022; 12:ani12243562. [PMID: 36552482 PMCID: PMC9774501 DOI: 10.3390/ani12243562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/25/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Illusions-visual fields that distort perception-can inform the understanding of visual perception and its evolution. An example of one such illusion, the Rotating Snakes illusion, causes the perception of motion in a series of static concentric circles. The current study investigated pet dogs' and cats' perception of the Rotating Snakes illusion in a community science paradigm. The results reveal that neither species spent significantly more time at the illusion than at either of the controls, failing to indicate susceptibility to the illusion. Specific behavioral data at each stimulus reveal that the most common behaviors of both species were Inactive and Stationary, while Locomotion and Pawing were the least common, supporting the finding that susceptibility may not be present. This study is the first to examine susceptibility to the Rotating Snakes illusion in dogs, as well as to directly compare the phenomenon between dogs and cats. We suggest future studies might consider exploring alternative methods in testing susceptibility to motion illusions in non-human animals.
Collapse
|
12
|
Kobayashi T, Kitaoka A, Kosaka M, Tanaka K, Watanabe E. Motion illusion-like patterns extracted from photo and art images using predictive deep neural networks. Sci Rep 2022; 12:3893. [PMID: 35273206 PMCID: PMC8913633 DOI: 10.1038/s41598-022-07438-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 02/18/2022] [Indexed: 11/09/2022] Open
Abstract
In our previous study, we successfully reproduced the illusory motion perceived in the rotating snakes illusion using deep neural networks incorporating predictive coding theory. In the present study, we further examined the properties of the network using a set of 1500 images, including ordinary static images of paintings and photographs and images of various types of motion illusions. Results showed that the networks clearly classified a group of illusory images and others and reproduced illusory motions against various types of illusions similar to human perception. Notably, the networks occasionally detected anomalous motion vectors, even in ordinally static images where humans were unable to perceive any illusory motion. Additionally, illusion-like designs with repeating patterns were generated using areas where anomalous vectors were detected, and psychophysical experiments were conducted, in which illusory motion perception in the generated designs was detected. The observed inaccuracy of the networks will provide useful information for further understanding information processing associated with human vision.
Collapse
Affiliation(s)
- Taisuke Kobayashi
- Laboratory of Neurophysiology, National Institute for Basic Biology, Higashiyama 5-1, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan.
| | - Akiyoshi Kitaoka
- College of Comprehensive Psychology, Ritsumeikan University, Iwakura-cho 2-150, Ibaraki, Osaka, 567-8570, Japan
| | - Manabu Kosaka
- Code_monsters group, Laboratory of Neurophysiology, National Institute for Basic Biology, Higashiyama 5-1, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
| | - Kenta Tanaka
- Code_monsters group, Laboratory of Neurophysiology, National Institute for Basic Biology, Higashiyama 5-1, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
| | - Eiji Watanabe
- Laboratory of Neurophysiology, National Institute for Basic Biology, Higashiyama 5-1, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan. .,Department of Basic Biology, The Graduate University for Advanced Studies (SOKENDAI), Miura, Kanagawa, 240-0193, Japan.
| |
Collapse
|
13
|
Santacà M, Bisazza A, Agrillo C. Guppies ( Poecilia reticulata) are deceived by visual illusions during obstacle negotiation. Biol Lett 2022; 18:20210548. [PMID: 35193367 PMCID: PMC8864340 DOI: 10.1098/rsbl.2021.0548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 02/04/2022] [Indexed: 11/12/2022] Open
Abstract
Animals travelling in their natural environment repeatedly encounter obstacles that they can either detour or go through. Gap negotiation requires an accurate estimation of the opening's size to avoid getting stuck or being injured. Research on visual illusions has revealed that in some circumstances, transformation rules used to generate a three-dimensional representation from bidimensional retinal images fail, leading to systematic errors in perception. In Ebbinghaus and Delboeuf illusions, the presence of task-irrelevant elements causes us to misjudge an object's size. Susceptibility to these illusions was observed in other animals, although with large intraspecific differences. In this study, we investigated whether fish can accurately estimate gap size and whether during this process they may be deceived by illusory patterns. Guppies were extremely accurate in gap negotiation, discriminating holes with a 10% diameter difference. When presented with two identical holes surrounded by inducers to produce Ebbinghaus and Delboeuf patterns, guppies misperceived gap size in the predicted direction. So far, researchers have principally considered illusions as useful tools for exploring the cognitive processing underlying vision. Our findings highlight the possibility that they have important ecological implications, affecting the everyday interactions of an animal with its physical world besides its intra- and interspecific relationships.
Collapse
Affiliation(s)
- Maria Santacà
- Department of Biology, University of Padova, Viale Giuseppe Colombo 3 - Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Angelo Bisazza
- Department of General Psychology, University of Padova, Padova, Italy
- Padua Neuroscience Center, University of Padova, Padova, Italy
| | - Christian Agrillo
- Department of General Psychology, University of Padova, Padova, Italy
- Padua Neuroscience Center, University of Padova, Padova, Italy
| |
Collapse
|
14
|
Liu X, Li H, Wang Y, Lei T, Wang J, Spillmann L, Andolina IM, Wang W. From Receptive to Perceptive Fields: Size-Dependent Asymmetries in Both Negative Afterimages and Subcortical On and Off Post-Stimulus Responses. J Neurosci 2021; 41:7813-7830. [PMID: 34326144 PMCID: PMC8445057 DOI: 10.1523/jneurosci.0300-21.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 07/11/2021] [Accepted: 07/13/2021] [Indexed: 11/21/2022] Open
Abstract
Negative afterimages are perceptual phenomena that occur after physical stimuli disappear from sight. Their origin is linked to transient post-stimulus responses of visual neurons. The receptive fields (RFs) of these subcortical ON- and OFF-center neurons exhibit antagonistic interactions between central and surrounding visual space, resulting in selectivity for stimulus polarity and size. These two features are closely intertwined, yet their relationship to negative afterimage perception remains unknown. Here we tested whether size differentially affects the perception of bright and dark negative afterimages in humans of both sexes, and how this correlates with neural mechanisms in subcortical ON and OFF cells. Psychophysically, we found a size-dependent asymmetry whereby dark disks produce stronger and longer-lasting negative afterimages than bright disks of equal contrast at sizes >0.8°. Neurophysiological recordings from retinal and relay cells in female cat dorsal lateral geniculate nucleus showed that subcortical ON cells exhibited stronger sustained post-stimulus responses to dark disks, than OFF cells to bright disks, at sizes >1°. These sizes agree with the emergence of center-surround antagonism, revealing stronger suppression to opposite-polarity stimuli for OFF versus ON cells, particularly in dorsal lateral geniculate nucleus. Using a network-based retino-geniculate model, we confirmed stronger antagonism and temporal transience for OFF-cell post-stimulus rebound responses. A V1 population model demonstrated that both strength and duration asymmetries can be propagated to downstream cortical areas. Our results demonstrate how size-dependent antagonism impacts both the neuronal post-stimulus response and the resulting afterimage percepts, thereby supporting the idea of perceptual RFs reflecting the underlying neuronal RF organization of single cells.SIGNIFICANCE STATEMENT Visual illusions occur when sensory inputs and perceptual outcomes do not match, and provide a valuable tool to understand transformations from neural to perceptual responses. A classic example are negative afterimages that remain visible after a stimulus is removed from view. Such perceptions are linked to responses in early visual neurons, yet the details remain poorly understood. Combining human psychophysics, neurophysiological recordings in cats and retino-thalamo-cortical computational modeling, our study reveals how stimulus size and the receptive-field structure of subcortical ON and OFF cells contributes to the parallel asymmetries between neural and perceptual responses to bright versus dark afterimages. Thus, this work provides a deeper link from the underlying neural mechanisms to the resultant perceptual outcomes.
Collapse
Affiliation(s)
- Xu Liu
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui Li
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ye Wang
- State Key Laboratory of Media Convergence and Communication, Neuroscience and Intelligent Media Institute, Communication University of China, Beijing, 100024, China
| | - Tianhao Lei
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jijun Wang
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Psychotic Disorders, Shanghai, 200030, China
| | - Lothar Spillmann
- Department of Neurology, University of Freiburg, Freiburg, 79085, Germany
| | - Ian Max Andolina
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, 200031, China
- Shanghai Center for Brain and Brain-inspired Intelligence Technology, Shanghai, 200031, China
| | - Wei Wang
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, 200031, China
- Shanghai Center for Brain and Brain-inspired Intelligence Technology, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
15
|
The Challenge of Illusory Perception of Animals: The Impact of Methodological Variability in Cross-Species Investigation. Animals (Basel) 2021; 11:ani11061618. [PMID: 34070792 PMCID: PMC8228898 DOI: 10.3390/ani11061618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/20/2021] [Accepted: 05/27/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Research in neurobiology and ethology has given us a glimpse into the different perceptual worlds of animals. More recently, visual illusions have been used in behavioural research to compare the perception between different animal species. The studies conducted so far have provided contradictory results, raising the possibility that different methodological approaches might influence illusory perception. Here, we review the literature on this topic, considering both field and laboratory studies. In addition, we compare the two approaches used in laboratories, namely spontaneous choice tests and training procedures, highlighting both their relevance and their potential weaknesses. Adopting both procedures has the potential to combine their advantages. Although this twofold approach has seldomly been adopted, we expect it will become more widely used in the near future in order to shed light on the heterogeneous pattern observed in the literature of visual illusions. Abstract Although we live on the same planet, there are countless different ways of seeing the surroundings that reflect the different individual experiences and selective pressures. In recent decades, visual illusions have been used in behavioural research to compare the perception between different vertebrate species. The studies conducted so far have provided contradictory results, suggesting that the underlying perceptual mechanisms may differ across species. Besides the differentiation of the perceptual mechanisms, another explanation could be taken into account. Indeed, the different studies often used different methodologies that could have potentially introduced confounding factors. In fact, the possibility exists that the illusory perception is influenced by the different methodologies and the test design. Almost every study of this research field has been conducted in laboratories adopting two different methodological approaches: a spontaneous choice test or a training procedure. In the spontaneous choice test, a subject is presented with biologically relevant stimuli in an illusory context, whereas, in the training procedure, a subject has to undergo an extensive training during which neutral stimuli are associated with a biologically relevant reward. Here, we review the literature on this topic, highlighting both the relevance and the potential weaknesses of the different methodological approaches.
Collapse
|
16
|
Automated Operant Conditioning Devices for Fish. Do They Work? Animals (Basel) 2021; 11:ani11051397. [PMID: 34068933 PMCID: PMC8156027 DOI: 10.3390/ani11051397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 04/08/2021] [Accepted: 05/11/2021] [Indexed: 01/12/2023] Open
Abstract
Simple Summary Automated training devices are commonly used for investigating learning, memory, and other cognitive functions in warm-blood vertebrates, whereas manual training procedures are the standard in fish and other lower vertebrates, thus limiting comparison among species. Here, we directly compared the two different approaches to training in guppies (Poecilia reticulata) by administering numerical discrimination tasks of increasing difficulty. The automated device group showed a much lower performance compared to the traditionally-trained group. We modified some features of the automated device in order to improve its efficiency. Increasing the decision time or inter-trial interval was ineffective, while reducing the cognitive load and allowing subjects to reside in the test tank improved numerical performance. Yet, in no case did subjects match the performance of traditionally-trained subjects, suggesting that small teleosts may be limited in their capacity to cope with operant conditioning devices. Abstract The growing use of teleosts in comparative cognition and in neurobiological research has prompted many researchers to develop automated conditioning devices for fish. These techniques can make research less expensive and fully comparable with research on warm-blooded species, in which automated devices have been used for more than a century. Tested with a recently developed automated device, guppies (Poecilia reticulata) easily performed 80 reinforced trials per session, exceeding 80% accuracy in color or shape discrimination tasks after only 3–4 training session, though they exhibit unexpectedly poor performance in numerical discrimination tasks. As several pieces of evidence indicate, guppies possess excellent numerical abilities. In the first part of this study, we benchmarked the automated training device with a standard manual training procedure by administering the same set of tasks, which consisted of numerical discriminations of increasing difficulty. All manually-trained guppies quickly learned the easiest discriminations and a substantial percentage learned the more difficult ones, such as 4 vs. 5 items. No fish trained with the automated conditioning device reached the learning criterion for even the easiest discriminations. In the second part of the study, we introduced a series of modifications to the conditioning chamber and to the procedure in an attempt to improve its efficiency. Increasing the decision time, inter-trial interval, or visibility of the stimuli did not produce an appreciable improvement. Reducing the cognitive load of the task by training subjects first to use the device with shape and color discriminations, significantly improved their numerical performance. Allowing the subjects to reside in the test chamber, which likely reduced the amount of attentional resources subtracted to task execution, also led to an improvement, although in no case did subjects match the performance of fish trained with the standard procedure. Our results highlight limitations in the capacity of small laboratory teleosts to cope with operant conditioning automation that was not observed in laboratory mammals and birds and that currently prevent an easy and straightforward comparison with other vertebrates.
Collapse
|
17
|
Kubota Y, Hayakawa T, Ishikawa M. Dynamic perceptive compensation for the rotating snakes illusion with eye tracking. PLoS One 2021; 16:e0247937. [PMID: 33661969 PMCID: PMC7932078 DOI: 10.1371/journal.pone.0247937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 02/16/2021] [Indexed: 11/25/2022] Open
Abstract
This study developed a dynamic perceptive compensation system for the rotating snakes illusion (RSI) with eye tracking. Large eye movements, such as saccades and blinks, were detected with an eye tracker, and perceptive compensation was dynamically performed based on the characteristics of RSI perception. The proposed compensation system considered three properties: spatial dependence, temporal dependence, and individual dependence. Several psychophysical experiments were performed to confirm the effectiveness of the proposed system. After the preliminary verification and determination of the temporal-dependent function for RSI perception, the effects of gaze information on RSI control were investigated. Five algorithms were compared using paired comparison. This confirmed that the compensation system that took gaze information into account reduced the RSI effect better than compensation without gaze information at a significance threshold of p < 0.01, calculated with Bonferroni correction. Some algorithms that are dependent on gaze information reduced the RSI effects more stably than still RSI images, whereas spatially and temporally dependent compensation had a lower score than other compensation algorithms based on gaze information. The developed system and algorithm successfully controlled RSI perception in relation to gaze information. This study systematically handled gaze measurement, image manipulation, and compensation of illusory image, and can be utilized as a standard framework for the study of optical illusions in engineering fields.
Collapse
Affiliation(s)
- Yuki Kubota
- Graduate School of Information Science and Technology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Tomohiko Hayakawa
- Information Technology Center, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Masatoshi Ishikawa
- Information Technology Center, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
18
|
Karaduman A, Karoglu-Eravsar ET, Kaya U, Aydin A, Adams MM, Kafaligonul H. The optomotor response of aging zebrafish reveals a complex relationship between visual motion characteristics and cholinergic system. Neurobiol Aging 2020; 98:21-32. [PMID: 33227566 DOI: 10.1016/j.neurobiolaging.2020.10.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 10/10/2020] [Accepted: 10/17/2020] [Indexed: 12/12/2022]
Abstract
Understanding the principles underlying age-related changes in motion perception is paramount for improving the quality of life and health of older adults. However, the mechanisms underlying age-related alterations in this aspect of vision, which is essential for survival in a dynamic world, still remain unclear. Using optomotor responses to drifting gratings, we investigated age-related changes in motion detection of adult zebrafish (wild-type/AB-strain and achesb55/+ mutants with decreased levels of acetylcholinesterase). Our results pointed out negative optomotor responses that significantly depend on the spatial frequency and contrast level of stimulation, providing supporting evidence for the visual motion-driven aspect of this behavior mainly exhibited by adult zebrafish. Although there were no significant main effects of age and genotype, we found a significant three-way interaction between contrast level, age, and genotype. In the contrast domain, the changes in optomotor responses and thus in the detection of motion direction were age- and genotype-specific. Accordingly, these behavioral findings suggest a strong but complicated relationship between visual motion characteristics and the cholinergic system during neural aging.
Collapse
Affiliation(s)
- Aysenur Karaduman
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey; Interdisciplinary Neuroscience Program, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey; Department of Molecular Biology and Genetics Zebrafish Facility, Bilkent University, Ankara, Turkey
| | - Elif Tugce Karoglu-Eravsar
- Interdisciplinary Neuroscience Program, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey; Department of Molecular Biology and Genetics Zebrafish Facility, Bilkent University, Ankara, Turkey; National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, Turkey
| | - Utku Kaya
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey
| | - Alaz Aydin
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey
| | - Michelle M Adams
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey; Interdisciplinary Neuroscience Program, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey; Department of Molecular Biology and Genetics Zebrafish Facility, Bilkent University, Ankara, Turkey; National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, Turkey; Department of Psychology, Bilkent University, Ankara, Turkey
| | - Hulusi Kafaligonul
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey; Interdisciplinary Neuroscience Program, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey; Department of Molecular Biology and Genetics Zebrafish Facility, Bilkent University, Ankara, Turkey; National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, Turkey.
| |
Collapse
|
19
|
Santacà M, Miletto Petrazzini ME, Dadda M, Agrillo C. Forest before the trees in the aquatic world: global and local processing in teleost fishes. PeerJ 2020; 8:e9871. [PMID: 33024626 PMCID: PMC7520085 DOI: 10.7717/peerj.9871] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/13/2020] [Indexed: 11/20/2022] Open
Abstract
Background The study of illusory phenomena is important to understanding the similarities and differences between mammals and birds’ perceptual systems. In recent years, the analysis has been enlarged to include cold-blooded vertebrates, such as fish. However, evidence collected in the literature have drawn a contradictory picture, with some fish species exhibiting a human-like perception of visual illusions and others showing either a reversed perception or no susceptibility to visual illusions. The possibility exists that these mixed results relate to interspecific variability in perceptual grouping mechanisms. Therefore, we studied whether fish of five species exhibit a spontaneous tendency to prioritize a global analysis of the visual scene—also known as global-to-local precedence—instead of focusing on local details. Methods Using Navon-like stimuli (i.e., larger recognisable shapes composed of copies of smaller different shapes), we trained redtail splitfin, zebrafish, angelfish, Siamese fighting fish and three spot gourami to discriminate between two figures characterized by congruency between global and local information (a circle made by small circles and a cross made by small crosses). In the test phase, we put global and local cues (e.g., a circle made by small crosses) into contrast to see whether fish spontaneously rely on global or local information. Results Like humans, fish seem to have an overall global-to-local precedence, with no significant differences among the species. However, looking at the species-specific level, only four out of five species showed a significant global-to-local precedence, and at different degrees. Because these species are distantly related and occupy a broad spectrum of ecological adaptations, we suggest that the tendency to prioritize a global analysis of visual inputs may be more similar in fish than expected by the mixed results of visual illusion studies.
Collapse
Affiliation(s)
- Maria Santacà
- Department of General Psychology, University of Padova, Padova, Italia
| | | | - Marco Dadda
- Department of General Psychology, University of Padova, Padova, Italia
| | - Christian Agrillo
- Department of General Psychology, University of Padova, Padova, Italia.,Padua Neuroscience Center, University of Padova, Padova, Italia
| |
Collapse
|
20
|
Agrochao M, Tanaka R, Salazar-Gatzimas E, Clark DA. Mechanism for analogous illusory motion perception in flies and humans. Proc Natl Acad Sci U S A 2020; 117:23044-23053. [PMID: 32839324 PMCID: PMC7502748 DOI: 10.1073/pnas.2002937117] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Visual motion detection is one of the most important computations performed by visual circuits. Yet, we perceive vivid illusory motion in stationary, periodic luminance gradients that contain no true motion. This illusion is shared by diverse vertebrate species, but theories proposed to explain this illusion have remained difficult to test. Here, we demonstrate that in the fruit fly Drosophila, the illusory motion percept is generated by unbalanced contributions of direction-selective neurons' responses to stationary edges. First, we found that flies, like humans, perceive sustained motion in the stationary gradients. The percept was abolished when the elementary motion detector neurons T4 and T5 were silenced. In vivo calcium imaging revealed that T4 and T5 neurons encode the location and polarity of stationary edges. Furthermore, our proposed mechanistic model allowed us to predictably manipulate both the magnitude and direction of the fly's illusory percept by selectively silencing either T4 or T5 neurons. Interestingly, human brains possess the same mechanistic ingredients that drive our model in flies. When we adapted human observers to moving light edges or dark edges, we could manipulate the magnitude and direction of their percepts as well, suggesting that mechanisms similar to the fly's may also underlie this illusion in humans. By taking a comparative approach that exploits Drosophila neurogenetics, our results provide a causal, mechanistic account for a long-known visual illusion. These results argue that this illusion arises from architectures for motion detection that are shared across phyla.
Collapse
Affiliation(s)
- Margarida Agrochao
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511
| | - Ryosuke Tanaka
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511
| | | | - Damon A Clark
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511;
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511
- Department of Physics, Yale University, New Haven, CT 06511
- Department of Neuroscience, Yale University, New Haven, CT 06511
| |
Collapse
|
21
|
Does Brain Lateralization Affect the Performance in Binary Choice Tasks? A Study in the Animal Model Danio rerio. Symmetry (Basel) 2020. [DOI: 10.3390/sym12081294] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Researchers in behavioral neuroscience commonly observe the behavior of animal subjects in the presence of two alternative stimuli. However, this type of binary choice introduces a potential confound related to side biases. Understanding whether subjects exhibit this bias, and the origin of it (pre-existent or acquired throughout the experimental sessions), is particularly important to interpreting the results. Here, we tested the hypothesis according to which brain lateralization may influence the emergence of side biases in a well-known model of neuroscience, the zebrafish. As a measure of lateralization, individuals were observed in their spontaneous tendencies to monitor a potential predator with either the left or the right eye. Subjects also underwent an operant conditioning task requiring discrimination between two colors placed on the left–right axis. Although the low performance exhibited in the operant conditioning task prevents firm conclusions from being drawn, a positive correlation was found between the direction of lateralization and the tendency to select the stimulus presented on one specific side (e.g., right). The choice for this preferred side did not change throughout the experimental sessions, meaning that this side bias was not the result of the prolonged training. Overall, our study calls for a wider investigation of pre-existing lateralization biases in animal models to set up methodological counterstrategies to test individuals that do not properly work in a binary choice task with stimuli arranged on the left–right axis.
Collapse
|
22
|
Santacà M, Agrillo C. Two halves are less than the whole: Evidence of a length bisection bias in fish (Poecilia reticulata). PLoS One 2020; 15:e0233157. [PMID: 32407367 PMCID: PMC7224554 DOI: 10.1371/journal.pone.0233157] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 04/29/2020] [Indexed: 12/15/2022] Open
Abstract
The horizontal-vertical (HV) illusion is characterized by a tendency to overestimate the length of vertically-arranged objects. Comparative research is primarily confined to primates, a range of species that, although arboreal, often explore their environment moving along the horizontal axis. Such behaviour may have led to the development of asymmetrical perceptual mechanisms to make relative size judgments of objects placed vertically and horizontally. We observed the susceptibility to the HV illusion in fish, whose ability to swim along the horizontal and vertical plane permits them to scan objects' size equally on both axes. Guppies (Poecilia reticulata) were trained to select the longer orange line to receive a food reward. In the test phase, two arrays, containing two same-sized lines were presented, one horizontally and the other vertically. Black lines were also included in each pattern to generate the perception of an inverted T-shape (where a horizontal line is bisected by a vertical one) or an L-shape (no bisection). No bias was observed in the L-shape, which supports the idea of differential perceptual mechanisms for primates and fish. In the inverted T-shape, guppies estimated the bisected line as shorter, providing the first evidence of a length bisection bias in a fish species.
Collapse
Affiliation(s)
- Maria Santacà
- Department of General Psychology, University of Padova, Padova, Italy
| | - Christian Agrillo
- Department of General Psychology, University of Padova, Padova, Italy
- Padua Neuroscience Center, University of Padova, Padova, Italy
| |
Collapse
|
23
|
Santacà M, Miletto Petrazzini ME, Wilkinson A, Agrillo C. Anisotropy of perceived space in non-primates? The horizontal-vertical illusion in bearded dragons (Pogona vitticeps) and red-footed tortoises (Chelonoidis carbonaria). Behav Processes 2020; 176:104117. [PMID: 32259624 DOI: 10.1016/j.beproc.2020.104117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 03/05/2020] [Accepted: 03/25/2020] [Indexed: 10/24/2022]
Abstract
The horizontal-vertical illusion is a size illusion in which two same-sized objects appear to be different if presented on a horizontal or vertical plane, with the vertical one appearing longer. This illusion represents one of the main evidences of the anisotropy of the perceived space of humans, an asymmetrical perception of the object size presented in the vertical and horizontal space. Although this illusion has been widely investigated in humans, there is an almost complete lack of studies in non-human animals. Here we investigated whether reptiles perceive the horizontal-vertical illusion. We tested two reptile species: bearded dragons (Pogona vitticeps) and red-footed tortoises (Chelonoidis carbonaria). In control trials, two different-sized food strips were presented and animals were expected to choose the longer one. In test trials, animals received two same-sized strips, presented in a spatial arrangement eliciting the illusion. Only bearded dragons significantly preferred the longer strip in control trials; in test trials, bearded dragons selected the strip arranged vertically, suggesting a human-like perception of this pattern, while no clear choice for either array was observed in tortoises. Our results raise the interesting possibility that the anisotropy of perceived space can exists also in a reptile brain.
Collapse
Affiliation(s)
- Maria Santacà
- Department of General Psychology, University of Padova, Italy; School of Life Sciences, University of Lincoln, Lincoln, UK.
| | | | - Anna Wilkinson
- School of Life Sciences, University of Lincoln, Lincoln, UK
| | - Christian Agrillo
- Department of General Psychology, University of Padova, Italy; Padua Neuroscience Center, University of Padova, Italy
| |
Collapse
|
24
|
Everything is subjective under water surface, too: visual illusions in fish. Anim Cogn 2020; 23:251-264. [PMID: 31897795 DOI: 10.1007/s10071-019-01341-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/09/2019] [Accepted: 12/13/2019] [Indexed: 12/20/2022]
Abstract
The study of visual illusions has captured the attention of comparative psychologists since the last century, given the unquestionable advantage of investigating complex perceptual mechanisms with relatively simple visual patterns. To date, the observation of animal behavior in the presence of visual illusions has been largely confined to mammal and bird studies. Recently, there has been increasing interest in investigating fish, too. The attention has been particularly focused on guppies, redtail splitfin and bamboo sharks. Overall, the tested species were shown to experience a human-like perception of different illusory phenomena involving size, number, motion, brightness estimation and illusory contours. However, in some cases, no illusory effects, or evidence for a reverse illusion, were also reported. Here, we review the current state of the art in this field. We conclude that a wider investigation of visual illusions in fish is fundamental to form a broader comprehension of perceptual systems of vertebrates. Furthermore, we believe that this type of investigation could help us to address general important issues in perceptual studies, such as the role of ecology in shaping perceptual systems, the existence of interindividual variability in the visual perception of nonhuman species and the role of cortical activity in the emergence of visual illusions.
Collapse
|
25
|
Regaiolli B, Rizzo A, Ottolini G, Miletto Petrazzini ME, Spiezio C, Agrillo C. Motion Illusions as Environmental Enrichment for Zoo Animals: A Preliminary Investigation on Lions ( Panthera leo). Front Psychol 2019; 10:2220. [PMID: 31636583 PMCID: PMC6788361 DOI: 10.3389/fpsyg.2019.02220] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/17/2019] [Indexed: 11/13/2022] Open
Abstract
Investigating perceptual and cognitive abilities of zoo animals might help to improve their husbandry and enrich their daily life with new stimuli. Developing new environmental enrichment programs and devices is hence necessary to promote species-specific behaviors that need to be maintained in controlled environments. As far as we are aware, no study has ever tested the potential benefits of motion illusions as visual enrichment for zoo animals. Starting from a recent study showing that domestic cats are spontaneously attracted by a well-known motion illusion, the Rotating Snake (RS) illusion, we studied whether this illusion could be used as a visual enrichment for big cats. We observed the spontaneous behavior of three lionesses when three different visual stimuli were placed in their environment: the RS illusion and two control stimuli. The study involved two different periods: the baseline and the RS period, in which the visual stimuli were provided to the lionesses. To assess whether the lionesses were specifically attracted by the RS illusion, we collected data on the number of interactions with the stimuli, as well as on the total time spent interacting with them. To investigate the effect of the illusion on the animals' welfare, individual and social behaviors were studied, and compared between the two periods. The results showed that two lionesses out of three interacted more with the RS stimulus than with the two control stimuli. The fact that the lionesses seemed to be more inclined to interact with the RS stimulus indirectly suggests the intriguing possibility that they were attracted by the illusory motion. Moreover, behavioral changes between the two periods were reported for one of the lionesses, highlighting a reduction in self-directed behaviors and an increase in attentive behaviors, and suggesting positive welfare implications. Thus, behavioral observations made before and during the presentation of the stimuli showed that our visual enrichment actually provided positive effects in lionesses. These results call for the development of future studies on the use of visual illusions in the enrichment programs of zoo animals.
Collapse
Affiliation(s)
- Barbara Regaiolli
- Research and Conservation Department, Parco Natura Viva – Garda Zoological Park, Bussolengo, Italy
| | - Angelo Rizzo
- Research and Conservation Department, Parco Natura Viva – Garda Zoological Park, Bussolengo, Italy
| | - Giorgio Ottolini
- Research and Conservation Department, Parco Natura Viva – Garda Zoological Park, Bussolengo, Italy
| | | | - Caterina Spiezio
- Research and Conservation Department, Parco Natura Viva – Garda Zoological Park, Bussolengo, Italy
| | - Christian Agrillo
- Department of General Psychology, University of Padova, Padua, Italy
| |
Collapse
|
26
|
Santacà M, Agrillo C. Perception of the Müller-Lyer illusion in guppies. Curr Zool 2019; 66:205-213. [PMID: 32440279 PMCID: PMC7233609 DOI: 10.1093/cz/zoz041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 08/20/2019] [Indexed: 11/23/2022] Open
Abstract
The Müller–Lyer illusion is a well-known distortion illusion that occurs when the spatial arrangement of inducers (i.e., inwards- or outwards-pointing arrowheads) influences a line’s perceived relative length. To date, this illusion has been reported in several animal species but only in 1 teleost fish (i.e., redtail splitfins Xenotoca eiseni), although teleost fish represent approximately 50% of vertebrate diversity. We investigated the perception of this illusion in another teleost fish: guppies Poecilia reticulata, a species that diverged from the redtail splitfin 65 million years ago. The guppies were trained to select the longer between 2 lines; after meeting the learning criterion, illusory trials were presented. Control trials were also arranged to exclude the possibility that their choices were based on potential spatial biases that relate to the illusory pattern. The guppies’ overall performance indicated that they were susceptible to the Müller–Lyer illusion, perceiving the line with the inwards-pointing arrowheads as longer. The performance in the control trials excluded the possibility that the subjects used the physical differences between the 2 figures as the discriminative cue in the illusory trials. Our study suggests that sensibility to the Müller–Lyer illusion could be widespread across teleost fish and reinforces the idea that the perceptual mechanisms underlying size estimation might be similar across vertebrates.
Collapse
Affiliation(s)
- Maria Santacà
- Department of General Psychology, University of Padova, Via Venezia 8, Padova 35131, Italy
| | - Christian Agrillo
- Department of General Psychology, University of Padova, Via Venezia 8, Padova 35131, Italy
| |
Collapse
|
27
|
Pennartz CMA, Farisco M, Evers K. Indicators and Criteria of Consciousness in Animals and Intelligent Machines: An Inside-Out Approach. Front Syst Neurosci 2019; 13:25. [PMID: 31379521 PMCID: PMC6660257 DOI: 10.3389/fnsys.2019.00025] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/24/2019] [Indexed: 01/02/2023] Open
Abstract
In today's society, it becomes increasingly important to assess which non-human and non-verbal beings possess consciousness. This review article aims to delineate criteria for consciousness especially in animals, while also taking into account intelligent artifacts. First, we circumscribe what we mean with "consciousness" and describe key features of subjective experience: qualitative richness, situatedness, intentionality and interpretation, integration and the combination of dynamic and stabilizing properties. We argue that consciousness has a biological function, which is to present the subject with a multimodal, situational survey of the surrounding world and body, subserving complex decision-making and goal-directed behavior. This survey reflects the brain's capacity for internal modeling of external events underlying changes in sensory state. Next, we follow an inside-out approach: how can the features of conscious experience, correlating to mechanisms inside the brain, be logically coupled to externally observable ("outside") properties? Instead of proposing criteria that would each define a "hard" threshold for consciousness, we outline six indicators: (i) goal-directed behavior and model-based learning; (ii) anatomic and physiological substrates for generating integrative multimodal representations; (iii) psychometrics and meta-cognition; (iv) episodic memory; (v) susceptibility to illusions and multistable perception; and (vi) specific visuospatial behaviors. Rather than emphasizing a particular indicator as being decisive, we propose that the consistency amongst these indicators can serve to assess consciousness in particular species. The integration of scores on the various indicators yields an overall, graded criterion for consciousness, somewhat comparable to the Glasgow Coma Scale for unresponsive patients. When considering theoretically derived measures of consciousness, it is argued that their validity should not be assessed on the basis of a single quantifiable measure, but requires cross-examination across multiple pieces of evidence, including the indicators proposed here. Current intelligent machines, including deep learning neural networks (DLNNs) and agile robots, are not indicated to be conscious yet. Instead of assessing machine consciousness by a brief Turing-type of test, evidence for it may gradually accumulate when we study machines ethologically and across time, considering multiple behaviors that require flexibility, improvisation, spontaneous problem-solving and the situational conspectus typically associated with conscious experience.
Collapse
Affiliation(s)
- Cyriel M. A. Pennartz
- Department of Cognitive and Systems Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
- Research Priority Area, Brain and Cognition, University of Amsterdam, Amsterdam, Netherlands
| | - Michele Farisco
- Centre for Research Ethics and Bioethics, Uppsala University, Uppsala, Sweden
- Biogem, Biology and Molecular Genetics Institute, Ariano Irpino, Italy
| | - Kathinka Evers
- Centre for Research Ethics and Bioethics, Uppsala University, Uppsala, Sweden
| |
Collapse
|
28
|
Linear numerosity illusions in capuchin monkeys (Sapajus apella), rhesus macaques (Macaca mulatta), and humans (Homo sapiens). Anim Cogn 2019; 22:883-895. [PMID: 31256340 DOI: 10.1007/s10071-019-01288-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 06/02/2019] [Accepted: 06/24/2019] [Indexed: 12/29/2022]
Abstract
Numerosity illusions emerge when the stimuli in one set are overestimated or underestimated relative to the number (or quantity) of stimuli in another set. In the case of multi-item arrays, individual items that form a better Gestalt are more readily grouped, leading to overestimation by human adults and children. As an example, the Solitaire illusion emerges when dots forming a central cluster (cross-pattern) are overestimated relative to the same number of dots on the periphery of the array. Although this illusion is robustly experienced by human adults, previous studies have produced weaker illusory results for young children, chimpanzees, rhesus macaques, capuchin monkeys, and guppies. In the current study, we presented nonhuman primates with other linear arrangements of stimuli from Frith and Frith's (Percept Psychoph 11:409-410, 1972) original paper with human participants that included the Solitaire illusion. Capuchin monkeys, rhesus macaques, and human adults learned to quantify black and white dots that were presented within intermingled arrays, responding on the basis of the more numerous dot colors. Humans perceived the various illusions similar to the original findings of Frith and Frith (1972), validating the current comparative design; however, there was no evidence of illusory susceptibility in either species of monkey. These results are considered in light of illusion susceptibility among primates as well as considering the role of numerical discrimination abilities and perceptual processing mode on illusion emergence.
Collapse
|
29
|
Abstract
In a series of four experiments, standard visual search was used to explore whether the onset of illusory motion pre-attentively guides vision in the same way that the onset of real-motion is known to do. Participants searched for target stimuli based on Akiyoshi Kitaoka's classic illusions, configured so that they either did or did not give the subjective impression of illusory motion. Distractor items always contained the same elements as target items, but did not convey a sense of illusory motion. When target items contained illusory motion, they popped-out, with flat search slopes that were independent of set size. Search for control items without illusory motion - but with identical structural differences to distractors - was slow and serial in nature (> 200 ms/item). Using a nulling task, we estimated the speed of illusory rotation in our displays to be approximately 2 °/s. Direct comparison of illusory and real-motion targets moving with matched velocity showed that illusory motion targets were detected more quickly. Blurred target items that conveyed a weak subjective impression of illusory motion gave rise to serial but faster (< 100 ms/item) search than control items. Our behavioral findings of parallel detection across the visual field, together with previous imaging and neurophysiological studies, suggests that relatively early cortical areas play a causal role in the perception of illusory motion. Furthermore, we hope to re-emphasize the way in which visual search can be used as a flexible, objective measure of illusion strength.
Collapse
|
30
|
Abstract
Visual illusions are objects that are made up of elements that are arranged in such a way as to result in erroneous perception of the objects’ physical properties. Visual illusions are used to study visual perception in humans and nonhuman animals, since they provide insight into the psychological and cognitive processes underlying the perceptual system. In a set of three experiments, we examined whether dogs were able to learn a relational discrimination and to perceive the Müller-Lyer illusion. In Experiment 1, dogs were trained to discriminate line lengths using a two-alternative forced choice procedure on a touchscreen. Upon learning the discrimination, dogs’ generalization to novel exemplars and the threshold of their abilities were tested. In the second experiment, dogs were presented with the Müller-Lyer illusion as test trials, alongside additional test trials that controlled for overall stimulus size. Dogs appeared to perceive the illusion; however, control trials revealed that they were using global size to solve the task. Experiment 3 presented modified stimuli that have been known to enhance perception of the illusion in other species. However, the dogs’ performance remained the same. These findings reveal evidence of relational learning in dogs. However, their failure to perceive the illusion emphasizes the importance of using a full array of control trials when examining these paradigms, and it suggests that visual acuity may play a crucial role in this perceptual phenomenon.
Collapse
|
31
|
Adams MM, Kafaligonul H. Zebrafish-A Model Organism for Studying the Neurobiological Mechanisms Underlying Cognitive Brain Aging and Use of Potential Interventions. Front Cell Dev Biol 2018; 6:135. [PMID: 30443547 PMCID: PMC6221905 DOI: 10.3389/fcell.2018.00135] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 09/25/2018] [Indexed: 01/22/2023] Open
Affiliation(s)
- Michelle M Adams
- Interdisciplinary Neuroscience Program, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey.,Department of Psychology, Bilkent University, Ankara, Turkey.,National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, Turkey.,Department of Molecular Biology and Genetics Department Zebrafish Facility, Bilkent University, Ankara, Turkey.,National Magnetic Resonance Research Center (UMRAM), Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey
| | - Hulusi Kafaligonul
- Interdisciplinary Neuroscience Program, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey.,National Magnetic Resonance Research Center (UMRAM), Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey
| |
Collapse
|
32
|
Discrimination of movement and visual transfer abilities in cichlids (Pseudotropheus zebra). Behav Ecol Sociobiol 2018. [DOI: 10.1007/s00265-018-2476-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
33
|
Watanabe E, Kitaoka A, Sakamoto K, Yasugi M, Tanaka K. Illusory Motion Reproduced by Deep Neural Networks Trained for Prediction. Front Psychol 2018; 9:345. [PMID: 29599739 PMCID: PMC5863044 DOI: 10.3389/fpsyg.2018.00345] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 02/28/2018] [Indexed: 12/14/2022] Open
Abstract
The cerebral cortex predicts visual motion to adapt human behavior to surrounding objects moving in real time. Although the underlying mechanisms are still unknown, predictive coding is one of the leading theories. Predictive coding assumes that the brain's internal models (which are acquired through learning) predict the visual world at all times and that errors between the prediction and the actual sensory input further refine the internal models. In the past year, deep neural networks based on predictive coding were reported for a video prediction machine called PredNet. If the theory substantially reproduces the visual information processing of the cerebral cortex, then PredNet can be expected to represent the human visual perception of motion. In this study, PredNet was trained with natural scene videos of the self-motion of the viewer, and the motion prediction ability of the obtained computer model was verified using unlearned videos. We found that the computer model accurately predicted the magnitude and direction of motion of a rotating propeller in unlearned videos. Surprisingly, it also represented the rotational motion for illusion images that were not moving physically, much like human visual perception. While the trained network accurately reproduced the direction of illusory rotation, it did not detect motion components in negative control pictures wherein people do not perceive illusory motion. This research supports the exciting idea that the mechanism assumed by the predictive coding theory is one of basis of motion illusion generation. Using sensory illusions as indicators of human perception, deep neural networks are expected to contribute significantly to the development of brain research.
Collapse
Affiliation(s)
- Eiji Watanabe
- Laboratory of Neurophysiology, National Institute for Basic Biology, Okazaki, Japan.,Department of Basic Biology, The Graduate University for Advanced Studies (SOKENDAI), Miura, Japan
| | | | - Kiwako Sakamoto
- Department of Physiological Sciences, The Graduate University for Advanced Studies (SOKENDAI), Miura, Japan.,Division of Integrative Physiology, National Institute for Physiological Sciences (NIPS), Okazaki, Japan
| | - Masaki Yasugi
- Laboratory of Neurophysiology, National Institute for Basic Biology, Okazaki, Japan
| | | |
Collapse
|
34
|
Mitchell L, Cheney KL, Cortesi F, Marshall NJ, Vorobyev M. Triggerfish uses chromaticity and lightness for object segregation. ROYAL SOCIETY OPEN SCIENCE 2017; 4:171440. [PMID: 29308267 PMCID: PMC5750034 DOI: 10.1098/rsos.171440] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 11/17/2017] [Indexed: 06/07/2023]
Abstract
Humans group components of visual patterns according to their colour, and perceive colours separately from shape. This property of human visual perception is the basis behind the Ishihara test for colour deficiency, where an observer is asked to detect a pattern made up of dots of similar colour with variable lightness against a background of dots made from different colour(s) and lightness. To find out if fish use colour for object segregation in a similar manner to humans, we used stimuli inspired by the Ishihara test. Triggerfish (Rhinecanthus aculeatus) were trained to detect a cross constructed from similarly coloured dots against various backgrounds. Fish detected this cross even when it was camouflaged using either achromatic or chromatic noise, but fish relied more on chromatic cues for shape segregation. It remains unknown whether fish may switch to rely primarily on achromatic cues in scenarios where target objects have higher achromatic contrast and lower chromatic contrast. Fish were also able to generalize between stimuli of different colours, suggesting that colour and shape are processed by fish independently.
Collapse
Affiliation(s)
- Laurie Mitchell
- Institute of Marine Science, University of Auckland, Private Bag 92019, Auckland, AKL 1142, New Zealand
- School of Biological Sciences, University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Karen L. Cheney
- School of Biological Sciences, University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Fabio Cortesi
- School of Biological Sciences, University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - N. Justin Marshall
- Queensland Brain Institute, University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Misha Vorobyev
- School of Optometry and Vision Science, University of Auckland, Private Bag 92019, Auckland, AKL 1142, New Zealand
| |
Collapse
|
35
|
|
36
|
Agrillo C, Parrish AE, Beran MJ. How Illusory Is the Solitaire Illusion? Assessing the Degree of Misperception of Numerosity in Adult Humans. Front Psychol 2016; 7:1663. [PMID: 27833577 PMCID: PMC5081449 DOI: 10.3389/fpsyg.2016.01663] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 10/11/2016] [Indexed: 11/25/2022] Open
Abstract
The Solitaire illusion occurs when the spatial arrangement of items influences the subjective estimation of their quantity. Unlike other illusory phenomena frequently reported in humans and often also in non-human animals, evidence of the Solitaire illusion in species other than humans remains weak. However, before concluding that this perceptual bias affects quantity judgments differently in human and non-human animals, further investigations on the strength of the Solitaire illusion is required. To date, no study has assessed the exact misperception of numerosity generated by the Solitaire arrangement, and the possibility exists that the numerical effects generated by the illusion are too subtle to be detected by non-human animals. The present study investigated the strength of this illusion in adult humans. In a relative numerosity task, participants were required to select which array contained more blue items in the presence of two arrays made of identical blue and yellow items. Participants perceived the Solitaire illusion as predicted, overestimating the Solitaire array with centrally clustered blue items as more numerous than the Solitaire array with blue items on the perimeter. Their performance in the presence of the Solitaire array was similar to that observed in control trials with numerical ratios larger than 0.67, suggesting that the illusory array produces a substantial overestimation of the number of blue items in one array relative to the other. This aspect was more directly investigated in a numerosity identification task in which participants were required to estimate the number of blue items when single arrays were presented one at a time. In the presence of the Solitaire array, participants slightly overestimated the number of items when they were centrally located while they underestimated the number of items when those items were located on the perimeter. Items located on the perimeter were perceived to be 76% as numerous as centrally located items. The magnitude of misperception of numerosity reported here may represent a useful tool to help to understand whether non-human animals have different perceptual mechanisms or, instead, do not display adequate numerical abilities to spot the illusory difference generated in the Solitaire array.
Collapse
Affiliation(s)
- Christian Agrillo
- Department of General Psychology, University of Padova Padova, Italy
| | - Audrey E Parrish
- Language Research Center, Georgia State University Atlanta, GA, USA
| | - Michael J Beran
- Language Research Center, Georgia State University Atlanta, GA, USA
| |
Collapse
|
37
|
Lucon-Xiccato T, Dadda M. Guppies Show Behavioural but Not Cognitive Sex Differences in a Novel Object Recognition Test. PLoS One 2016; 11:e0156589. [PMID: 27305102 PMCID: PMC4909186 DOI: 10.1371/journal.pone.0156589] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 05/17/2016] [Indexed: 11/19/2022] Open
Abstract
The novel object recognition (NOR) test is a widely-used paradigm to study learning and memory in rodents. NOR performance is typically measured as the preference to interact with a novel object over a familiar object based on spontaneous exploratory behaviour. In rats and mice, females usually have greater NOR ability than males. The NOR test is now available for a large number of species, including fish, but sex differences have not been properly tested outside of rodents. We compared male and female guppies (Poecilia reticulata) in a NOR test to study whether sex differences exist also for fish. We focused on sex differences in both performance and behaviour of guppies during the test. In our experiment, adult guppies expressed a preference for the novel object as most rodents and other species do. When we looked at sex differences, we found the two sexes showed a similar preference for the novel object over the familiar object, suggesting that male and female guppies have similar NOR performances. Analysis of behaviour revealed that males were more inclined to swim in the proximity of the two objects than females. Further, males explored the novel object at the beginning of the experiment while females did so afterwards. These two behavioural differences are possibly due to sex differences in exploration. Even though NOR performance is not different between male and female guppies, the behavioural sex differences we found could affect the results of the experiments and should be carefully considered when assessing fish memory with the NOR test.
Collapse
Affiliation(s)
- Tyrone Lucon-Xiccato
- Dipartimento di Psicologia Generale, Università di Padova, Padova, Italy
- * E-mail:
| | - Marco Dadda
- Dipartimento di Psicologia Generale, Università di Padova, Padova, Italy
| |
Collapse
|
38
|
Directional bias of illusory stream caused by relative motion adaptation. Vision Res 2016; 124:34-43. [PMID: 27286920 DOI: 10.1016/j.visres.2016.04.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 01/15/2016] [Accepted: 04/19/2016] [Indexed: 11/22/2022]
Abstract
Enigma is an op-art painting that elicits an illusion of rotational streaming motion. In the present study, we tested whether adaptation to various motion configurations that included relative motion components could be reflected in the directional bias of the illusory stream. First, participants viewed the center of a rotating Enigma stimulus for adaptation. There was no physical motion on the ring area. During the adaptation period, the illusory stream on the ring was mainly seen in the direction opposite to that of the physical rotation. After the physical rotation stopped, the illusory stream on the ring was mainly seen in the same direction as that of the preceding physical rotation. Moreover, adapting to strong relative motion induced a strong bias in the illusory motion direction in the subsequently presented static Enigma stimulus. The results suggest that relative motion detectors corresponding to the ring area may produce the illusory stream of Enigma.
Collapse
|
39
|
Gori S, Molteni M, Facoetti A. Visual Illusions: An Interesting Tool to Investigate Developmental Dyslexia and Autism Spectrum Disorder. Front Hum Neurosci 2016; 10:175. [PMID: 27199702 PMCID: PMC4842763 DOI: 10.3389/fnhum.2016.00175] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 04/06/2016] [Indexed: 11/13/2022] Open
Abstract
A visual illusion refers to a percept that is different in some aspect from the physical stimulus. Illusions are a powerful non-invasive tool for understanding the neurobiology of vision, telling us, indirectly, how the brain processes visual stimuli. There are some neurodevelopmental disorders characterized by visual deficits. Surprisingly, just a few studies investigated illusory perception in clinical populations. Our aim is to review the literature supporting a possible role for visual illusions in helping us understand the visual deficits in developmental dyslexia and autism spectrum disorder. Future studies could develop new tools - based on visual illusions - to identify an early risk for neurodevelopmental disorders.
Collapse
Affiliation(s)
- Simone Gori
- Department of Human and Social Sciences, University of BergamoBergamo, Italy
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio MedeaBosisio Parini, Italy
| | - Massimo Molteni
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio MedeaBosisio Parini, Italy
| | - Andrea Facoetti
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio MedeaBosisio Parini, Italy
- Developmental and Cognitive Neuroscience Lab, Department of General Psychology, University of PadovaPadua, Italy
| |
Collapse
|
40
|
Lucon-Xiccato T, Bisazza A. Male and female guppies differ in speed but not in accuracy in visual discrimination learning. Anim Cogn 2016; 19:733-44. [PMID: 26920920 DOI: 10.1007/s10071-016-0969-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 02/13/2016] [Accepted: 02/16/2016] [Indexed: 02/03/2023]
Abstract
In many species, males and females have different reproductive roles and/or differ in their ecological niche. Since in these cases the two sexes often face different cognitive challenges, selection may promote some degree of cognitive differentiation, an issue that has received relatively little attention so far. We investigated the existence of sex differences in visual discrimination learning in the guppy, Poecilia reticulata, a fish species in which females show complex mate choice based on male colour pattern. We tested males and females for their ability to learn a discrimination between two different shapes (experiment 1) and between two identical figures with a different orientation (experiment 2). In experiment 3, guppies were required to select an object of the odd colour in a group of five objects. Colours changed daily, and therefore, the solution for this task was facilitated by concept learning. We found males' and females' accuracy practically overlapped in the three experiments, suggesting that the two sexes have similar discrimination learning abilities. Yet, males showed faster decision time than females without any evident speed-accuracy trade-off. This result indicates the existence of consistent between-sex differences in decision speed perhaps due to impulsivity rather than speed in information processing. Our results align with previous literature, indicating that sex differences in cognitive abilities are the exception rather than the rule, while sex differences in cognitive style, i.e. the way in which an individual faces a cognitive task, are much more common.
Collapse
Affiliation(s)
- Tyrone Lucon-Xiccato
- Dipartimento di Psicologia Generale, Università di Padova, Via Venezia 8, 35131, Padua, Italy.
| | - Angelo Bisazza
- Dipartimento di Psicologia Generale, Università di Padova, Via Venezia 8, 35131, Padua, Italy
| |
Collapse
|
41
|
Abstract
Illusions have mainly been classified according to their phenomenological appearance. Here, I plead for a new classification approach based on processing areas or mechanisms. Classifying visual illusions according to processing areas or mechanisms may not only be valuable for a better understanding of the visual system but also for diagnostics of impairments, degenerative effects, and lesions (from retina to striate and extra-striate cortex).
Collapse
|
42
|
“Shall We Play a Game?”: Improving Reading Through Action Video Games in Developmental Dyslexia. CURRENT DEVELOPMENTAL DISORDERS REPORTS 2015. [DOI: 10.1007/s40474-015-0064-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
43
|
Gori S, Seitz AR, Ronconi L, Franceschini S, Facoetti A. Multiple Causal Links Between Magnocellular-Dorsal Pathway Deficit and Developmental Dyslexia. Cereb Cortex 2015; 26:4356-4369. [PMID: 26400914 DOI: 10.1093/cercor/bhv206] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Although impaired auditory-phonological processing is the most popular explanation of developmental dyslexia (DD), the literature shows that the combination of several causes rather than a single factor contributes to DD. Functioning of the visual magnocellular-dorsal (MD) pathway, which plays a key role in motion perception, is a much debated, but heavily suspected factor contributing to DD. Here, we employ a comprehensive approach that incorporates all the accepted methods required to test the relationship between the MD pathway dysfunction and DD. The results of 4 experiments show that (1) Motion perception is impaired in children with dyslexia in comparison both with age-match and with reading-level controls; (2) pre-reading visual motion perception-independently from auditory-phonological skill-predicts future reading development, and (3) targeted MD trainings-not involving any auditory-phonological stimulation-leads to improved reading skill in children and adults with DD. Our findings demonstrate, for the first time, a causal relationship between MD deficits and DD, virtually closing a 30-year long debate. Since MD dysfunction can be diagnosed much earlier than reading and language disorders, our findings pave the way for low resource-intensive, early prevention programs that could drastically reduce the incidence of DD.
Collapse
Affiliation(s)
- Simone Gori
- Department of Human and Social Sciences, University of Bergamo, Bergamo 24129, Italy Child Psychopathology Unit, Scientific Institute "E. Medea", Bosisio Parini, Lecco 23842, Italy
| | - Aaron R Seitz
- Department of Psychology, University of California - Riverside, Riverside, CA, USA
| | - Luca Ronconi
- Child Psychopathology Unit, Scientific Institute "E. Medea", Bosisio Parini, Lecco 23842, Italy Developmental and Cognitive Neuroscience Lab, Department of General Psychology, University of Padua, Padova 35131, Italy
| | - Sandro Franceschini
- Child Psychopathology Unit, Scientific Institute "E. Medea", Bosisio Parini, Lecco 23842, Italy Developmental and Cognitive Neuroscience Lab, Department of General Psychology, University of Padua, Padova 35131, Italy
| | - Andrea Facoetti
- Child Psychopathology Unit, Scientific Institute "E. Medea", Bosisio Parini, Lecco 23842, Italy Developmental and Cognitive Neuroscience Lab, Department of General Psychology, University of Padua, Padova 35131, Italy
| |
Collapse
|
44
|
Schluessel V, Kortekamp N, Cortes JAO, Klein A, Bleckmann H. Perception and discrimination of movement and biological motion patterns in fish. Anim Cogn 2015; 18:1077-91. [PMID: 25981056 DOI: 10.1007/s10071-015-0876-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/29/2015] [Accepted: 05/02/2015] [Indexed: 01/29/2023]
Abstract
Vision is of primary importance for many fish species, as is the recognition of movement. With the exception of one study, assessing the influence of conspecific movement on shoaling behaviour, the perception of biological motion in fish had not been studied in a cognitive context. The aim of the present study was therefore to assess the discrimination abilities of two teleost species in regard to simple and complex movement patterns of dots and objects, including biological motion patterns using point and point-light displays (PDs and PLDs). In two-alternative forced-choice experiments, in which choosing the designated positive stimulus was food-reinforced, fish were first tested in their ability to distinguish the video of a stationary black dot on a light background from the video of a moving black dot presented at different frequencies and amplitudes. While all fish succeeded in learning the task, performance declined with decreases in either or both parameters. In subsequent tests, cichlids and damselfish distinguished successfully between the videos of two dots moving at different speeds and amplitudes, between two moving dot patterns (sinus vs. expiring sinus) and between animated videos of two moving organisms (trout vs. eel). Transfer tests following the training of the latter showed that fish were unable to identify the positive stimulus (trout) by means of its PD alone, thereby indicating that the ability of humans to spontaneously recognize an organism based on its biological motion may not be present in fish. All participating individuals successfully discriminated between two PDs and two PLDs after a short period of training, indicating that biological motions presented in form of PLDs are perceived and can be distinguished. Results were the same for the presentation of dark dots on a light background and light dots on a dark background.
Collapse
Affiliation(s)
- V Schluessel
- Institute of Zoology, Rheinische Friedrich-Wilhelms-Universität Bonn, Poppelsdorfer Schloss, Meckenheimer Allee 169, 53115, Bonn, Germany,
| | | | | | | | | |
Collapse
|
45
|
Agrillo C, Gori S, Beran MJ. Do rhesus monkeys (Macaca mulatta) perceive illusory motion? Anim Cogn 2015; 18:895-910. [PMID: 25812828 DOI: 10.1007/s10071-015-0860-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 03/10/2015] [Accepted: 03/12/2015] [Indexed: 12/27/2022]
Abstract
During the last decade, visual illusions have been used repeatedly to understand similarities and differences in visual perception of human and non-human animals. However, nearly all studies have focused only on illusions not related to motion perception, and to date, it is unknown whether non-human primates perceive any kind of motion illusion. In the present study, we investigated whether rhesus monkeys (Macaca mulatta) perceived one of the most popular motion illusions in humans, the Rotating Snake illusion (RSI). To this purpose, we set up four experiments. In Experiment 1, subjects initially were trained to discriminate static versus dynamic arrays. Once reaching the learning criterion, they underwent probe trials in which we presented the RSI and a control stimulus identical in overall configuration with the exception that the order of the luminance sequence was changed in a way that no apparent motion is perceived by humans. The overall performance of monkeys indicated that they spontaneously classified RSI as a dynamic array. Subsequently, we tested adult humans in the same task with the aim of directly comparing the performance of human and non-human primates (Experiment 2). In Experiment 3, we found that monkeys can be successfully trained to discriminate between the RSI and a control stimulus. Experiment 4 showed that a simple change in luminance sequence in the two arrays could not explain the performance reported in Experiment 3. These results suggest that some rhesus monkeys display a human-like perception of this motion illusion, raising the possibility that the neurocognitive systems underlying motion perception may be similar between human and non-human primates.
Collapse
Affiliation(s)
- Christian Agrillo
- Department of General Psychology, University of Padova, Via Venezia 8, 35131, Padova, Italy,
| | | | | |
Collapse
|