1
|
Shen J, Liu P, Zhang B, Ye B, Xu S, Su W, Chu X. Expanding the application of tyrosine: engineering microbes for the production of tyrosine and its derivatives. Front Bioeng Biotechnol 2025; 13:1519764. [PMID: 40343203 PMCID: PMC12058496 DOI: 10.3389/fbioe.2025.1519764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 04/09/2025] [Indexed: 05/11/2025] Open
Abstract
Aromatic compounds are widely used in the fields of medicine, chemical industry, and food, with a considerable market size. Tyrosine, an aromatic amino acid, boasts not only a wide range of applications but also serves as a valuable precursor for synthesizing a diverse array of high-value aromatic compounds. Amid growing concerns over environmental and resource challenges, the adoption of green, clean, and sustainable biotechnology for producing aromatic compounds is gaining increasing recognition as a viable alternative to traditional chemical synthesis and plant extraction methods. This article provides an overview of the current status of tyrosine biomanufacturing and explores the methods for generating derivatives, including resveratrol, levodopa, p-coumaric acid, caffeic acid, zosteric acid, tyrosol, hydroxytyrosol, tanshinol, naringenin, eriodictyol, and salidroside, using tyrosine as a primary raw material. Furthermore, this review examines the current challenges and outlines future directions for microbial fermentation for the production of tyrosine and its derivatives.
Collapse
Affiliation(s)
- Jian Shen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Pengfu Liu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Bin Zhang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Bangce Ye
- East China University of Science and Technology, Shanghai, China
| | - Shunqing Xu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Weike Su
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Xiaohe Chu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Zhu F, Yan Z, Dai J, Wang J, Huang S, Ma J, Chen N, Zang Y. Efficient synthesis of salidroside using mined glycosyltransferase through cascade reaction. Bioprocess Biosyst Eng 2025:10.1007/s00449-025-03153-1. [PMID: 40146300 DOI: 10.1007/s00449-025-03153-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/13/2025] [Indexed: 03/28/2025]
Abstract
Salidroside has been widely utilized in the food and cosmetics industries. However, the efficient synthesis of salidroside remains a challenge. In this study, a potential uridine diphosphate-dependent glycosyltransferase (UGT) from Bacillus subtilis 168 (named UGTBS) was identified through evolutionary relationship analysis and molecular docking, with findings subsequently validated by experimental verification. The optimal conversion of UGTBS for salidroside synthesis reached 98.4% (mol/mol). Additionally, a conversion exceeding 85% (mol/mol) was achieved using the UGTBS-AtSuSy cascade reaction with tyrosol concentrations ranging from 1 to 10 mM, demonstrating the substrate tolerance of UGTBS at high concentrations. Kinetic determination and molecular docking confirmed that the strengthened hydrogen bonds and suitable active center conformation between the enzyme and substrate may account for the efficient synthesis of salidroside. Furthermore, 43.5 mM of salidroside was obtained using a fed-batch cascade reaction strategy. The UGTBS identified in this study shows significant potential for salidroside synthesis, and the strategy employed here serves as a reference for the discovery of related enzymes.
Collapse
Affiliation(s)
- Fucheng Zhu
- College of Biological and Pharmaceutical Engineering, Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Anhui Province Key Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, West Anhui University, 237012, Lu'an City, China.
| | - Zixu Yan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Jingli Dai
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Juwen Wang
- College of Biological and Pharmaceutical Engineering, Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Anhui Province Key Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, West Anhui University, 237012, Lu'an City, China
| | - Shiping Huang
- College of Biological and Pharmaceutical Engineering, Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Anhui Province Key Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, West Anhui University, 237012, Lu'an City, China
| | - Jingbo Ma
- College of Biological and Pharmaceutical Engineering, Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Anhui Province Key Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, West Anhui University, 237012, Lu'an City, China
| | - Naidong Chen
- College of Biological and Pharmaceutical Engineering, Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Anhui Province Key Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, West Anhui University, 237012, Lu'an City, China
| | - Yongjun Zang
- College of Biological and Pharmaceutical Engineering, Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Anhui Province Key Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, West Anhui University, 237012, Lu'an City, China.
| |
Collapse
|
3
|
Hirasawa T, Satoh Y, Koma D. Production of aromatic amino acids and their derivatives by Escherichia coli and Corynebacterium glutamicum. World J Microbiol Biotechnol 2025; 41:65. [PMID: 39915353 PMCID: PMC11802643 DOI: 10.1007/s11274-025-04264-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/15/2025] [Indexed: 02/09/2025]
Abstract
Demand for aromatic amino acids (AAAs), such as L-phenylalanine, L-tyrosine, and L-tryptophan, has been increasing as they are used in animal feed and as precursors in the synthesis of industrial and pharmaceutical compounds. These AAAs are biosynthesized through the shikimate pathway in microorganisms and plants, and the reactions in the AAA biosynthesis pathways are strictly regulated at the levels of both gene expression and enzyme activity. Various attempts have been made to produce AAAs and their derivatives using microbial cells and to optimize production. In this review, we summarize the metabolic pathways involved in the biosynthesis of AAAs and their regulation and review recent research on AAA production using industrial bacteria, such as Escherichia coli and Corynebacterium glutamicum. Studies on fermentative production of AAA derivatives, including L-3,4-dihydroxyphenylalanine, tyrosol, and 3-hydroxytyrosol, are also discussed.
Collapse
Affiliation(s)
- Takashi Hirasawa
- School of Life Science and Technology, Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan.
| | - Yasuharu Satoh
- Faculty of Engineering, Hokkaido University, N13 & W8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan
| | - Daisuke Koma
- Osaka Research Institute of Industrial Science and Technology, 1-6-50 Morinomiya, Joto-ku, Osaka, 536-8553, Japan
| |
Collapse
|
4
|
Huang W, Yan Y, Tian W, Cui X, Wang Y, Song Y, Mo T, Xu X, Zhao S, Liu Y, Wang X, Wang J, Jiang Y, Li J, Shi SP, Liu X, Tu P. Complete pathway elucidation of echinacoside in Cistanche tubulosa and de novo biosynthesis of phenylethanoid glycosides. Nat Commun 2025; 16:882. [PMID: 39837891 PMCID: PMC11751479 DOI: 10.1038/s41467-025-56243-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 01/13/2025] [Indexed: 01/30/2025] Open
Abstract
Echinacoside (ECH), one of the most representative phenylethanoid glycosides (PhGs), has considerable neuroprotective effects and is an effective ingredient in numerous commercial drugs. Here, we elucidate the complete ECH biosynthetic pathway in the medicinal plant Cistanche tubulosa. In total, 14 related genes are cloned and functionally characterized. Two upstream pathways for tyrosol biosynthesis from L-tyrosine are identified: one includes separate decarboxylation, deamination and reduction steps; the other uses microbial-like transamination, decarboxylation and reduction steps. In addition, a distinct downstream assembly process from tyrosol to ECH is revealed that includes sequential glucosylation, acylation, hydroxylation, and rhamnosylation to form acteoside, and ends with a final glucosylation converting acteoside to ECH. Furthermore, the de novo synthesis of 23 PhG derivatives is achieved via the heterologous expression of different combinations of the functional genes in tobacco. Our findings provide insights into the biosynthesis of ECH and a platform for alternative production of complex PhGs.
Collapse
Affiliation(s)
- Wenqian Huang
- Modern Research Center for Traditional Chinese Medicine, Beijing Institute of Traditional Chinese Medicine, Beijing University of Chinese Medicine, 102488, Beijing, PR China
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 102488, Beijing, PR China
| | - Yaru Yan
- Modern Research Center for Traditional Chinese Medicine, Beijing Institute of Traditional Chinese Medicine, Beijing University of Chinese Medicine, 102488, Beijing, PR China
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 102488, Beijing, PR China
| | - Weisheng Tian
- Modern Research Center for Traditional Chinese Medicine, Beijing Institute of Traditional Chinese Medicine, Beijing University of Chinese Medicine, 102488, Beijing, PR China
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 102488, Beijing, PR China
| | - Xiaoxue Cui
- Modern Research Center for Traditional Chinese Medicine, Beijing Institute of Traditional Chinese Medicine, Beijing University of Chinese Medicine, 102488, Beijing, PR China
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 102488, Beijing, PR China
| | - Yingxia Wang
- Modern Research Center for Traditional Chinese Medicine, Beijing Institute of Traditional Chinese Medicine, Beijing University of Chinese Medicine, 102488, Beijing, PR China
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 102488, Beijing, PR China
| | - Yuelin Song
- Modern Research Center for Traditional Chinese Medicine, Beijing Institute of Traditional Chinese Medicine, Beijing University of Chinese Medicine, 102488, Beijing, PR China
| | - Ting Mo
- Modern Research Center for Traditional Chinese Medicine, Beijing Institute of Traditional Chinese Medicine, Beijing University of Chinese Medicine, 102488, Beijing, PR China
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 102488, Beijing, PR China
| | - Xiping Xu
- Modern Research Center for Traditional Chinese Medicine, Beijing Institute of Traditional Chinese Medicine, Beijing University of Chinese Medicine, 102488, Beijing, PR China
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 102488, Beijing, PR China
| | - Saijing Zhao
- Modern Research Center for Traditional Chinese Medicine, Beijing Institute of Traditional Chinese Medicine, Beijing University of Chinese Medicine, 102488, Beijing, PR China
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 102488, Beijing, PR China
| | - Yuyu Liu
- Modern Research Center for Traditional Chinese Medicine, Beijing Institute of Traditional Chinese Medicine, Beijing University of Chinese Medicine, 102488, Beijing, PR China
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 102488, Beijing, PR China
| | - Xiaohui Wang
- Modern Research Center for Traditional Chinese Medicine, Beijing Institute of Traditional Chinese Medicine, Beijing University of Chinese Medicine, 102488, Beijing, PR China
| | - Juan Wang
- Modern Research Center for Traditional Chinese Medicine, Beijing Institute of Traditional Chinese Medicine, Beijing University of Chinese Medicine, 102488, Beijing, PR China
| | - Yong Jiang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100191, Beijing, PR China
| | - Jun Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 102488, Beijing, PR China.
| | - She-Po Shi
- Modern Research Center for Traditional Chinese Medicine, Beijing Institute of Traditional Chinese Medicine, Beijing University of Chinese Medicine, 102488, Beijing, PR China.
| | - Xiao Liu
- Modern Research Center for Traditional Chinese Medicine, Beijing Institute of Traditional Chinese Medicine, Beijing University of Chinese Medicine, 102488, Beijing, PR China.
| | - Pengfei Tu
- Modern Research Center for Traditional Chinese Medicine, Beijing Institute of Traditional Chinese Medicine, Beijing University of Chinese Medicine, 102488, Beijing, PR China.
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100191, Beijing, PR China.
| |
Collapse
|
5
|
Zeng W, Wang H, Chen J, Hu M, Wang X, Chen J, Zhou J. Engineering Escherichia coli for Efficient De Novo Synthesis of Salidroside. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:28369-28377. [PMID: 39666864 DOI: 10.1021/acs.jafc.4c10247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Salidroside is a high-value plant-derived glycoside with diverse biological activities, but the main industrial salidroside production method, extraction from Rhodiola plants, is insufficient to meet the growing market demand. The biosynthetic route via microbial fermentation is a sustainable and eco-friendly alternative method. De novo synthesis of the precursor tyrosol was established by introducing the ARO10 and ADH6 genes. Systematic metabolic engineering resulted in 3.0 g/L tyrosol, but accumulated tyrosol inhibited cell growth. Adaptive evolution produced an evolved strain with a 10.0% higher OD600 and a 3.3 g/L tyrosol titer. Introducing glucosyltransferase AtUGT85A1, and overexpressing phosphoglucose mutase pgm and UDP-glucose pyrophosphorylase galU, achieved de novo synthesis of salidroside. Furthermore, AtUGT85A1 was semirationally engineered, resulting in the A21G mutation, which enhanced salidroside production by 31.2%. The optimally engineered strain produced 16.8 g/L salidroside with 0.4 g/(L h) productivity in a 5 L bioreactor. This study laid a foundation for future industrial production of salidroside and provided important guidance for efficient biosynthesis of other tyrosol derivatives.
Collapse
Affiliation(s)
- Weizhu Zeng
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Huijing Wang
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jianbin Chen
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Minglong Hu
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Xinru Wang
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jian Chen
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
6
|
Liang K, Ma S, Luo K, Wang R, Xiao C, Zhang X, Gao Y, Li M. Salidroside: An Overview of Its Promising Potential and Diverse Applications. Pharmaceuticals (Basel) 2024; 17:1703. [PMID: 39770545 PMCID: PMC11678419 DOI: 10.3390/ph17121703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/05/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Salidroside, a phenolic compound isolated from various Rhodiola plants, is the principal active constituent of Traditional Chinese Medicine known for its adaptogenic properties. Due to the challenging environment of Rhodiola species, such as high altitude, high radiation, drought, and hypoxia, the source of salidroside is scarce. However, numerous studies have shown that salidroside has a range of biological activities, including cardiovascular and central nervous system activity, and anti-hypoxia, anti-inflammatory, and anti-aging activities. Although previous studies have partially summarized the pharmacological effects of salidroside, the overall pharmacological effects have not been analyzed. Hence, this review will systematically summarize the isolation, purification, synthesis, derivatization, pharmacological activity, pharmacokinetics, clinical application, and safety of salidroside. It is expected to provide new insights for the further research and pharmaceutical development of salidroside.
Collapse
Affiliation(s)
- Keke Liang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China; (K.L.); (S.M.); (K.L.); (R.W.)
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (C.X.); (X.Z.)
| | - Shuhe Ma
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China; (K.L.); (S.M.); (K.L.); (R.W.)
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (C.X.); (X.Z.)
| | - Kai Luo
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China; (K.L.); (S.M.); (K.L.); (R.W.)
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (C.X.); (X.Z.)
| | - Renjie Wang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China; (K.L.); (S.M.); (K.L.); (R.W.)
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (C.X.); (X.Z.)
| | - Chenrong Xiao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (C.X.); (X.Z.)
| | - Xianxie Zhang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (C.X.); (X.Z.)
| | - Yue Gao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (C.X.); (X.Z.)
- National Key Laboratory of Kidney Diseases, Beijing 100850, China
| | - Maoxing Li
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China; (K.L.); (S.M.); (K.L.); (R.W.)
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (C.X.); (X.Z.)
- National Key Laboratory of Kidney Diseases, Beijing 100850, China
| |
Collapse
|
7
|
Schwarz NA, Stratton MT, Colquhoun RJ, Manganti AM, Sherbourne M, Mourey F, White CC, Day H, Dusseault MC, Hudson GM, Vickery CR, Schachner HC, Kasprzyk PG, Weng JK. Salidroside and exercise performance in healthy active young adults - an exploratory, randomized, double-blind, placebo-controlled study. J Int Soc Sports Nutr 2024; 21:2433744. [PMID: 39601362 PMCID: PMC11610317 DOI: 10.1080/15502783.2024.2433744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Rhodiola rosea extract is purported to improve physical performance and support resilience to stress. Salidroside is considered to be one of the main constituents responsible for the ergogenic actions of R. rosea. However, R. rosea extract contains relatively little salidroside and cultivation of R. rosea is challenging as it is mainly found in high-altitude, cold regions. Additionally, the R. rosea plant is subject to conservation concerns because of its growing popularity. The purpose of this exploratory study was to evaluate the short-term effects of pure, biosynthetic salidroside supplementation on exercise performance, mood state, and markers of inflammation and muscle damage in healthy active young adults. METHODS Fifty participants (30 M, 20F; 21 ± 4 yrs; 173 ± 8 cm; 74 ± 13 kg) were randomly assigned to either salidroside (60 mg/day for 16 days) or placebo supplementation and underwent peak oxygen uptake (VO2 peak), intermittent time-to-exhaustion (TTE), and local muscular endurance assessments, along with mood state evaluations using the Profile of Mood States (POMS). Blood samples were analyzed for erythropoietin, myoglobin, creatine kinase-MM, and C-reactive protein. RESULTS Salidroside supplementation enhanced overall percent predicted oxygen uptake during high-intensity intermittent exercise (p < 0.01). An increase in serum myoglobin was observed 24 hours following exercise in the placebo group (p = 0.02) compared with baseline whereas no statistically significant increase was observed for the salidroside group indicating reduced exercise-induced muscle damage. Placebo group experienced a decrease in number of intervals performed during the TTE test (p = 0.03), and a decrease in friendliness (p < 0.01) and an increase in fatigue-inertia (p < 0.01) as reported by POMS. The salidroside group exhibited stable mood states and maintained performance levels during the time-to-exhaustion test. CONCLUSION Salidroside supplementation may enhance oxygen utilization and mitigate exercise-induced muscle damage and fatigue, warranting further research on its long-term effects and potential as an adaptogen for active individuals.
Collapse
Affiliation(s)
- Neil A. Schwarz
- University of South Alabama, Exercise and Nutrition Research Group (ENRG), Department of Health, Kinesiology, and Sport, Mobile, AL, USA
- University of South Alabama, Department of Physiology and Cell Biology, Frederick C. Whiddon College of Medicine, Mobile, AL, USA
| | - Matthew T. Stratton
- University of South Alabama, Exercise and Nutrition Research Group (ENRG), Department of Health, Kinesiology, and Sport, Mobile, AL, USA
| | - Ryan J. Colquhoun
- University of South Alabama, Exercise and Nutrition Research Group (ENRG), Department of Health, Kinesiology, and Sport, Mobile, AL, USA
- University of South Alabama, Department of Physiology and Cell Biology, Frederick C. Whiddon College of Medicine, Mobile, AL, USA
| | - Alexia M. Manganti
- University of South Alabama, Exercise and Nutrition Research Group (ENRG), Department of Health, Kinesiology, and Sport, Mobile, AL, USA
| | - Margaux Sherbourne
- Department of Research and Applications, Gnosis by Lesaffre, Lesaffre Group, Marcq-en-Baroeul, France
| | - Florian Mourey
- Department of Research and Applications, Gnosis by Lesaffre, Lesaffre Group, Marcq-en-Baroeul, France
| | - Caitlyn C. White
- University of South Alabama, Exercise and Nutrition Research Group (ENRG), Department of Health, Kinesiology, and Sport, Mobile, AL, USA
| | - Heather Day
- University of South Alabama, Exercise and Nutrition Research Group (ENRG), Department of Health, Kinesiology, and Sport, Mobile, AL, USA
| | - Micaela C. Dusseault
- University of South Alabama, Exercise and Nutrition Research Group (ENRG), Department of Health, Kinesiology, and Sport, Mobile, AL, USA
| | - Geoffrey M. Hudson
- University of South Alabama, Exercise and Nutrition Research Group (ENRG), Department of Health, Kinesiology, and Sport, Mobile, AL, USA
| | | | | | | | - Jing-Ke Weng
- DoubleRainbow Biosciences Inc., Lexington, MA, USA
- Northeastern University, Institute for Plant-Human Interface, Boston, MA, USA
- Northeastern University, Department of Chemistry and Chemical Biology, Department of Bioengineering, and Department of Chemical Engineering, Boston, MA, USA
| |
Collapse
|
8
|
Yang Y, Cao Y, Zhu C, Jin Y, Sun H, Wang R, Li M, Zhang Z. Functional activities of three Rehmannia glutinosa enzymes: Elucidation of the Rehmannia glutinosa salidroside biosynthesis pathway in Saccharomyces cerevisiae. Gene 2024; 928:148815. [PMID: 39097208 DOI: 10.1016/j.gene.2024.148815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/27/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024]
Abstract
Rehmannia glutinosa produces many phenylethanoid glycoside (PhG) compounds, including salidroside, which not only possesses various biological activities but also is a core precursor of some medicinal PhGs, so it is very important to elucidate the species' salidroside biosynthesis pathway to enhance the production of salidroside and its derivations. Although some plant copper-containing amine oxidases (CuAOs), phenylacetaldehyde reductases (PARs) and UDP-glucose glucosyltransferases (UGTs) are thought to be vital catalytic enzymes involved in the downstream salidroside biosynthesis pathways, to date, none of these proteins or the associated genes in R. glutinosa have been characterized. To verify a postulated R. glutinosa salidroside biosynthetic pathway starting from tyrosine, this study identified and characterized a set of R. glutinosa genes encoding RgCuAO, RgPAR and RgUGT enzymes for salidroside biosynthesis. The functional activities of these proteins were tested in vitro by heterologous expression of these genes in Escherichia coli, confirming these catalytic abilities in these corresponding reaction steps of the biosynthetic pathway. Importantly, four enzyme-encoding genes (including the previously reported RgTyDC2 encoding tyrosine decarboxylase and the RgCuAO1, RgPAR1 and RgUGT2 genes) were cointegrated into Saccharomyces cerevisiae to reconstitute the R. glutinosa salidroside biosynthetic pathway, achieving an engineered strain that produced salidroside and validating these enzymes' catalytic functions. This study elucidates the complete R. glutinosa salidroside biosynthesis pathway from tyrosine metabolism in S. cerevisiae, establishing a basic platform for the efficient production of salidroside and its derivatives.
Collapse
Affiliation(s)
- Yanhui Yang
- School of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou High-technology Zone, Henan Province 450001, China.
| | - Yiming Cao
- School of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou High-technology Zone, Henan Province 450001, China
| | - Changrui Zhu
- School of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou High-technology Zone, Henan Province 450001, China
| | - Yan Jin
- School of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou High-technology Zone, Henan Province 450001, China
| | - Huiwen Sun
- School of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou High-technology Zone, Henan Province 450001, China
| | - Rong Wang
- School of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou High-technology Zone, Henan Province 450001, China
| | - Mingjie Li
- College of Crop Sciences, Fujian Agriculture and Forestry University, Jinshan Road, Cangshan District, Fuzhou 350002, China
| | - Zhongyi Zhang
- College of Crop Sciences, Fujian Agriculture and Forestry University, Jinshan Road, Cangshan District, Fuzhou 350002, China
| |
Collapse
|
9
|
Zhou P, Dang J, Jiang Z, Dai S, Qu C, Wu Q. Transcriptome and metabolome analysis revealed the dynamic change of bioactive compounds of Fructus Ligustri Lucidi. BMC PLANT BIOLOGY 2024; 24:489. [PMID: 38825671 PMCID: PMC11145772 DOI: 10.1186/s12870-024-05096-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 05/02/2024] [Indexed: 06/04/2024]
Abstract
BACKGROUND The Fructus Ligustri Lucidi, the fruit of Ligustrum lucidum, contains a variety of bioactive compounds, such as flavonoids, triterpenoids, and secoiridoids. The proportions of these compounds vary greatly during the different fruit development periods of Fructus Ligustri Lucidi. However, a clear understanding of how the proportions of the compounds and their regulatory biosynthetic mechanisms change across the different fruit development periods of Fructus Ligustri Lucidi is still lacking. RESULTS In this study, metabolite profiling and transcriptome analysis of six fruit development periods (45 DAF, 75 DAF, 112 DAF, 135 DAF, 170 DAF, and 195 DAF) were performed. Seventy compounds were tentatively identified, of which secoiridoids were the most abundant. Eleven identified compounds were quantified by high performance liquid chromatography. A total of 103,058 unigenes were obtained from six periods of Fructus Ligustri Lucidi. Furthermore, candidate genes involved in triterpenoids, phenylethanols, and oleoside-type secoiridoid biosynthesis were identified and analyzed. The in vitro enzyme activities of nine glycosyltransferases involved in salidroside biosynthesis revealed that they can catalyze trysol and hydroxytyrosol to salidroside and hydroxylsalidroside. CONCLUSIONS These results provide valuable information to clarify the profile and molecular regulatory mechanisms of metabolite biosynthesis, and also in optimizing the harvest time of this fruit.
Collapse
Affiliation(s)
- Peina Zhou
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, 210023, China
| | - Jingjie Dang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, 210023, China
| | - Zheng Jiang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, 210023, China
| | - Shilin Dai
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, 210023, China
| | - Cheng Qu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, 210023, China.
| | - Qinan Wu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, 210023, China.
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, 210023, China.
| |
Collapse
|
10
|
Zhang DQ, Liu XY, Qiu LF, Liu ZR, Yang YP, Huang L, Wang SY, Zhang JQ. Two chromosome-level genome assemblies of Rhodiola shed new light on genome evolution in rapid radiation and evolution of the biosynthetic pathway of salidroside. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:464-482. [PMID: 37872890 DOI: 10.1111/tpj.16501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/25/2023]
Abstract
Rhodiola L. is a genus that has undergone rapid radiation in the mid-Miocene and may represent a typic case of adaptive radiation. Many species of Rhodiola have also been widely used as an important adaptogen in traditional medicines for centuries. However, a lack of high-quality chromosome-level genomes hinders in-depth study of its evolution and biosynthetic pathway of secondary metabolites. Here, we assembled two chromosome-level genomes for two Rhodiola species with different chromosome number and sexual system. The assembled genome size of R. chrysanthemifolia (2n = 14; hermaphrodite) and R. kirilowii (2n = 22; dioecious) were of 402.67 and 653.62 Mb, respectively, with approximately 57.60% and 69.22% of transposable elements (TEs). The size difference between the two genomes was mostly due to proliferation of long terminal repeat-retrotransposons (LTR-RTs) in the R. kirilowii genome. Comparative genomic analysis revealed possible gene families responsible for high-altitude adaptation of Rhodiola, including a homolog of plant cysteine oxidase 2 gene of Arabidopsis thaliana (AtPCO2), which is part of the core molecular reaction to hypoxia and contributes to the stability of Group VII ethylene response factors (ERF-VII). We found extensive chromosome fusion/fission events and structural variations between the two genomes, which might have facilitated the initial rapid radiation of Rhodiola. We also identified candidate genes in the biosynthetic pathway of salidroside. Overall, our results provide important insights into genome evolution in plant rapid radiations, and possible roles of chromosome fusion/fission and structure variation played in rapid speciation.
Collapse
Affiliation(s)
- Dan-Qing Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
- Key Laboratory of Medicinal Plant Resource and Natural Pharmaceutical Chemistry of Ministry of Education, Shaanxi Normal University, Xi'an, 710119, China
| | - Xiao-Ying Liu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
- Key Laboratory of Medicinal Plant Resource and Natural Pharmaceutical Chemistry of Ministry of Education, Shaanxi Normal University, Xi'an, 710119, China
| | - Lin-Feng Qiu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
- Key Laboratory of Medicinal Plant Resource and Natural Pharmaceutical Chemistry of Ministry of Education, Shaanxi Normal University, Xi'an, 710119, China
| | - Zhao-Rui Liu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
- Key Laboratory of Medicinal Plant Resource and Natural Pharmaceutical Chemistry of Ministry of Education, Shaanxi Normal University, Xi'an, 710119, China
| | - Ya-Peng Yang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
- Key Laboratory of Medicinal Plant Resource and Natural Pharmaceutical Chemistry of Ministry of Education, Shaanxi Normal University, Xi'an, 710119, China
| | - Long Huang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
- Key Laboratory of Medicinal Plant Resource and Natural Pharmaceutical Chemistry of Ministry of Education, Shaanxi Normal University, Xi'an, 710119, China
| | - Shi-Yu Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
- Key Laboratory of Medicinal Plant Resource and Natural Pharmaceutical Chemistry of Ministry of Education, Shaanxi Normal University, Xi'an, 710119, China
| | - Jian-Qiang Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
- Key Laboratory of Medicinal Plant Resource and Natural Pharmaceutical Chemistry of Ministry of Education, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
11
|
Xia Y, Qi L, Shi X, Chen K, Peplowski L, Chen X. Construction of an Escherichia coli cell factory for de novo synthesis of tyrosol through semi-rational design based on phenylpyruvate decarboxylase ARO10 engineering. Int J Biol Macromol 2023; 253:127385. [PMID: 37848109 DOI: 10.1016/j.ijbiomac.2023.127385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/09/2023] [Accepted: 10/09/2023] [Indexed: 10/19/2023]
Abstract
Tyrosol (2-(4-hydroxyphenyl) ethanol) is extensively used in the pharmaceutical industry as an important natural product from plants. In previous research, we constructed a recombinant Escherichia coli strain capable of de novo synthesis of tyrosol by integrating the phenylpyruvate decarboxylase ARO10 derived from Saccharomyces cerevisiae. Nevertheless, the insufficient catalytic efficiency of ARO10 required the insertion of multiple gene copies into the genome to attain enhanced tyrosol production. In this study, we constructed a mutation library of ARO10 based on a computer-aided semi-rational design strategy and developed a high-throughput screening method for selecting high-yield tyrosol mutants by introducing the heterologous hydroxylase complex HpaBC. Through multiple rounds of screening and site-saturation mutagenesis, we ultimately identified the two optimal ARO10 mutants, ARO10D331V and ARO10D331C, which respectively achieved a tyrosol titer of 2.02 g/L and 2.04 g/L in shake flasks, both representing more than 50 % improvement compared to the wild-type. Our study demonstrates the great potential of computer-based semi-rational enzyme design strategy in metabolic engineering. The high-throughput screening method for target compound derivative possesses a certain level of generality. Ultimately, we obtained promising mutants capable of achieving industrial-scale production of tyrosol, which also lays a solid foundation for the efficient synthesis of tyrosol derivatives.
Collapse
Affiliation(s)
- Yuanyuan Xia
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Lina Qi
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Xulei Shi
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Keyi Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Lukasz Peplowski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Torun, Grudziadzka 5, 87-100 Torun, Poland
| | - Xianzhong Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China.
| |
Collapse
|
12
|
Ren J, Barton CD, Zhan J. Engineered production of bioactive polyphenolic O-glycosides. Biotechnol Adv 2023; 65:108146. [PMID: 37028465 DOI: 10.1016/j.biotechadv.2023.108146] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/04/2023] [Accepted: 04/02/2023] [Indexed: 04/09/2023]
Abstract
Polyphenolic compounds (such as quercetin and resveratrol) possess potential medicinal values due to their various bioactivities, but poor water solubility hinders their health benefits to humankind. Glycosylation is a well-known post-modification method to biosynthesize natural product glycosides with improved hydrophilicity. Glycosylation has profound effects on decreasing toxicity, increasing bioavailability and stability, together with changing bioactivity of polyphenolic compounds. Therefore, polyphenolic glycosides can be used as food additives, therapeutics, and nutraceuticals. Engineered biosynthesis provides an environmentally friendly and cost-effective approach to generate polyphenolic glycosides through the use of various glycosyltransferases (GTs) and sugar biosynthetic enzymes. GTs transfer the sugar moieties from nucleotide-activated diphosphate sugar (NDP-sugar) donors to sugar acceptors such as polyphenolic compounds. In this review, we systematically review and summarize the representative polyphenolic O-glycosides with various bioactivities and their engineered biosynthesis in microbes with different biotechnological strategies. We also review the major routes towards NDP-sugar formation in microbes, which is significant for producing unusual or novel glycosides. Finally, we discuss the trends in NDP-sugar based glycosylation research to promote the development of prodrugs that positively impact human health and wellness.
Collapse
Affiliation(s)
- Jie Ren
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322-4105, USA
| | - Caleb Don Barton
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322-4105, USA
| | - Jixun Zhan
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322-4105, USA.
| |
Collapse
|
13
|
Yang Y, Xi D, Wu Y, Liu T. Complete biosynthesis of the phenylethanoid glycoside verbascoside. PLANT COMMUNICATIONS 2023:100592. [PMID: 36935606 PMCID: PMC10363510 DOI: 10.1016/j.xplc.2023.100592] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/02/2022] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
Verbascoside, which was first discovered in 1963, is a well-known phenylethanoid glycoside (PhG) that exhibits antioxidant, anti-inflammatory, antimicrobial, and neuroprotective activities and contributes to the therapeutic effects of many medicinal plants. However, the biosynthetic pathway of verbascoside remains to be fully elucidated. Here, we report the identification of two missing enzymes in the verbascoside biosynthesis pathway by transcriptome mining and in vitro enzymatic assays. Specifically, a BAHD acyltransferase (hydroxycinnamoyl-CoA:salidroside hydroxycinnamoyltransferase [SHCT]) was shown to catalyze the regioselective acylation of salidroside to form osmanthuside A, and a CYP98 hydroxylase (osmanthuside B 3,3'-hydroxylase [OBH]) was shown to catalyze meta-hydroxylations of the p-coumaroyl and tyrosol moieties of osmanthuside B to complete the biosynthesis of verbascoside. Because SHCTs and OBHs are found in many Lamiales species that produce verbascoside, this pathway may be general. The findings from the study provide novel insights into the formation of caffeoyl and hydroxytyrosol moieties in natural product biosynthetic pathways. In addition, with the newly acquired enzymes, we achieved heterologous production of osmanthuside B, verbascoside, and ligupurpuroside B in Escherichia coli; this work lays a foundation for sustainable production of verbascoside and other PhGs in micro-organisms.
Collapse
Affiliation(s)
- Yihan Yang
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daoyi Xi
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Yanan Wu
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Tao Liu
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China.
| |
Collapse
|
14
|
Peng S, Li F, Yu K, Zhou F, Yu H, Liu H, Guo J, Li G, Wang C, Yan X, Li Z. Integrating transcriptome and chemical analyses to reveal the anti-Alzheimer's disease components in Verbena officinalis Linn. FRONTIERS IN PLANT SCIENCE 2022; 13:955075. [PMID: 35991454 PMCID: PMC9386363 DOI: 10.3389/fpls.2022.955075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Verbena officinalis Linn. is a kind of traditional Chinese medicine, which has a long history of application and shows good effects on neuroprotection. Therefore, we consider that V. officinalis may be a potential drug for treating Alzheimer's disease (AD). First, ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) pointed out that the main chemical components in V. officinalis were iridoid glycosides, phenylethanoid glycosides, and flavonoids. These compounds were used for molecular docking and the results showed that these compounds had good anti-AD activity. To explore the biosynthetic pathway of anti-AD components in V. officinalis, UPLC and ultraviolet (UV) spectrophotometry were used for contents determination and the result was leaf > stem > root. At the same time, 92,867 unigenes were annotated in V. officinalis transcriptome; 206, 229, 115 related unigenes were, respectively, annotated in iridoid glycoside, phenylethanoid glycoside, and flavonoid pathway, of which 61, 73, and 35 were differential expression genes. The components had relatively high expression in leaves, which was consistent with the quantitative results. In addition, the tissue distribution particularity of verbenalin may be related to the branching of pathways. Meanwhile transcription factors VoWRKY6 and VoWRKY7 may be involved in the regulation of iridoid glycoside biosynthesis. Further, VoWRKY3, VoWRKY9, and VoWRKY12 may be related to flavonoid biosynthesis. The above research is helpful to explore the biosynthetic pathway of anti-AD components and the regulation mechanism of active components and to further explore the anti-AD effect of V. officinalis.
Collapse
Affiliation(s)
- Shuhuan Peng
- School of Medicine, Foshan University, Foshan, China
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Fangyi Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Kuo Yu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Fengshu Zhou
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Heshui Yu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hui Liu
- School of Medicine, Foshan University, Foshan, China
| | - Jialiang Guo
- School of Medicine, Foshan University, Foshan, China
| | - Guoqiang Li
- School of Food Science and Engineering, Foshan University, Foshan, China
| | - Chunhua Wang
- School of Medicine, Foshan University, Foshan, China
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaohui Yan
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zheng Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
15
|
Bae UJ, Park BH, Cho MK, Bae EJ. Therapeutic Effect of Acer tegmentosum Maxim Twig Extract in Bile Duct Ligation-Induced Acute Cholestasis in Mice. J Med Food 2022; 25:652-659. [PMID: 35708629 DOI: 10.1089/jmf.2022.k.0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cholestatic liver disease, or cholestasis, is a condition characterized by liver inflammation and fibrosis following a bile duct obstruction and an intrahepatic accumulation of bile acids. Inhibiting inflammation is a promising therapeutic strategy for cholestatic liver diseases. Acer tegmentosum Maxim extract (ATE) is best known for its anti-inflammatory and antioxidative properties. In this study, we investigated the effects of ATE on liver injury and fibrosis in mice with bile duct ligation (BDL)-induced cholestasis through analysis of gene expression, cytokines, and histological examination. Oral administration of ATE (20 or 50 mg/kg) for 14 days significantly attenuated hepatocellular necrosis compared to vehicle-treated BDL mice, which was accompanied by the reduced level of serum bile acids and bilirubin. We determined that ATE treatment reduced liver inflammation, oxidative stress, and fibrosis. These beneficial effects of ATE were concurrent with the decreased expression of genes involved in the NF-κB pathway, suggesting that the anti-inflammatory effect of ATE could be a possible mechanism against cholestasis-associated liver injury. Our findings substantiate ATE's role as an alternative therapeutic agent for cholestasis-induced liver injury and fibrosis.
Collapse
Affiliation(s)
- Ui-Jin Bae
- Functional Food Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, Korea
| | - Byung-Hyun Park
- Department of Biochemistry, Jeonbuk National University Medical School, Jeonju, Korea
| | - Min Kyung Cho
- Department of Pharmacology, College of Oriental Medicine, Dongguk University, Kyungju, Korea
| | - Eun Ju Bae
- School of Pharmacy, Jeonbuk National University, Jeonju, Korea
| |
Collapse
|
16
|
Liu S, Xia Y, Yang H, Shen W, Chen X. Rational chromosome engineering of Escherichia coli for overproduction of salidroside. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
17
|
Li J, Zhao W, Pan X, Lao F, Liao X, Shi Y, Wu J. Improvement of antioxidant properties of jujube puree by biotransformation of polyphenols via Streptococcus thermophilus fermentation. Food Chem X 2022; 13:100214. [PMID: 35498973 PMCID: PMC9039917 DOI: 10.1016/j.fochx.2022.100214] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 12/25/2022] Open
Abstract
Streptococcus thermophilus enriched polyphenols in fermented jujube puree. Fermentation improved jujube puree DPPH scavenging capability by 26%. 12 phenolics were identified as differential metabolites. Fermentation could be a promising approach to improve jujube phenolic quality.
To investigate the effect of lactic acid bacteria fermentation on jujube bioactivity, Streptococcus thermophilus was used to ferment jujube puree. The number of viable bacteria cells, physicochemical properties, phenolics profile and antioxidant capacity were analyzed, and their correlation were investigated. Streptococcus thermophilus exhibited a high growth capacity in jujube puree, and significantly (p < 0.05) increased the total phenolics content, 2,2-Diphenyl-1-picrylhydrazyl (DPPH) scavenging activity and reducing power after 48 h fermentation, while 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) scavenging activity was decreased. 12 differentially metabolized polyphenols were identified in fermented jujube puree. Upregulated phenolics exhibited a positive correlation with DPPH radical-scavenging ability and reducing power. This work demonstrated that Streptococcus thermophilus fermentation can be an effective method with great practical application potential to improve the antioxidant activity in jujube puree by modifying the phenolic compositional quantity and quality.
Collapse
Affiliation(s)
- Jing Li
- College of Food Science and Nutritional Engineering, China Agricultural University, National Engineering Research Center for Fruit & Vegetable Processing, Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China
| | - Wenting Zhao
- Beijing Academy of Agricultural and Forestry Sciences, Beijing 100089, China
| | - Xin Pan
- College of Food Science and Nutritional Engineering, China Agricultural University, National Engineering Research Center for Fruit & Vegetable Processing, Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China
| | - Fei Lao
- College of Food Science and Nutritional Engineering, China Agricultural University, National Engineering Research Center for Fruit & Vegetable Processing, Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, China Agricultural University, National Engineering Research Center for Fruit & Vegetable Processing, Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China
| | - Yong Shi
- Haoxiangni Health Food Co., Ltd, Xinzheng 451100, China
| | - Jihong Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, National Engineering Research Center for Fruit & Vegetable Processing, Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China
| |
Collapse
|
18
|
Liu X, Liu J, Lei D, Zhao GR. Modular metabolic engineering for production of phloretic acid, phloretin and phlorizin in Escherichia coli. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2021.116931] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Lack of salidroside impact on selected cytochromes encoding genes transcription in the liver of ethanol induced rats. HERBA POLONICA 2021. [DOI: 10.2478/hepo-2021-0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
Introduction: The molecular basis of in vivo metabolism of selected representatives of phenylethanoids in the presence of ethanol has not been fully elucidated.
Objective: The aim was to estimate a salidroside (Sal) metabolism in the liver tissue in rats with induced alcohol tolerance by assessing changes in the transcription of genes encoding cytochromes: CYP1A2, 2D2, 3A1, 2C23.
Methods: cDNA was synthesized from total RNA isolated from rat liver samples. mRNA level changes were evaluated using real-time PCR (qRT-PCR) technique.
Results: Ethanol caused a significant induction of the CYP1A2 and CYP2C23 genes transcription, and a decrease in the CYP3A1 mRNA level, predominantly without statistical significance. A statistically significant increase of the CYP1A2 mRNA level was observed in the group receiving only Sal (4.5 mg/kg b.w.; p.o.) (p<0.01).
Conclusions: There was no unequivocal effect of salidroside on the transcription of investigated cytochrome genes in the liver of rats with induced alcohol tolerance.
Collapse
|
20
|
Liu H, Tian Y, Zhou Y, Kan Y, Wu T, Xiao W, Luo Y. Multi-modular engineering of Saccharomyces cerevisiae for high-titre production of tyrosol and salidroside. Microb Biotechnol 2021; 14:2605-2616. [PMID: 32990403 PMCID: PMC8601180 DOI: 10.1111/1751-7915.13667] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 08/27/2020] [Indexed: 02/06/2023] Open
Abstract
Tyrosol and its glycosylated product salidroside are important ingredients in pharmaceuticals, nutraceuticals and cosmetics. Despite the ability of Saccharomyces cerevisiae to naturally synthesize tyrosol, high yield from de novo synthesis remains a challenge. Here, we used metabolic engineering strategies to construct S. cerevisiae strains for high-level production of tyrosol and salidroside from glucose. First, tyrosol production was unlocked from feedback inhibition. Then, transketolase and ribose-5-phosphate ketol-isomerase were overexpressed to balance the supply of precursors. Next, chorismate synthase and chorismate mutase were overexpressed to maximize the aromatic amino acid flux towards tyrosol synthesis. Finally, the competing pathway was knocked out to further direct the carbon flux into tyrosol synthesis. Through a combination of these interventions, tyrosol titres reached 702.30 ± 0.41 mg l-1 in shake flasks, which were approximately 26-fold greater than that of the WT strain. RrU8GT33 from Rhodiola rosea was also applied to cells and maximized salidroside production from tyrosol in S. cerevisiae. Salidroside titres of 1575.45 ± 19.35 mg l-1 were accomplished in shake flasks. Furthermore, titres of 9.90 ± 0.06 g l-1 of tyrosol and 26.55 ± 0.43 g l-1 of salidroside were achieved in 5 l bioreactors, both are the highest titres reported to date. The synergistic engineering strategies presented in this study could be further applied to increase the production of high value-added aromatic compounds derived from the aromatic amino acid biosynthesis pathway in S. cerevisiae.
Collapse
Affiliation(s)
- Huayi Liu
- Department of GastroenterologyState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Yujuan Tian
- Department of GastroenterologyState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Yi Zhou
- Department of GastroenterologyState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Yeyi Kan
- Department of GastroenterologyState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Tingting Wu
- Department of GastroenterologyState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Wenhai Xiao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education)Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
| | - Yunzi Luo
- Department of GastroenterologyState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education)Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
| |
Collapse
|
21
|
Zhao CC, Wu XY, Yi H, Chen R, Fan G. The Therapeutic Effects and Mechanisms of Salidroside on Cardiovascular and Metabolic Diseases: An Updated Review. Chem Biodivers 2021; 18:e2100033. [PMID: 33991395 DOI: 10.1002/cbdv.202100033] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/14/2021] [Indexed: 12/14/2022]
Abstract
The increasing incidence of metabolic and cardiovascular diseases has severely affected global human health and life safety. In recent years, some effective drugs with remarkable curative effects and few side effects found in natural compounds have attracted attention. Salidroside (SAL), a phenylpropane glycoside, is the main active ingredient of the plateau plant Rhodiola. So far, many animal experiments proved that SAL has good biological activity against some metabolic and cardiovascular diseases. However, most of these reports are scattered. This review systematically summarizes the pharmacological progress of SAL in the treatment of several metabolic (e. g., diabetes and non-alcoholic fatty liver disease) and cardiovascular (e. g., atherosclerosis) diseases in a timely manner to promote the clinical application and basic research of SAL. Accumulating evidence proves that SAL has beneficial effects on these diseases. It can improve glucose tolerance, insulin sensitivity, and β-cell and liver functions, and inhibit adipogenesis, inflammation and oxidative stress. Overall, SAL may be a valuable and potential drug candidate for the treatment of metabolic and cardiovascular diseases. However, more studies especially clinical trials are needed to further confirm its therapeutic effects and molecular mechanisms.
Collapse
Affiliation(s)
- Cheng-Cheng Zhao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China
| | - Xin-Yue Wu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China
| | - Huan Yi
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China
| | - Rong Chen
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China
| | - Gang Fan
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China
| |
Collapse
|
22
|
Efficient Synthesis of p-Hydroxyphenyl Ethanol from Hydrogenation of Methyl p-Hydroxyphenylacetate with CNTs-promoted Cu-Zr Catalyst. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-0446-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
23
|
Brinckmann JA, Cunningham AB, Harter DEV. Running out of time to smell the roseroots: Reviewing threats and trade in wild Rhodiola rosea L. JOURNAL OF ETHNOPHARMACOLOGY 2021; 269:113710. [PMID: 33358852 DOI: 10.1016/j.jep.2020.113710] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/26/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rhodiola rosea L. has a circumpolar distribution and is used in ethnomedicines of Arctic peoples, as well as in national systems of traditional medicine. Since the late 20th century, global demand for R. rosea has increased steadily, in part due to clinical research supporting new uses in modern phytotherapy. Global supply has been largely obtained from wild populations, which face threats from poorly regulated and destructive exploitation of the rootstocks on an industrial scale. AIM OF THE STUDY To evaluate (i) the conservation status, harvesting and trade levels of R. rosea, in order to determine whether international trade should be monitored, (ii) the current state of experimental and commercial farming and whether cultivation may play a role to take pressure off wild stocks, and (iii) evidence of substitution of other Rhodiola species for R. rosea as an indicator of overexploitation and rarity. MATERIALS AND METHODS We reviewed published studies on R. rosea biology and ecology, as well as information on impacts of wild harvest, on management measures at the national and regional levels, and on the current level of cultivation from across the geographic range of this species. Production and trade data were assessed and analysed from published reports and trade databases, consultations with R. rosea farmers, processors of extracts, and trade experts, but also from government and news reports of illegal harvesting and smuggling. RESULTS AND CONCLUSIONS Our assessment of historical and current data from multiple disciplines shows that future monitoring and protection of R. rosea populations is of time-sensitive importance to the fields of ethnobotany, ethnopharmacology, phytochemistry and phytomedicine. We found that the global demand for R. rosea ingredients and products has been increasing in the 21st century, while wild populations in the main commercial harvesting areas continue to decrease, with conservation issues and reduced supply in some cases. The level of illegal harvesting in protected areas and cross border smuggling is increasing annually coupled with increasing incidences of adulteration and substitution of R. rosea with other wild Rhodiola species, potentially negatively impacting the conservation status of their wild populations, but also an indicator of scarcity of the genuine article. The current data suggests that the historical primary reliance on sourcing from wild populations of R. rosea should transition towards increased sourcing of R. rosea from farms that are implementing conservation oriented sustainable agricultural methods, and that sustainable wild collection standards must be implemented for sourcing from wild populations.
Collapse
Affiliation(s)
- J A Brinckmann
- Traditional Medicinals, 4515 Ross Road, Sebastopol, CA, 95472, USA.
| | - A B Cunningham
- School of Life Sciences, University of KwaZulu-Natal, King Edward Avenue, Pietermaritzburg, 3209, South Africa; School of Veterinary and Life Sciences, Murdoch University, 90 South St., Murdoch, WA, 6150, Australia
| | - David E V Harter
- Bundesamt für Naturschutz (BfN), Konstantinstr. 110, Bonn, 53179, Germany
| |
Collapse
|
24
|
Sun X, Li X, Shen X, Wang J, Yuan Q. Recent advances in microbial production of phenolic compounds. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
25
|
Variability of Major Phenyletanes and Phenylpropanoids in 16-Year-Old Rhodiola rosea L. Clones in Norway. Molecules 2020; 25:molecules25153463. [PMID: 32751483 PMCID: PMC7435400 DOI: 10.3390/molecules25153463] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/25/2020] [Accepted: 07/28/2020] [Indexed: 12/17/2022] Open
Abstract
Rhodiola rosea L. (roseroot) is an adaptogen plant belonging to the Crassulaceae family. The broad spectrum of biological activity of R. rosea is attributed to its major phenyletanes and phenylpropanoids: rosavin, salidroside, rosin, cinnamyl alcohol, and tyrosol. In this study, we compared the content of phenyletanes and phenylpropanoids in rhizomes of R. rosea from the Norwegian germplasm collection collected in 2004 and in 2017. In general, the content of these bioactive compounds in 2017 was significantly higher than that observed in 2004. The freeze-drying method increased the concentration of all phenyletanes and phenylpropanoids in rhizomes compared with conventional drying at 70 °C. As far as we know, the content of salidroside (51.0 mg g−1) observed in this study is the highest ever detected in Rhodiola spp. Long-term vegetative propagation and high genetic diversity of R. rosea together with the freeze-drying method may have led to the high content of the bioactive compounds observed in the current study.
Collapse
|
26
|
Hu Y, Zeng H, Huang J, Jiang L, Chen J, Zeng Q. Traditional Asian Herbs in Skin Whitening: The Current Development and Limitations. Front Pharmacol 2020; 11:982. [PMID: 32733239 PMCID: PMC7358643 DOI: 10.3389/fphar.2020.00982] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 06/17/2020] [Indexed: 12/13/2022] Open
Abstract
In Asia, the market for whitening cosmetics is expanding rapidly, more and more people prefer to use natural products. Driven by natural product demand and technical advances, herbal research is also developing fast. Lots of studies reported that Asian herbal reagents can reduce melanogenesis, these findings provide evidence for the whitening application of Asian herbs. However, the current development status and challenges of herbal research need attention too. By reviewing these studies, different problems in studying herbal formulas, extracts, and active ingredients were presented. One of the most influential troubles is that the components of herbs are too complex to obtain reliable results. Thus, an understanding of the overall quality of herbal research is necessary. Further, 90 most cited Asian herbal studies on whitening were collected, which were conducted between 2017 and 2020, then statistical analysis was carried out. This work provided a comprehensive understanding of Asian herbal research in skin whitening, including the overall status and quality, as well as the focuses and limitations of these studies. By proactively confronting and analyzing these issues, it is suggested that the focus of herbal medicine research needs to shift from quantity to quality, and the new stage of development should emphasize transformation from research findings to whitening products.
Collapse
Affiliation(s)
- Yibo Hu
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Hongliang Zeng
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Changsha, China
| | - Jinhua Huang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Ling Jiang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Jing Chen
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Qinghai Zeng
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
27
|
Fan F, Yang L, Li R, Zou X, Li N, Meng X, Zhang Y, Wang X. Salidroside as a potential neuroprotective agent for ischemic stroke: a review of sources, pharmacokinetics, mechanism and safety. Biomed Pharmacother 2020; 129:110458. [PMID: 32603893 DOI: 10.1016/j.biopha.2020.110458] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/17/2020] [Accepted: 06/23/2020] [Indexed: 02/06/2023] Open
Abstract
Salidroside (Sal) is a bioactive extract principally from traditional herbal medicine such as Rhodiola rosea L., which has been commonly used for hundreds of years in Asia countries. The excellent neuroprotective capacity of Sal has been illuminated in recent studies. This work focused on the source, pharmacokinetics, safety and anti-ischemic stroke (IS) effect of Sal, especially emphasizing its mechanism of action and BBB permeability. Extensive databases, including Pubmed, Web of science (WOS), Google Scholar and China National Knowledge Infrastructure (CNKI), were applied to obtain relevant online literatures. Sal exerts powerful therapeutic effects on IS in experimental models either in vitro or in vivo due to its neuroprotection, with significantly diminishing infarct size, preventing cerebral edema and improving neurological function. Also, the findings suggest the underlying mechanisms involve anti-oxidation, anti-inflammation and anti-apoptosis by regulating multiple signaling pathways and key molecules, such as NF-κB, TNF-α and PI3K/Akt pathway. In pharmacokinetics, although showing a rapid absorption and elimination, bioavailability of Sal is elevated under some non-physiological conditions. The component and its metabolite (tyrosol) are capable of distributing to brain tissue and the later keeps a higher level of concentration. Moreover, Sal scarcely has obvious toxicity or side effects in a variety of animal experiments and clinical trials, but combination of drugs and perinatal use of medicine should be taken more attentions. Finally, as an active ingredient, not only is Sal isolated from diverse plants with limited yield, but also large batches of the products can be harvested by biological and chemical synthesis. With higher efficacy and better safety profiles, Sal could sever as a promising neuroprotectant for preventing and treating IS. Nevertheless, further investigations are still required to explore the pharmacodynamic and pharmacokinetic properties of Sal in the treatment of IS.
Collapse
Affiliation(s)
- Fangfang Fan
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lu Yang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Rui Li
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xuemei Zou
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ning Li
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xianli Meng
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yi Zhang
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Xiaobo Wang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
28
|
Guo W, Huang Q, Feng Y, Tan T, Niu S, Hou S, Chen Z, Du Z, Shen Y, Fang X. Rewiring central carbon metabolism for tyrosol and salidroside production in
Saccharomyces cerevisiae. Biotechnol Bioeng 2020; 117:2410-2419. [DOI: 10.1002/bit.27370] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/01/2020] [Accepted: 05/03/2020] [Indexed: 01/23/2023]
Affiliation(s)
- Wei Guo
- State Key Laboratory of Microbial TechnologyShandong University Qingdao China
| | - Qiulan Huang
- State Key Laboratory of Microbial TechnologyShandong University Qingdao China
| | - Yuhui Feng
- State Key Laboratory of Microbial TechnologyShandong University Qingdao China
| | - Taicong Tan
- State Key Laboratory of Microbial TechnologyShandong University Qingdao China
| | - Suhao Niu
- State Key Laboratory of Microbial TechnologyShandong University Qingdao China
| | - Shaoli Hou
- Yantai Huakangrongzan Biotechnology Co., Ltd.Yantai China
| | - Zhigang Chen
- State Key Laboratory of Microbial TechnologyShandong University Qingdao China
| | - Zhi‐Qiang Du
- State Key Laboratory of Microbial TechnologyShandong University Qingdao China
| | - Yu Shen
- State Key Laboratory of Microbial TechnologyShandong University Qingdao China
| | - Xu Fang
- State Key Laboratory of Microbial TechnologyShandong University Qingdao China
- National Glycoengineering Research CenterShandong University Qingdao China
| |
Collapse
|
29
|
Shen YP, Niu FX, Yan ZB, Fong LS, Huang YB, Liu JZ. Recent Advances in Metabolically Engineered Microorganisms for the Production of Aromatic Chemicals Derived From Aromatic Amino Acids. Front Bioeng Biotechnol 2020; 8:407. [PMID: 32432104 PMCID: PMC7214760 DOI: 10.3389/fbioe.2020.00407] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/14/2020] [Indexed: 12/16/2022] Open
Abstract
Aromatic compounds derived from aromatic amino acids are an important class of diverse chemicals with a wide range of industrial and commercial applications. They are currently produced via petrochemical processes, which are not sustainable and eco-friendly. In the past decades, significant progress has been made in the construction of microbial cell factories capable of effectively converting renewable carbon sources into value-added aromatics. Here, we systematically and comprehensively review the recent advancements in metabolic engineering and synthetic biology in the microbial production of aromatic amino acid derivatives, stilbenes, and benzylisoquinoline alkaloids. The future outlook concerning the engineering of microbial cell factories for the production of aromatic compounds is also discussed.
Collapse
Affiliation(s)
- Yu-Ping Shen
- Guangdong Province Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Biomedical Center, School of Life Sciences, Institute of Synthetic Biology, Sun Yat-sen University, Guangzhou, China
| | - Fu-Xing Niu
- Guangdong Province Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Biomedical Center, School of Life Sciences, Institute of Synthetic Biology, Sun Yat-sen University, Guangzhou, China
| | - Zhi-Bo Yan
- Guangdong Province Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Biomedical Center, School of Life Sciences, Institute of Synthetic Biology, Sun Yat-sen University, Guangzhou, China
| | - Lai San Fong
- Guangdong Province Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Biomedical Center, School of Life Sciences, Institute of Synthetic Biology, Sun Yat-sen University, Guangzhou, China
| | - Yuan-Bin Huang
- Guangdong Province Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Biomedical Center, School of Life Sciences, Institute of Synthetic Biology, Sun Yat-sen University, Guangzhou, China
| | - Jian-Zhong Liu
- Guangdong Province Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Biomedical Center, School of Life Sciences, Institute of Synthetic Biology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
30
|
Xu W, Yang C, Xia Y, Zhang L, Liu C, Yang H, Shen W, Chen X. High-Level Production of Tyrosol with Noninduced Recombinant Escherichia coli by Metabolic Engineering. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4616-4623. [PMID: 32208625 DOI: 10.1021/acs.jafc.9b07610] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Tyrosol is a pharmacologically active phenolic compound widely used in the pharmaceutical and chemical industries. Microbial fermentation has potential value as an environmentally friendly approach to tyrosol production, but suffers from low tyrosol yields and the need for expensive media additives. In this study, Escherichia coli MG1655 was modified by integrating an E. coli codon-optimized version of the Saccharomyces cerevisiae phenylpyruvate decarboxylase gene, named ARO10*, into the lacI locus. The resulting strain (YMGA*) produced 0.14 mM tyrosol from 2% glucose without the need for expensive media supplements. Subsequent deletion of E. coli genes designed to eliminate competing metabolic pathways (feaB, pheA, tyrB) or undesirable gene regulation (tyrR) produced a strain (YMGA*R) that produced 3.11 mM tyrosol. Tyrosol production was then increased to 10.92 mM by increasing the ARO10* copy number to five copies (strain YMG5A*R). Finally, tyrosol production was increased to 28 mM (ca. 3.9 g/L) by optimizing fermentation conditions in a 5 L fermenter. Engineering a productive E. coli strain with high tyrosol titer from glucose using a medium that does not require added amino acids, inducer, or antibiotic provides a solid basis to produce tyrosol through microbial fermentation.
Collapse
Affiliation(s)
- Wei Xu
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Cui Yang
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yuanyuan Xia
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Lihua Zhang
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Chunxiao Liu
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Haiquan Yang
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Wei Shen
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xianzhong Chen
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
31
|
Shang Y, Wei W, Zhang P, Ye BC. Engineering Yarrowia lipolytica for Enhanced Production of Arbutin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1364-1372. [PMID: 31903751 DOI: 10.1021/acs.jafc.9b07151] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Arbutin, a glycoside, is derived from the leaves of several plants, including wheat, pear, and bearberry plants, and has a significant role in the treatment of melanoma, cystitis, and cough. Here, we aimed to modify Yarrowia lipolytica to produce arbutin. To construct the arbutin synthetic pathway in Y. lipolytica, three genes (chorismate pyruvate-lyase (UbiC), 4-hydroxybenzoate 1-hydroxylase (MNX1), and hydroquinone glucosyltransferase (AS)) were codon-optimized and heterologously expressed. To maximize arbutin production, seven arbutin-biosynthesis molecular targets were overexpressed, and we found that the individual strengthening of DHS1 and DHS2 led to an 8.9- and 7.8-fold improvement in arbutin yield, respectively. Through optimization, a maximum arbutin titer of 8.6 ± 0.7 g/L was achieved using the finally engineered strain, po1f-At09. Overall, this is the first report of heterologous arbutin synthesis in Y. lipolytica at a high titer. Furthermore, this work opens a possibility for the overproduction of shikimate pathway derivatives in Y. lipolytica.
Collapse
Affiliation(s)
- Yanzhe Shang
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Wenping Wei
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Ping Zhang
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Bang-Ce Ye
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai 200237 , China
- School of Chemistry and Chemical Engineering , Shihezi University , Xinjiang 832000 , China
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences , Zhejiang University of Technology , Hangzhou , Zhejiang 310014 , China
| |
Collapse
|
32
|
Woo MH, Nguyen DH, Choi JS, Park SE, Thuong PT, Min BS, Le DD. Chemical constituents from the roots of Kadsura coccinea with their protein tyrosine phosphatase 1B and acetylcholinesterase inhibitory activities. Arch Pharm Res 2020; 43:204-213. [PMID: 31965513 DOI: 10.1007/s12272-020-01211-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 01/13/2020] [Indexed: 01/13/2023]
Abstract
Kadsura coccinea (Lem.) A. C. Smith has been used as a tonic, decongestant, and digestive agent. The roots are also employed in traditional medicine to treat chronic enteritis, acute gastritis, duodenal ulcers, rheumatic pain in bone, and traumatic injuries. In the present study, we have described the biological evaluation of constituents from the roots of K. coccinea with PTP1B and AChE inhibitory activities for the first time in literature. A new compound (1), kadcoccilactone T, and 24 known ones (2‒25) were isolated and identified using spectroscopic methods. All the isolates were examined for PTP1B and AChE inhibitory activities. Compounds 4 and 8 expressed strong PTP1B inhibition with IC50 values of 1.57 ± 0.11 and 3.99 ± 1.08 μM, respectively. Apparently, these compounds were further studied for PTP1B enzyme kinetic analysis. The result indicated that compounds 4 and 8 exhibited mixed-type inhibition with the Κi values of 4.97 and 3.26 µM, respectively.
Collapse
Affiliation(s)
- Mi Hee Woo
- College of Pharmacy, Drug Research and Development Center, Daegu Catholic University, Gyeongsan, 38430, Republic of Korea.
| | - Duc Hung Nguyen
- College of Pharmacy, Drug Research and Development Center, Daegu Catholic University, Gyeongsan, 38430, Republic of Korea
- Faculty of Medicine and Pharmacy, Thanh Dong University, Hai Duong city, Vietnam
| | - Jae Sue Choi
- Department of Food and Life Science, Pukyong National University, Busan, 48513, Republic of Korea
| | - Se Eun Park
- Department of Food and Life Science, Pukyong National University, Busan, 48513, Republic of Korea
| | - Phuong Thien Thuong
- Department of Herbal Analysis and Standardization, National Institute of Medicinal Materials, Hanoi, 100000, Vietnam
| | - Byung Sun Min
- College of Pharmacy, Drug Research and Development Center, Daegu Catholic University, Gyeongsan, 38430, Republic of Korea
| | - Duc Dat Le
- Division of Computational Physics, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
33
|
Guo W, Huang Q, Liu H, Hou S, Niu S, Jiang Y, Bao X, Shen Y, Fang X. Rational Engineering of Chorismate-Related Pathways in Saccharomyces cerevisiae for Improving Tyrosol Production. Front Bioeng Biotechnol 2019; 7:152. [PMID: 31334226 PMCID: PMC6616077 DOI: 10.3389/fbioe.2019.00152] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/10/2019] [Indexed: 11/26/2022] Open
Abstract
Tyrosol is extensively used in the pharmaceutical industry as an important natural product from plants. In this study, an exogenous pathway involved in catalyzing tyrosine to tyrosol was introduced into Saccharomyces cerevisiae. Furthermore, The pyruvate decarboxylase gene pdc1 was deleted to redirect the flux distribution at the pyruvate node, and a bifunctional NAD+-dependent fused chorismate mutase/prephenate dehydrogenase from E. coli (EcTyrA) and its' tyrosine inhibition resistant mutant (EcTyrAM53I/A354V) were heterologously expression in S. cerevisiae to tuning up the chorismate metabolism effectively directed the metabolic flux toward tyrosol production. Finally, the tyrosol yield of the engineered strain GFT-4 was improved to 126.74 ± 6.70 mg/g DCW at 48 h, increased 440 times compared with that of the control strain GFT-0 (0.28 ± 0.01 mg/g DCW). The new synergetic engineering strategy developed in this study can be further applied to increase the production of high value-added aromatic compounds derived from aromatic amino acid or shikimate in S. cerevisiae.
Collapse
Affiliation(s)
- Wei Guo
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Qiulan Huang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Hao Liu
- Key Laboratory of Industrial Fermentation Microbiology, Tianjin University of Science and Technology, Ministry of Education, Tianjin, China
| | - Shaoli Hou
- Shandong Henglu Biological Technology Co. Ltd, Jinan, China
| | - Suhao Niu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yi Jiang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xiaoming Bao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Jinan, China
| | - Yu Shen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xu Fang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
34
|
Mirmazloum I, Ladányi M, Beinrohr L, Kiss-Bába E, Kiss A, György Z. Identification of a novel UDP-glycosyltransferase gene from Rhodiola rosea and its expression during biotransformation of upstream precursors in callus culture. Int J Biol Macromol 2019; 136:847-858. [PMID: 31226374 DOI: 10.1016/j.ijbiomac.2019.06.086] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/21/2019] [Accepted: 06/12/2019] [Indexed: 12/20/2022]
Abstract
Roseroot (Rhodiola rosea L.) is a medicinal plant with adaptogenic properties and several pharmaceutically important metabolites. In this study, a full length cDNA encoding a UDPG gene of roseroot was identified, cloned and characterized. Its ORF (1425 bp) was transferred into E. coli, where the expression of the recombinant enzyme was confirmed. To monitor the enzyme activity, 3 precursors (tyramine, 4-hydroxyphenylpyruvate & tyrosol) of salidroside biosynthesis pathway were added to roseroot callus cultures and samples were harvested after 1, 6, 12, 24, 48 & 96 h. Along with the controls (without precursor feeding), each sample was subjected to HPLC and qRT-PCR for phytochemical and relative UDP-glycosyltransferase gene expression analysis, respectively. The HPLC analysis showed that the salidroside content significantly increased; reaching 0.5% of the callus dry weight (26-fold higher than the control) after 96 h when 2 mM tyrosol was given to the media. The expression of the UDP-glycosyltransferase increased significantly being the highest at 12 h after the feeding. The effect of tyramine and 4-hydroxyphenylpyruvate was not as pronounced as of tyrosol. Here, we introduce a R. rosea specific UDPG gene and its expression pattern after biotransformation of intermediate precursors in in vitro roseroot callus cultures.
Collapse
Affiliation(s)
- Iman Mirmazloum
- Department of Plant Physiology and Plant Biochemistry, Szent István University, Budapest, Hungary; Food Science Innovation Centre, Kaposvár University, Kaposvár, Hungary.
| | - Márta Ladányi
- Department of Biometrics and Agricultural Informatics, Szent István University, Budapest, Hungary
| | - László Beinrohr
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Erzsébet Kiss-Bába
- Department of Plant Physiology and Plant Biochemistry, Szent István University, Budapest, Hungary
| | - Attila Kiss
- Food Science Innovation Centre, Kaposvár University, Kaposvár, Hungary
| | - Zsuzsanna György
- Department of Genetics and Plant Breeding, Szent István University, Budapest, Hungary
| |
Collapse
|
35
|
Li Y, Wang M, Zhao Q, Shen X, Wang J, Yan Y, Sun X, Yuan Q. Shunting Phenylacetic Acid Catabolism for Tropone Biosynthesis. ACS Synth Biol 2019; 8:876-883. [PMID: 30861343 DOI: 10.1021/acssynbio.9b00013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tropone is a seven-membered ring nonbenzenoid aromatic compound. It is the core structure of tropolonoids, which have various biological activities. In this study, a hybrid tropone biosynthetic pathway was designed by connecting phenylacetic acid (PAA) degradation with its biosynthesis and reconstituted in Escherichia coli. To simplify pathway construction and optimization, the use of E. coli endogenous genes was maximized and only three exogenous genes were employed. The entire pathway was divided into four modules: the endogenous shikimate pathway module, the hybrid PAA biosynthetic module, the endogenous PAA catabolic module and the heterogeneous tropone biosynthetic module. Efficiency of the PAA catabolic module was enhanced using PAA consumption rate as the indicator. Then, a single point mutation was introduced to inactivate the ALDH domain of PaaZ and the carbon flow was redirected toward tropone synthesis. Assembly of the full pathway led to de novo tropone production with the best titer of 65.2 ± 1.4 mg/L in shake flask experiment. This study provides a potential alternative for sustainable production of tropone and its derivatives.
Collapse
Affiliation(s)
- Yan Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mengyuan Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qianjing Zhao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaolin Shen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jia Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yajun Yan
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, Georgia 30602, United States
| | - Xinxiao Sun
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qipeng Yuan
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
36
|
Yang H, Xue Y, Yang C, Shen W, Fan Y, Chen X. Modular Engineering of Tyrosol Production in Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:3900-3908. [PMID: 30873833 DOI: 10.1021/acs.jafc.9b00227] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this study, we investigated the effects of the different critical genes in the three modules on tyrosol production in Escherichia coli. Coexpression of the yahK and ARO10 genes increased the yield of tyrosol by 10% compared to that of the control. Tyrosol production by E. coli BFPT1 and E. coli BFPA1 was higher by 15.0% and 17.8% than that by the control, respectively, via coordinated expression of key genes from modules 2 and 3. The tyrosol yield of E. coli BFPE2 was 58.3% higher than that of the control (reaching 5.72 mM) when the expression levels of the key genes aroA and tyrA* from module 2 were balanced. The tyrosol yield of E. coli BFPG1 was increased by 52.6% (reaching 5.8 mM) compared to the control via coexpression of modules 1, 2, and 3. This work suggested that microbial production of tyrosol in E. coli has potential for industrial applications.
Collapse
Affiliation(s)
- Haiquan Yang
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education , Jiangnan University , Wuxi 214122 , P. R. China
- School of Biotechnology , Jiangnan University , Wuxi 214122 , P. R. China
| | - Yuxiang Xue
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education , Jiangnan University , Wuxi 214122 , P. R. China
- School of Biotechnology , Jiangnan University , Wuxi 214122 , P. R. China
| | - Cui Yang
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education , Jiangnan University , Wuxi 214122 , P. R. China
- School of Biotechnology , Jiangnan University , Wuxi 214122 , P. R. China
| | - Wei Shen
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education , Jiangnan University , Wuxi 214122 , P. R. China
| | - You Fan
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education , Jiangnan University , Wuxi 214122 , P. R. China
- School of Biotechnology , Jiangnan University , Wuxi 214122 , P. R. China
| | - Xianzhong Chen
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education , Jiangnan University , Wuxi 214122 , P. R. China
- School of Biotechnology , Jiangnan University , Wuxi 214122 , P. R. China
| |
Collapse
|
37
|
Kallscheuer N, Menezes R, Foito A, da Silva MH, Braga A, Dekker W, Sevillano DM, Rosado-Ramos R, Jardim C, Oliveira J, Ferreira P, Rocha I, Silva AR, Sousa M, Allwood JW, Bott M, Faria N, Stewart D, Ottens M, Naesby M, Nunes Dos Santos C, Marienhagen J. Identification and Microbial Production of the Raspberry Phenol Salidroside that Is Active against Huntington's Disease. PLANT PHYSIOLOGY 2019; 179:969-985. [PMID: 30397021 PMCID: PMC6393794 DOI: 10.1104/pp.18.01074] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 10/22/2018] [Indexed: 05/22/2023]
Abstract
Edible berries are considered to be among nature's treasure chests as they contain a large number of (poly)phenols with potentially health-promoting properties. However, as berries contain complex (poly)phenol mixtures, it is challenging to associate any interesting pharmacological activity with a single compound. Thus, identification of pharmacologically interesting phenols requires systematic analyses of berry extracts. Here, raspberry (Rubus idaeus, var Prestige) extracts were systematically analyzed to identify bioactive compounds against pathological processes of neurodegenerative diseases. Berry extracts were tested on different Saccharomyces cerevisiae strains expressing disease proteins associated with Alzheimer's, Parkinson's, or Huntington's disease, or amyotrophic lateral sclerosis. After identifying bioactivity against Huntington's disease, the extract was fractionated and the obtained fractions were tested in the yeast model, which revealed that salidroside, a glycosylated phenol, displayed significant bioactivity. Subsequently, a metabolic route to salidroside was reconstructed in S cerevisiae and Corynebacterium glutamicum The best-performing S cerevisiae strain was capable of producing 2.1 mm (640 mg L-1) salidroside from Glc in shake flasks, whereas an engineered C glutamicum strain could efficiently convert the precursor tyrosol to salidroside, accumulating up to 32 mm (9,700 mg L-1) salidroside in bioreactor cultivations (yield: 0.81 mol mol-1). Targeted yeast assays verified that salidroside produced by both organisms has the same positive effects as salidroside of natural origin.
Collapse
Affiliation(s)
- Nicolai Kallscheuer
- Institut für Bio- und Geowissenschaften (IBG-1: Biotechnologie), Forschungszentrum Jülich, Jülich 52428, Germany
| | - Regina Menezes
- Instituto de Biologia Experimental e Tecnológica (iBET), 2781-901 Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Alexandre Foito
- The James Hutton Institute, Invergowrie, DD2 5DA Dundee, Scotland, United Kingdom
| | | | - Adelaide Braga
- Biotempo, 4805-017 Guimarães, Portugal
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | | | - David Méndez Sevillano
- Department of Biotechnology, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Rita Rosado-Ramos
- Instituto de Biologia Experimental e Tecnológica (iBET), 2781-901 Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Carolina Jardim
- Instituto de Biologia Experimental e Tecnológica (iBET), 2781-901 Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Joana Oliveira
- Biotempo, 4805-017 Guimarães, Portugal
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Patrícia Ferreira
- Biotempo, 4805-017 Guimarães, Portugal
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Isabel Rocha
- Biotempo, 4805-017 Guimarães, Portugal
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Ana Rita Silva
- Biotempo, 4805-017 Guimarães, Portugal
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Márcio Sousa
- Biotempo, 4805-017 Guimarães, Portugal
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - J William Allwood
- The James Hutton Institute, Invergowrie, DD2 5DA Dundee, Scotland, United Kingdom
| | - Michael Bott
- Institut für Bio- und Geowissenschaften (IBG-1: Biotechnologie), Forschungszentrum Jülich, Jülich 52428, Germany
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Jülich D-52425, Germany
| | - Nuno Faria
- Biotempo, 4805-017 Guimarães, Portugal
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Derek Stewart
- The James Hutton Institute, Invergowrie, DD2 5DA Dundee, Scotland, United Kingdom
- School of Engineering and Physical Sciences, Institute of Mechanical, Process and Energy Engineering, Heriot-Watt University, Edinburgh, Scotland, United Kingdom
| | - Marcel Ottens
- Department of Biotechnology, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | | | - Cláudia Nunes Dos Santos
- Instituto de Biologia Experimental e Tecnológica (iBET), 2781-901 Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Jan Marienhagen
- Institut für Bio- und Geowissenschaften (IBG-1: Biotechnologie), Forschungszentrum Jülich, Jülich 52428, Germany
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Jülich D-52425, Germany
| |
Collapse
|
38
|
Mohammadi Nargesi B, Sprenger GA, Youn JW. Metabolic Engineering of Escherichia coli for para-Amino-Phenylethanol and para-Amino-Phenylacetic Acid Biosynthesis. Front Bioeng Biotechnol 2019; 6:201. [PMID: 30662895 PMCID: PMC6328984 DOI: 10.3389/fbioe.2018.00201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/10/2018] [Indexed: 11/24/2022] Open
Abstract
Aromatic amines are an important class of chemicals which are used as building blocks for the synthesis of polymers and pharmaceuticals. In this study we establish a de novo pathway for the biosynthesis of the aromatic amines para-amino-phenylethanol (PAPE) and para-amino-phenylacetic acid (4-APA) in Escherichia coli. We combined a synthetic para-amino-l-phenylalanine pathway with the fungal Ehrlich pathway. Therefore, we overexpressed the heterologous genes encoding 4-amino-4-deoxychorismate synthase (pabAB from Corynebacterium glutamicum), 4-amino-4-deoxychorismate mutase and 4-amino-4-deoxyprephenate dehydrogenase (papB and papC from Streptomyces venezuelae) and ThDP-dependent keto-acid decarboxylase (aro10 from Saccharomyces cerevisiae) in E. coli. The resulting para-amino-phenylacetaldehyde either was reduced to PAPE or oxidized to 4-APA. The wild type strain E. coli LJ110 with a plasmid carrying these four genes produced (in shake flask cultures) 11 ± 1.5 mg l−1 of PAPE from glucose (4.5 g l−1). By the additional cloning and expression of feaB (phenylacetaldehyde dehydrogenase from E. coli) 36 ± 5 mg l−1 of 4-APA were obtained from 4.5 g l−1 glucose. Competing reactions, such as the genes for aminotransferases (aspC and tyrB) or for biosynthesis of L-phenylalanine and L-tyrosine (pheA, tyrA) and for the regulator TyrR were removed. Additionally, the E. coli genes aroFBL were cloned and expressed from a second plasmid. The best producer strains of E. coli showed improved formation of PAPE and 4-APA, respectively. Plasmid-borne expression of an aldehyde reductase (yahK from E. coli) gave best values for PAPE production, whereas feaB-overexpression led to best values for 4-APA. In fed-batch cultivation, the best producer strains achieved 2.5 ± 0.15 g l−1 of PAPE from glucose (11% C mol mol-1 glucose) and 3.4 ± 0.3 g l−1 of 4-APA (17% C mol mol−1 glucose), respectively which are the highest values for recombinant strains reported so far.
Collapse
|
39
|
Liu X, Li L, Liu J, Qiao J, Zhao GR. Metabolic engineering Escherichia coli for efficient production of icariside D2. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:261. [PMID: 31709010 PMCID: PMC6833136 DOI: 10.1186/s13068-019-1601-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/24/2019] [Indexed: 05/08/2023]
Abstract
BACKGROUND Icariside D2 is a plant-derived natural glycoside with pharmacological activities of inhibiting angiotensin-converting enzyme and killing leukemia cancer cells. Production of icariside D2 by plant extraction and chemical synthesis is inefficient and environmentally unfriendly. Microbial cell factory offers an attractive route for economical production of icariside D2 from renewable and sustainable bioresources. RESULTS We metabolically constructed the biosynthetic pathway of icariside D2 in engineered Escherichia coli. We screened the uridine diphosphate glycosyltransferases (UGTs) and obtained an active RrUGT3 that regio-specifically glycosylated tyrosol at phenolic position to exclusively synthesize icariside D2. We put heterologous genes in E. coli cell for the de novo biosynthesis of icariside D2. By fine-tuning promoter and copy number as well as balancing gene expression pattern to decrease metabolic burden, the BMD10 monoculture was constructed. Parallelly, for balancing pathway strength, we established the BMT23-BMD12 coculture by distributing the icariside D2 biosynthetic genes to two E. coli strains BMT23 and BMD12, responsible for biosynthesis of tyrosol from preferential xylose and icariside D2 from glucose, respectively. Under the optimal conditions in fed-batch shake-flask fermentation, the BMD10 monoculture produced 3.80 g/L of icariside D2 using glucose as sole carbon source, and the BMT23-BMD12 coculture produced 2.92 g/L of icariside D2 using glucose-xylose mixture. CONCLUSIONS We for the first time reported the engineered E. coli for the de novo efficient production of icariside D2 with gram titer. It would be potent and sustainable approach for microbial production of icariside D2 from renewable carbon sources. E. coli-E. coli coculture approach is not limited to glycoside production, but could also be applied to other bioproducts.
Collapse
Affiliation(s)
- Xue Liu
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350 China
| | - Lingling Li
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350 China
| | - Jincong Liu
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350 China
| | - Jianjun Qiao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350 China
- SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350 China
| | - Guang-Rong Zhao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350 China
- SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350 China
| |
Collapse
|
40
|
Yang C, Chen X, Chang J, Zhang L, Xu W, Shen W, Fan Y. Reconstruction of tyrosol synthetic pathways in Escherichia coli. Chin J Chem Eng 2018. [DOI: 10.1016/j.cjche.2018.04.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
41
|
Traditional Tibetan medicinal plants: a highlighted resource for novel therapeutic compounds. Future Med Chem 2018; 10:2537-2555. [PMID: 30499690 DOI: 10.4155/fmc-2018-0235] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Around 70-80% of drugs used in traditional Tibetan medicine (TTM) come from Qinghai Tibet Plateau, the majority of which are plants. The biological and medicinal culture diversity on Qinghai Tibet Plateau are amazing and constitute a less tapped resource for innovative drug research and development. Meanwhile, the problem of the exhausting Tibetan medicine resources is worrying. Here, the latest awareness, as well as the gaps of the traditional Tibetan medicinal plant issues in drug development and clinical usage of TTM compounds, was systematically reviewed and highlighted. The TTM resource studies should be enhanced within the context of deeper and more extensive investigations of molecular biology and genomics of TTM plants, phytometabolites and metabolomics and ethnopharmacology-based bioactivity, thus enabling the sustainable conservation and exploitation of Tibetan medicinal resource.
Collapse
|
42
|
Ding F, Liu F, Shao W, Chu J, Wu B, He B. Efficient Synthesis of Crocins from Crocetin by a Microbial Glycosyltransferase from Bacillus subtilis 168. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:11701-11708. [PMID: 30350978 DOI: 10.1021/acs.jafc.8b04274] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Crocins are the most important active ingredient found in Crocus sativus, a well-known "plant gold". The glycosyltransferase-catalyzed glycosylation of crocetin is the last step of biosynthesizing crocins and contributes to their structural diversity. Crocin biosynthesis is now hampered by the lack of efficient glycosyltransferases with activity toward crocetin. In this study, two microbial glycosyltransferases (Bs-GT and Bc-GTA) were successfully mined based on the comprehensive analysis of the PSPG motif and the N-terminal motif of the target plant-derived UGT75L6 and Cs-GT2. Bs-GT from Bacillus subtilis 168, an enzyme with a higher activity of glycosylation toward crocetin than that of Bc-GTA, was characterized. The efficient synthesis of crocins from crocetin catalyzed by microbial GT (Bs-GT) was first reported with a high molecular conversion rate of 81.9%, resulting in the production of 476.8 mg/L of crocins. The glycosylation of crocetin on its carboxyl groups by Bs-GT specifically produced crocin-5 and crocin-3, the important rare crocins.
Collapse
Affiliation(s)
- Fangyu Ding
- College of Biotechnology and Pharmaceutical Engineering , Nanjing Tech University , No. 30 Puzhu South Road , Nanjing 211816 , China
| | - Feng Liu
- College of Biotechnology and Pharmaceutical Engineering , Nanjing Tech University , No. 30 Puzhu South Road , Nanjing 211816 , China
| | - Wenming Shao
- College of Biotechnology and Pharmaceutical Engineering , Nanjing Tech University , No. 30 Puzhu South Road , Nanjing 211816 , China
| | - Jianlin Chu
- School of Pharmaceutical Sciences , Nanjing Tech University , No. 30 Puzhu South Road , Nanjing 211816 , China
- Jiangsu National Synergetic Innovation Center for Advanced Materials , 30 Puzhunan Road , Nanjing 211816 , China
| | - Bin Wu
- College of Biotechnology and Pharmaceutical Engineering , Nanjing Tech University , No. 30 Puzhu South Road , Nanjing 211816 , China
| | - Bingfang He
- College of Biotechnology and Pharmaceutical Engineering , Nanjing Tech University , No. 30 Puzhu South Road , Nanjing 211816 , China
- School of Pharmaceutical Sciences , Nanjing Tech University , No. 30 Puzhu South Road , Nanjing 211816 , China
| |
Collapse
|
43
|
Tan Z, Clomburg JM, Gonzalez R. Synthetic Pathway for the Production of Olivetolic Acid in Escherichia coli. ACS Synth Biol 2018; 7:1886-1896. [PMID: 29976061 DOI: 10.1021/acssynbio.8b00075] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Type III polyketide synthases (PKS IIIs) contribute to the synthesis of many economically important natural products, most of which are currently produced by direct extraction from plants or through chemical synthesis. Olivetolic acid (OLA) is a plant secondary metabolite sourced from PKS III catalysis, which along with its prenylated derivatives has various pharmacological activities. To demonstrate the potential for microbial cell factories to circumvent limitations of plant extraction or chemical synthesis for OLA, here we utilize a synthetic approach to engineer Escherichia coli for the production of OLA. In vitro characterization of polyketide synthase and cyclase enzymes, OLA synthase and OLA cyclase, respectively, validated their requirement as enzymatic components of the OLA pathway and confirmed the ability for these eukaryotic enzymes to be functionally expressed in E. coli. This served as a platform for the combinatorial expression of these enzymes with auxiliary enzymes aimed at increasing the supply of hexanoyl-CoA and malonyl-CoA as starting and extender units, respectively. Through combining OLA synthase and OLA cyclase expression with the required modules of a β-oxidation reversal for hexanoyl-CoA generation, we demonstrate the in vivo synthesis of olivetolic acid from a single carbon source. The integration of additional auxiliary enzymes to increase hexanoyl-CoA and malonyl-CoA, along with evaluation of varying fermentation conditions enabled the synthesis of 80 mg/L OLA. This is the first report of OLA production in E. coli, adding a new example to the repertoire of valuable compounds synthesized in this industrial workhorse.
Collapse
Affiliation(s)
- Zaigao Tan
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - James M. Clomburg
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Ramon Gonzalez
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
44
|
A Novel UDP-Glycosyltransferase of Rhodiola crenulata Converts Tyrosol to Specifically Produce Icariside D2. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7970590. [PMID: 30027099 PMCID: PMC6031081 DOI: 10.1155/2018/7970590] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 05/22/2018] [Indexed: 11/20/2022]
Abstract
Rhodiola crenulata is a Tibetan native herbal plant belonging to the family of Crassulaceae, which produces the pharmaceutical icariside D2 with the activities of inhibiting angiotensin-converting enzyme and killing leukemia cancer cells. In this study, we functionally characterized a novel UDP-glycosyltransferase (RcUGT1) that converted tyrosol to specifically produce icariside D2 from R. crenulata at molecular and biochemical levels. RcUGT1 was highly expressed in flowers and roots, while the icariside D2 content was much higher in stems than that in other organs, suggesting the potential translocation of icariside D2 from flowers and roots to stems. The high production of icariside D2 in stems provided a reasonable suggestion to farmers to harvest stems instead of roots for icariside D2 production. Enzymatic assays of recombinant RcUGT1 indicated that it converted tyrosol to specifically form icariside D2, with the values of Km 0.97±0.10 mM, Vmax 286±8.26 pKat/mg, Kcat 0.01552 s−1, and Kcat/Km 159.55 s−1 M−1. Functional identification of RcUGT1 facilitated the icariside D2 production through metabolic engineering in plants or synthetic biology in microbes.
Collapse
|
45
|
Jiang J, Yin H, Wang S, Zhuang Y, Liu S, Liu T, Ma Y. Metabolic Engineering of Saccharomyces cerevisiae for High-Level Production of Salidroside from Glucose. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:4431-4438. [PMID: 29671328 DOI: 10.1021/acs.jafc.8b01272] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Salidroside is an important plant-derived aromatic compound with diverse biological properties. Because of inadequate natural resources, the supply of salidroside is currently limited. In this work, we engineered the production of salidroside in yeast. First, the aromatic aldehyde synthase (AAS) from Petroselinum crispum was overexpressed in Saccharomyces cerevisiae when combined with endogenous Ehrlich pathway to produce tyrosol from tyrosine. Glucosyltransferases from different resources were tested for ideal production of salidroside in the yeast. Metabolic flux was enhanced toward tyrosine biosynthesis by overexpressing pathway genes and eliminating feedback inhibition. The pathway genes were integrated into yeast chromosome, leading to a recombinant strain that produced 239.5 mg/L salidroside and 965.4 mg/L tyrosol. The production of salidroside and tyrosol reached up to 732.5 and 1394.6 mg/L, respectively, by fed-batch fermentation. Our work provides an alternative way for industrial large-scale production of salidroside and tyrosol from S. cerevisiae.
Collapse
Affiliation(s)
- Jingjie Jiang
- College of Biotechnology, The State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Hua Yin
- Tianjin Institute of Industrial Biotechnology , Chinese Academy of Sciences , Tianjin 300308 , China
- Key Laboratory of Systems Microbial Biotechnology , Chinese Academy of Sciences , Tianjin 300308 , China
| | - Shuai Wang
- Tianjin Institute of Industrial Biotechnology , Chinese Academy of Sciences , Tianjin 300308 , China
- National and Local United Engineering Laboratory of Metabolic Control Fermentation Technology, College of Biotechnology , Tianjin University of Science and Technology , Tianjin 300457 , China
| | - Yibin Zhuang
- Tianjin Institute of Industrial Biotechnology , Chinese Academy of Sciences , Tianjin 300308 , China
- Key Laboratory of Systems Microbial Biotechnology , Chinese Academy of Sciences , Tianjin 300308 , China
| | - Shaowei Liu
- College of Biotechnology, The State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Tao Liu
- Tianjin Institute of Industrial Biotechnology , Chinese Academy of Sciences , Tianjin 300308 , China
- Key Laboratory of Systems Microbial Biotechnology , Chinese Academy of Sciences , Tianjin 300308 , China
| | - Yanhe Ma
- Tianjin Institute of Industrial Biotechnology , Chinese Academy of Sciences , Tianjin 300308 , China
- Key Laboratory of Systems Microbial Biotechnology , Chinese Academy of Sciences , Tianjin 300308 , China
| |
Collapse
|
46
|
Convergent engineering of syntrophic Escherichia coli coculture for efficient production of glycosides. Metab Eng 2018; 47:243-253. [PMID: 29596994 DOI: 10.1016/j.ymben.2018.03.016] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 03/21/2018] [Accepted: 03/24/2018] [Indexed: 11/23/2022]
Abstract
Synthetic microbial coculture to express heterologous biosynthetic pathway for de novo production of medicinal ingredients is an emerging strategy for metabolic engineering and synthetic biology. Here, taking efficient production of salidroside as an example of glycosides, we design and construct a syntrophic Escherichia coli-E. coli coculture composed of the aglycone (AG) strain and the glycoside (GD) strain, which convergently accommodate biosynthetic pathways of tyrosol and salidroside, respectively. To accomplish this the phenylalanine-deficient AG strain was engineered to utilize xylose preferentially and to overproduce precursor tyrosol, while the tyrosine-deficient GD strain was constructed to consume glucose exclusively and to enhance another precursor UDP-glucose availability for synthesis of salidroside. The AG and GD strains in the synthetic consortium are obligatory cooperators through crossfeeding of tyrosine and phenylalanine and compatible in glucose and xylose mixture. Through balancing the metabolic pathway strength, we show that the syntrophic coculture was robust and stable, and produced 6.03 g/L of salidroside. It was the de novo production of salidroside for the first time in E. coli coculture system, which would be applicable for production of other important glycosides and natural products.
Collapse
|
47
|
Wang S, Bilal M, Hu H, Wang W, Zhang X. 4-Hydroxybenzoic acid-a versatile platform intermediate for value-added compounds. Appl Microbiol Biotechnol 2018. [PMID: 29516141 DOI: 10.1007/s00253-018-8815-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
4-Hydroxybenzoic acid (4-HBA) has recently emerged as a promising intermediate for several value-added bioproducts with potential biotechnological applications in food, cosmetics, pharmacy, fungicides, etc. Over the past years, a variety of biosynthetic techniques have been developed for producing the 4-HBA and 4-HBA-based products. At this juncture, synthetic biology and metabolic engineering approaches enabled the biosynthesis of 4-HBA to address the increasing demand for high-value bioproducts. This review summarizes the biosynthesis of a variety of industrially pertinent compounds such as resveratrol, muconic acid, gastrodin, xiamenmycin, and vanillyl alcohol using 4-HBA as the starting feedstock. Moreover, potential research activities with a close-up look at the future perspectives to produce new compounds using 4-HBA have also been discussed.
Collapse
Affiliation(s)
- Songwei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Muhammad Bilal
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hongbo Hu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
48
|
Li X, Chen Z, Wu Y, Yan Y, Sun X, Yuan Q. Establishing an Artificial Pathway for Efficient Biosynthesis of Hydroxytyrosol. ACS Synth Biol 2018; 7:647-654. [PMID: 29281883 DOI: 10.1021/acssynbio.7b00385] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Hydroxytyrosol (HT) is a valuable natural phenolic compound with strong antioxidant activity and various physiological and pharmaceutical functions. In this study, we established an artificial pathway for HT biosynthesis. First, efficient enzymes were selected to construct a tyrosol biosynthetic pathway. Aro10 from Saccharomyces cerevisiae was shown to be a better ketoacid decarboxylase than Kivd from Lactococcus lactis for tyrosol production. While knockout of feaB significantly decreased accumulation of the byproduct 4-hydroxyphenylacetic acid, overexpression of alcohol dehydrogenase ADH6 further improved tyrosol production. The titers of tyrosol reached 1469 ± 56 mg/L from tyrosine and 620 ± 23 mg/L from simple carbon sources, respectively. The pathway was further extended for HT production by overexpressing Escherichia coli native hydroxylase HpaBC. To enhance transamination of tyrosine to 4-hydroxyphenylpyruvate, NH4Cl was removed from the culture media. To decrease oxidation of HT, ascorbic acid was added to the cell culture. To reduce the toxicity of HT, 1-dodecanol was selected as the extractant for in situ removal of HT. These efforts led to an additive increase in HT titer to 1243 ± 165 mg/L in the feeding experiment. Assembly of the full pathway resulted in 647 ± 35 mg/L of HT from simple carbon sources. This work provides a promising alternative for sustainable production of HT, which shows scale-up potential.
Collapse
Affiliation(s)
- Xianglai Li
- State
Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhenya Chen
- State
Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yifei Wu
- State
Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yajun Yan
- College
of Engineering, The University of Georgia, Athens, Georgia 30602, United States
| | - Xinxiao Sun
- State
Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qipeng Yuan
- State
Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
49
|
Torrens-Spence MP, Pluskal T, Li FS, Carballo V, Weng JK. Complete Pathway Elucidation and Heterologous Reconstitution of Rhodiola Salidroside Biosynthesis. MOLECULAR PLANT 2018; 11:205-217. [PMID: 29277428 DOI: 10.1016/j.molp.2017.12.007] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/23/2017] [Accepted: 12/12/2017] [Indexed: 05/05/2023]
Abstract
Salidroside is a bioactive tyrosine-derived phenolic natural product found in medicinal plants under the Rhodiola genus. In addition to their anti-fatigue and anti-anoxia roles in traditional medicine, Rhodiola total extract and salidroside have also displayed medicinal properties as anti-cardiovascular diseases and anti-cancer agents. The resulting surge in global demand of Rhodiola plants and salidroside has driven some species close to extinction. Here, we report the full elucidation of the Rhodiola salidroside biosynthetic pathway utilizing the first comprehensive transcriptomics and metabolomics datasets for Rhodiola rosea. Unlike the previously proposed pathway involving separate decarboxylation and deamination enzymatic steps from tyrosine to the key intermediate 4-hydroxyphenylacetaldehyde (4-HPAA), Rhodiola contains a pyridoxal phosphate-dependent 4-HPAA synthase that directly converts tyrosine to 4-HPAA. We further identified genes encoding the subsequent 4-HPAA reductase and tyrosol:UDP-glucose 8-O-glucosyltransferase, respectively, to complete salidroside biosynthesis in Rhodiola. We show that heterologous production of salidroside can be achieved in the yeast Saccharomyces cerevisiae as well as the plant Nicotiana benthamiana through transgenic expression of Rhodiola salidroside biosynthetic genes. This study provides new tools for engineering sustainable production of salidroside in heterologous hosts.
Collapse
Affiliation(s)
| | - Tomáš Pluskal
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA
| | - Fu-Shuang Li
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA
| | - Valentina Carballo
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA
| | - Jing-Ke Weng
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
50
|
Liu X, Ding W, Jiang H. Engineering microbial cell factories for the production of plant natural products: from design principles to industrial-scale production. Microb Cell Fact 2017; 16:125. [PMID: 28724386 PMCID: PMC5518134 DOI: 10.1186/s12934-017-0732-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 07/05/2017] [Indexed: 11/13/2022] Open
Abstract
Plant natural products (PNPs) are widely used as pharmaceuticals, nutraceuticals, seasonings, pigments, etc., with a huge commercial value on the global market. However, most of these PNPs are still being extracted from plants. A resource-conserving and environment-friendly synthesis route for PNPs that utilizes microbial cell factories has attracted increasing attention since the 1940s. However, at the present only a handful of PNPs are being produced by microbial cell factories at an industrial scale, and there are still many challenges in their large-scale application. One of the challenges is that most biosynthetic pathways of PNPs are still unknown, which largely limits the number of candidate PNPs for heterologous microbial production. Another challenge is that the metabolic fluxes toward the target products in microbial hosts are often hindered by poor precursor supply, low catalytic activity of enzymes and obstructed product transport. Consequently, despite intensive studies on the metabolic engineering of microbial hosts, the fermentation costs of most heterologously produced PNPs are still too high for industrial-scale production. In this paper, we review several aspects of PNP production in microbial cell factories, including important design principles and recent progress in pathway mining and metabolic engineering. In addition, implemented cases of industrial-scale production of PNPs in microbial cell factories are also highlighted.
Collapse
Affiliation(s)
- Xiaonan Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wentao Ding
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Huifeng Jiang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
| |
Collapse
|