1
|
Antonov AP, Terkel M, Schwarzendahl FJ, Rodríguez-Gallo C, Tierno P, Löwen H. Controlling colloidal flow through a microfluidic Y-junction. COMMUNICATIONS PHYSICS 2025; 8:165. [PMID: 40255639 PMCID: PMC12003161 DOI: 10.1038/s42005-025-02094-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 04/07/2025] [Indexed: 04/22/2025]
Abstract
Microscopic particles flowing through narrow channels may accumulate near bifurcation points provoking flow reduction, clogging and ultimately chip breakage in a microfluidic device. Here we show that the full flow behavior of colloidal particles through a microfluidic Y-junction can be controlled by tuning the pair interactions and the degree of confinement. By combining experiments with numerical simulations, we investigate the dynamic states emerging when magnetizable colloids flow through a symmetric Y-junction such that a single particle can pass through both gates with the same probability. We show that clogging, induced by the inevitable presence of a stagnation point, can be avoided by repulsive interactions. Moreover we tune the pair interactions to steer branching into the two channels: attractive particles are flowing through the same gate, while repulsive colloids alternate between the two gates. Even details of the particle assembly such as buckling at the exit gate are tunable by the interactions and the channel geometry.
Collapse
Affiliation(s)
- Alexander P. Antonov
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Matthew Terkel
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Barcelona, 08028 Spain
- Universitat de Barcelona Institute of Complex Systems, Barcelona, 08028 Spain
| | - Fabian Jan Schwarzendahl
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Carolina Rodríguez-Gallo
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Barcelona, 08028 Spain
- Universitat de Barcelona Institute of Complex Systems, Barcelona, 08028 Spain
- Institute for Bioengineering of Catalonia, Barcelona, 08028 Spain
| | - Pietro Tierno
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Barcelona, 08028 Spain
- Universitat de Barcelona Institute of Complex Systems, Barcelona, 08028 Spain
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
2
|
Bacik KA, Sobota G, Bacik BS, Rogers T. Order-disorder transition in multidirectional crowds. Proc Natl Acad Sci U S A 2025; 122:e2420697122. [PMID: 40127258 PMCID: PMC12002293 DOI: 10.1073/pnas.2420697122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 02/17/2025] [Indexed: 03/26/2025] Open
Abstract
One of the archetypal examples of active flows is a busy concourse crossed by people moving in different directions according to their personal destinations. When the crowd is isotropic-comprising individuals moving in all different directions-the collective motion is disordered. In contrast, if it is possible to identify two dominant directions of motion, for example in a corridor, the crowd spontaneously organizes into contraflowing lanes or stripes. In this article, we characterize the physics of the transition between these two distinct phases by using a synergy of theoretical analysis, numerical simulations, and stylized experiments. We develop a hydrodynamic theory for collisional flows of heterogeneous populations, and we analyze the stability of the disordered configuration. We identify an order-disorder transition occurring as population heterogeneity exceeds a theoretical threshold determined by the collision avoidance maneuvers of the crowd. Our prediction for the onset of pedestrian ordering is consistent with results of agent-based simulations and controlled experiments with human crowds.
Collapse
Affiliation(s)
- Karol A. Bacik
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA02142
| | - Grzegorz Sobota
- Department of Human Motor Behavior, Academy of Physical Education in Katowice, Katowice40-065, Poland
| | - Bogdan S. Bacik
- Department of Human Motor Behavior, Academy of Physical Education in Katowice, Katowice40-065, Poland
| | - Tim Rogers
- Department of Mathematical Sciences, University of Bath, Claverton Down, BathBA2 7AY, United Kingdom
| |
Collapse
|
3
|
Hathcock D, Dillavou S, Hanlan JM, Durian DJ, Tu Y. Stochastic dynamics of granular hopper flows: A configurational mode controls the stability of clogs. Phys Rev E 2025; 111:L023404. [PMID: 40103127 DOI: 10.1103/physreve.111.l023404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/14/2025] [Indexed: 03/20/2025]
Abstract
Granular flows in small-outlet hoppers exhibit several characteristic but poorly understood behaviors: temporary clogs (pauses) where flow stops before later spontaneously restarting, permanent clogs that last indefinitely, and non-Gaussian, nonmonotonic flow-rate statistics. These aspects have been studied independently, but a model of hopper flow that explains all three has not been formulated. Here, we introduce a phenomenological model that provides a unifying dynamical mechanism for all three behaviors: coupling between the flow rate and a hidden mode that controls the stability of clogs. In the theory, flow rate evolves according to Langevin dynamics with multiplicative noise and an absorbing state at zero flow, conditional on the hidden mode. The model fully reproduces the statistics of pause and clog events of a large (>40000 flows) experimental dataset, including nonexponentially distributed clogging times and non-Gaussian flow rate distribution, and explains the stretched-exponential growth of the average clogging time with outlet size. Further, we identify the physical nature of the hidden mode in microscopic configurational features, including size and smoothness of the static arch structure formed during pauses and clogs. Our work provides a unifying framework for several poorly understood clogging phenomena, and suggests numerous new paths toward further understanding of this complex system.
Collapse
Affiliation(s)
- David Hathcock
- IBM T. J. Watson Research Center, Yorktown Heights, New York 10598, USA
| | - Sam Dillavou
- University of Pennsylvania, Department of Physics & Astronomy, Philadelphia, Pennsylvania 19104, USA
| | - Jesse M Hanlan
- University of Pennsylvania, Department of Physics & Astronomy, Philadelphia, Pennsylvania 19104, USA
| | - Douglas J Durian
- University of Pennsylvania, Department of Physics & Astronomy, Philadelphia, Pennsylvania 19104, USA
| | - Yuhai Tu
- IBM T. J. Watson Research Center, Yorktown Heights, New York 10598, USA
| |
Collapse
|
4
|
Zhang X, Tian Y, Ni R, Zhu Y, Ning L, Liu P, Yang M, Zheng N. Obstacle-enhanced spontaneous oscillation of confined active granules. SOFT MATTER 2025; 21:819-825. [PMID: 39523912 DOI: 10.1039/d4sm01027b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Spontaneous oscillation in particle numbers has been reported recently, in which two chambers connected by a narrow channel are alternately filled and emptied by self-propelled particles. The challenge in realizing the application of this oscillation lies in promotion of the oscillatory periodicity. By placing an asymmetric obstacle at an appropriate position near a channel opening, we can significantly improve the oscillation quality, which approaches the quality of an ideal oscillation. Additionally, we experimentally explore the relationship between the oscillation quality and various system parameters such as the obstacle position. Based on experimental observations, we incorporate a random noise into our previous model and properly reproduce the experimental results. The agreement between theory and experiment uncovers the mechanism of delicate competition between noise and unidirectional particle flow in influencing the oscillation quality. Our findings provide new insights for the optimization of the oscillation quality, expand the conventional rectification capability of the ratchet effect due to the obstacle, and make it possible for spontaneous oscillation to serve as a reliable source for rhythmic signals.
Collapse
Affiliation(s)
- Xue Zhang
- School of Physics, Beijing Institute of Technology, Beijing 100081, China.
| | - Yuxin Tian
- School of Physics, Beijing Institute of Technology, Beijing 100081, China.
| | - Ran Ni
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore
| | - Yong Zhu
- Science and Technology on Electromagnetic Scattering Laboratory, Beijing 100854, China
| | - Luhui Ning
- Beijing Key Laboratory of Optical Detection Technology for Oil and Gas, China University of Petroleum-Beijing, Beijing 102249, China.
- Basic Research Center for Energy Interdisciplinary, College of Science, China University of Petroleum-Beijing, Beijing 102249, China
| | - Peng Liu
- School of Physics, Beijing Institute of Technology, Beijing 100081, China.
| | - Mingcheng Yang
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Ning Zheng
- School of Physics, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
5
|
Kowsari K, Lu L, Persak SC, Hu G, Forrest W, Berger R, Givand JC, Babaee S. Injectability of high concentrated suspensions using model microparticles. J Pharm Sci 2024; 113:3525-3537. [PMID: 39369907 DOI: 10.1016/j.xphs.2024.09.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/08/2024]
Abstract
Administration of high-concentrated suspension formulations (i.e., solid particles dispersed in a liquid vehicle) can be limited due to their greater propensity for needle occlusion. The physical interaction between the solid phase (i.e., particles), the vehicle (i.e., flow field), and injection devices could result in the formation of particle bridging or filtering, posing a major risk in dose delivery accuracy and injectability. Here, given the limited understanding on how clogging initiates in syringe and needle delivery systems, we report an experimental approach to fully characterize the transient injection behavior of suspensions. In particular, we first established a custom fluorescence tagging and imaging technique with integrated force sensor to enable visual observation of local particle concentrations and plunger force monitoring throughout injection. Then, we investigated the effects of key formulation properties and device parameters including particle concentration and morphology, carrier viscosity, injection rate, needle and syringe sizes, and tissue backpressure on the incidence of suspension particle jamming and needle clogging. We performed systematic benchmark studies demonstrating that increasing needle inner diameter (ID) and particle density considerably reduced clogging risk, while increasing vehicle viscosity, particle size, and tissue backpressure significantly increased clogging. The experimental framework presented is amenable to quantifying clogging risk in drug-loaded particle suspensions and provides a guideline to make informed decisions on the tradeoffs between creating particles for pharmaceutical impact and feasibility of injection delivery.
Collapse
Affiliation(s)
- Kavin Kowsari
- Device Development and Technology, Merck Research Laboratories, Merck & Co. Inc., Rahway, NJ 07065, USA
| | - Lynn Lu
- Device Development and Technology, Merck Research Laboratories, Merck & Co. Inc., Rahway, NJ 07065, USA
| | - Steven C Persak
- Device Development and Technology, Merck Research Laboratories, Merck & Co. Inc., Rahway, NJ 07065, USA
| | - Guangli Hu
- Device Development and Technology, Merck Research Laboratories, Merck & Co. Inc., Rahway, NJ 07065, USA
| | - William Forrest
- Device Development and Technology, Merck Research Laboratories, Merck & Co. Inc., Rahway, NJ 07065, USA
| | - Robert Berger
- Device Development and Technology, Merck Research Laboratories, Merck & Co. Inc., Rahway, NJ 07065, USA
| | - Jeffrey C Givand
- Device Development and Technology, Merck Research Laboratories, Merck & Co. Inc., Rahway, NJ 07065, USA.
| | - Sahab Babaee
- Device Development and Technology, Merck Research Laboratories, Merck & Co. Inc., Rahway, NJ 07065, USA.
| |
Collapse
|
6
|
Zablotsky A, Madrid MA, Carlevaro CM, Kuperman M, Pugnaloni LA, Bouzat S. Reduction of clogging of vibrated grains passing through a narrow aperture by the addition of low-friction particles. Phys Rev E 2024; 110:034902. [PMID: 39425419 DOI: 10.1103/physreve.110.034902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 09/04/2024] [Indexed: 10/21/2024]
Abstract
We study the flow of grains under vibration passing through a small aperture in two dimensions using discrete element method simulations. Such systems are prone to clogging and strategies to ease the flow are desirable in multiple applications. We show that the addition of low-friction particles to the system can reduce clogging and lead to an enhancement of the net flux of the original species. Along with the role of the particle friction, we analyze the influence of both the size of the added particles and the mixing ratio. We consider systems with constant height of the granular column (using particle reinjection) as well as processes of fully emptying the containing hopper.
Collapse
|
7
|
Bakhtiari A, Kähler CJ. A method to prevent clogging and clustering in microfluidic systems using microbubble streaming. BIOMICROFLUIDICS 2024; 18:044101. [PMID: 38984267 PMCID: PMC11232117 DOI: 10.1063/5.0214436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/20/2024] [Indexed: 07/11/2024]
Abstract
This paper presents an innovative strategy to address the issues of clogging and cluster-related challenges in microchannels within microfluidic devices. Leveraging three-dimensional (3D) microbubble streaming as a dynamic solution, our approach involves the controlled activation of microbubbles near channel constrictions, inducing microstreaming with distinctive features. This microstreaming, characterized by a high non-uniform 3D gradient and significant shear stress, effectively inhibits arch formation at constrictions and disintegrates particle clusters, demonstrating real-time prevention of clogging incidents and blockages. This study includes experimental validation of the anti-clogging technique, a detailed examination of microstreaming phenomena, and their effects on clogging and clustering issues. It also incorporates statistical analyses performed in various scenarios to verify the method's effectiveness and adaptability. Moreover, a versatile control system has been designed that operates in event-triggered, continuous, or periodic modes, which suits different lab-on-a-chip applications and improves the overall functionality of microfluidic systems.
Collapse
Affiliation(s)
- Amirabas Bakhtiari
- Institute for Fluid Mechanics and Aerodynamics, Bundeswehr University Munich, Werner-Heisenberg-Weg 39, 85579 Neubiberg, Germany
| | - Christian J. Kähler
- Institute for Fluid Mechanics and Aerodynamics, Bundeswehr University Munich, Werner-Heisenberg-Weg 39, 85579 Neubiberg, Germany
| |
Collapse
|
8
|
Minogue D, Eskildsen MR, Reichhardt C, Reichhardt CJO. Reversible, irreversible, and mixed regimes for periodically driven disks in random obstacle arrays. Phys Rev E 2024; 109:044905. [PMID: 38755905 DOI: 10.1103/physreve.109.044905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/27/2024] [Indexed: 05/18/2024]
Abstract
We examine an assembly of repulsive disks interacting with a random obstacle array under a periodic drive and find a transition from reversible to irreversible dynamics as a function of drive amplitude or disk density. At low densities and drives, the system rapidly forms a reversible state where the disks return to their exact positions at the end of each cycle. In contrast, at high amplitudes or high densities, the system enters an irreversible state where the disks exhibit normal diffusion. Between these two regimes, there can be an intermediate irreversible state where most of the system is reversible, but localized irreversible regions are present that are prevented from spreading through the system due to a screening effect from the obstacles. We also find states that we term "combinatorial reversible states" in which the disks return to their original positions after multiple driving cycles. In these states, individual disks exchange positions but form the same configurations during the subcycles of the larger reversible cycle.
Collapse
Affiliation(s)
- D Minogue
- Department of Physics, University of Notre Dame, Notre Dame, Indiana 46656, USA
| | - M R Eskildsen
- Department of Physics, University of Notre Dame, Notre Dame, Indiana 46656, USA
| | - C Reichhardt
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - C J O Reichhardt
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
9
|
Leyva SG, Pagonabarraga I. Clogging transition and anomalous transport in driven suspensions in a disordered medium. Phys Rev E 2024; 109:014618. [PMID: 38366435 DOI: 10.1103/physreve.109.014618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 01/05/2024] [Indexed: 02/18/2024]
Abstract
We study computationally the dynamics of forced, Brownian particles through a disordered system. As the concentration of mobile particles and/or fixed obstacles increase, we characterize the different regimes of flow and address how clogging develops. We show that clogging is preceded by a wide region of anomalous transport, characterized by a power law decay of intermittent bursts. We analyze the velocity distribution of the moving particles and show that this abnormal flow region is characterized by a coexistence between mobile and arrested particles, and their relative populations change smoothly as clogging is approached. The comparison of the regimes of anomalous transport and clogging with the corresponding scenarios of particles pushed through a single bottleneck show qualitatively the same trends highlighting the generality of the transport regimes leading to clogging.
Collapse
Affiliation(s)
- Sergi G Leyva
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Carrer de Martí i Franqués 1, 08028 Barcelona, Spain and Universitat de Barcelona Institute of Complex Systems (UBICS), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Ignacio Pagonabarraga
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Carrer de Martí i Franqués 1, 08028 Barcelona, Spain and Universitat de Barcelona Institute of Complex Systems (UBICS), Universitat de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
10
|
van der Vleuten GGM, Toschi F, Schilders W, Corbetta A. Stochastic fluctuations of diluted pedestrian dynamics along curved paths. Phys Rev E 2024; 109:014605. [PMID: 38366492 DOI: 10.1103/physreve.109.014605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 11/29/2023] [Indexed: 02/18/2024]
Abstract
As we walk towards our destinations, our trajectories are constantly influenced by the presence of obstacles and infrastructural elements; even in the absence of crowding our paths are often curved. Since the early 2000s pedestrian dynamics have been extensively studied, aiming at quantitative models with both fundamental and technological relevance. Walking kinematics along straight paths have been experimentally investigated and quantitatively modeled in the diluted limit (i.e., in absence of pedestrian-pedestrian interactions). It is natural to expect that models for straight paths may be an accurate approximations of the dynamics even for paths with curvature radii much larger than the size of a single person. Conversely, as paths curvature increase one may expect larger and larger deviations. As no clear experimental consensus has been reached yet in the literature, here we accurately and systematically investigate the effect of paths curvature on diluted pedestrian dynamics. Thanks to a extensive and highly accurate set of real-life measurements campaign, we derive a Langevin-like social-force model quantitatively compatible with both averages and fluctuations of the walking dynamics. Leveraging on the differential geometric notion of covariant derivative, we generalize previous work by some of the authors, effectively casting a Langevin social-force model for the straight walking dynamics in a curved geometric setting. We deem this the necessary first step to understand and model the more general and ubiquitous case of pedestrians following curved paths in the presence of crowd traffic.
Collapse
Affiliation(s)
- Geert G M van der Vleuten
- Department of Applied Physics and Science Education, Eindhoven University of Technology, Eindhoven 5600MB, The Netherlands
| | - Federico Toschi
- Department of Applied Physics and Science Education, Eindhoven University of Technology, Eindhoven 5600MB, The Netherlands
- Eindhoven Artificial Intelligence System Institute, Eindhoven University of Technology, Eindhoven 5600MB, The Netherlands
- CNR-IAC, Rome I-00185, Italy
| | - Wil Schilders
- Department of Mathematics and Computer Science, Eindhoven University of Technology, Eindhoven 5600MB, The Netherlands
| | - Alessandro Corbetta
- Department of Applied Physics and Science Education, Eindhoven University of Technology, Eindhoven 5600MB, The Netherlands
- Eindhoven Artificial Intelligence System Institute, Eindhoven University of Technology, Eindhoven 5600MB, The Netherlands
| |
Collapse
|
11
|
Ortega-Roano E, Souzy M, Weinhart T, van der Meer D, Marin A. Clogging of noncohesive suspensions through constrictions using an efficient discrete particle solver with unresolved fluid flow. Phys Rev E 2023; 108:064905. [PMID: 38243512 DOI: 10.1103/physreve.108.064905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 11/04/2023] [Indexed: 01/21/2024]
Abstract
When objects are forced to flow through constrictions their transport can be frustrated temporarily or permanently due to the formation of arches in the region of the bottleneck. While such systems have been intensively studied in the case of solid particles in a gas phase being forced by gravitational forces, the case of solid particles suspended in a liquid phase, forced by the liquid itself, has received much less attention. In this case, the influence of the liquid flow on the transport efficiency is not well understood yet, leading to several apparently trivial but yet unanswered questions, e.g., would an increase of the liquid flow improve the transport of particles or worsen it? Although some experimental data are already available, they lack enough detail to give a complete answer to such a question. Numerical models would be needed to scrutinize the system deeper. In this paper, we study this system making use of an advanced discrete particle solver (mercurydpm) and an approximated numerical model for the liquid drag and compare the results with experimental data.
Collapse
Affiliation(s)
- Edgar Ortega-Roano
- Department of Physics of Fluids, University of Twente, 7522NB, Enschede, The Netherlands
| | - Mathieu Souzy
- INRAE, Aix-Marseille Université, UMR RECOVER, 13182 Aix-en-Provence, France
| | - Thomas Weinhart
- Multi Scale Mechanics, Department of Thermal and Fluid Engineering, University of Twente, 7522NB, Enschede, The Netherlands
| | - Devaraj van der Meer
- Department of Physics of Fluids, University of Twente, 7522NB, Enschede, The Netherlands
| | - Alvaro Marin
- Department of Physics of Fluids, University of Twente, 7522NB, Enschede, The Netherlands
| |
Collapse
|
12
|
Saparbayeva N, Balakin BV. CFD-DEM model of plugging in flow with cohesive particles. Sci Rep 2023; 13:17188. [PMID: 37821662 PMCID: PMC10567799 DOI: 10.1038/s41598-023-44202-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/04/2023] [Indexed: 10/13/2023] Open
Abstract
Plugging in flows with cohesive particles is crucial in many industrial and real-life applications such as hemodynamics, water distribution, and petroleum flow assurance. Although probabilistic models for plugging risk estimation are presented in the literature, multiple details of the process remain unclear. In this paper, we present a CFD-DEM model of plugging validated against several experimental benchmarks. Using the simulations, we consider the process of plugging in a slurry of ice in decane, focusing on inter-particle collisions and plugging dynamics. We conduct a parametric study altering the Reynolds number (3000...9000), particle concentration (1.6...7.3%), and surface energy (21...541 mJ/m[Formula: see text]). We note the process possesses complex non-linear behaviour for the cases where particle-wall adhesion reduces by more than 20% relative to inter-particle cohesion. Finally, we demonstrate how the simulation results match the flow maps based on the third-party experiments.
Collapse
Affiliation(s)
- Nazerke Saparbayeva
- Department of Mechanical and Marine Engineering, Western Norway University of Applied Sciences, 5063, Bergen, Norway.
| | - Boris V Balakin
- Department of Mechanical and Marine Engineering, Western Norway University of Applied Sciences, 5063, Bergen, Norway
| |
Collapse
|
13
|
Fan B, Zuriguel I, Dijksman JA, van der Gucht J, Börzsönyi T. Elongated particles discharged with a conveyor belt in a two-dimensional silo. Phys Rev E 2023; 108:044902. [PMID: 37978696 DOI: 10.1103/physreve.108.044902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 10/04/2023] [Indexed: 11/19/2023]
Abstract
The flow of elliptical particles out of a two-dimensional silo when extracted with a conveyor belt is analyzed experimentally. The conveyor belt-placed directly below the silo outlet-reduces the flow rate, increases the size of the stagnant zone, and it has a very strong influence on the relative velocity fluctuations as they strongly increase everywhere in the silo with decreasing belt speed. In other words, instead of slower but smooth flow, flow reduction by belt leads to intermittent flow. Interestingly, we show that this intermittency correlates with a strong reduction of the orientational order of the particles at the orifice region. Moreover, we observe that the average orientation of the grains passing through the outlet is modified when they are extracted with the belt, a feature that becomes more evident for large orifices.
Collapse
Affiliation(s)
- Bo Fan
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, P.O. Box 49, H-1525 Budapest, Hungary
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Iker Zuriguel
- Física y Matemática Aplicada, Facultad de Ciencias, Universidad de Navarra, 31080 Pamplona, Spain
| | - Joshua A Dijksman
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- Van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Jasper van der Gucht
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Tamás Börzsönyi
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, P.O. Box 49, H-1525 Budapest, Hungary
| |
Collapse
|
14
|
Caitano R, Garcimartín A, Zuriguel I. Anchoring Effect of an Obstacle in the Silo Unclogging Process. PHYSICAL REVIEW LETTERS 2023; 131:098201. [PMID: 37721817 DOI: 10.1103/physrevlett.131.098201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 07/20/2023] [Indexed: 09/20/2023]
Abstract
Contrary to the proven beneficial role that placing an obstacle above a silo exit has in clogging prevention, we demonstrate that, when the system is gently shaken, this passive element has a twofold effect in the clogging destruction process. On one side, the obstacle eases the destruction of weak arches, a phenomenon that can be explained by the pressure screening that it causes in the outlet proximities. But on the other side, we discover that the obstacle presence leads to the development of a few very strong arches. These arches, which dominate in the heavy tailed distributions of unclogging times, correlate with configurations where the number of particles contacting the obstacle from below are higher than the average; hence suggesting that the obstacle acts as an anchoring point for the granular packing. This finding may help one to understand the ambiguous effect of obstacles in the bottleneck flow of other systems, such as pedestrians evacuating a room or active matter in general.
Collapse
Affiliation(s)
- Rodrigo Caitano
- Departamento de Física, Facultad de Ciencias, Universidad de Navarra, E-31080 Pamplona, Spain
| | - Angel Garcimartín
- Departamento de Física, Facultad de Ciencias, Universidad de Navarra, E-31080 Pamplona, Spain
| | - Iker Zuriguel
- Departamento de Física, Facultad de Ciencias, Universidad de Navarra, E-31080 Pamplona, Spain
| |
Collapse
|
15
|
Fizari M, Keller N, Jardine PJ, Smith DE. Role of DNA-DNA sliding friction and nonequilibrium dynamics in viral genome ejection and packaging. Nucleic Acids Res 2023; 51:8060-8069. [PMID: 37449417 PMCID: PMC10450192 DOI: 10.1093/nar/gkad582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/17/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023] Open
Abstract
Many viruses eject their DNA via a nanochannel in the viral shell, driven by internal forces arising from the high-density genome packing. The speed of DNA exit is controlled by friction forces that limit the molecular mobility, but the nature of this friction is unknown. We introduce a method to probe the mobility of the tightly confined DNA by measuring DNA exit from phage phi29 capsids with optical tweezers. We measure extremely low initial exit velocity, a regime of exponentially increasing velocity, stochastic pausing that dominates the kinetics and large dynamic heterogeneity. Measurements with variable applied force provide evidence that the initial velocity is controlled by DNA-DNA sliding friction, consistent with a Frenkel-Kontorova model for nanoscale friction. We confirm several aspects of the ejection dynamics predicted by theoretical models. Features of the pausing suggest that it is connected to the phenomenon of 'clogging' in soft matter systems. Our results provide evidence that DNA-DNA friction and clogging control the DNA exit dynamics, but that this friction does not significantly affect DNA packaging.
Collapse
Affiliation(s)
- Mounir Fizari
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nicholas Keller
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Paul J Jardine
- Department of Diagnostic and Biological Sciences and Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Douglas E Smith
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
16
|
Larrieu R, Moreau P, Graff C, Peyla P, Dupont A. Fish evacuate smoothly respecting a social bubble. Sci Rep 2023; 13:10414. [PMID: 37474571 PMCID: PMC10359245 DOI: 10.1038/s41598-023-36869-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/12/2023] [Indexed: 07/22/2023] Open
Abstract
Crowd movements are observed among different species and on different scales, from insects to mammals, as well as in non-cognitive systems, such as motile cells. When forced to escape through a narrow opening, most terrestrial animals behave like granular materials and clogging events decrease the efficiency of the evacuation. Here, we explore the evacuation behavior of macroscopic, aquatic agents, neon fish, and challenge their gregarious behavior by forcing the school through a constricted passage. Using a statistical analysis method developed for granular matter and applied to crowd evacuation, our results clearly show that, unlike crowds of people or herds of sheep, no clogging occurs at the bottleneck. The fish do not collide and wait for a minimum waiting time between two successive exits, while respecting a social distance. When the constriction becomes similar to or smaller than their social distance, the individual domains defined by this cognitive distance are deformed and fish density increases. We show that the current of escaping fish behaves like a set of deformable 2D-bubbles, their 2D domain, passing through a constriction. Schools of fish show that, by respecting social rules, a crowd of individuals can evacuate without clogging, even in an emergency situation.
Collapse
Affiliation(s)
- Renaud Larrieu
- University Grenoble Alpes, CNRS, LIPhy, F-38000, Grenoble, France
| | - Philippe Moreau
- University Grenoble Alpes, CNRS, LIPhy, F-38000, Grenoble, France
| | - Christian Graff
- University Grenoble Alpes, CNRS, LPNC, F-38000, Grenoble, France
| | - Philippe Peyla
- University Grenoble Alpes, CNRS, LIPhy, F-38000, Grenoble, France
| | - Aurélie Dupont
- University Grenoble Alpes, CNRS, LIPhy, F-38000, Grenoble, France.
| |
Collapse
|
17
|
Parisi DR, Wiebke LE, Mandl JN, Textor J. Flow rate resonance of actively deforming particles. Sci Rep 2023; 13:9455. [PMID: 37301896 DOI: 10.1038/s41598-023-36182-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Lymphoid organs are unusual multicellular tissues: they are densely packed, but the lymphocytes trafficking through them are actively moving. We hypothesize that the intriguing ability of lymphocytes to avoid jamming and clogging is in part attributable to the dynamic shape changes that cells undergo when they move. In this work, we test this hypothesis by investigating an idealized system, namely, the flow of self-propelled, oscillating particles passing through a narrow constriction in two dimensions (2D), using numerical simulations. We found that deformation allows particles with these properties to flow through a narrow constriction in conditions when non-deformable particles would not be able to do so. Such a flowing state requires the amplitude and frequency of oscillations to exceed threshold values. Moreover, a resonance leading to the maximum flow rate was found when the oscillation frequency matched the natural frequency of the particle related to its elastic stiffness. To our knowledge, this phenomenon has not been described previously. Our findings could have important implications for understanding and controlling flow in a variety of systems in addition to lymphoid organs, such as granular flows subjected to vibration.
Collapse
Affiliation(s)
- Daniel R Parisi
- Instituto Tecnológico de Buenos Aires (ITBA), CONICET, C.A. de Buenos Aires, Argentina.
| | - Lucas E Wiebke
- Instituto Tecnológico de Buenos Aires (ITBA), C.A. de Buenos Aires, Argentina
| | - Judith N Mandl
- Department of Physiology and McGill Research Centre on Complex Traits, McGill University, Montreal, Canada
| | - Johannes Textor
- Data Science group, Institute for Computing and Information Sciences, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
18
|
Fizari M, Keller N, Jardine PJ, Smith DE. Role of DNA-DNA sliding friction and non-equilibrium dynamics in viral genome ejection and packaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.03.535472. [PMID: 37066220 PMCID: PMC10104077 DOI: 10.1101/2023.04.03.535472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Many viruses eject their DNA via a nanochannel in the viral shell, driven by internal forces arising from the high-density genome packing. The speed of DNA exit is controlled by friction forces that limit the molecular mobility, but the nature of this friction is unknown. We introduce a method to probe the mobility of the tightly confined DNA by measuring DNA exit from phage phi29 capsids with optical tweezers. We measure extremely low initial exit velocity, a regime of exponentially increasing velocity, stochastic pausing that dominates the kinetics, and large dynamic heterogeneity. Measurements with variable applied force provide evidence that the initial velocity is controlled by DNA-DNA sliding friction, consistent with a Frenkel-Kontorova model for nanoscale friction. We confirm several aspects of the ejection dynamics predicted by theoretical models. Features of the pausing suggest it is connected to the phenomenon of "clogging" in soft-matter systems. Our results provide evidence that DNA-DNA friction and clogging control the DNA exit dynamics, but that this friction does not significantly affect DNA packaging.
Collapse
|
19
|
Wu T, Yang Z, Hu R, Chen YF. Three-Dimensional Visualization Reveals Pore-Scale Mechanisms of Colloid Transport and Retention in Two-Phase Flow. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1997-2005. [PMID: 36602921 DOI: 10.1021/acs.est.2c08757] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Colloids are ubiquitous in the natural environment, playing an important role in facilitating the transport of absorbed contaminants. However, due to the complexities arising from two-phase flow and difficulties in three-dimensional observations, the detailed mechanisms of colloid transport and retention under two-phase flow are still not well understood. In this work, we visualize the colloid transport and retention during immiscible two-phase flow based on confocal microscopy. We find that the colloid transport and retention behaviors depend strongly on the flow rate and pore/grain size. At low levels of saturation (high flow rate) with the wetting liquid mainly present as pendular rings, the colloids can aggregate at the liquid filaments in small-grain packings and are uniformly distributed in large-grain packings. Through theoretical analysis of the pendular ring geometry, we elucidate the mechanism responsible for the strong dependence of colloid clogging behavior on solid grain size. Our results further demonstrate that even at dilute concentrations, colloids can alter the flow paths and the wetting fluid topology, suggesting a strong two-way coupling dynamics between immiscible two-phase flow and colloid transport and calling for improved predictive models to incorporate the overlooked clogging behavior.
Collapse
Affiliation(s)
- Ting Wu
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan430072, China
- Key Laboratory of Rock Mechanics in Hydraulic Structural Engineering of the Ministry of Education, Wuhan University, Wuhan430072, China
- Nanjing Hydraulic Research Institute, Nanjing210029, China
| | - Zhibing Yang
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan430072, China
- Key Laboratory of Rock Mechanics in Hydraulic Structural Engineering of the Ministry of Education, Wuhan University, Wuhan430072, China
| | - Ran Hu
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan430072, China
- Key Laboratory of Rock Mechanics in Hydraulic Structural Engineering of the Ministry of Education, Wuhan University, Wuhan430072, China
| | - Yi-Feng Chen
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan430072, China
- Key Laboratory of Rock Mechanics in Hydraulic Structural Engineering of the Ministry of Education, Wuhan University, Wuhan430072, China
| |
Collapse
|
20
|
Nguyen DTH, Seo H, Park J. Effect of electrical stimulation amplitude on dynamic behavior of mice during evacuation. Heliyon 2023; 9:e12930. [PMID: 36747938 PMCID: PMC9898598 DOI: 10.1016/j.heliyon.2023.e12930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/22/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
Profound examination of the dynamic behavior of pedestrians during evacuation can significantly reduce the number of associated accidents. Conducting experiments on animals can help obtain deep insight into the dynamic behavior of pedestrians. Previous experiments using insects, such as ants and woodlice, showed large differences between the dynamic behaviors of insects and humans. However, systematic studies on the behavioral characteristics (e.g., velocity) of mice under electrical stimulation conditions have not been reported. Therefore, this study was conducted to investigate changes in the dynamic behavior of mice during evacuation caused by electric shock. Electrical stimulation was supplied through their feet during evacuation. The average velocity, desired velocity (maximum instantaneous velocity), average velocity in the congestion zone, and escape time were measured and analyzed. According to the results, the desired velocity and escape time increased in proportion to the amplitude of the electrical stimulation; however, the average velocity decreased. Consequently, the level of emergency of mice is affected by both the amplitude of electrical stimulation and the number density in congestion area as in human experiments.
Collapse
Affiliation(s)
- Duyen Thi Hai Nguyen
- Department of Mechanical Design Engineering, Kumoh National Institute of Technology, 61, Daehak-Ro, Gumi, Gyeungbuk 39177, Republic of Korea,Department of Aeronautic, Mechanical and Electrical Convergence Engineering, Kumoh National Institute of Technology, 61, Daehak-Ro, Gumi, Gyeungbuk 39177, Republic of Korea
| | - Hyeryon Seo
- Department of Mechanical Design Engineering, Kumoh National Institute of Technology, 61, Daehak-Ro, Gumi, Gyeungbuk 39177, Republic of Korea,Department of Aeronautic, Mechanical and Electrical Convergence Engineering, Kumoh National Institute of Technology, 61, Daehak-Ro, Gumi, Gyeungbuk 39177, Republic of Korea
| | - Junyoung Park
- Department of Mechanical Design Engineering, Kumoh National Institute of Technology, 61, Daehak-Ro, Gumi, Gyeungbuk 39177, Republic of Korea,Department of Aeronautic, Mechanical and Electrical Convergence Engineering, Kumoh National Institute of Technology, 61, Daehak-Ro, Gumi, Gyeungbuk 39177, Republic of Korea,Corresponding author. Department of Mechanical Design Engineering, Kumoh National Institute of Technology, 61, Daehak-Ro, Gumi, Gyeungbuk 39177, Republic of Korea
| |
Collapse
|
21
|
Echeverría-Huarte I, Shi Z, Garcimartín A, Zuriguel I. Pedestrian bottleneck flow when keeping a prescribed physical distance. Phys Rev E 2022; 106:044302. [PMID: 36397559 DOI: 10.1103/physreve.106.044302] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
We present experimental results of pedestrian evacuations through a narrow door under a prescribed safety distancing of either 1.5 or 2 meters. In this situation, flow rate augments with pedestrian velocity due to a complete absence of flow interruptions or clogs. Accordingly, the evacuation improves when the prescribed physical distance is reduced, as this implies shortening the time lapses between the exit of consecutive pedestrians. In addition, the analysis of pedestrian trajectories reveals that the distance to the first neighbor in the evacuation process is rather similar to the one obtained when pedestrians were just roaming within the arena, hence suggesting that this magnitude depends more on the crowd state (desired speed, prescribed safety distance, etc.) than on the geometry where the pedestrian flow takes place. Also, an important difference in pedestrian behavior is observed when people are asked to walk at different speeds: whereas slow pedestrians evidence a clear preference for stop-and-go motion, fast walkers display detouring and stop-and-go behavior roughly in the same proportion.
Collapse
Affiliation(s)
- Iñaki Echeverría-Huarte
- Departamento de Física, Facultad de Ciencias, Universidad de Navarra, E-31080 Pamplona, Spain
| | - Zhigang Shi
- State Key Laboratory of Fire Science, University of science and technology of China, 230026, Hefei, China
| | - Angel Garcimartín
- Departamento de Física, Facultad de Ciencias, Universidad de Navarra, E-31080 Pamplona, Spain
| | - Iker Zuriguel
- Departamento de Física, Facultad de Ciencias, Universidad de Navarra, E-31080 Pamplona, Spain
| |
Collapse
|
22
|
Vani N, Escudier S, Sauret A. Influence of the solid fraction on the clogging by bridging of suspensions in constricted channels. SOFT MATTER 2022; 18:6987-6997. [PMID: 36069637 DOI: 10.1039/d2sm00962e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Clogging can occur whenever a suspension of particles flows through a confined system. The formation of clogs is often correlated to a reduction in the cross-section of the channel. In this study, we consider the clogging by bridging, i.e., through the formation of a stable arch of particles at a constriction that hinders the transport of particles downstream of the clog. To characterize the role of the volume fraction of the suspension on the clogging dynamics, we study the flow of particulate suspensions through 3D-printed millifluidic devices. We systematically characterize the bridging of non-Brownian particles in a quasi-bidimensional system in which we directly visualize and track the particles as they flow and form arches at a constriction. We report the conditions for clogging by bridging when varying the constriction width to particle diameter ratio for different concentrations of the particles in suspension. We then discuss our results using a stochastic model to rationalize the influence of solid fraction on the probability of clogging. Understanding the mechanisms and conditions of clog formation is an important step for optimizing engineering design and developing more reliable dispensing systems.
Collapse
Affiliation(s)
- Nathan Vani
- Department of Mechanical Engineering, University of California, Santa Barbara, California 93106, USA.
| | - Sacha Escudier
- Department of Mechanical Engineering, University of California, Santa Barbara, California 93106, USA.
| | - Alban Sauret
- Department of Mechanical Engineering, University of California, Santa Barbara, California 93106, USA.
| |
Collapse
|
23
|
Tang X, Duan W, Yang M, Xu K, Zheng C. Construction and degradation mechanism of polylactic acid-pH-responsive microgel composite system plugging system. J DISPER SCI TECHNOL 2022. [DOI: 10.1080/01932691.2022.2106996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Xiaoli Tang
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, The People's Republic of China
| | - Wenmeng Duan
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, The People's Republic of China
| | - Min Yang
- Budget management department of PetroChina Tarim Oilfield Company, Xinjiang, The People's Republic of China
| | - Ke Xu
- PetroChina Research Institute of Petroleum Exploration & Development, Beijing, The People's Republic of China
| | - Cunchuan Zheng
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, The People's Republic of China
| |
Collapse
|
24
|
Knippenberg T, Lüders A, Lozano C, Nielaba P, Bechinger C. Role of cohesion in the flow of active particles through bottlenecks. Sci Rep 2022; 12:11525. [PMID: 35798779 PMCID: PMC9262925 DOI: 10.1038/s41598-022-15577-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/27/2022] [Indexed: 11/25/2022] Open
Abstract
We experimentally and numerically study the flow of programmable active particles (APs) with tunable cohesion strength through geometric constrictions. Similar to purely repulsive granular systems, we observe an exponential distribution of burst sizes and power-law-distributed clogging durations. Upon increasing cohesion between APs, we find a rather abrupt transition from an arch-dominated clogging regime to a cohesion-dominated regime where droplets form at the aperture of the bottleneck. In the arch-dominated regime the flow-rate only weakly depends on the cohesion strength. This suggests that cohesion must not necessarily decrease the group's efficiency passing through geometric constrictions or pores. Such behavior is explained by "slippery" particle bonds which avoids the formation of a rigid particle network and thus prevents clogging. Overall, our results confirm the general applicability of the statistical framework of intermittent flow through bottlenecks developed for granular materials also in case of active microswimmers whose behavior is more complex than that of Brownian particles but which mimic the behavior of living systems.
Collapse
Affiliation(s)
- Timo Knippenberg
- Fachbereich Physik, Universität Konstanz, 78457, Constance, Germany
| | - Anton Lüders
- Fachbereich Physik, Universität Konstanz, 78457, Constance, Germany
| | | | - Peter Nielaba
- Fachbereich Physik, Universität Konstanz, 78457, Constance, Germany
| | - Clemens Bechinger
- Fachbereich Physik, Universität Konstanz, 78457, Constance, Germany.
| |
Collapse
|
25
|
Khelfa B, Korbmacher R, Schadschneider A, Tordeux A. Heterogeneity-induced lane and band formation in self-driven particle systems. Sci Rep 2022; 12:4768. [PMID: 35306506 PMCID: PMC8934355 DOI: 10.1038/s41598-022-08649-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 03/08/2022] [Indexed: 01/23/2023] Open
Abstract
The collective motion of interacting self-driven particles describes many types of coordinated dynamics and self-organisation. Prominent examples are alignment or lane formation which can be observed alongside other ordered structures and nonuniform patterns. In this article, we investigate the effects of different types of heterogeneity in a two-species self-driven particle system. We show that heterogeneity can generically initiate segregation in the motion and identify two heterogeneity mechanisms. Longitudinal lanes parallel to the direction of motion emerge when the heterogeneity statically lies in the agent characteristics (quenched disorder). While transverse bands orthogonal to the motion direction arise from dynamic heterogeneity in the interactions (annealed disorder). In both cases, non-linear transitions occur as the heterogeneity increases, from disorder to ordered states with lane or band patterns. These generic features are observed for a first and a second order motion model and different characteristic parameters related to particle speed and size. Simulation results show that the collective dynamics occur in relatively short time intervals, persist stationary, and are partly robust against random perturbations.
Collapse
Affiliation(s)
- Basma Khelfa
- School for Mechanical Engineering and Safety Engineering, University of Wuppertal, Wuppertal, Germany
| | - Raphael Korbmacher
- School for Mechanical Engineering and Safety Engineering, University of Wuppertal, Wuppertal, Germany
| | | | - Antoine Tordeux
- School for Mechanical Engineering and Safety Engineering, University of Wuppertal, Wuppertal, Germany.
| |
Collapse
|
26
|
Srivastava I, Silbert LE, Lechman JB, Grest GS. Flow and arrest in stressed granular materials. SOFT MATTER 2022; 18:735-743. [PMID: 34935823 DOI: 10.1039/d1sm01344k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Flowing granular materials often abruptly arrest if not driven by sufficient applied stresses. Such abrupt cessation of motion can be economically expensive in industrial materials handling and processing, and is significantly consequential in intermittent geophysical phenomena such as landslides and earthquakes. Using discrete element simulations, we calculate states of steady flow and arrest for granular materials under the conditions of constant applied pressure and shear stress, which are also most relevant in practice. Here the material can dilate or compact, and flow or arrest, in response to the applied stress. Our simulations highlight that under external stress, the intrinsic response of granular materials is characterized by uniquely-defined steady states of flow or arrest, which are highly sensitive to interparticle friction. While the flowing states can be equivalently characterized by volume fraction, coordination number or internal stress ratio, to characterize the states of shear arrest, one needs to also consider the structural anisotropy in the contact network. We highlight the role of dilation in the flow-arrest transition, and discuss our findings in the context of rheological transitions in granular materials.
Collapse
Affiliation(s)
- Ishan Srivastava
- Center for Computational Sciences and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Leonardo E Silbert
- School of Math, Science, and Engineering, Central New Mexico Community College, Albuquerque, NM 87106, USA
| | | | - Gary S Grest
- Sandia National Laboratories, Albuquerque, NM 87185, USA
| |
Collapse
|
27
|
Viot P, Page G, Barré C, Talbot J. Weak clogging in constricted channel flow. Phys Rev E 2022; 105:014604. [PMID: 35193281 DOI: 10.1103/physreve.105.014604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
We investigate simple models of a monodisperse system of soft, frictionless disks flowing through a two-dimensional microchannel in the presence of a single or a double constriction using Brownian dynamics simulation. After a transient time, a stationary state is observed with an increase in particle density before the constriction and a depletion after it. For a constriction width to particle diameter ratio of less than 3, the mean particle velocity is reduced compared to the unimpeded flow and it falls to zero for ratios of less than 1. At low temperatures, the particle mean velocity may vary nonmonotonically with the constriction width. The associated intermittent behavior is due to the formation of small arches of particles with a finite lifetime. The distribution of the interparticle exit times rises rapidly at short times followed by an exponential decay with a large characteristic time, while the cascade size distribution displays prominent peaks for specific cluster sizes. Although the dependence of the mean velocity on the separation of two constrictions is not simple, the mean flow velocity of a system with a single constriction provides an upper envelope for the system with two constrictions. We also examine the orientation of the leading pair of particles in front of the constriction(s). With a single constriction in the intermittent regime, there is a strong preference for the leading pair to be orientated perpendicular to the flow. When two constrictions are present, orientations parallel to the flow are much more likely at the second constriction.
Collapse
Affiliation(s)
- Pascal Viot
- Laboratoire de Physique Théorique de la Matière Condensée, Sorbonne Université, CNRS UMR 7600, 4, place Jussieu, 75005 Paris, France
| | - Gregory Page
- Laboratoire de Physique Théorique de la Matière Condensée, Sorbonne Université, CNRS UMR 7600, 4, place Jussieu, 75005 Paris, France
| | - Chloé Barré
- Laboratoire de Physique Théorique de la Matière Condensée, Sorbonne Université, CNRS UMR 7600, 4, place Jussieu, 75005 Paris, France
| | - Julian Talbot
- Laboratoire de Physique Théorique de la Matière Condensée, Sorbonne Université, CNRS UMR 7600, 4, place Jussieu, 75005 Paris, France
| |
Collapse
|
28
|
Hong X, Desmond KW, Chen D, Weeks ER. Clogging and avalanches in quasi-two-dimensional emulsion hopper flow. Phys Rev E 2022; 105:014603. [PMID: 35193244 DOI: 10.1103/physreve.105.014603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/22/2021] [Indexed: 11/07/2022]
Abstract
We experimentally and computationally study the flow of a quasi-two-dimensional emulsion through a constricting hopper shape. Our area fractions are above jamming such that the droplets are always in contact with one another and are in many cases highly deformed. At the lowest flow rates, the droplets often clog and thus exit the hopper via intermittent avalanches. At the highest flow rates, the droplets exit continuously. The transition between these two types of behaviors is a fairly smooth function of the mean strain rate. The avalanches are characterized by a power-law distribution of the time interval between droplets exiting the hopper, with long intervals between the avalanches. Our computational studies reproduce the experimental observations by adding a flexible compliance to the system (in other words, a finite stiffness of the sample chamber). The compliance results in continuous flow at high flow rates, and allows the system to clog at low flow rates leading to avalanches. The computational results suggest that the interplay of the flow rate and compliance controls the presence or absence of the avalanches.
Collapse
Affiliation(s)
- Xia Hong
- Department of Physics, Emory University, Atlanta, Georgia 30322, USA
| | - Kenneth W Desmond
- Department of Physics, Emory University, Atlanta, Georgia 30322, USA
| | - Dandan Chen
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China.,School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China
| | - Eric R Weeks
- Department of Physics, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
29
|
A study of ellipsoidal and spherical particle flow, clogging and unclogging dynamics. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2021.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Tao R, Wilson M, Weeks ER. Soft particle clogging in two-dimensional hoppers. Phys Rev E 2021; 104:044909. [PMID: 34781509 DOI: 10.1103/physreve.104.044909] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
We study the outflow of soft particles through quasi-two-dimensional hoppers with both experiments and simulations. The experiments utilize spheres made with hydrogel, silicone rubber, and glass. The hopper chamber has an adjustable exit width and tilt angle (the latter to control the magnitude of gravitational forcing). Our simulation mimics the experiments using purely two-dimensional soft particles with viscous interactions but no friction. Results from both simulations and experiments demonstrate that clogging is easier for reduced gravitational force or stiffer particles. For particles with low or no friction, the average number of particles in a clogging arch depends only on the ratio between hopper exit width and the mean particle diameter. In contrast, for the silicone rubber particles with larger frictional interactions, arches have more particles than the low friction cases. Additionally, an analysis of the number of particles left in the hopper when clogging occurs provides evidence for a hydrostatic pressure effect that is relevant for the clogging of soft particles, but less so for the harder (glass) or frictional (silicone rubber) particles.
Collapse
Affiliation(s)
- Ran Tao
- Department of Physics, Emory University, Atlanta, Georgia 30322, USA
| | - Madelyn Wilson
- Department of Physics, Emory University, Atlanta, Georgia 30322, USA
| | - Eric R Weeks
- Department of Physics, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
31
|
Caitano R, Guerrero BV, González RER, Zuriguel I, Garcimartín A. Characterization of the Clogging Transition in Vibrated Granular Media. PHYSICAL REVIEW LETTERS 2021; 127:148002. [PMID: 34652198 DOI: 10.1103/physrevlett.127.148002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
The existence of a transition from a clogged to an unclogged state has been recently proposed for the flow of macroscopic particles through bottlenecks in systems as diverse as colloidal suspensions, granular matter, or live beings. Here, we experimentally demonstrate that, for vibrated granular media, such a transition genuinely exists, and we characterize it as a function of the outlet size and vibration intensity. We confirm the suitability of the "flowing parameter" as the order parameter, and we find out that the rescaled maximum acceleration of the system should be replaced as the control parameter by a dimensionless velocity that can be seen as the square root of the ratio between kinetic and potential energy. In all the investigated scenarios, we observe that, for a critical value of this control parameter S_{c}, there seems to be a continuous transition to an unclogged state. The data can be rescaled with this critical value, which, as expected, decreases with the orifice size D. This leads to a phase diagram in the S-D plane in which clogging appears as a concave surface.
Collapse
Affiliation(s)
- R Caitano
- Depto. de Física y Mat. Apl., Facultad de Ciencias, Universidad de Navarra, E-31080 Pamplona, Spain
| | - B V Guerrero
- Depto. de Física y Mat. Apl., Facultad de Ciencias, Universidad de Navarra, E-31080 Pamplona, Spain
| | - R E R González
- Laboratório de Sistemas Complexos e Universais, Departamento de Física, Universidade Federal Rural de Pernambuco, Recife-PE, CEP 52171-900, Brasil
| | - I Zuriguel
- Depto. de Física y Mat. Apl., Facultad de Ciencias, Universidad de Navarra, E-31080 Pamplona, Spain
| | - A Garcimartín
- Depto. de Física y Mat. Apl., Facultad de Ciencias, Universidad de Navarra, E-31080 Pamplona, Spain
| |
Collapse
|
32
|
Pravin S, Chang B, Han E, London L, Goldman DI, Jaeger HM, Hsieh ST. Effect of two parallel intruders on total work during granular penetrations. Phys Rev E 2021; 104:024902. [PMID: 34525562 DOI: 10.1103/physreve.104.024902] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 06/02/2021] [Indexed: 02/05/2023]
Abstract
The intrusion of single passive intruders into granular particles has been studied in detail. However, the intrusion force produced by multiple intruders separated at a distance from one another, and hence the effect of their presence in close proximity to one another, is less explored. Here, we used numerical simulations and laboratory experiments to study the force response of two parallel rods intruding vertically into granular media while varying the gap spacing between them. We also explored the effect of variations in friction, intruder size, and particle size on the force response. The total work (W) of the two rods over the depth of intrusion was measured, and the instantaneous velocities of particles over the duration of intrusion were calculated by simulations. We found that the total work done by the intruders changes with distance between them. We observed a peak in W at a gap spacing of ∼3 particle diameters, which was up to 25% greater than W at large separation (>11 particle diameters), beyond which the total work plateaued. This peak was likely due to reduced particle flow between intruders as we found a larger number of strong forces-identified as force chains-in the particle domain at gaps surrounding the peak force. Although higher friction caused greater force generation during intrusion, the gap spacing between the intruders at which the peak total work was generated remained unchanged. Larger intruder sizes resulted in greater total work with the peak in W occurring at slightly larger intruder separations. Taken together, our results show that peak total work done by two parallel intruders remained within a narrow range, remaining robust to most other tested parameters.
Collapse
Affiliation(s)
- Swapnil Pravin
- Department of Biology, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Brian Chang
- Department of Biology, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Endao Han
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | - Lionel London
- Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | - Heinrich M Jaeger
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | - S Tonia Hsieh
- Department of Biology, Temple University, Philadelphia, Pennsylvania 19122, USA
| |
Collapse
|
33
|
Hsu CP, Baysal HE, Wirenborn G, Mårtensson G, Prahl Wittberg L, Isa L. Roughness-dependent clogging of particle suspensions flowing into a constriction. SOFT MATTER 2021; 17:7252-7259. [PMID: 34318863 DOI: 10.1039/d1sm00738f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
When concentrated particle suspensions flow into a constricting channel, the suspended particles may either smoothly flow through the constriction or jam and clog the channel. These clogging events are typically detrimental to technological processes, such as in the printing of dense pastes or in filtration, but can also be exploited in micro-separation applications. Many studies have to date focused on important parameters influencing the occurrence of clogs, such as flow velocity, particle concentration, and channel geometry. However, the investigation of the role played by the particle surface properties has surprisingly received little attention so far. Here, we study the effect of surface roughness on the clogging of suspensions of silica particles under pressure-driven flows along a microchannel presenting a constriction. We synthesize micron-sized particles with uniform surface chemistry and tunable roughness and determine the occurrence of clogging events as a function of velocity and volume fraction for a given surface topography. Our results show that there is a clear correlation between surface roughness and flow rate, indicating that rougher particles are more likely to jam at the constriction for slower flows. These findings identify surface roughness as an essential parameter to consider in the formulation of particulate suspensions for applications where clogging plays an important role.
Collapse
Affiliation(s)
- Chiao-Peng Hsu
- Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zürich, 8093 Zürich, Switzerland.
| | | | | | | | | | | |
Collapse
|
34
|
Reichhardt C, Reichhardt CJO. Clogging, dynamics, and reentrant fluid for active matter on periodic substrates. Phys Rev E 2021; 103:062603. [PMID: 34271652 DOI: 10.1103/physreve.103.062603] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/20/2021] [Indexed: 12/14/2022]
Abstract
We examine the collective states of run-and-tumble active matter disks driven over a periodic obstacle array. When the drive is applied along a symmetry direction of the array, we find a clog-free uniform liquid state for low activity, while at higher activity, the density becomes increasingly heterogeneous and an active clogged state emerges in which the mobility is strongly reduced. For driving along nonsymmetry or incommensurate directions, there are two different clogging behaviors consisting of a drive-dependent clogged state in the low activity thermal limit and a drive-independent clogged state at high activity. These regimes are separated by a uniform flowing liquid at intermediate activity. There is a critical activity level above which the thermal clogged state does not occur, as well as an optimal activity level that maximizes the disk mobility. Thermal clogged states are dependent on the driving direction while active clogged states are not. In the low activity regime, diluting the obstacles produces a monotonic increase in the mobility; however, for large activities, the mobility is more robust against obstacle dilution. We also examine the velocity-force curves for driving along nonsymmetry directions and find that they are linear when the activity is low or intermediate but become nonlinear at high activity and show behavior similar to that found for the plastic depinning of solids. At higher drives, the active clustering is lost. For low activity, we also find a reentrant fluid phase, where the system transitions from a high mobility fluid at low drives to a clogged state at higher drives and then back into another fluid phase at very high drives. We map the regions in which the thermally clogged, partially clogged, active uniform fluid, clustered fluid, active clogged, and directionally locked states occur as a function of disk density, drift force, and activity.
Collapse
Affiliation(s)
- C Reichhardt
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - C J O Reichhardt
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
35
|
Gao GJJ, Yang FL, Holcomb MC, Blawzdziewicz J. Enhanced flow rate by the concentration mechanism of Tetris particles when discharged from a hopper with an obstacle. Phys Rev E 2021; 103:062904. [PMID: 34271757 DOI: 10.1103/physreve.103.062904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/13/2021] [Indexed: 11/07/2022]
Abstract
We apply a holistic two-dimensional (2D) Tetris-like model, where particles move based on prescribed rules, to investigate the flow rate enhancement from a hopper. This phenomenon was originally reported in the literature as a feature of placing an obstacle at an optimal location near the exit of a hopper discharging athermal granular particles under gravity. We find that this phenomenon is limited to a system of sufficiently many particles. In addition to the waiting room effect, another mechanism able to explain and create the flow rate enhancement is the concentration mechanism of particles on their way to reaching the hopper exit after passing the obstacle. We elucidate the concentration mechanism by decomposing the flow rate into its constituent variables: the local area packing fraction ϕ_{l}^{E} and the averaged particle velocity v_{y}^{E} at the hopper exit. In comparison to the case without an obstacle, our results show that an optimally placed obstacle can create a net flow rate enhancement of relatively weakly driven particles, caused by the exit-bottleneck coupling if ϕ_{l}^{E}>ϕ_{o}^{c}, where ϕ_{o}^{c} is a characteristic area packing fraction marking a transition from fast to slow flow regimes of Tetris particles. Utilizing the concentration mechanism by artificially guiding particles into the central sparse space under the obstacle or narrowing the hopper exit angle under the obstacle, we can create a manmade flow rate peak of relatively strongly driven particles that initially exhibit no flow rate peak. Additionally, the enhanced flow rate can be maximized by an optimal obstacle shape, particle acceleration rate toward the hopper exit, or exit geometry of the hopper.
Collapse
Affiliation(s)
- Guo-Jie Jason Gao
- Department of Mathematical and Systems Engineering, Shizuoka University, Hamamatsu, Shizuoka 432-8561, Japan
| | - Fu-Ling Yang
- Department of Mechanical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Michael C Holcomb
- Department of Physics and Geosciences, Angelo State University, San Angelo, Texas 76909-0904, USA
| | - Jerzy Blawzdziewicz
- Department of Physics and Astronomy, Texas Tech University, Lubbock, Texas 79409-1051, USA.,Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas 79409-1021, USA
| |
Collapse
|
36
|
Prakash P, Abdulla AZ, Varma M. Contact Force Mediated Rapid Deposition of Colloidal Microspheres Flowing over Microstructured Barriers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:6915-6922. [PMID: 34076447 DOI: 10.1021/acs.langmuir.1c00370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Deposition of particles while flowing past constrictions is a ubiquitous phenomenon observed in diverse systems. Some common examples are jamming of salt crystals near the orifice of salt shakers, clogging of filter systems, gridlock in vehicular traffic, etc. Our work investigates the deposition events of colloidal microspheres flowing over microstructured barriers in microfluidic devices. The interplay of DLVO, contact, and hydrodynamic forces in facilitating rapid deposition of microspheres is discussed. Noticeably, a decrease in the electrostatic repulsion among microspheres leads to linear chain formations, whereas an increase in roughness results in rapid deposition.
Collapse
Affiliation(s)
- P Prakash
- Centre for Nanoscience and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - A Z Abdulla
- Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | - M Varma
- Centre for Nanoscience and Engineering, Indian Institute of Science, Bangalore 560012, India
- Robert Bosch Centre for Cyber Physical Systems, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
37
|
Shao Y, Ruan X, Li S. Mechanism for clogging of microchannels by small particles with liquid cohesion. AIChE J 2021. [DOI: 10.1002/aic.17288] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yachan Shao
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering Tsinghua University Beijing China
| | - Xuan Ruan
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering Tsinghua University Beijing China
| | - Shuiqing Li
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering Tsinghua University Beijing China
| |
Collapse
|
38
|
Strategic placement of an obstacle suppresses droplet break up in the hopper flow of a microfluidic soft crystal. Proc Natl Acad Sci U S A 2021; 118:2017822118. [PMID: 33941691 DOI: 10.1073/pnas.2017822118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
When granular materials, colloidal suspensions, and even animals and crowds exit through a narrow outlet, clogs can form spontaneously when multiple particles or entities attempt to exit simultaneously, thereby obstructing the outlet and ultimately halting the flow. Counterintuitively, the presence of an obstacle upstream of the outlet has been found to suppress clog formation. For soft particles such as emulsion drops, clogging has not been observed in the fast flow limit due to their deformability and vanishing interparticle friction. Instead, they pinch off each other and undergo break up when multiple drops attempt to exit simultaneously. Similar to how an obstacle reduces clogging in a rigid particle system, we hypothesize and demonstrate that an obstacle could suppress break up in the two-dimensional hopper flow of a microfluidic crystal consisting of dense emulsion drops by preventing the simultaneous exit of multiple drops. A regime map plotting the fraction of drops that undergo break up in a channel with different obstacle sizes and locations delineates the geometrical constraints necessary for effective break up suppression. When optimally placed, the obstacle induced an unexpected ordering of the drops, causing them to alternate and exit the outlet one at a time. Droplet break up is suppressed drastically by almost three orders of magnitude compared to when the obstacle is absent. This result can provide a simple, passive strategy to prevent droplet break up and can find use in improving the robustness and integrity of droplet microfluidic biochemical assays as well as in extrusion-based three-dimensional printing of emulsion or foam-based materials.
Collapse
|
39
|
Yu QC, Zheng N, Shi QF. Clogging of granular materials in a horizontal hopper: Effect of outlet size, hopper angle, and driving velocity. Phys Rev E 2021; 103:052902. [PMID: 34134195 DOI: 10.1103/physreve.103.052902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
Due to the independence of the driving velocity and outlet size, it is possible to isolate geometrical and kinematic contributions to clogging in two-dimensional horizontal flow in a hopper driven by a conveyor belt. We experimentally investigate the geometric (outlet size and hopper angle) and kinematic effects (driving velocity) on the clogging in such a horizontal flow. Based on quantitative measurements and analysis of the avalanche size, blocking probability of a particle at the outlet, and other parameters, we show that the geometric factors can more effectively affect clogging. In addition, we find that the clogging tends to be alleviated with the increases of the driving velocity, suggesting a possible "fast is fast" behavior within a wide range of driving velocity. We borrow and modify a model from clogging in gravity-driven hoppers, which can accurately describe the shape of the clogging probability function in the conveyor belt driven flow, suggesting that these two systems could share some mechanisms for clogging.
Collapse
Affiliation(s)
- Quan-Chun Yu
- School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Ning Zheng
- School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Qing-Fan Shi
- School of Physics, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
40
|
Wang J, Fan B, Pongó T, Harth K, Trittel T, Stannarius R, Illig M, Börzsönyi T, Cruz Hidalgo R. Silo discharge of mixtures of soft and rigid grains. SOFT MATTER 2021; 17:4282-4295. [PMID: 33688878 DOI: 10.1039/d0sm01887b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We study the outflow dynamics and clogging phenomena of mixtures of soft, elastic low-friction spherical grains and hard frictional spheres of similar size in a quasi-two-dimensional (2D) silo with narrow orifice at the bottom. Previous work has demonstrated the crucial influence of elasticity and friction on silo discharge. We show that the addition of small amounts, even as low as 5%, of hard grains to an ensemble of soft, low-friction grains already has significant consequences. The mixtures allow a direct comparison of the probabilities of the different types of particles to clog the orifice. We analyze these probabilities for the hard, frictional and the soft, slippery grains on the basis of their participation in the blocking arches, and compare outflow velocities and durations of non-permanent clogs for different compositions of the mixtures. Experimental results are compared with numerical simulations. The latter strongly suggest a significant influence of the inter-species particle friction.
Collapse
Affiliation(s)
- Jing Wang
- Institute of Physics, Otto von Guericke University, Department of Nonlinear Phenomena, Universitätsplatz 2, D-39106 Magdeburg, Germany.
| | - Bo Fan
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, P. O. Box 49, H-1525 Budapest, Hungary and Physical Chemistry and Soft Matter, Wageningen University & Research, Wageningen, The Netherlands
| | - Tivadar Pongó
- Física y Matemática Aplicada, Facultad de Ciencias, Universidad de Navarra, Pamplona, Spain
| | - Kirsten Harth
- Institute of Physics, Otto von Guericke University, Department of Nonlinear Phenomena, Universitätsplatz 2, D-39106 Magdeburg, Germany.
| | - Torsten Trittel
- Institute of Physics, Otto von Guericke University, Department of Nonlinear Phenomena, Universitätsplatz 2, D-39106 Magdeburg, Germany.
| | - Ralf Stannarius
- Institute of Physics, Otto von Guericke University, Department of Nonlinear Phenomena, Universitätsplatz 2, D-39106 Magdeburg, Germany.
| | - Maja Illig
- Institute of Physics, Otto von Guericke University, Department of Nonlinear Phenomena, Universitätsplatz 2, D-39106 Magdeburg, Germany.
| | - Tamás Börzsönyi
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, P. O. Box 49, H-1525 Budapest, Hungary
| | - Raúl Cruz Hidalgo
- Física y Matemática Aplicada, Facultad de Ciencias, Universidad de Navarra, Pamplona, Spain
| |
Collapse
|
41
|
Madrid MA, Carlevaro CM, Pugnaloni LA, Kuperman M, Bouzat S. Enhancement of the flow of vibrated grains through narrow apertures by addition of small particles. Phys Rev E 2021; 103:L030901. [PMID: 33862726 DOI: 10.1103/physreve.103.l030901] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 03/08/2021] [Indexed: 11/07/2022]
Abstract
We analyze the flow and clogging of circular grains passing through a small aperture under vibration in two dimensions. Via discrete element method simulations, we show that when grains smaller than the original ones are introduced in the system as an additive, the net flow of the original species can be significantly increased. Moreover, there is an optimal radius of the additive particles that maximizes the effect. This finding may constitute the basis for technological applications not only concerning the flow of granular materials but also regarding active matter, including pedestrian evacuation.
Collapse
Affiliation(s)
- Marcos A Madrid
- Instituto de Física de Líquidos y Sistemas Biológicos, CONICET, 59 789, 1900 La Plata, Argentina.,Departamento de Ingeniería Mecánica, Universidad Tecnológica Nacional, Facultad Regional La Plata, 1900 La Plata, Argentina
| | - C Manuel Carlevaro
- Instituto de Física de Líquidos y Sistemas Biológicos, CONICET, 59 789, 1900 La Plata, Argentina.,Departamento de Ingeniería Mecánica, Universidad Tecnológica Nacional, Facultad Regional La Plata, 1900 La Plata, Argentina
| | - Luis A Pugnaloni
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de La Pampa, CONICET, Uruguay 151, 6300 Santa Rosa (La Pampa), Argentina
| | - Marcelo Kuperman
- Consejo Nacional de Investigaciones Científicas y Técnicas, Centro Atómico Bariloche (CNEA), 8400 Bariloche, Río Negro, Argentina
| | - Sebastián Bouzat
- Consejo Nacional de Investigaciones Científicas y Técnicas, Centro Atómico Bariloche (CNEA), 8400 Bariloche, Río Negro, Argentina
| |
Collapse
|
42
|
Li H, Zhang J, Xia L, Yang L, Song W, Yuen KKR. Characteristic time in highly motivated movements of children and adults through bottlenecks. Sci Rep 2021; 11:5096. [PMID: 33658530 PMCID: PMC7930252 DOI: 10.1038/s41598-021-84324-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/15/2021] [Indexed: 11/11/2022] Open
Abstract
Current codes for fire protection of buildings are mainly based on the movement of adults and neglect the movement characteristic of pre-school children. Having a profound comprehension of the difference between children and adults passing bottlenecks is of great help to improve the safety levels of preschool children. This paper presents an experimental study on the bottleneck flow of pre-school children in a room. The movement characteristics of children’s and adults’ bottleneck flow are investigated with two macroscopic properties: density and speed profiles as well as microscopic characteristic time: motion activation time, relaxation time, exit travel time and time gap. Arch-like density distributions are observed both for highly motivated children and adults, while the distance between the peak density region and the exit location is shorter for children and longer for adults. Children’s movement is less flexible manifested as longer motion activation time and longer relaxation time compared to that of adults. The findings from this study could enhance the understanding of crowd dynamics among the children population and provide supports for the scientific building design for children’s facilities.
Collapse
Affiliation(s)
- Hongliu Li
- State Key Laboratory of Fire Science, University of Science and Technology of China, Jinzhai Road 96, Hefei, Anhui, People's Republic of China.,Department of Architecture and Civil Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong, People's Republic of China
| | - Jun Zhang
- State Key Laboratory of Fire Science, University of Science and Technology of China, Jinzhai Road 96, Hefei, Anhui, People's Republic of China.
| | - Long Xia
- State Key Laboratory of Fire Science, University of Science and Technology of China, Jinzhai Road 96, Hefei, Anhui, People's Republic of China
| | - Libing Yang
- College of Civil Engineering and Architecture, Hunan Institute of Science and Technology, Xueyuan Road, Yueyang, Hunan, People's Republic of China
| | - Weiguo Song
- State Key Laboratory of Fire Science, University of Science and Technology of China, Jinzhai Road 96, Hefei, Anhui, People's Republic of China
| | - Kwok Kit Richard Yuen
- Department of Architecture and Civil Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong, People's Republic of China
| |
Collapse
|
43
|
Reichhardt C, Reichhardt CJO. Directional clogging and phase separation for disk flow through periodic and diluted obstacle arrays. SOFT MATTER 2021; 17:1548-1557. [PMID: 33331385 DOI: 10.1039/d0sm01714k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We model collective disk flow though a square array of obstacles as the flow direction is changed relative to the symmetry directions of the array. At lower disk densities there is no clogging for any driving direction, but as the disk density increases, the average disk velocity decreases and develops a drive angle dependence. For certain driving angles, the flow is reduced or drops to zero when the system forms a heterogeneous clogged state consisting of high density clogged regions coexisting with empty regions. The clogged states are fragile and can be unclogged by changing the driving angle. For large obstacle sizes, we find a uniform clogged state that is distinct from the collective clogging regime. Within the clogged phases, depinning transitions can occur as a function of increasing driving force, with intermittent motion appearing just above the depinning threshold. The clogging is robust against the random removal or dilution of the obstacle sites, and the disks are able to form system-spanning clogged clusters even under increasing dilution. If the dilution becomes too large, however, the clogging behavior is lost.
Collapse
Affiliation(s)
- C Reichhardt
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
| | - C J O Reichhardt
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
| |
Collapse
|
44
|
Hafez A, Liu Q, Finkbeiner T, Alouhali RA, Moellendick TE, Santamarina JC. The effect of particle shape on discharge and clogging. Sci Rep 2021; 11:3309. [PMID: 33558548 PMCID: PMC7870973 DOI: 10.1038/s41598-021-82744-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 01/13/2021] [Indexed: 11/17/2022] Open
Abstract
Granular flow is common across different fields from energy resource recovery and mineral processing to grain transport and traffic flow. Migrating particles may jam and form arches that span constrictions and hinder particle flow. Most studies have investigated the migration and clogging of spherical particles, however, natural particles are rarely spherical, but exhibit eccentricity, angularity and roughness. New experiments explore the discharge of cubes, 2D crosses, 3D crosses and spheres under dry conditions and during particle-laden fluid flow. Variables include orifice-to-particle size ratio and solidity. Cubes and 3D crosses are the most prone to clogging because of their ability to interlock or the development of face-to-face contacts that can resist torque and enhance bridging. Spheres arriving to the orifice must be correctly positioned to create stable bridges, while flat 2D crosses orient their longest axes in the direction of flowlines across the orifice and favor flow. Intermittent clogging causes kinetic retardation in particle-laden flow even in the absence of inertial effects; the gradual increase in the local particle solidity above the constriction enhances particle interactions and the probability of clogging. The discharge volume before clogging is a Poisson process for small orifice-to-particle size ratio; however, the clogging probability becomes history-dependent for non-spherical particles at large orifice-to-particle size ratio and high solidities, i.e., when particle–particle interactions and interlocking gain significance.
Collapse
Affiliation(s)
- Ahmed Hafez
- Earth Science and Engineering, KAUST, Thuwal, 23955-6900, Saudi Arabia
| | - Qi Liu
- Earth Science and Engineering, KAUST, Thuwal, 23955-6900, Saudi Arabia
| | - Thomas Finkbeiner
- Earth Science and Engineering, KAUST, Thuwal, 23955-6900, Saudi Arabia
| | | | | | | |
Collapse
|
45
|
Echeverría-Huarte I, Garcimartín A, Hidalgo RC, Martín-Gómez C, Zuriguel I. Estimating density limits for walking pedestrians keeping a safe interpersonal distancing. Sci Rep 2021; 11:1534. [PMID: 33452269 PMCID: PMC7810874 DOI: 10.1038/s41598-020-79454-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/01/2020] [Indexed: 11/18/2022] Open
Abstract
With people trying to keep a safe distance from others due to the COVID-19 outbreak, the way in which pedestrians walk has completely changed since the pandemic broke out1,2. In this work, laboratory experiments demonstrate the effect of several variables-such as the pedestrian density, the walking speed and the prescribed safety distance-on the interpersonal distance established when people move within relatively dense crowds. Notably, we observe that the density should not be higher than 0.16 pedestrians per square meter (around 6 m2 per pedestrian) in order to guarantee an interpersonal distance of 1 m. Although the extrapolation of our findings to other more realistic scenarios is not straightforward, they can be used as a first approach to establish density restrictions in urban and architectonic spaces based on scientific evidence.
Collapse
Grants
- FIS2017-84631-P Ministerio de Economía, Industria y Competitividad, Gobierno de España
- FIS2017-84631-P Ministerio de Economía, Industria y Competitividad, Gobierno de España
- FIS2017-84631-P Ministerio de Economía, Industria y Competitividad, Gobierno de España
- FIS2017-84631-P Ministerio de Economía, Industria y Competitividad, Gobierno de España
- FIS2017-84631-P Ministerio de Economía, Industria y Competitividad, Gobierno de España
Collapse
Affiliation(s)
- I Echeverría-Huarte
- Departamento de Física y Matemática Aplicada, Facultad de Ciencias, Universidad de Navarra, Pamplona, Spain
| | - A Garcimartín
- Departamento de Física y Matemática Aplicada, Facultad de Ciencias, Universidad de Navarra, Pamplona, Spain
| | - R C Hidalgo
- Departamento de Física y Matemática Aplicada, Facultad de Ciencias, Universidad de Navarra, Pamplona, Spain
| | - C Martín-Gómez
- Department of Construction, Building Services and Structures, Universidad de Navarra, Pamplona, Spain
| | - I Zuriguel
- Departamento de Física y Matemática Aplicada, Facultad de Ciencias, Universidad de Navarra, Pamplona, Spain.
| |
Collapse
|
46
|
Mohammadi M, Harth K, Puzyrev D, Trittel T, Hanselka T, Stannarius R. Mechanically driven active and passive grains as models for egress dynamics. EPJ WEB OF CONFERENCES 2021. [DOI: 10.1051/epjconf/202124903016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Passages of people or cattle through narrow entrances or exits occur in manifold situations. They are difficult to study experimentally, because one has to carefully separate objective, physical parameters from subjective, individual motivations, manners and temperament. Mechanically excited physical model systems can help to discriminate some of these classes of parameters. We characterize active and passive particles of equal shape and mass on a vibrating plate and study their bottleneck passage dynamics. They show fundamentally different scaling behavior.
Collapse
|
47
|
Garcimartín A, Guerrero BV, Nicolas A, Barbosa da Silva RC, Zuriguel I. On the broad tails in breaking time distributions of vibrated clogging arches. EPJ WEB OF CONFERENCES 2021. [DOI: 10.1051/epjconf/202124903009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Flowing grains can clog an orifice by developing arches, an undesirable event in many cases. Several strategies have been put forward to avoid this. One of them is to vibrate the system in order to undo the clogging. Nevertheless, the time taken to break an arch under a constant vibration has a distribution displaying a heavy tail. This can lead to a situation where the average breaking time is not well defined. Moreover, it has been observed in some experiments that these tails tend to flatten for very long times, exacerbating the problem. Here we will review two conceptual frameworks that have been proposed to understand the phenomenon and discuss their physical implications.
Collapse
|
48
|
Ono-Dit-Biot JC, Lorand T, Dalnoki-Veress K. Continuum Model Applied to Granular Analogs of Droplets and Puddles. PHYSICAL REVIEW LETTERS 2020; 125:228001. [PMID: 33315448 DOI: 10.1103/physrevlett.125.228001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/28/2020] [Accepted: 10/16/2020] [Indexed: 06/12/2023]
Abstract
We investigate the growth of aggregates made of adhesive frictionless oil droplets, piling up against a solid interface. Monodisperse droplets are produced one by one in an aqueous solution and float upward to the top of a liquid cell where they accumulate and form an aggregate at a flat horizontal interface. Initially, the aggregate grows in 3D until its height reaches a critical value. Beyond a critical height, adding more droplets results in the aggregate spreading in 2D along the interface with a constant height. We find that the shape of such aggregates, despite being granular in nature, is well described by a continuum model. The geometry of the aggregates is determined by a balance between droplet buoyancy and adhesion as given by a single parameter, a "granular" capillary length, analogous to the capillary length of a liquid.
Collapse
Affiliation(s)
- Jean-Christophe Ono-Dit-Biot
- Department of Physics and Astronomy, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4M1, Canada
| | - Tanel Lorand
- Department of Physics and Astronomy, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4M1, Canada
| | - Kari Dalnoki-Veress
- Department of Physics and Astronomy, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4M1, Canada
- UMR CNRS Gulliver 7083, ESPCI Paris, PSL Research University, 75005 Paris, France
| |
Collapse
|
49
|
Reichhardt C, Reichhardt CJO. Directional locking effects for active matter particles coupled to a periodic substrate. Phys Rev E 2020; 102:042616. [PMID: 33212736 DOI: 10.1103/physreve.102.042616] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
Directional locking occurs when a particle moving over a periodic substrate becomes constrained to travel along certain substrate symmetry directions. Such locking effects arise for colloids and superconducting vortices moving over ordered substrates when the direction of the external drive is varied. Here we study the directional locking of run-and-tumble active matter particles interacting with a periodic array of obstacles. In the absence of an external biasing force, we find that the active particle motion locks to various symmetry directions of the substrate when the run time between tumbles is large. The number of possible locking directions depends on the array density and on the relative sizes of the particles and the obstacles. For a square array of large obstacles, the active particle only locks to the x, y, and 45^{∘} directions, while for smaller obstacles, the number of locking angles increases. Each locking angle satisfies θ=arctan(p/q), where p and q are integers, and the angle of motion can be measured using the ratio of the velocities or the velocity distributions in the x and y directions. When a biasing driving force is applied, the directional locking behavior is affected by the ratio of the self-propulsion force to the biasing force. For large biasing, the behavior resembles that found for directional locking in passive systems. For large obstacles under biased driving, a trapping behavior occurs that is nonmonotonic as a function of increasing run length or increasing self-propulsion force, and the trapping diminishes when the run length is sufficiently large.
Collapse
Affiliation(s)
- C Reichhardt
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - C J O Reichhardt
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
50
|
Reichhardt C, Reichhardt CJO. Collective effects and pattern formation for directional locking of disks moving through obstacle arrays. Phys Rev E 2020; 102:022608. [PMID: 32942505 DOI: 10.1103/physreve.102.022608] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 07/31/2020] [Indexed: 01/01/2023]
Abstract
We examine directional locking effects in an assembly of disks driven through a square array of obstacles as the angle of drive rotates from 0^{∘} to 90^{∘}. For increasing disk densities, the system exhibits a series of different dynamic patterns along certain locking directions, including one-dimensional or multiple-row chain phases and density-modulated phases. For nonlocking driving directions, the disks form disordered patterns or clusters. When the obstacles are small or far apart, a large number of locking phases appear; however, as the number of disks increases, the number of possible locking phases drops due to the increasing frequency of collisions between the disks and obstacles. For dense arrays or large obstacles, we find an increased clogging effect in which immobile and moving disks coexist.
Collapse
Affiliation(s)
- C Reichhardt
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - C J O Reichhardt
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|