1
|
Suresh P, Wijne C, Sun ZYJ, Becht N, Sahay I, Pishesha N, Ploegh H. A nanobody that binds to the backside of the ubiquitin conjugating enzyme Ube2G2 differentially affects interactions with its partner E3 Ligases. Commun Biol 2025; 8:614. [PMID: 40234692 PMCID: PMC12000298 DOI: 10.1038/s42003-025-08038-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 04/02/2025] [Indexed: 04/17/2025] Open
Abstract
Ubiquitin conjugating E2 enzymes are a set of ~40 proteins that play a central role in the ubiquitination cascade. They transfer ubiquitin from an E1 enzyme to substrates with the help of an E3 enzyme. The members of the E2 family share structural similarity in their conserved UBC fold. This complicates an assessment of the specificity of E2-E3 interactions. We identified a nanobody that binds to the 'backside' region of Ube2G2, an E2 involved in ER protein quality control. This binding does not affect ubiquitin loading but shows varying degrees of inhibition on E3-mediated ubiquitination, in the order HRD1 > CHIP >> TRC8. A naturally occurring segment that binds Ube2G2's backside, referred to as G2BR (Ube2G2 Binding Region), shows a similar inhibitory effect depending on the identity of the interacting E3. The G2BR in the Ube2G2-cognate E3 Gp78 enhances Ube2G2's activity, but its deletion results in a similar inhibition upon addition of the nanobody. Occupation of a single binding site on an E2 can thus affect its interactions with different E3s.
Collapse
Affiliation(s)
- Pavana Suresh
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Charlotte Wijne
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Zhen-Yu J Sun
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Nanette Becht
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ishani Sahay
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Novalia Pishesha
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hidde Ploegh
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Cao H, Zhou X, Xu B, Hu H, Guo J, Ma Y, Wang M, Li N, Jun Z. Advances in the study of protein folding and endoplasmic reticulum-associated degradation in mammal cells. J Zhejiang Univ Sci B 2024; 25:212-232. [PMID: 38453636 PMCID: PMC10918413 DOI: 10.1631/jzus.b2300403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 08/03/2023] [Indexed: 03/09/2024]
Abstract
The endoplasmic reticulum is a key site for protein production and quality control. More than one-third of proteins are synthesized and folded into the correct three-dimensional conformation in the endoplasmic reticulum. However, during protein folding, unfolded and/or misfolded proteins are prone to occur, which may lead to endoplasmic reticulum stress. Organisms can monitor the quality of the proteins produced by endoplasmic reticulum quality control (ERQC) and endoplasmic reticulum-associated degradation (ERAD), which maintain endoplasmic reticulum protein homeostasis by degrading abnormally folded proteins. The underlying mechanisms of protein folding and ERAD in mammals have not yet been fully explored. Therefore, this paper reviews the process and function of protein folding and ERAD in mammalian cells, in order to help clinicians better understand the mechanism of ERAD and to provide a scientific reference for the treatment of diseases caused by abnormal ERAD.
Collapse
Affiliation(s)
- Hong Cao
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai 200438, China
- National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai 200433, China
| | - Xuchang Zhou
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai 200438, China
| | - Bowen Xu
- National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai 200433, China
| | - Han Hu
- National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai 200433, China
| | - Jianming Guo
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai 200438, China
| | - Yuwei Ma
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai 200438, China
| | - Miao Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai 200438, China
| | - Nan Li
- National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai 200433, China.
| | - Zou Jun
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
3
|
Khago D, Fucci IJ, Byrd RA. The Role of Conformational Dynamics in the Recognition and Regulation of Ubiquitination. Molecules 2020; 25:E5933. [PMID: 33333809 PMCID: PMC7765195 DOI: 10.3390/molecules25245933] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 11/23/2022] Open
Abstract
The ubiquitination pathway is central to many cell signaling and regulatory events. One of the intriguing aspects of the pathway is the combinatorial sophistication of substrate recognition and ubiquitin chain building determinations. The abundant structural and biological data portray several characteristic protein folds among E2 and E3 proteins, and the understanding of the combinatorial complexity that enables interaction with much of the human proteome is a major goal to developing targeted and selective manipulation of the pathway. With the commonality of some folds, there are likely other aspects that can provide differentiation and recognition. These aspects involve allosteric effects and conformational dynamics that can direct recognition and chain building processes. In this review, we will describe the current state of the knowledge for conformational dynamics across a wide timescale, address the limitations of present approaches, and illustrate the potential to make new advances in connecting dynamics with ubiquitination regulation.
Collapse
Affiliation(s)
| | | | - Robert Andrew Byrd
- Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, P.O. Box B, Building 538, Frederick, MD 21702-1201, USA; (D.K.); (I.J.F.)
| |
Collapse
|
4
|
Ninagawa S, George G, Mori K. Mechanisms of productive folding and endoplasmic reticulum-associated degradation of glycoproteins and non-glycoproteins. Biochim Biophys Acta Gen Subj 2020; 1865:129812. [PMID: 33316349 DOI: 10.1016/j.bbagen.2020.129812] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND The quality of proteins destined for the secretory pathway is ensured by two distinct mechanisms in the endoplasmic reticulum (ER): productive folding of newly synthesized proteins, which is assisted by ER-localized molecular chaperones and in most cases also by disulfide bond formation and transfer of an oligosaccharide unit; and ER-associated degradation (ERAD), in which proteins unfolded or misfolded in the ER are recognized and processed for delivery to the ER membrane complex, retrotranslocated through the complex with simultaneous ubiquitination, extracted by AAA-ATPase to the cytosol, and finally degraded by the proteasome. SCOPE OF REVIEW We describe the mechanisms of productive folding and ERAD, with particular attention to glycoproteins versus non-glycoproteins, and to yeast versus mammalian systems. MAJOR CONCLUSION Molecular mechanisms of the productive folding of glycoproteins and non-glycoproteins mediated by molecular chaperones and protein disulfide isomerases are well conserved from yeast to mammals. Additionally, mammals have gained an oligosaccharide structure-dependent folding cycle for glycoproteins. The molecular mechanisms of ERAD are also well conserved from yeast to mammals, but redundant expression of yeast orthologues in mammals has been encountered, particularly for components involved in recognition and processing of glycoproteins and components of the ER membrane complex involved in retrotranslocation and simultaneous ubiquitination of glycoproteins and non-glycoproteins. This may reflect an evolutionary consequence of increasing quantity or quality needs toward mammals. GENERAL SIGNIFICANCE The introduction of innovative genome editing technology into analysis of the mechanisms of mammalian ERAD, as exemplified here, will provide new insights into the pathogenesis of various diseases.
Collapse
Affiliation(s)
- Satoshi Ninagawa
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| | - Ginto George
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Kazutoshi Mori
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
5
|
Lopata A, Kniss A, Löhr F, Rogov VV, Dötsch V. Ubiquitination in the ERAD Process. Int J Mol Sci 2020; 21:ijms21155369. [PMID: 32731622 PMCID: PMC7432864 DOI: 10.3390/ijms21155369] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 01/08/2023] Open
Abstract
In this review, we focus on the ubiquitination process within the endoplasmic reticulum associated protein degradation (ERAD) pathway. Approximately one third of all synthesized proteins in a cell are channeled into the endoplasmic reticulum (ER) lumen or are incorporated into the ER membrane. Since all newly synthesized proteins enter the ER in an unfolded manner, folding must occur within the ER lumen or co-translationally, rendering misfolding events a serious threat. To prevent the accumulation of misfolded protein in the ER, proteins that fail the quality control undergo retrotranslocation into the cytosol where they proceed with ubiquitination and degradation. The wide variety of misfolded targets requires on the one hand a promiscuity of the ubiquitination process and on the other hand a fast and highly processive mechanism. We present the various ERAD components involved in the ubiquitination process including the different E2 conjugating enzymes, E3 ligases, and E4 factors. The resulting K48-linked and K11-linked ubiquitin chains do not only represent a signal for degradation by the proteasome but are also recognized by the AAA+ ATPase Cdc48 and get in the process of retrotranslocation modified by enzymes bound to Cdc48. Lastly we discuss the conformations adopted in particular by K48-linked ubiquitin chains and their importance for degradation.
Collapse
|
6
|
Liu W, Zhang Z, Liu X, Jin W. iTRAQ-based quantitative proteomic analysis of two transgenic soybean lines and the corresponding non-genetically modified isogenic variety. J Biochem 2020; 167:67-78. [PMID: 31596463 DOI: 10.1093/jb/mvz081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 09/27/2019] [Indexed: 11/14/2022] Open
Abstract
To investigate the unintended effects of genetically modified (GM) crops, an isobaric tags for relative and absolute quantitation (iTRAQ)-based comparative proteomic analysis was performed with seed cotyledons of two GM soybean lines, MON87705 and MON87701×MON89788, and the corresponding non-transgenic isogenic variety A3525. Thirty-five differentially abundant proteins (DAPs) were identified in MON87705/A3525, 27 of which were upregulated and 8 downregulated. Thirty-eight DAPs were identified from the MON87701×MON89788/A3525 sample, including 29 upregulated proteins and 9 downregulated proteins. Pathway analysis showed that most of these DAPs participate in protein processing in endoplasmic reticulum and in metabolic pathways. Protein-protein interaction analysis of these DAPs demonstrated that the main interacting proteins are associated with post-translational modification, protein turnover, chaperones and signal transduction mechanisms. Nevertheless, these DAPs were not identified as new unintended toxins or allergens and only showed changes in abundance. All these results suggest that the seed cotyledon proteomic profiles of the two GM soybean lines studied were not dramatically altered compared with that of their natural isogenic control.
Collapse
Affiliation(s)
- Weixiao Liu
- Biotechnology Research Institute, Chinese Agricultural and Academic Sciences, No. 12 Zhongguancun South St., Haidian District, Beijing, P.R. China
| | - Zhe Zhang
- Biotechnology Research Institute, Chinese Agricultural and Academic Sciences, No. 12 Zhongguancun South St., Haidian District, Beijing, P.R. China
| | - Xuri Liu
- Department of Food and Biological Engineering, Handan Polytechnic College, No.141 Zhuhe Road, Hanshan District, Handan, P.R. China
| | - Wujun Jin
- Biotechnology Research Institute, Chinese Agricultural and Academic Sciences, No. 12 Zhongguancun South St., Haidian District, Beijing, P.R. China
| |
Collapse
|
7
|
The Roles of Ubiquitin-Binding Protein Shuttles in the Degradative Fate of Ubiquitinated Proteins in the Ubiquitin-Proteasome System and Autophagy. Cells 2019; 8:cells8010040. [PMID: 30634694 PMCID: PMC6357184 DOI: 10.3390/cells8010040] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/24/2018] [Accepted: 01/03/2019] [Indexed: 12/15/2022] Open
Abstract
The ubiquitin-proteasome system (UPS) and autophagy are the two major intracellular protein quality control (PQC) pathways that are responsible for cellular proteostasis (homeostasis of the proteome) by ensuring the timely degradation of misfolded, damaged, and unwanted proteins. Ubiquitination serves as the degradation signal in both these systems, but substrates are precisely targeted to one or the other pathway. Determining how and when cells target specific proteins to these two alternative PQC pathways and control the crosstalk between them are topics of considerable interest. The ubiquitin (Ub) recognition code based on the type of Ub-linked chains on substrate proteins was believed to play a pivotal role in this process, but an increasing body of evidence indicates that the PQC pathway choice is also made based on other criteria. These include the oligomeric state of the Ub-binding protein shuttles, their conformation, protein modifications, and the presence of motifs that interact with ATG8/LC3/GABARAP (autophagy-related protein 8/microtubule-associated protein 1A/1B-light chain 3/GABA type A receptor-associated protein) protein family members. In this review, we summarize the current knowledge regarding the Ub recognition code that is bound by Ub-binding proteasomal and autophagic receptors. We also discuss how cells can modify substrate fate by modulating the structure, conformation, and physical properties of these receptors to affect their shuttling between both degradation pathways.
Collapse
|
8
|
Magala P, Bocik WE, Majumdar A, Tolman JR. Conformational Dynamics Modulate Activation of the Ubiquitin Conjugating Enzyme Ube2g2. ACS OMEGA 2017; 2:4581-4592. [PMID: 28884161 PMCID: PMC5579538 DOI: 10.1021/acsomega.7b00205] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 07/18/2017] [Indexed: 06/07/2023]
Abstract
The ubiquitin conjugating enzyme Ube2g2 together with its cognate E3 ligase gp78 catalyzes the synthesis of lysine-48 polyubiquitin chains constituting signals for the proteasomal degradation of misfolded proteins in the endoplasmic reticulum. Here, we employ NMR spectroscopy in combination with single-turnover diubiquitin formation assays to examine the role of the RING domain from gp78 in the catalytic activation of Ube2g2∼Ub conjugates. We find that approximately 60% of the Ube2g2∼Ub conjugates occupy a closed conformation in the absence of gp78-RING, with the population increasing to 82% upon gp78-RING binding. As expected, strong mutations in the hydrophobic patch residues of the ∼Ub moiety result in Ube2g2∼Ub populating only open states with corresponding loss of the ubiquitin conjugation activity. Less disruptive mutations introduced into the hydrophobic patch of the ∼Ub moiety also destabilize the closed conformational state, yet the corresponding effect on the ubiquitin conjugation activity ranges from complete loss to an enhancement of the catalytic activity. These results present a picture in which Ube2g2's active site is in a state of continual dynamic flux with the organization of the active site into a catalytically viable conformation constituting the rate-limiting step for a single ubiquitin ligation event. Ube2g2's function as a highly specific K48-polyubiquitin chain elongator leads us to speculate that this may be a strategy by which Ube2g2 reduces the probability of nonproductive catalytic outcomes in the absence of available substrate.
Collapse
|
9
|
Ji CH, Kwon YT. Crosstalk and Interplay between the Ubiquitin-Proteasome System and Autophagy. Mol Cells 2017; 40:441-449. [PMID: 28743182 PMCID: PMC5547213 DOI: 10.14348/molcells.2017.0115] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 07/12/2017] [Indexed: 12/21/2022] Open
Abstract
Proteolysis in eukaryotic cells is mainly mediated by the ubiquitin (Ub)-proteasome system (UPS) and the autophagylysosome system (hereafter autophagy). The UPS is a selective proteolytic system in which substrates are recognized and tagged with ubiquitin for processive degradation by the proteasome. Autophagy is a bulk degradative system that uses lysosomal hydrolases to degrade proteins as well as various other cellular constituents. Since the inception of their discoveries, the UPS and autophagy were thought to be independent of each other in components, action mechanisms, and substrate selectivity. Recent studies suggest that cells operate a single proteolytic network comprising of the UPS and autophagy that share notable similarity in many aspects and functionally cooperate with each other to maintain proteostasis. In this review, we discuss the mechanisms underlying the crosstalk and interplay between the UPS and autophagy, with an emphasis on substrate selectivity and compensatory regulation under cellular stresses.
Collapse
Affiliation(s)
- Chang Hoon Ji
- Protein Metabolism Medical Research Center and Department of Biomedical Sciences, Seoul National University, Seoul 03080,
Korea
| | - Yong Tae Kwon
- Protein Metabolism Medical Research Center and Department of Biomedical Sciences, Seoul National University, Seoul 03080,
Korea
- Ischemic/Hypoxic Disease Institute, College of Medicine, Seoul National University, Seoul 03080,
Korea
| |
Collapse
|
10
|
Abstract
Attachment of ubiquitin to proteins relies on a sophisticated enzyme cascade that is tightly regulated. The machinery of ubiquitylation responds to a range of signals, which remarkably includes ubiquitin itself. Thus, ubiquitin is not only the central player in the ubiquitylation cascade but also a key regulator. The ubiquitin E3 ligases provide specificity to the cascade and often bind the substrate, while the ubiquitin-conjugating enzymes (E2s) have a pivotal role in determining chain linkage and length. Interaction of ubiquitin with the E2 is important for activity, but the weak nature of these contacts has made them hard to identify and study. By reviewing available crystal structures, we identify putative ubiquitin binding sites on E2s, which may enhance E2 processivity and the assembly of chains of a defined linkage. The implications of these new sites are discussed in the context of known E2-ubiquitin interactions.
Collapse
|
11
|
The linkage specificity determination of Ube2g2-gp78 mediated polyubiquitination. Biochem Biophys Res Commun 2016; 473:1139-1143. [PMID: 27067047 DOI: 10.1016/j.bbrc.2016.04.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 04/07/2016] [Indexed: 11/20/2022]
Abstract
Polyubiquitin chain linkage specificity or topology is essential for its role in diverse cellular processes. Previous studies pay more attentions to the linkage specificity of the first ubiquitin moieties, whereas, little is known about the editing mechanism of linkage specificity in longer polyubiquitin chains. gp78 and its cognate E2-Ube2g2 catalyze lysine48 (K48)-linked polyubiquitin chains to promote the degradation of targeted proteins. Here, we show that the linkage specificity of the entire polyubiquitin chain is determined by the conjugation manner of the first ubiquitin molecule but not the following ones. Further study discovered that the gp78 CUE domain works as a proofreading machine during the growth of K48-linked polyubiquitin chains to ensure the linkage specificity. Together, our studies uncover a novel mechanism underlying the linkage specificity determination of longer polyubiquitin chains.
Collapse
|
12
|
Middleton AJ, Day CL. The molecular basis of lysine 48 ubiquitin chain synthesis by Ube2K. Sci Rep 2015; 5:16793. [PMID: 26592444 PMCID: PMC4655369 DOI: 10.1038/srep16793] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 10/20/2015] [Indexed: 12/14/2022] Open
Abstract
The post-translational modification of proteins by ubiquitin is central to the regulation of eukaryotic cells. Substrate-bound ubiquitin chains linked by lysine 11 and 48 target proteins to the proteasome for degradation and determine protein abundance in cells, while other ubiquitin chain linkages regulate protein interactions. The specificity of chain-linkage type is usually determined by ubiquitin-conjugating enzymes (E2s). The degradative E2, Ube2K, preferentially catalyses formation of Lys48-linked chains, but like most E2s, the molecular basis for chain formation is not well understood. Here we report the crystal structure of a Ube2K~ubiquitin conjugate and demonstrate that even though it is monomeric, Ube2K can synthesize Lys48-linked ubiquitin chains. Using site-directed mutagenesis and modelling, our studies reveal a molecular understanding of the catalytic complex and identify key features required for synthesis of degradative Lys48-linked chains. The position of the acceptor ubiquitin described here is likely conserved in other E2s that catalyse Lys48-linked ubiquitin chain synthesis.
Collapse
Affiliation(s)
- Adam J Middleton
- Department of Biochemistry, Otago School of Medical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Catherine L Day
- Department of Biochemistry, Otago School of Medical Sciences, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
13
|
Neuroleukin/Autocrine Motility Factor Receptor Pathway Promotes Proliferation of Articular Chondrocytes through Activation of AKT and Smad2/3. Sci Rep 2015; 5:15101. [PMID: 26459914 PMCID: PMC4602231 DOI: 10.1038/srep15101] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 09/15/2015] [Indexed: 12/12/2022] Open
Abstract
Cartilage defect is an intractable clinical problem. Therapeutic strategies for cartilage repair are far from optimal due to poor proliferation capacity of chondrocytes. Autologous chondrocyte implantation is a cell based therapy that uses in vitro amplified healthy chondrocytes from the patient. However, chondrocyte dedifferentiation during in vitro culture limits its application. Neuroleukin (NLK) is a multifunctional protein that stimulates cell growth and migration, together with its receptor autocrine motility factor receptor (AMFR, also called gp78). We investigated expression of NLK and AMFR/gp78 during cartilage development in vivo and in cultured articular chondrocytes in vitro, and found the pair associates with chondrocyte proliferation and differentiation. While applied to isolated articular chondrocytes, NLK promotes cell proliferation and secretion of type II collagen, a marker of proliferating chondrocytes. Further work demonstrates that NLK up regulates pAKT and pSmad2/3, but down regulates pSmad1/5. In animals, NLK treatment also promotes chondrocyte proliferation while inhibits terminal differentiation, leading to expanded proliferating zone but decreased prehypertrophic and hypertrophic zones in the growth plate region. NLK is therefore a candidate factor that can be applied in the treatment of cartilage defects.
Collapse
|