1
|
Koval AM, Jenness GR, Shukla MK. Structural investigation of the complexation between vitamin B12 and per- and polyfluoroalkyl substances: Insights into degradation using density functional theory. CHEMOSPHERE 2024; 364:143213. [PMID: 39214410 DOI: 10.1016/j.chemosphere.2024.143213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/16/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Environmental remediation of per- and polyfluoroalkyl substances (PFAS) has become a significant research topic in recent years due to the fact that these materials are omnipresent, resistant to degradation and thus environmentally persistent. Unfortunately, they have also been shown to cause health concerns. PFAS are widely used in industrial applications and consumer products. Vitamin B12 (B12) has been identified as being catalytically active towards a variety of halogenated compounds such as PFAS. It has also been shown to be effective when using sulfide as a reducing agent for B12. This is promising as sulfide is readily available in the environment. However, there are many unknowns with respect to PFAS interactions with B12. These include the reaction mechanism and B12's specificity for PFAS with certain functionalization(s). In order to understand the specificity of B12 towards branched PFAS, we examined the atomistic interactions between B12 and eight different PFAS molecules using Density Functional Theory (B3LYP/cc-pVDZ). The PFAS test set included linear PFAS and their branched analogs, carboxylic acid and sulfonic acid headgroups, and aromatic and non-aromatic cyclic structures. Conformational analyses were carried out to determine the lowest energy configurations. This analysis showed that small chain PFAS such as perfluorobutanoic acid interact with the cobalt center of B12. Bulkier PFAS prefer to interact with the amine and carbonyl groups on the sidechains of the B12 ring system. Furthermore, computed complexation energies determined that, in general, branched PFAS (e.g. perfluoro-5-methylheptane sulfonic acid) interact more strongly than linear molecules (e.g. perfluorooctanesulfonic acid). Our results indicate that it may be possible to alter the interactions between B12 and PFAS by synthetically modifying the sidechains of the ring structure.
Collapse
Affiliation(s)
- Ashlyn M Koval
- Simetri, Inc., 7005 University Blvd, Winter Park, FL, 32792, United States
| | - Glen R Jenness
- Environmental Laboratory, US Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, MS, 39180, United States
| | - Manoj K Shukla
- Environmental Laboratory, US Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, MS, 39180, United States.
| |
Collapse
|
2
|
Londhe K, Lee CS, Grdanovska S, Smolinski R, Hamdan N, McDonough C, Cooper C, Venkatesan AK. Application of electron beam technology to decompose per- and polyfluoroalkyl substances in water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123770. [PMID: 38493862 DOI: 10.1016/j.envpol.2024.123770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/04/2024] [Accepted: 03/10/2024] [Indexed: 03/19/2024]
Abstract
The widespread detection of per- and polyfluoroalkyl substances (PFAS) in environmental compartments across the globe has raised several health concerns. Destructive technologies that aim to transform these recalcitrant PFAS into less toxic, more manageable products, are gaining impetus to address this problem. In this study, a 9 MeV electron beam accelerator was utilized to treat a suite of PFAS (perfluoroalkyl carboxylates: PFCAs, perfluoroalkyl sulfonates, and 6:2 fluorotelomer sulfonate: FTS) at environmentally relevant levels in water under different operating and water quality conditions. Although perfluorooctanoic acid and perfluorooctane sulfonic acid showed >90% degradation at <500 kGy dose at optimized conditions, a fluoride mass balance revealed that complete defluorination occurred only at/or near 1000 kGy. Non-target and suspect screening revealed additional degradation pathways differing from previously reported mechanisms. Treatment of PFAS mixtures in deionized water and groundwater matrices showed that FTS was preferentially degraded (∼90%), followed by partial degradation of long-chain PFAS (∼15-60%) and a simultaneous increase of short-chain PFAS (up to 20%) with increasing doses. The increase was much higher (up to 3.5X) in groundwaters compared to deionized water due to the presence of PFAS precursors as confirmed by total oxidizable precursor (TOP) assay. TOP assay of e-beam treated samples did not show any increase in PFCAs, confirming that e-beam was effective in also degrading precursors. This study provides an improved understanding of the mechanism of PFAS degradation and revealed that short-chain PFAS are more resistant to defluorination and their levels and regulation in the environment will determine the operating conditions of e-beam and other PFAS treatment technologies.
Collapse
Affiliation(s)
- Kaushik Londhe
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA; New York State Center for Clean Water Technology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Cheng-Shiuan Lee
- Research Center for Environmental Changes, Academia Sinica, Taipei, 115, Taiwan
| | | | - Rachel Smolinski
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Noor Hamdan
- Department of Environmental Health and Engineering, Johns Hopkins University, MD, 21205, USA
| | - Carrie McDonough
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Charles Cooper
- Fermi National Accelerator Laboratory, Batavia, IL, 60510, USA
| | - Arjun K Venkatesan
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA; New York State Center for Clean Water Technology, Stony Brook University, Stony Brook, NY, 11794, USA.
| |
Collapse
|
3
|
Antonopoulou M, Spyrou A, Tzamaria A, Efthimiou I, Triantafyllidis V. Current state of knowledge of environmental occurrence, toxic effects, and advanced treatment of PFOS and PFOA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169332. [PMID: 38123090 DOI: 10.1016/j.scitotenv.2023.169332] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are anthropogenic synthetic compounds, with high chemical and thermal stability and a persistent, stable and bioaccumulative nature that renders them a potential hazard for the environment, its organisms, and humans alike. Perfluorooctane sulfonic acid (PFOS) and Perfluorooctanoic acid (PFOA) are the most well-known substances of this category and even though they are phased out from production they are still highly detectable in several environmental matrices. As a result, they have been spread globally in water sources, soil and biota exerting toxic and detrimental effects. Therefore, up and coming technologies, namely advanced oxidation processes (AOPs) and advanced reduction processes (ARPs) are being tested for their implementation in the degradation of these pollutants. Thus, the present review compiles the current knowledge on the occurrence of PFOS and PFOA in the environment, the various toxic effects they have induced in different organisms as well as the ability of AOPs and ARPs to diminish and/or eliminate them from the environment.
Collapse
Affiliation(s)
- Maria Antonopoulou
- Department of Sustainable Agriculture, University of Patras, 30131 Agrinio, Greece.
| | - Alexandra Spyrou
- Department of Sustainable Agriculture, University of Patras, 30131 Agrinio, Greece
| | - Anna Tzamaria
- Department of Sustainable Agriculture, University of Patras, 30131 Agrinio, Greece
| | - Ioanna Efthimiou
- Department of Biology, Section of Genetics Cell Biology and Development, University of Patras, 26500 Patras, Greece
| | | |
Collapse
|
4
|
Yadav M, Osonga FJ, Sadik OA. Unveiling nano-empowered catalytic mechanisms for PFAS sensing, removal and destruction in water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169279. [PMID: 38123092 DOI: 10.1016/j.scitotenv.2023.169279] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/14/2023] [Accepted: 12/09/2023] [Indexed: 12/23/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are organofluorine compounds used to manufacture various industrial and consumer goods. Due to their excellent physical and thermal stability ascribed to the strong CF bond, these are ubiquitously present globally and difficult to remediate. Extensive toxicological and epidemiological studies have confirmed these substances to cause adverse health effects. With the increasing literature on the environmental impact of PFAS, the regulations and research have also expanded. Researchers worldwide are working on the detection and remediation of PFAS. Many methods have been developed for their sensing, removal, and destruction. Amongst these methods, nanotechnology has emerged as a sustainable and affordable solution due to its tunable surface properties, high sorption capacities, and excellent reactivities. This review comprehensively discusses the recently developed nanoengineered materials used for detecting, sequestering, and destroying PFAS from aqueous matrices. Innovative designs of nanocomposites and their efficiency for the sensing, removal, and degradation of these persistent pollutants are reviewed, and key insights are analyzed. The mechanistic details and evidence available to support the cleavage of the CF bond during the treatment of PFAS in water are critically examined. Moreover, it highlights the challenges during PFAS quantification and analysis, including the analysis of intermediates in transitioning nanotechnologies from the laboratory to the field.
Collapse
Affiliation(s)
- Manavi Yadav
- Department of Chemistry and Environmental Sciences, New Jersey Institutes of Technology (NJIT), United States of America
| | - Francis J Osonga
- Department of Chemistry and Environmental Sciences, New Jersey Institutes of Technology (NJIT), United States of America
| | - Omowunmi A Sadik
- Department of Chemistry and Environmental Sciences, New Jersey Institutes of Technology (NJIT), United States of America.
| |
Collapse
|
5
|
Belal F, Mabrouk M, Hammad S, Ahmed H, Barseem A. Recent Applications of Quantum Dots in Pharmaceutical Analysis. J Fluoresc 2024; 34:119-138. [PMID: 37222883 DOI: 10.1007/s10895-023-03276-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/16/2023] [Indexed: 05/25/2023]
Abstract
Nanotechnology has emerged as one of the most potential areas for pharmaceutical analysis. The need for nanomaterials in pharmaceutical analysis is comprehended in terms of economic challenges, health and safety concerns. Quantum dots (QDs)or colloidal semiconductor nanocrystals are new groups of fluorescent nanoparticles that bind nanotechnology to drug analysis. Because of their special physicochemical characteristics and small size, QDs are thought to be promising candidates for the electrical and luminescent probes development. They were originally developed as luminescent biological labels, but are now discovering new analytical chemistry applications, where their photo-luminescent properties are used in pharmaceutical, clinical analysis, food quality control and environmental monitoring. In this review, we discuss QDs regarding properties and advantages, advances in methods of synthesis and their recent applications in drug analysis in the recent last years.
Collapse
Affiliation(s)
- Fathalla Belal
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Mokhtar Mabrouk
- Department of pharmaceutical analytical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Sherin Hammad
- Department of pharmaceutical analytical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Hytham Ahmed
- Pharmaceutical Analysis Department, Faculty of Pharmacy, Menoufia University, Menoufia, Egypt
| | - Aya Barseem
- Pharmaceutical Analysis Department, Faculty of Pharmacy, Menoufia University, Menoufia, Egypt.
| |
Collapse
|
6
|
Marciesky M, Aga DS, Bradley IM, Aich N, Ng C. Mechanisms and Opportunities for Rational In Silico Design of Enzymes to Degrade Per- and Polyfluoroalkyl Substances (PFAS). J Chem Inf Model 2023; 63:7299-7319. [PMID: 37981739 PMCID: PMC10716909 DOI: 10.1021/acs.jcim.3c01303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 11/21/2023]
Abstract
Per and polyfluoroalkyl substances (PFAS) present a unique challenge to remediation techniques because their strong carbon-fluorine bonds make them difficult to degrade. This review explores the use of in silico enzymatic design as a potential PFAS degradation technique. The scope of the enzymes included is based on currently known PFAS degradation techniques, including chemical redox systems that have been studied for perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) defluorination, such as those that incorporate hydrated electrons, sulfate, peroxide, and metal catalysts. Bioremediation techniques are also discussed, namely the laccase and horseradish peroxidase systems. The redox potential of known reactants and enzymatic radicals/metal-complexes are then considered and compared to potential enzymes for degrading PFAS. The molecular structure and reaction cycle of prospective enzymes are explored. Current knowledge and techniques of enzyme design, particularly radical-generating enzymes, and application are also discussed. Finally, potential routes for bioengineering enzymes to enable or enhance PFAS remediation are considered as well as the future outlook for computational exploration of enzymatic in situ bioremediation routes for these highly persistent and globally distributed contaminants.
Collapse
Affiliation(s)
- Melissa Marciesky
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Diana S Aga
- Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260, United States
| | - Ian M Bradley
- Department of Civil, Structural, and Environmental Engineering, State University of New York at Buffalo, Buffalo, New York 14228, United States
- Research and Education in Energy, Environmental and Water (RENEW) Institute, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Nirupam Aich
- Department of Civil and Environmental Engineering, University of Nebraska─Lincoln, Lincoln, Nebraska 68588-0531, United States
| | - Carla Ng
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
7
|
Biondo O, Tomei G, Saleem M, Sretenović GB, Magarotto M, Marotta E, Paradisi C. Products, reactive species and mechanisms of PFOA degradation in a self-pulsing discharge (SPD) plasma reactor. CHEMOSPHERE 2023; 341:139972. [PMID: 37640214 DOI: 10.1016/j.chemosphere.2023.139972] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/31/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Non-thermal plasma is a promising tool for novel technologies to treat water contaminated by recalcitrant pollutants. We report here on products, reactive species and mechanisms of the efficient degradation of perfluorooctanoic acid (PFOA) achieved with a self-pulsing discharge developed previously in our lab. Air or argon were used as plasma feed gas, ultrapure or tap water as aqueous medium. Identified organic intermediate products arise from chain-shortening and defluorination reactions, the latter achieving not only C-F to C-H exchange (hydro-de-fluorination), as reported in the literature, but also C-F to C-OH exchange (hydroxy-de-fluorination). In contrast with chain-shortening, yielding lower homologues of PFOA via selective cleavage of the C-C bond at the carboxylate group, defluorination occurs at various sites of the alkyl chain giving mixtures of different isomeric products. Plasma generated reactive species were investigated under all experimental conditions tested, using specific chemical probes and optical emission spectroscopy. Cross-analysis of the results revealed a striking direct correlation of energy efficiency for PFOA degradation and for production of plasma electrons. In contrast, no correlation was observed for emission bands of either Ar+ or OH radical. These results indicate a prevalent role of plasma electrons in initiating PFOA degradation using self-pulsing discharge plasma above the liquid.
Collapse
Affiliation(s)
- Omar Biondo
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Giulia Tomei
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Mubbshir Saleem
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Goran B Sretenović
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy; University of Belgrade, Faculty of Physics, PO Box 44, 11001, Belgrade, Serbia
| | - Mirko Magarotto
- Department of Industrial Engineering, University of Padova, Via Venezia 1, 35131, Padova, Italy; Department of Information Engineering, University of Padova, via Gradenigo 6/b, 35135, Padova, Italy
| | - Ester Marotta
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy.
| | - Cristina Paradisi
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| |
Collapse
|
8
|
Jiang Y, Hu Y, Yu Z, Lv Y, Liu Y, Li X, Lin C, Ye X, Yang G, Liu M. Rapid PFOS mineralization with peroxydisulfate activation process mediated by N modified Fe-based catalyst. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115364. [PMID: 37586198 DOI: 10.1016/j.ecoenv.2023.115364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/16/2023] [Accepted: 08/10/2023] [Indexed: 08/18/2023]
Abstract
As the cheap and efficient catalysts, the iron-based catalysts have been considered as one of the most promising catalysts for peroxydisulfate (PDS) activation and the development of high-performance iron-based catalysts are attracting growing attentions. In this work, a magnetic Fe-based catalysts (Fe/NC-1000) was obtained by using Fe modified ZIF-8 as the precursor and used to activate the PDS for the degradation of perfluorooctane sulphonate (PFOS). Morphology and structure analysis showed that the resulted Fe/NC-1000 catalyst was displayed porous spheres (40-60 nm) and mainly composed of Fe0, FeNx and carbon. When Fe/NC-1000 was employed to activate the PDS (0.1 g/L of catalyst dosage, 0.5 g/L of PDS dosage and at initial pH of 4.6), the Fe/NC-1000/PDS system exhibited excellent efficiency (97.9 ± 0.1) % for PFOS (10 mg/L) degradation within 30 min. The quenching tests and EPR results revealed that the Fe/NC-1000/PDS system degraded PFOS primarily through singlet oxygen (1O2) evolution and electron-transfer process. Besides, based on the degradation byproducts determined by LC-MS-MS, the PFOS first occurred de-sulfonation to form PFOA, and then the resulted PFOA underwent stepwise defluorination in the Fe/NC-1000/PDS system. Density Functional Theory (DFT) calculations and electrochemistry tests strongly confirmed that Fe/NC-1000 exhibited high electron transfer efficiency, resulting in promoted performance on activating PDS. Importantly, the results of Ecological Structure-Activity Relationship (ECOSAR) analysis showed that the intermediates were lowly toxic during the PFOS degradation, manifesting a green process for PFOS removal. This study would provide more understandings for the persulfate activation process mediated by Fe-based catalysts for Perfluorinated alkyl substances (PFAS) elimination.
Collapse
Affiliation(s)
- Yanting Jiang
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350116, China
| | - Yihui Hu
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350116, China
| | - Zhendong Yu
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350116, China
| | - Yuancai Lv
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350116, China.
| | - Yifan Liu
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350116, China
| | - Xiaojuan Li
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350116, China
| | - Chunxiang Lin
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350116, China
| | - Xiaoxia Ye
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350116, China
| | - Guifang Yang
- Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants, Putian University, Putian 351100, China.
| | - Minghua Liu
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350116, China; Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants, Putian University, Putian 351100, China
| |
Collapse
|
9
|
Guo TY, Li HW, Zhang CX, Wu Y. The colorimetry and smartphone determination of perfluorooctane sulfonate based on cytidine 5'-monophosphate-capped gold nanoclusters with peroxidase-like activity. Analyst 2023. [PMID: 37466370 DOI: 10.1039/d3an00763d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Besides being a luminescent material, cytidine 5'-monophosphate-capped gold nanoclusters (AuNCs@CMP) also show superior peroxidase-like activity which can promote TMB oxidation in the presence of H2O2, causing the solution to turn efficiently from pale to blue. However, the presence of perfluorooctane sulfonate (PFOS) in the above system inhibited TMB oxidation and bluing of the solution, consequently establishing a colorimetric platform of AuNCs/H2O2/TMB for PFOS determination. The results showed that it responded to PFOS over a wide range of 2.0-50 μM, with a limit of detection (LOD) as low as 150 nM. Furthermore, in-depth mechanism investigation revealed that, rather than the active site of the catalyst being occupied by PFOS, such a hypochromatic effect originated from depletion of the reactive oxygen species (ROS) by PFOS degradation, thereby also offering a unique strategy to scavenge the lethal toxicity of PFOS. In addition, the colorimetric response of AuNCs/H2O2/TMB to PFOS was extended to smartphone determination conveniently based on RGB values. Finally, the established platform was applied to PFOS determination both in soil extracts and in tap water with good recovery, which supplies a novel colorimetric platform for visual determination of PFOS in practice. The method has the advantages of being rapid, sensitive and highly selective, which highlight the design and construction of more systems for determination and elimination of lethal pollutants in environmental water.
Collapse
Affiliation(s)
- Tian-Yuan Guo
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, No. 2699 Qianjin Street, Changchun 130012, P. R. China.
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, No. 2 Liutiao Road, Changchun 130023, P. R. China
| | - Hong-Wei Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, No. 2699 Qianjin Street, Changchun 130012, P. R. China.
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, No. 2 Liutiao Road, Changchun 130023, P. R. China
| | - Chun-Xia Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, No. 2699 Qianjin Street, Changchun 130012, P. R. China.
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, No. 2 Liutiao Road, Changchun 130023, P. R. China
| | - Yuqing Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, No. 2699 Qianjin Street, Changchun 130012, P. R. China.
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, No. 2 Liutiao Road, Changchun 130023, P. R. China
| |
Collapse
|
10
|
Guin JP, Sullivan JA, Muldoon J, Thampi KR. Visible light induced degradation of perfluorooctanoic acid using iodine deficient bismuth oxyiodide photocatalyst. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131897. [PMID: 37385096 DOI: 10.1016/j.jhazmat.2023.131897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/09/2023] [Accepted: 06/17/2023] [Indexed: 07/01/2023]
Abstract
A bismuth oxyiodide photocatalyst having coexistent iodine deficient phases viz. Bi4O5I2 and Bi5O7I was prepared by using a solvothermal method followed by calcination process. This has been used for the degradation of model perfluoroalkyl acids such as perfluorooctanoic acid at low concentrations (1 ppm) under simulated solar light irradiation. 94% PFOA degradation with a rate constant of 1.7 h-1 and 65% defluorination of PFOA have been achieved following 2 h of photocatalysis. The degradation of PFOA happened by the parallel direct redox reactions with high energy photoexcited electrons at the conduction band, electrons in iodine vacancies and superoxide radicals. The degradation intermediates were analyzed by electrospray ionization-mass spectrometry in the negative mode. The catalyst was converted to a more iodine deficient Bi5O7I phase during photocatalysis following creation of iodine vacancies, some of which were compensated by the fluoride ions released from degraded PFOA.
Collapse
Affiliation(s)
- Jhimli Paul Guin
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield Dublin 4, Ireland; School of Chemistry, University College Dublin, Belfield Dublin 4, Ireland.
| | - James A Sullivan
- School of Chemistry, University College Dublin, Belfield Dublin 4, Ireland.
| | - Jimmy Muldoon
- School of Chemistry, University College Dublin, Belfield Dublin 4, Ireland
| | - K Ravindranathan Thampi
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield Dublin 4, Ireland.
| |
Collapse
|
11
|
Isowamwen O, Li R, Holsen T, Thagard SM. Plasma-assisted degradation of a short-chain perfluoroalkyl substance (PFAS): Perfluorobutane sulfonate (PFBS). JOURNAL OF HAZARDOUS MATERIALS 2023; 456:131691. [PMID: 37236102 DOI: 10.1016/j.jhazmat.2023.131691] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/20/2023] [Accepted: 05/22/2023] [Indexed: 05/28/2023]
Abstract
This study investigates the degradation of perfluorobutane sulfonate (PFBS), a chemical compound belonging to a group of per- and polyfluoroalkyl substances (PFAS), by gas-phase electrical discharge plasma. Plasma alone was ineffective in degrading PFBS due to its poor hydrophobicity, which inhibited the compound from accumulating at the plasma-liquid interface, the region of chemical reactivity. To overcome bulk liquid mass transport limitations, a surfactant, hexadecyltrimethylammonium bromide (CTAB), was introduced to interact with and transport PFBS to the plasma-liquid interface. In the presence of CTAB, ∼99% of PFBS was removed from the bulk liquid and concentrated at the interface, where 67% of the concentrate was degraded and 43% of that amount was defluorinated within one hour. PFBS degradation was further improved by optimizing the surfactant concentration and dosage. Experiments with a range of cationic, non-ionic, and anionic surfactants revealed that the PFAS-CTAB binding mechanism is predominantly electrostatic. A mechanistic understanding of the PFAS-CTAB complex formation, its transport to and destruction at the interface is proposed, alongside the chemical degradation scheme, which includes the identified degradation byproducts. This study shows that surfactant-assisted plasma treatment is one of the most promising techniques for destroying short-chain PFAS in contaminated water.
Collapse
Affiliation(s)
- Osakpolo Isowamwen
- Department of Chemical and Biomolecular Engineering, Plasma Research Laboratory, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA
| | - Rui Li
- Department of Chemical and Biomolecular Engineering, Plasma Research Laboratory, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA
| | - Thomas Holsen
- Department of Civil and Environmental Engineering, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA
| | - Selma Mededovic Thagard
- Department of Chemical and Biomolecular Engineering, Plasma Research Laboratory, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA.
| |
Collapse
|
12
|
Amador CK, Van Hoomissen DJ, Liu J, Strathmann TJ, Vyas S. Ultra-short chain fluorocarboxylates exhibit wide ranging reactivity with hydrated electrons. CHEMOSPHERE 2023; 311:136918. [PMID: 36306966 DOI: 10.1016/j.chemosphere.2022.136918] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
Recent reports demonstrate that technologies generating hydrated electrons (eaq-; e.g., UV-sulfite) are a promising strategy for destruction of per- and polyfluoroalkyl substances, but fundamental rate constants are lacking. This work examines the kinetics and mechanisms of eaq- reactions with ultra-short chain (C2-C4) fluorocarboxylates using experimental and theoretical approaches. Laser flash photolysis (LFP) was used to measure bimolecular rate constants (k2; M-1 s-1) for eaq- reactions with thirteen per-, and for the first time, polyfluorinated carboxylate structures. The measured k2 values varied widely from 5.26 × 106 to 1.30 × 108 M-1s-1, a large range considering the minor structural changes among the target compounds. Molecular descriptors calculated using density functional theory did not reveal correlation between k2 values and individual descriptors when considering the whole dataset, however, semiquantitative correlation manifests when grouping by similar possible initial reduction event such as electron attachment at the α-carbon versus β- or γ-carbons along the backbone. From this, it is postulated that fluorocarboxylate reduction by eaq- occurs via divergent mechanisms with the possibility of non-degradative pathways being prominent. These mechanistic insights provide rationale for contradictory trends between LFP-derived k2 values and apparent degradation rates recently reported in UV-sulfite constant irradiation treatment experiments.
Collapse
Affiliation(s)
- Camille K Amador
- Department of Chemistry, Colorado School of Mines, Golden, CO, 80401, USA; Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, 80401, USA
| | | | - Jiaoqin Liu
- Department of Chemistry, Colorado School of Mines, Golden, CO, 80401, USA; Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, 80401, USA
| | - Timothy J Strathmann
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, 80401, USA.
| | - Shubham Vyas
- Department of Chemistry, Colorado School of Mines, Golden, CO, 80401, USA.
| |
Collapse
|
13
|
Battye NJ, Patch DJ, Roberts DMD, O'Connor NM, Turner LP, Kueper BH, Hulley ME, Weber KP. Use of a horizontal ball mill to remediate per- and polyfluoroalkyl substances in soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155506. [PMID: 35483472 DOI: 10.1016/j.scitotenv.2022.155506] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
There is a need for destructive technologies for per- and polyfluoroalkyl substances (PFAS) in soil. While planetary ball mill have been shown successful degradation of PFAS, there are issues surrounding scale up (maximum size is typically 0.5 L cylinders). While having lower energy outputs, horizontal ball mills, for which scale up is not a limiting factor, already exist at commercial/industrial sizes from the mining, metallurgic and agricultural industries, which could be re-purposed. This study evaluated the effectiveness of horizontal ball mills in degrading perfluorooctanesulfonate (PFOS), 6:2 fluorotelomer sulfonate (6:2 FTSA), and aqueous film forming foam (AFFF) spiked on nepheline syenite sand. Horizontal ball milling was also applied to two different soil types (sand dominant and clay dominant) collected from a firefighting training area (FFTA). Liquid chromatography tandem mass spectrometry was used to track 21 target PFAS throughout the milling process. High-resolution accurate mass spectrometry was also used to identify the presence and degradation of 19 non-target fluorotelomer substances, including 6:2 fluorotelomer sulfonamido betaine (FtSaB), 7:3 fluorotelomer betaine (FtB), and 6:2 fluorotelomer thioether amido sulfonate (FtTAoS). In the presence of potassium hydroxide (KOH), used as a co-milling reagent, PFOS, 6:2 FTSA, and the non-target fluorotelomer substances in the AFFF were found to undergo upwards of 81%, 97%, and 100% degradation, respectively. Despite the inherent added complexity associated with field soils, better PFAS degradation was observed on the FFTA soils over the spiked NSS, and more specifically, on the FFTA clay over the FFTA sand. These results held through scale-up, going from the 1 L to the 25 L cylinders. The results of this study support further scale-up in preparation for on-site pilot tests.
Collapse
Affiliation(s)
- Nicholas J Battye
- Environmental Sciences Group, Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, ON, Canada
| | - David J Patch
- Environmental Sciences Group, Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, ON, Canada
| | - Dylan M D Roberts
- Environmental Sciences Group, Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, ON, Canada
| | - Natalia M O'Connor
- Environmental Sciences Group, Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, ON, Canada
| | - Lauren P Turner
- Department of Civil Engineering, Queen's University, Kingston, ON, Canada
| | - Bernard H Kueper
- Department of Civil Engineering, Queen's University, Kingston, ON, Canada
| | - Michael E Hulley
- Environmental Sciences Group, Department of Civil Engineering, Royal Military College of Canada, Kingston, ON, Canada
| | - Kela P Weber
- Environmental Sciences Group, Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, ON, Canada; Department of Civil Engineering, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
14
|
Patch D, O'Connor N, Koch I, Cresswell T, Hughes C, Davies JB, Scott J, O'Carroll D, Weber K. Elucidating degradation mechanisms for a range of per- and polyfluoroalkyl substances (PFAS) via controlled irradiation studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:154941. [PMID: 35367256 DOI: 10.1016/j.scitotenv.2022.154941] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/19/2022] [Accepted: 03/27/2022] [Indexed: 06/14/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a challenging class of environmental pollutants due to a lack of available destructive remediation technologies. Understanding the fundamental mechanisms for degradation of PFAS is key for the development of field scalable and in-situ destructive based remediation technologies. This study aimed to elucidate and refine the current understanding of PFAS degradation mechanisms in water through a series of controlled gamma irradiation studies. Gamma irradiation of PFAS was performed using a cobalt-60 source in a batch irradiation up to 80 kGy at the Australian Nuclear Science and Technology Organisation. Perfluorooctanoic acid (PFOA), perfluorooctanesulfonic acid (PFOS), 6:2 fluorotelomer sulfonate (6:2 FTS), and a suite of thirteen different PFAS (including C4-C12 PFCAs, C4, C6, C8 PFSAs, and FOSA) were irradiated to investigate degradation, influence of pH, chain length, and transformation. High resolution mass spectrometry was used to identify more than 80 fluorinated transformation products throughout the degradation experiments. These included the -F/+H, -F/+OH, -F/CH2OH exchanged PFAS and n - 1 PFCA, amongst others. Given the reactive species present (hydroxyl radicals (·OH), hydrogen radicals (·H) and aqueous electrons (e-aq)), and the degradation products formed it was shown that aqueous electrons were the key reactive species responsible for initial PFAS degradation. Most importantly, based on degradation product formation, we found that the initial -F/+H does not have to occur at the α-fluoride (nearest the functional head group), rather occurring throughout the chain length leading to more complex degradation pathways than previously postulated. While our results support some of the reaction steps postulated in the literature, we have developed a unified 16 step and 3 pathway schematic of degradation supported by experimental observations.
Collapse
Affiliation(s)
- David Patch
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, ON K7K 7B4, Canada
| | - Natalia O'Connor
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, ON K7K 7B4, Canada
| | - Iris Koch
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, ON K7K 7B4, Canada
| | - Tom Cresswell
- Australian Nuclear Science and Technology Organisation, Australia
| | - Cath Hughes
- Australian Nuclear Science and Technology Organisation, Australia
| | - Justin B Davies
- Australian Nuclear Science and Technology Organisation, Australia
| | - Jennifer Scott
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, ON K7K 7B4, Canada
| | - Denis O'Carroll
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, ON K7K 7B4, Canada; School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Kela Weber
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, ON K7K 7B4, Canada; School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
15
|
Leung SCE, Shukla P, Chen D, Eftekhari E, An H, Zare F, Ghasemi N, Zhang D, Nguyen NT, Li Q. Emerging technologies for PFOS/PFOA degradation and removal: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:153669. [PMID: 35217058 DOI: 10.1016/j.scitotenv.2022.153669] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/31/2022] [Accepted: 01/31/2022] [Indexed: 05/20/2023]
Abstract
Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) are highly recalcitrant anthropogenic chemicals that are ubiquitously present in the environment and are harmful to humans. Typical water and wastewater treatment processes (coagulation, flocculation, sedimentation, and filtration) are proven to be largely ineffective, while adsorption with granular activated carbon (GAC) has been the chief option to capture them from aqueous sources followed by incineration. However, this process is time-consuming, and produces additional solid waste and air pollution. Treatment methods for PFOS and PFOA generally follow two routes: (1) removal from source and reduce the risk; (2) degradation. Emerging technologies focusing on degradation are critically reviewed in this contribution. Various processes such as bioremediation, electrocoagulation, foam fractionation, sonolysis, photocatalysis, mechanochemical, electrochemical degradation, beams of electron and plasma have been developed and studied in the past decade to address PFAS crisis. The underlying mechanisms of these PFAS degradation methods have been categorized. Two main challenges have been identified, namely complexity in large scale operation and the release of toxic byproducts. Based on the literature survey, we have provided a strength-weakness-opportunity-threat (SWOT) analysis and quantitative rating on their efficiency, environmental impact and technology readiness.
Collapse
Affiliation(s)
- Shui Cheung Edgar Leung
- Queensland Micro- and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia; School of Engineering and Built Environment, Griffith University, Brisbane, QLD 4111, Australia
| | - Pradeep Shukla
- Queensland Alliance for Environmental Health Sciences, Department of Chemical Engineering, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Dechao Chen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia
| | - Ehsan Eftekhari
- School of Engineering and Built Environment, Griffith University, Brisbane, QLD 4111, Australia; Golder Associates Pty Ltd, Level 4, 45 Francis Street, Northbridge, Western Australia 6003, Australia
| | - Hongjie An
- Queensland Micro- and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia
| | - Firuz Zare
- School of Electrical Engineering and Robotics, Faculty of Engineering, Queensland University of Technology, Garden Point, QLD 4000, Australia
| | - Negareh Ghasemi
- School of Information Technology and Electrical Engineering, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Dongke Zhang
- Centre for Energy (M473), The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia
| | - Qin Li
- Queensland Micro- and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia; School of Engineering and Built Environment, Griffith University, Brisbane, QLD 4111, Australia.
| |
Collapse
|
16
|
Hwang JH, Li Sip YY, Kim KT, Han G, Rodriguez KL, Fox DW, Afrin S, Burnstine-Townley A, Zhai L, Lee WH. Nanoparticle-embedded hydrogel synthesized electrodes for electrochemical oxidation of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS). CHEMOSPHERE 2022; 296:134001. [PMID: 35181416 DOI: 10.1016/j.chemosphere.2022.134001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/11/2022] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
In this study, sliver (Ag) and gold (Au) nanoparticles (NPs) were embedded on poly (acrylic acid) (PAA)/poly (allylamine) hydrochloride (PAH) hydrogel fibers for improved electrochemical oxidation (EO) of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) removal. The NPs-loaded PAA/PAHs shows the better charge transport compared to the ceramic nanofiber membranes (CNM) electrodes. At 10 mA cm-2 of current density, the Ag-PAA/PAH electrodes showed a faster removal of PFAS compared to the Ag-CNM electrode probably due to large surface area-volume ratio and high porosity from the hydrogel. Among NPs-loaded PAA/PAH electrodes, the Ag/Au-PAA/PAH electrodes showed the highest removal of PFOA (72%) and PFOS (91%) in 2 h with the maximum removal rate of PFOA (0.0046 min-1) and PFOS (0.0093 min-1). The rapid PFOS removal is possibly due to the high activity of electron transfer with a higher redox potential of SO4•- than •OH. The highly stable F- generation was obtained from each electrode during reproducibility (n = 3). The net energy consumption from Ag/Au-PAA/PAH electrode was 164.9 kWh m-3 for 72% PFOA removal and 90 kWh m-3 for 91% PFOS removal, respectively. The developed Au-PAA/PAH electrodes were applied to lake water samples and showed acceptable PFOS removal (65%) with relative standard deviations (RSD) of 10.2% (n = 3) at 10 mA cm-2 of current density. Overall, the NP-embedded hydrogel nanofibers were proven to be a promising sustainable catalyst for the electrochemical PFAS oxidation in water.
Collapse
Affiliation(s)
- Jae-Hoon Hwang
- Department of Civil, Environmental, And Construction Engineering, University of Central Florida, Orlando, FL, 32816, USA
| | - Yuen Yee Li Sip
- NanoScience Technology Center and Department of Chemistry, University of Central Florida, Orlando, FL, 32816, USA
| | - Keug Tae Kim
- Department of Environmental & Energy Engineering, The University of Suwon, 17 Wauan-gil, Bongdam-eup, Hwaseong-si, Gyeonggi-do, 18323, South Korea
| | - Gaehee Han
- Water Quality Research Center, Waterworks Headquarters of Daegu Metropolitan City, Daegu, 42423, South Korea
| | - Kelsey L Rodriguez
- Department of Civil, Environmental, And Construction Engineering, University of Central Florida, Orlando, FL, 32816, USA
| | - David W Fox
- NanoScience Technology Center and Department of Chemistry, University of Central Florida, Orlando, FL, 32816, USA
| | - Sajia Afrin
- NanoScience Technology Center and Department of Chemistry, University of Central Florida, Orlando, FL, 32816, USA
| | - Alex Burnstine-Townley
- NanoScience Technology Center and Department of Chemistry, University of Central Florida, Orlando, FL, 32816, USA
| | - Lei Zhai
- NanoScience Technology Center and Department of Chemistry, University of Central Florida, Orlando, FL, 32816, USA
| | - Woo Hyoung Lee
- Department of Civil, Environmental, And Construction Engineering, University of Central Florida, Orlando, FL, 32816, USA.
| |
Collapse
|
17
|
Hao S, Choi YJ, Deeb RA, Strathmann TJ, Higgins CP. Application of Hydrothermal Alkaline Treatment for Destruction of Per- and Polyfluoroalkyl Substances in Contaminated Groundwater and Soil. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6647-6657. [PMID: 35522245 DOI: 10.1021/acs.est.2c00654] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Hydrothermal alkaline treatment (HALT) can effectively degrade per- and polyfluoroalkyl substances (PFASs) present in aqueous film-forming foam (AFFF). However, information is lacking regarding the treatment of PFASs in actual groundwater and soil from AFFF-impacted sites, especially for complex soil matrices. Given the lack of studies on direct soil treatment for PFAS destruction, we herein applied HALT to two groundwater samples and three soil samples from AFFF-impacted sites and characterized the destruction of PFASs using high-resolution mass spectrometry. Results showed that the 148 PFASs identified in all collected field samples, including 10 cationic, 98 anionic, and 40 zwitterionic PFASs, were mostly degraded to nondetectable levels within 90 min when treated with 5 M NaOH at 350 °C. The near-complete defluorination, as evidenced by fluoride release measurements, confirmed the complete destruction of PFASs. While many structures, including perfluoroalkyl carboxylic acids and polyfluorinated substances, were readily degraded, perfluoroalkyl sulfonates (PFSAs, CnF2n+1-SO3-), most notably with short chain lengths (n = 3-5), were more recalcitrant. Rates of PFSA destruction in groundwater samples were similar to those measured in laboratory water solutions, but reactions in soil were slow, presumably due to base-neutralizing properties of the soil. Further, the degradation of PFASs in groundwaters and soils was found to be a function of reaction temperature, NaOH concentration, and reaction time. These findings have important implications for the remediation of AFFF-impacted sites.
Collapse
Affiliation(s)
- Shilai Hao
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Youn Jeong Choi
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
- Department of Agronomy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Rula A Deeb
- Geosyntec Consultants, Oakland, California 94607, United States
| | - Timothy J Strathmann
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Christopher P Higgins
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| |
Collapse
|
18
|
Gao Z, Zhou J, Xue M, Liu S, Guo J, Zhang Y, Cao C, Wang T, Zhu L. Theoretical and experimental insights into the mechanisms of C6/C6 PFPiA degradation by dielectric barrier discharge plasma. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127522. [PMID: 34879517 DOI: 10.1016/j.jhazmat.2021.127522] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/22/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
As an emerging alternative legacy perfluoroalkyl substance, C6/C6 PFPiA (perfluoroalkyl phosphinic acids) has been detected in aquatic environments and causes potential risks to human health. The degradation mechanisms of C6/C6 PFPiA in a dielectric barrier discharge (DBD) plasma system were explored using validated experimental data and density functional theory (DFT) calculations. Approximately 94.5% of C6/C6 PFPiA was degraded by plasma treatment within 15 min at 18 kV. A relatively higher discharge voltage and alkaline conditions favored its degradation. C6/C6 PFPiA degradation was attributed to attacks of •OH, •O2-, and 1O2. Besides PFHxPA and C2 -C6 shorter-chain perfluorocarboxylic acids, several other major intermediates including C4/C6 PFPiA, C4/C4 PFPiA, and C3/C3 PFPiA were identified. According to DFT calculations, the potential energy surface was proposed for possible reactions during C6/C6 PFPiA degradation in the discharge plasma system. Integrating the identified intermediates and DFT results, C6/C6 PFPiA degradation was deduced to occur by stepwise losing CF2, free radical polymerization, and C-C bond cleavage. Furthermore, the DBD plasma treatment process decreased the toxicity of C6/C6 PFPiA to some extent. This study provides a comprehensive understanding of C6/C6 PFPiA degradation by plasma advanced oxidation.
Collapse
Affiliation(s)
- Zhuo Gao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Jian Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Mingming Xue
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Siqian Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Jia Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Ying Zhang
- College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, PR China
| | - Chunshuai Cao
- College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Tiecheng Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China.
| | - Lingyan Zhu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
19
|
Zhang H, Li P, Zhang A, Sun Z, Liu J, Héroux P, Liu Y. Enhancing Interface Reactions by Introducing Microbubbles into a Plasma Treatment Process for Efficient Decomposition of PFOA. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:16067-16077. [PMID: 34751567 DOI: 10.1021/acs.est.1c01724] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Efficient destruction of perfluoroalkyl compounds in contaminated waters remains a challenge because of highly stable C-F bonds. In this study, mineralization of perfluorooctanoic acid (PFOA) with high concentration (∼30 mg/L) was realized in a needle-plate pulsed discharge reactor integrated with a water jet (NPDW) to which microbubbles (MBs) with different carrier gases (air, N2, and Ar) were introduced to enhance interfacial reactions. MBs effectively enrich dispersed PFOA from a bulk solution to a liquid surface to allow enhancing contact with reactive species and also expanding the plasma discharge area and channels. The PFOA removal efficiency in air and Ar discharge reached 81.5 and 95.3% in 2 h, respectively, with a defluorination ratio of no less than 50%. Energy requirements (EE/O) ranged from 216.49 to 331.95 kWh/m3. Aside from fluoride, PFOA was degraded to a range of short-chain perfluoroalkyl acids and, to a minor extent, at least 20 other fluorinated transformation products. PFOA degradation mechanisms were proposed, including decarboxylation, hydroxylation, hydrogenation reduction, and defluorination reactions. Real water matrices (groundwater, tap water, wastewater effluent, and surface water) showed moderate impact on treatment outcomes, demonstrating the robustness of the treatment process. The study demonstrated an environmentally friendly nonthermal plasma technology for effective PFOA degradation.
Collapse
Affiliation(s)
- Han Zhang
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Pan Li
- School of Environmental Science and Engineering, State Key Laboratory of Control and Resource Reuse, Tongji University, Siping Road, Shanghai 1239, China
| | - Ai Zhang
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Zhuyu Sun
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Jinxia Liu
- Department of Civil Engineering, McGill University, Montreal, Quebec H3A 0C3, Canada
| | - Paul Héroux
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec H3A 0C3, Canada
| | - Yanan Liu
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
20
|
Zhou Y, Lee Y, Ren Y, Cui M, Khim J. Quantification of perfluorooctanoic acid decomposition mechanism applying negative voltage to anode during photoelectrochemical process. CHEMOSPHERE 2021; 284:131311. [PMID: 34182283 DOI: 10.1016/j.chemosphere.2021.131311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
Perfluorooctanoic acid (PFOA) is a carcinogen with a high binding energy between fluorine and carbon and is symmetrically linked, making it difficult to treat. In this study, a self-doped TiO2 nanotube array (TNTA) was used as the anode and platinum as the cathode to quantify the PFOA removal mechanism using a photoelectrochemical (PEC) system. The external voltage was negative compared to that of the anode. In addition, NO3- and t-BuOH were used as scavengers to quantify the PFOA oxidation/reduction mechanism in the PEC system. As a result of the study, TNTA crystals are TiO2 anatase, and the band gap energy was 3.42. The synergy index of PEC was 1.25, and the best electrolyte was SO42-. The PFOA decomposition activation energy corresponds to 70.84 kJ mol-1. Moreover, ΔH# and ΔS# correspond to 68.34 kJ mol-1 and 0.190 kJ mol-1 K-1, respectively. When the external negative voltage was 1 V, the contributions of the oxidation/reduction reaction during PFOA decomposition were 60% and 40%, and when the external negative voltage was 5 V, the contributions of the redox reaction were 45% and 55%. As the external negative voltage increased, the contribution of the reduction reaction increased as the number of electrons applied to the anode increased. When PFOA was decomposed, the by-products were C7F13O2H, C6F11O2H, C5F9O2H, and C4F7O2H, respectively. This study is expected to be used as basic data for research on the effects of other factors on the oxidation/reduction as well as the selection of anode and cathode materials on the decomposition of pollutants other than PFOA when using a PEC system.
Collapse
Affiliation(s)
- Yongyue Zhou
- School of Civil, Environmental, and Architectural Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Yonghyeon Lee
- School of Civil, Environmental, and Architectural Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Yangmin Ren
- School of Civil, Environmental, and Architectural Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Mingcan Cui
- School of Civil, Environmental, and Architectural Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| | - Jeehyeong Khim
- School of Civil, Environmental, and Architectural Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| |
Collapse
|
21
|
Lassalle J, Gao R, Rodi R, Kowald C, Feng M, Sharma VK, Hoelen T, Bireta P, Houtz EF, Staack D, Pillai SD. Degradation of PFOS and PFOA in soil and groundwater samples by high dose Electron Beam Technology. Radiat Phys Chem Oxf Engl 1993 2021. [DOI: 10.1016/j.radphyschem.2021.109705] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
22
|
Barth E, McKernan J, Bless D, Dasu K. Investigation of an immobilization process for PFAS contaminated soils. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 296:113069. [PMID: 34225046 PMCID: PMC8682492 DOI: 10.1016/j.jenvman.2021.113069] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/26/2021] [Accepted: 06/09/2021] [Indexed: 05/06/2023]
Abstract
A two-phased bench-scale study was conducted to evaluate various sorbents for possible use as chemical stabilizing agents, along with cement solidification, for possible use in an in-situ solidification/stabilization (immobilization) treatment process for per- and polyfluoroalkyl (PFAS) contaminated soils. The first phase involved sorption experiments for six selected PFAS compounds diluted in a water solution, using five selected sorbents: granular activated carbon (GAC), activated carbon-clay blend, modified clay, biochar, iron (Fe)-amended biochar, and Ottawa sand as a control media. The second phase involved chemical stabilization treatment (via sorption), using the most effective sorbent identified in the first phase, followed by solidification of two soils from PFAS-contaminated sites. Physical solidification was achieved by adding cement as a binding agent. Results from the first phase (sorption experiments) indicated that GAC was slightly more successful than the other sorbents in sorption performance for a 3000 μg/L solution containing a mixture of the six selected PFAS analytes (500 μg/L concentration each of shorter- and longer-chain alkyl acids), and was the only sorbent used in the second phase of this study. While the GAC, activated carbon-clay blend, and modified clay sorbents showed similar sorption performance for the longer chain analytes tested, both the activated carbon-clay blend and modified clay, exhibited slightly less sorptive capacity than GAC for the shorter-chain alkyl acids. Immobilization effectiveness was evaluated by soil leachability testing using Environmental Protection Agency (EPA) Method 1312, Synthetic Precipitation Leaching Procedure (SPLP) on the samples collected from two PFAS-contaminated sites. For the majority of the PFAS soil analytes, the addition of GAC sorbent (chemical stabilization) substantially reduced the leachability of PFAS compounds from the contaminated soil samples, and the addition of cement as a physical binding agent (solidification) further decreased leachability for a few of the PFAS compounds. Overall immobilization of PFAS analytes that were detectable in the leachate from two PFAS contaminated soils ranged from 87.1% to 99.9%. Therefore, it is reasonable to consider that the laboratory testing results presented here may have application to further pilot or limited field-scale studies within a broader suite of PFAS-contaminated site treatment options that are currently available for treating PFAS contaminated soils.
Collapse
Affiliation(s)
- Edwin Barth
- U.S. EPA. Office of Research and Development, Center for Environmental Solutions and Emergency Response, 26 MLK Dr, Cincinnati, OH, 45268, USA.
| | - John McKernan
- U.S. EPA. Office of Research and Development, Center for Environmental Solutions and Emergency Response, 26 MLK Dr, Cincinnati, OH, 45268, USA.
| | - Diana Bless
- U.S. EPA. Office of Research and Development, Center for Environmental Solutions and Emergency Response, 26 MLK Dr, Cincinnati, OH, 45268, USA.
| | - Kavitha Dasu
- Battelle Memorial Institute, 505 King Ave, Columbus, OH, 43201, USA.
| |
Collapse
|
23
|
Light-Induced Advanced Oxidation Processes as PFAS Remediation Methods: A Review. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11188458] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PFAS substances, which have been under investigation in recent years, are certainly some of the most critical emerging contaminants. Their presence in drinking water, correlated with diseases, is consistently being confirmed by scientific studies in the academic and health sectors. With the aim of developing new technologies to mitigate the water contamination problem, research activity based on advanced oxidation processes for PFAS dealkylation and subsequent mineralization is active. While UV radiation could be directly employed for decontamination, there are nevertheless considerable problems regarding its use, even from a large-scale perspective. In contrast, the use of cheap, robust, and green photocatalytic materials active under near UV-visible radiation shows interesting prospects. In this paper we take stock of the health problems related to PFAS, and then provide an update on strategies based on the use of photocatalysts and the latest findings regarding reaction mechanisms. Finally, we detail some brief considerations in relation to the economic aspects of possible solutions.
Collapse
|
24
|
Turner LP, Kueper BH, Jaansalu KM, Patch DJ, Battye N, El-Sharnouby O, Mumford KG, Weber KP. Mechanochemical remediation of perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) amended sand and aqueous film-forming foam (AFFF) impacted soil by planetary ball milling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 765:142722. [PMID: 33268250 DOI: 10.1016/j.scitotenv.2020.142722] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/23/2020] [Accepted: 09/26/2020] [Indexed: 06/12/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are manmade, fluorinated organic chemicals which have been identified as persistent organic pollutants. PFAS have surface active properties that have made them suitable for applications in oil- and water-resistant products, as well as many firefighting foams. No on-site remediation strategies exist to treat PFAS impacted soils. Mechanochemical remediation of PFOS- and PFOA-amended sand via a planetary ball mill was studied. The effect of sand mass, KOH as a co-milling reagent, and water saturation on the degradation of PFOA and PFOS was evaluated. By 4 h of milling concentrations were reduced by up to 98% for PFOS-amended dry sand and 99% for PFOA-amended dry sand without the addition of a co-milling reagent. Water saturation was determined to be a significant hindrance on the mechanochemical destruction of PFOS and PFOA. A maximum of 89% of fluoride was recovered from PFOS-amended sand when KOH was used as a co-milling reagent. It is hypothesized that reactive particles generated from the fracture of sand grains react with PFAS molecules to initiate destruction, which can result in full defluorination. Milling experiments were also conducted on soils from a Canadian firefighting training area (FFTA), demonstrating that PFOS concentrations can be reduced by up to 96% in site soils. For the first time, ball milling for the remediation of PFAS in environmental media has been demonstrated using amended sand and legacy soils from a FFTA.
Collapse
Affiliation(s)
- Lauren P Turner
- Department of Civil Engineering, Queen's University, Kingston, ON, Canada
| | - Bernard H Kueper
- Department of Civil Engineering, Queen's University, Kingston, ON, Canada
| | - Kevin M Jaansalu
- Environmental Sciences Group, Royal Military College of Canada, Kingston, ON, Canada
| | - David J Patch
- Environmental Sciences Group, Royal Military College of Canada, Kingston, ON, Canada
| | - Nick Battye
- Environmental Sciences Group, Royal Military College of Canada, Kingston, ON, Canada
| | | | - Kevin G Mumford
- Department of Civil Engineering, Queen's University, Kingston, ON, Canada
| | - Kela P Weber
- Department of Civil Engineering, Queen's University, Kingston, ON, Canada; Environmental Sciences Group, Royal Military College of Canada, Kingston, ON, Canada.
| |
Collapse
|
25
|
Sunantha G, Vasudevan N. A method for detecting perfluorooctanoic acid and perfluorooctane sulfonate in water samples using genetically engineered bacterial biosensor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 759:143544. [PMID: 33189373 DOI: 10.1016/j.scitotenv.2020.143544] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 05/29/2023]
Abstract
A simple, reagent and pre-treatment (i.e. dilution, sample purification and pH adjustment) free approach based genetically engineered bacterial biosensor is developed and demonstrated for the detection of perfluorinated compounds in water samples. The bacterial biosensor was developed by integrating two genes called regulatory (defluorinase gene) and reporter gene (green fluorescence gene) through genetic engineering techniques. The as-developed bacterial biosensor was employed to detect perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) in water samples upon induction of regulatory gene and expression of green fluorescence protein. The induced fluorescence emission by the biosensor was visualized using fluorescence microscopic images. The specificity of biosensor was evaluated with different types of organic pollutants such as chlorinated compounds, polyaromatic hydrocarbons and pesticides etc., in both presence and absence of PFOA and PFOS. The biosensor was employed to detect the perfluorinated compounds at nano gram level in both standard solutions and natural water samples like river water, wastewater and drinking water with an analysis time of 24 h. The detection of PFOA and PFOS by the developed-bacterial sensor is validated by liquid chromatography coupled with mass spectrometer. The developed biosensor has demonstrated a rapid and sensitive detection of PFOA and PFOS in various water samples.
Collapse
Affiliation(s)
- Ganesan Sunantha
- National Centre for Sustainable Coastal Management, Anna University Campus, Chennai 600025, India; Centre for Environmental Studies, Anna University, Chennai 600 025, Tamil Nadu, India.
| | - Namasivayam Vasudevan
- Centre for Environmental Studies, Anna University, Chennai 600 025, Tamil Nadu, India
| |
Collapse
|
26
|
Hao S, Choi YJ, Wu B, Higgins CP, Deeb R, Strathmann TJ. Hydrothermal Alkaline Treatment for Destruction of Per- and Polyfluoroalkyl Substances in Aqueous Film-Forming Foam. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:3283-3295. [PMID: 33557522 DOI: 10.1021/acs.est.0c06906] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The widespread use of aqueous film-forming foam (AFFF) for firefighting activities (e.g., fire training to extinguish fuel-based fires at aircraft facilities) has led to extensive groundwater and soil contamination by per- and polyfluoroalkyl substances (PFASs) that are highly recalcitrant to destruction using conventional treatment technologies. This study reports on the hydrothermal alkaline treatment of diverse PFASs present in AFFFs. Quantitative and semiquantitative high-resolution mass spectrometry analyses of PFASs demonstrate a rapid degradation of all 109 PFASs identified in two AFFFs (sulfonate- and fluorotelomer-based formulations) in water amended with an alkali (e.g., 1-5 M NaOH) at near-critical temperature and pressure (350 °C, 16.5 MPa). This includes per- and polyfluoroalkyl acids and a range of acid precursors. Most PFASs were degraded to nondetectable levels within 15 min, and the most recalcitrant perfluoroalkyl sulfonates were degraded within 30 min when treated with 5 M NaOH. 19F NMR spectroscopic analysis and fluoride ion analysis confirm the near-complete defluorination of PFASs in both dilute and concentrated AFFF mixtures, and no stable volatile organofluorine species were detected in reactor headspace gases by the gas chromatography-mass spectrometry analysis. These findings indicate a significant potential for application of hydrothermal treatment technologies to manage PFAS waste streams, including on-site treatment of unused AFFF chemical stockpiles, investigation-derived wastes, and concentrated source zone materials.
Collapse
Affiliation(s)
- Shilai Hao
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Youn-Jeong Choi
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Boran Wu
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Christopher P Higgins
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Rula Deeb
- Geosyntec Consultants, Oakland, California 94607, United States
| | - Timothy J Strathmann
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| |
Collapse
|
27
|
Unravel the potential of zinc oxide nanoparticle-carbonized sawdust matrix for removal of lead (II) ions from aqueous solution. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Olatunde OC, Kuvarega AT, Onwudiwe DC. Photo enhanced degradation of polyfluoroalkyl and perfluoroalkyl substances. Heliyon 2020; 6:e05614. [PMID: 33305052 PMCID: PMC7718166 DOI: 10.1016/j.heliyon.2020.e05614] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/26/2020] [Accepted: 11/24/2020] [Indexed: 11/16/2022] Open
Abstract
The increase in the presence of highly recalcitrant poly- and per- fluoroalkyl substances (PFAS) in the environment, plant tissues and animals continues to pose serious health concerns. Several treatment methods such as physical, biological and chemical processes have been explored to deal with these compounds. Current trends have shown that the destructive treatment processes, which offer degradation and mineralization of PFASs, are the most desirable process among researchers and policy makers. This article, therefore, reviews the degradation and defluorination processes, their efficiencies and the degradation mechanism of photon-based processes. It shows that high degradation and defluorination efficiency of PFASs could be achieved by photon driven processes such as photolysis, photochemical, photocatalysis and photoreduction. The efficiency of these processes is greatly influenced by the nature of light and the reactive radical generated in the system. The limitation of these processes, however, include the long reaction time required and the use of anoxic reaction conditions, which are not obtainable at ambient conditions.
Collapse
Affiliation(s)
- Olalekan C. Olatunde
- Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng Campus, Private Bag X2046, Mmabatho 2735, South Africa
- Department of Chemistry, School of Physical and Chemical Sciences, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng Campus, Private Bag X2046, Mmabatho 2735, South Africa
| | - Alex T. Kuvarega
- Nanotechnology and Water Sustainability Research Unit, College of Science, Engineering and Technology, University of South Africa, Florida 1709, South Africa
| | - Damian C. Onwudiwe
- Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng Campus, Private Bag X2046, Mmabatho 2735, South Africa
- Department of Chemistry, School of Physical and Chemical Sciences, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng Campus, Private Bag X2046, Mmabatho 2735, South Africa
| |
Collapse
|
29
|
Removal of Perfluorooctanoic Acid and Microcystins from Drinking Water by Electrocoagulation. J CHEM-NY 2020. [DOI: 10.1155/2020/1836264] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Perfluorooctanoic acid (PFOA) and microcystins are some of the well-known chemical contaminants in drinking water in the USA. Despite the availability of filtration technologies like ion-exchange resins, activated-carbon, and high-pressure membrane filters, these contaminants still remain widespread in the environment. In the present study, two innovative aspects of electrocoagulation techniques were tested, (a) cheap and easy-to-operate field-unit instead of hi-tech electrocoagulation and (b) reverse-polarity instead of conventional polarity, and applied to remove PFOA and microcystins from drinking water sources. The method presented here outperformed commercial activated-carbon filtration by nearly 40%. When the efficiency of electrocoagulation was examined in terms of voltage discharge, pH, and reverse-polarity, the results averaged 80% decontamination for individual treatment, while their combined effects produced 100% detoxification in 10–40 minutes, exceeding recently published results. The method shows great economic promise for water and wastewater treatment and chemical recycling.
Collapse
|
30
|
Yang L, He L, Xue J, Ma Y, Xie Z, Wu L, Huang M, Zhang Z. Persulfate-based degradation of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) in aqueous solution: Review on influences, mechanisms and prospective. JOURNAL OF HAZARDOUS MATERIALS 2020; 393:122405. [PMID: 32120220 DOI: 10.1016/j.jhazmat.2020.122405] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/05/2020] [Accepted: 02/24/2020] [Indexed: 06/10/2023]
Abstract
Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) have attracted global attention due to their chemical durability, wide distribution, biotoxicity and bioaccumulative properties. Persulfate is a promising alternative to H2O2 for advanced oxidation processes and effective for organic removal. In this review, persulfate activation methods and operational factors in persulfate-based PFOA / PFOS degradation are analyzed and summarized. Moreover, the decomposing mechanisms of PFOA and PFOS are outlined in terms of molecular structures based a series of proposed pathways. PFOS could be converted to PFOA with the attack of SO4- and OH. And then PFOA defluorination occurs with one CF2 unit missing in each round and the similar procedure would occur continuously with sufficient SO4- and OH until entire decomposition. In addition, several knowledge gaps and research needs for further in-depth studies are identified. This review provides an overview for better understanding of the mechanisms and prospects in persulfate-based degradation of PFOA and PFOS.
Collapse
Affiliation(s)
- Lie Yang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, PR China; New Zealand Forest Research Institute (Scion), Forest System, POB 29237, Christchurch 8440, New Zealand
| | - Liuyang He
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, PR China
| | - Jianming Xue
- New Zealand Forest Research Institute (Scion), Forest System, POB 29237, Christchurch 8440, New Zealand; College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Yongfei Ma
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, PR China
| | - Zhiyong Xie
- Centre for Materials and Coastal Research, Institute of Coastal Research, Helmholtz-Zentrum Geesthacht, Geesthacht, 21502, Germany
| | - Li Wu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, PR China.
| | - Min Huang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, PR China
| | - Zulin Zhang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, PR China; The James Hutton Institute, Craigiebuckler, Aberdeen ABI5 8QH, UK.
| |
Collapse
|
31
|
Yuan Y, Feng L, Xie N, Zhang L, Gong J. Rapid photochemical decomposition of perfluorooctanoic acid mediated by a comprehensive effect of nitrogen dioxide radicals and Fe 3+/Fe 2+ redox cycle. JOURNAL OF HAZARDOUS MATERIALS 2020; 388:121730. [PMID: 31784137 DOI: 10.1016/j.jhazmat.2019.121730] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/06/2019] [Accepted: 11/19/2019] [Indexed: 06/10/2023]
Abstract
Developing efficient methods to degrade perfluorochemicals (PFCs), an emerging class of highly recalcitrant contaminants, are urgently needed in recent years, due to their persistence, high toxicity, and resistance to most regular treatment procedures. Here, a UV-photolysis system is reported for efficient mineralization of perfluorooctanoic acid (PFOA) via irradiation of ferric nitrate aqueous solution, where in-situ generating •NO2 and the effective Fe3+/Fe2+ redox cycle synergistically play great roles on rapidly mediating the mineralization of PFOA. A fast PFOA removal kinetics with first-order kinetic constants of 2.262 h-1 is observed at initial PFOA concentration of 5 ppm (50 mL volume), reaching ∼ 92 % removal efficiency within only 0.5-h irradiation. Near-stoichiometric fluoride ions liberation and high total organic carbon (TOC) removal efficiency (∼100 %) further validated the capability for completely destructive removal of PFOA. A tentative pathway for PFOA destruction is proposed. This work, by UV photolysis of abundant existing iron/nitrate-based systems in natural environment, provides an economical, sustainable and highly efficient approach for complete mineralization of perfluorinated chemicals.
Collapse
Affiliation(s)
- Yijin Yuan
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China
| | - Lizhen Feng
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China
| | - Ning Xie
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China
| | - Lizhi Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China.
| | - Jingming Gong
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China.
| |
Collapse
|
32
|
Bentel MJ, Yu Y, Xu L, Kwon H, Li Z, Wong BM, Men Y, Liu J. Degradation of Perfluoroalkyl Ether Carboxylic Acids with Hydrated Electrons: Structure-Reactivity Relationships and Environmental Implications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:2489-2499. [PMID: 31999101 DOI: 10.1021/acs.est.9b05869] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This study explores structure-reactivity relationships for the degradation of emerging perfluoroalkyl ether carboxylic acid (PFECA) pollutants with ultraviolet-generated hydrated electrons (eaq-). The rate and extent of PFECA degradation depend on both the branching extent and the chain length of oxygen-segregated fluoroalkyl moieties. Kinetic measurements, theoretical calculations, and transformation product analyses provide a comprehensive understanding of the PFECA degradation mechanisms and pathways. In comparison to traditional full-carbon-chain perfluorocarboxylic acids, the distinct degradation behavior of PFECAs is attributed to their ether structures. The ether oxygen atoms increase the bond dissociation energy of the C-F bonds on the adjacent -CF2- moieties. This impact reduces the formation of H/F-exchanged polyfluorinated products that are recalcitrant to reductive defluorination. Instead, the cleavage of ether C-O bonds generates unstable perfluoroalcohols and thus promotes deep defluorination of short fluoroalkyl moieties. In comparison to linear PFECAs, branched PFECAs have a higher tendency of H/F exchange on the tertiary carbon and thus lower percentages of defluorination. These findings provide mechanistic insights for an improved design and efficient degradation of fluorochemicals.
Collapse
Affiliation(s)
- Michael J Bentel
- Department of Chemical & Environmental Engineering , University of California, Riverside , Riverside , California 92521 , United States
| | - Yaochun Yu
- Department of Civil & Environmental Engineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Lihua Xu
- Department of Chemical & Environmental Engineering , University of California, Riverside , Riverside , California 92521 , United States
| | - Hyuna Kwon
- Department of Chemical & Environmental Engineering , University of California, Riverside , Riverside , California 92521 , United States
| | - Zhong Li
- Metabolomics Lab of Roy J. Carver Biotechnology Center , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Bryan M Wong
- Department of Chemical & Environmental Engineering , University of California, Riverside , Riverside , California 92521 , United States
- Materials Science & Engineering Program , University of California, Riverside , Riverside , California 92521 , United States
| | - Yujie Men
- Department of Chemical & Environmental Engineering , University of California, Riverside , Riverside , California 92521 , United States
- Department of Civil & Environmental Engineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
- Institute for Genomic Biology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Jinyong Liu
- Department of Chemical & Environmental Engineering , University of California, Riverside , Riverside , California 92521 , United States
| |
Collapse
|
33
|
Albert K, Hsieh PY, Chen TH, Hou CH, Hsu HY. Diatom-assisted biomicroreactor targeting the complete removal of perfluorinated compounds. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121491. [PMID: 31690504 DOI: 10.1016/j.jhazmat.2019.121491] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/06/2019] [Accepted: 10/17/2019] [Indexed: 05/09/2023]
Abstract
Persistent perfluorinated compounds (PFCs) have been recognized as a global environmental issue. Developing methods without leading to additional burden in nature will be essential for PFCs removal. Herein, we functionalized iron nanoparticles on living diatom (Dt) to efficiently enable the Fenton reaction and reactive oxygen species (ROS) production. Iron nanoparticles at the surface of living diatom act as promising catalytic agents to trigger OH radical generation from H2O2. Dt plays dual roles: i) as solid support for effective adsorption, and ii) it supplies oxygen and inherently produces ROS under stress conditions, which improves removal efficiency of PFCs. We also demonstrated its reusability by simple magnetic separation and 85% of decomposition efficiency could still be achieved. This newly developed diatom-assisted bioremediation strategy enables green and efficient PFC decomposition and shall be readily applicable to other persistent pollutants.
Collapse
Affiliation(s)
- Karunya Albert
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao-Tung University, No.1001 Ta-Hsueh Road, Hsinchu, 30010, Taiwan
| | - Pei-Ying Hsieh
- Center for Emergent Functional Matter Science, National Chiao-Tung University, Hsinchu, Taiwan
| | - Tsai-Hsuan Chen
- Graduate Institute of Environmental Engineering, National Taiwan University, No. 1, Sec. 4. Roosevelt Rd., Taipei 10617, Taiwan
| | - Chia-Hung Hou
- Graduate Institute of Environmental Engineering, National Taiwan University, No. 1, Sec. 4. Roosevelt Rd., Taipei 10617, Taiwan
| | - Hsin-Yun Hsu
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao-Tung University, No.1001 Ta-Hsueh Road, Hsinchu, 30010, Taiwan; Center for Emergent Functional Matter Science, National Chiao-Tung University, Hsinchu, Taiwan.
| |
Collapse
|
34
|
Bentel MJ, Yu Y, Xu L, Li Z, Wong BM, Men Y, Liu J. Defluorination of Per- and Polyfluoroalkyl Substances (PFASs) with Hydrated Electrons: Structural Dependence and Implications to PFAS Remediation and Management. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:3718-3728. [PMID: 30874441 DOI: 10.1021/acs.est.8b06648] [Citation(s) in RCA: 238] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
This study investigates critical structure-reactivity relationships within 34 representative per- and polyfluoroalkyl substances (PFASs) undergoing defluorination with UV-generated hydrated electrons. While C nF2 n+1-COO- with variable fluoroalkyl chain lengths ( n = 2 to 10) exhibited a similar rate and extent of parent compound decay and defluorination, the reactions of telomeric C nF2 n+1-CH2CH2-COO- and C nF2 n+1-SO3- showed an apparent dependence on the length of the fluoroalkyl chain. Cross comparison of experimental results, including different rates of decay and defluorination of specific PFAS categories, the incomplete defluorination from most PFAS structures, and the surprising 100% defluorination from CF3COO-, leads to the elucidation of new mechanistic insights into PFAS degradation. Theoretical calculations on the C-F bond dissociation energies (BDEs) of all PFAS structures reveal strong relationships among (i) the rate and extent of decay and defluorination, (ii) head functional groups, (iii) fluoroalkyl chain length, and (iv) the position and number of C-F bonds with low BDEs. These relationships are further supported by the spontaneous cleavage of specific bonds during calculated geometry optimization of PFAS structures bearing one extra electron, and by the product analyses with high-resolution mass spectrometry. Multiple reaction pathways, including H/F exchange, dissociation of terminal functional groups, and decarboxylation-triggered HF elimination and hydrolysis, result in the formation of variable defluorination products. The selectivity and ease of C-F bond cleavage highly depends on molecular structures. These findings provide critical information for developing PFAS treatment processes and technologies to destruct a wide scope of PFAS pollutants and for designing fluorochemical formulations to avoid releasing recalcitrant PFASs into the environment.
Collapse
Affiliation(s)
- Michael J Bentel
- Department of Chemical & Environmental Engineering and ‡Materials Science & Engineering Program , University of California , Riverside , California 92521 , United States
| | - Yaochun Yu
- Department of Civil & Environmental Engineering , ∥Metabolomics Lab of Roy J. Carver Biotechnology Center , and ⊥Institute for Genomic Biology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Lihua Xu
- Department of Chemical & Environmental Engineering and ‡Materials Science & Engineering Program , University of California , Riverside , California 92521 , United States
| | | | - Bryan M Wong
- Department of Chemical & Environmental Engineering and ‡Materials Science & Engineering Program , University of California , Riverside , California 92521 , United States
| | - Yujie Men
- Department of Civil & Environmental Engineering , ∥Metabolomics Lab of Roy J. Carver Biotechnology Center , and ⊥Institute for Genomic Biology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Jinyong Liu
- Department of Chemical & Environmental Engineering and ‡Materials Science & Engineering Program , University of California , Riverside , California 92521 , United States
| |
Collapse
|
35
|
Singh RK, Fernando S, Baygi SF, Multari N, Thagard SM, Holsen TM. Breakdown Products from Perfluorinated Alkyl Substances (PFAS) Degradation in a Plasma-Based Water Treatment Process. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:2731-2738. [PMID: 30768259 DOI: 10.1021/acs.est.8b07031] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Byproducts produced when treating perfluorooctanoic acid (PFOA) and perfluorooctanesulfonate (PFOS) in water using a plasma treatment process intentionally operated to treat these compounds slowly to allow for byproduct accumulation were quantified. Several linear chain perfluoroalkyl carboxylic acids (PFCAs) (C4 to C7) were identified as byproducts of both PFOA and PFOS treatment. PFOA, perfluorohexanesulfonate (PFHxS), and perfluorobutanesulfonate (PFBS) were also found to be byproducts from PFOS degradation. Significant concentrations of fluoride ions, inorganic carbon, and smaller organic acids (trifluoroacetic acid, acetic acid, and formic acid) were also identified. In addition to PFCAs, PFHxS, and PFBS, trace amounts of 43 PFOA-related and 35 PFOS-related byproducts were also identified using a screening and search-based algorithm. Minor concentrations of gas-phase byproducts were also identified (<2.5% of the F originally associated with the parent molecules) some of which are reported for the first time in perfluoroalkyl substance degradation experiments including cyclic perfluoroalkanes (C4F8, C5F10, C6F12, C7F14, and C8F16). The short chain PFCAs detected suggest the occurrence of a stepwise reduction of the parent perfluoroalkyl substances (PFAS) molecule, followed by oxidation of intermediates, perfluoroalkyl radicals, and perfluoro alcohols/ketones. Using a fluorine mass balance, 77% of the fluorine associated with the parent PFOA and 58% of the fluorine associated with the parent PFOS were identified. The bulk of the remaining fluorine was determined to be sorbed to reactor walls and tubing using sorption experiments in which plasma was not generated.
Collapse
Affiliation(s)
- Raj Kamal Singh
- Plasma Research Laboratory, Department of Chemical and Biomolecular Engineering , Clarkson University , Potsdam , New York 13699 , United States
| | - Sujan Fernando
- Department of Civil and Environmental Engineering , Clarkson University , Potsdam , New York 13699 , United States
| | - Sadjad Fakouri Baygi
- Department of Civil and Environmental Engineering , Clarkson University , Potsdam , New York 13699 , United States
| | - Nicholas Multari
- Plasma Research Laboratory, Department of Chemical and Biomolecular Engineering , Clarkson University , Potsdam , New York 13699 , United States
| | - Selma Mededovic Thagard
- Plasma Research Laboratory, Department of Chemical and Biomolecular Engineering , Clarkson University , Potsdam , New York 13699 , United States
| | - Thomas M Holsen
- Department of Civil and Environmental Engineering , Clarkson University , Potsdam , New York 13699 , United States
| |
Collapse
|
36
|
Kim TH, Yu S, Choi Y, Jeong TY, Kim SD. Profiling the decomposition products of perfluorooctane sulfonate (PFOS) irradiated using an electron beam. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 631-632:1295-1303. [PMID: 29727953 DOI: 10.1016/j.scitotenv.2018.03.055] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 02/11/2018] [Accepted: 03/05/2018] [Indexed: 05/07/2023]
Abstract
Perfluorooctane sulfonate (PFOS) has been found in wastewater treatment plants (WWTPs) and in surface water as a result of domestic uses of textiles, electronics, and surfactants. The detection of PFOS in the aqueous environment has been linked to hazardous biological effects including estrogenicity and genotoxicity. To provide an alternative to conventional processes, one of the radical-based advanced oxidation and reduction processes being tested for treatment of refractory compounds in water, involves the use of an electron beam. Therefore, the aims of this study were to investigate the degradation efficiency of PFOS (100mg/L) by electron beam, to evaluate the predicted toxicity of the radiolysis products using the ECOSAR model, and to identify the radiolytic products of PFOS. As a result of using the ECOSAR model, the toxicity levels of by-products after electron beam treatment were reduced by decreasing the carbon-chain number of PFOS. The molecular structures of the radiolytic products were elucidated using authentic standards via liquid chromatography and tandem mass spectrometry, and by the interpretation of MS2 fragmentation patterns of each product using liquid chromatography with quadrupole time of-flight mass spectrometry (LC-QTOF-MS). In total, ten radiolytic products were confirmed by LC-MS/MS, HPLC, and IC data matching with commercial standards. The two radiolytic substances produced during irradiation with an electron beam were predicted by LC-QTOF-MS. This study led to an understanding of the role of electron beams in the transformation of parent compounds and to the decomposition products created when an electron beam is applied to treat perfluorinated compounds.
Collapse
Affiliation(s)
- Tae-Hun Kim
- Industry and Environment Research Division, Korea Atomic Energy Research Institute, Republic of Korea
| | - Seungho Yu
- Industry and Environment Research Division, Korea Atomic Energy Research Institute, Republic of Korea
| | - Yeowool Choi
- School of Earth Science and Environmental Engineering, Gwangju Institute of Science and Technology, Republic of Korea
| | - Tae-Yong Jeong
- Department of Physical and Environmental Science, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C1A4, Canada
| | - Sang Don Kim
- School of Earth Science and Environmental Engineering, Gwangju Institute of Science and Technology, Republic of Korea.
| |
Collapse
|
37
|
Park K, Ali I, Kim JO. Photodegradation of perfluorooctanoic acid by graphene oxide-deposited TiO 2 nanotube arrays in aqueous phase. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 218:333-339. [PMID: 29689536 DOI: 10.1016/j.jenvman.2018.04.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/08/2018] [Accepted: 04/03/2018] [Indexed: 06/08/2023]
Abstract
Perfluorooctanoic acid (PFOA) is a persistent organic pollutant in the environment with serious health risks including endocrine-disrupting characteristics, immunotoxicity, and causing developmental defects. The photocatalytic deposition has proven to be an inexpensive, effective, and sustainable technology for the removal of PFOA in the aqueous phase. Most investigations are conducted in ultrapure water at concentrations higher than those detected in actual water systems. A few studies deal with the toxicity of treated water. In this research, the photocatalytic degradation of PFOA, including photo-oxidative and photo-reductive degradation, is reviewed comprehensively. Compared to photo-oxidation, photo-reduction is more suitable for PFOA removal since it favors defluorination of PFOA and complete mineralization. We used graphene oxide/TiO2 nanotubes array for photocatalytic degradation of PFOA. The effects of key parameters on the photocatalytic degradation and defluorination processes of PFOA, such as initial PFOA concentration, initial pH of the solution, an initial temperature of the solution, and external bias constant potential, are addressed. We observed that at pH 3 the PFOA degradation was around 83% in 4 h, and at 75 °C almost complete PFOA degradation was observed in 2.5 h. In photoelectrocatalytic process at 2.0 V external bias 97% of PFOA was degraded in 4 h. The mechanisms of the PFOA photodegradation process are also discussed in detail.
Collapse
Affiliation(s)
- Kyungmin Park
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Imran Ali
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Jong-Oh Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea.
| |
Collapse
|
38
|
Sun Z, Zhang C, Xing L, Zhou Q, Dong W, Hoffmann MR. UV/Nitrilotriacetic Acid Process as a Novel Strategy for Efficient Photoreductive Degradation of Perfluorooctanesulfonate. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:2953-2962. [PMID: 29397704 DOI: 10.1021/acs.est.7b05912] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Perfluorooctanesulfonate (PFOS) is a toxic, bioaccumulative, and highly persistent anthropogenic chemical. Hydrated electrons ( eaq-) are potent nucleophiles that can effectively decompose PFOS. In previous studies, eaq- are mainly produced by photoionization of aqueous anions or aromatic compounds. In this study, we proposed a new photolytic strategy to generate eaq- and in turn decompose PFOS, which utilizes nitrilotriacetic acid (NTA) as a photosensitizer to induce water photodissociation and photoionization, and subsequently as a scavenger of hydroxyl radical (•OH) to minimize the geminate recombination between •OH and eaq-. The net effect is to increase the amount of eaq- available for PFOS degradation. The UV/NTA process achieved a high PFOS degradation ratio of 85.4% and a defluorination ratio of 46.8% within 10 h. A pseudo-first-order rate constant ( k) of 0.27 h-1 was obtained. The laser flash photolysis study indicates that eaq- is the dominant reactive species responsible for PFOS decomposition. The generation of eaq- is greatly enhanced and its half-life is significantly prolonged in the presence of NTA. The electron spin resonance (ESR) measurement verified the photodissociation of water by detecting •OH. The model compound study indicates that the acetate and amine groups are the primary reactive sites.
Collapse
Affiliation(s)
- Zhuyu Sun
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering , Tongji University , Shanghai 200092 , China
- Shanghai Institute of Pollution Control and Ecological Security , Shanghai 200092 , China
| | - Chaojie Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering , Tongji University , Shanghai 200092 , China
- Shanghai Institute of Pollution Control and Ecological Security , Shanghai 200092 , China
| | - Lu Xing
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering , Tongji University , Shanghai 200092 , China
- Shanghai Institute of Pollution Control and Ecological Security , Shanghai 200092 , China
| | - Qi Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering , Tongji University , Shanghai 200092 , China
- Shanghai Institute of Pollution Control and Ecological Security , Shanghai 200092 , China
| | - Wenbo Dong
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering , Fudan University , Shanghai 200433 , China
| | - Michael R Hoffmann
- Linde-Robinson Laboratories , California Institute of Technology , Pasadena , California 91125 , United States
| |
Collapse
|
39
|
Omorodion H, Palenzuela M, Ruether M, Twamley B, Platts JA, Baker RJ. A rationally designed perfluorinated host for the extraction of PFOA from water utilising non-covalent interactions. NEW J CHEM 2018. [DOI: 10.1039/c7nj03026f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Three hosts for the encapsulation of perfluorooctanoic acid have been synthesized. The host:guest complexes have been characterized by multinuclear NMR spectroscopy in solution and the solid state.
Collapse
Affiliation(s)
| | - Miguel Palenzuela
- School of Chemistry
- University of Dublin
- Trinity College
- Dublin 2
- Ireland
| | - Manuel Ruether
- School of Chemistry
- University of Dublin
- Trinity College
- Dublin 2
- Ireland
| | - Brendan Twamley
- School of Chemistry
- University of Dublin
- Trinity College
- Dublin 2
- Ireland
| | | | - Robert J. Baker
- School of Chemistry
- University of Dublin
- Trinity College
- Dublin 2
- Ireland
| |
Collapse
|
40
|
Li A, Zhang Z, Li P, Cai L, Zhang L, Gong J. Nitrogen dioxide radicals mediated mineralization of perfluorooctanoic acid in aqueous nitrate solution with UV irradiation. CHEMOSPHERE 2017; 188:367-374. [PMID: 28888862 DOI: 10.1016/j.chemosphere.2017.08.170] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 08/30/2017] [Accepted: 08/31/2017] [Indexed: 06/07/2023]
Abstract
Effective decomposition of perfluorooctanoic acid (PFOA) has received increasing attention in recent years because of its global occurrence and resistance to most conventional treatment processes. In this study, the complete mineralization of PFOA was achieved by the UV-photolysis of nitrate aqueous solution (UV/Nitrate), where the in-situ generated nitrogen dioxide radicals (NO2) efficiently mediated the degradation of PFOA. In particular, when the twinborn hydroxyl radicals were scavenged, the production of more NO2 radicals realized the complete mineralization of PFOA. DFT calculations further confirm the feasibility of PFOA removal with NO2. Near-stoichiometric equivalents of fluoride released rather than the related intermediates were detected in solution after decomposition of PEOA, further demonstrating the complete degradation of PFOA. Possible PFOA degradation pathways were proposed on the basis of experimental results. This work offers an efficient strategy for the complete mineralization of perfluorinated chemicals, and also sheds light on the indispensable roles of nitrogen dioxide radicals for environmental pollutants removal.
Collapse
Affiliation(s)
- Aimin Li
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Applied & Environmental Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Zhe Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Applied & Environmental Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Peifeng Li
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Applied & Environmental Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Lejuan Cai
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Applied & Environmental Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Lizhi Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Applied & Environmental Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China.
| | - Jingming Gong
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Applied & Environmental Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China.
| |
Collapse
|
41
|
Dorrance LR, Kellogg S, Love AH. What You Should Know About Per- and Polyfluoroalkyl Substances (PFAS) for Environmental Claims. ACTA ACUST UNITED AC 2017. [DOI: 10.1080/10406026.2017.1377015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
42
|
Wang Y, Lin H, Jin F, Niu J, Zhao J, Bi Y, Li Y. Electrocoagulation mechanism of perfluorooctanoate (PFOA) on a zinc anode: Influence of cathodes and anions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 557-558:542-550. [PMID: 27037875 DOI: 10.1016/j.scitotenv.2016.03.114] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/16/2016] [Accepted: 03/16/2016] [Indexed: 06/05/2023]
Abstract
Batch experiments were conducted to investigate the effects of cathode materials and anions (Cl(-), SO4(2-), NO3(-), and CO3(2-)/HCO3(-)) on perfluorooctanoate (PFOA) removal in electrocoagulation process using zinc anode. The results indicated that the hydroxide flocs generated in-situ in the electrocoagulation process using the stainless steel rod as cathode were more effective than those using aluminum rod as cathode for the removal of PFOA after 20min of electrocoagulation at a current density of 0.5mAcm(-2). Hydroxide flocs generated in-situ in the electrocoagulation in the presence of Cl(-)/NO3(-) could effectively remove PFOA from aqueous solution with the removal ratios of 99.7%/98.1% and 98.9%/97.3% using stainless steel rod and aluminum rod as cathode, respectively. However, the PFOA removal ratios were 96.2%/4.1% and 7.4%/4.6% using stainless steel rod and aluminum rod as cathode, respectively, in the presence of SO4(2-) and CO3(2-)/HCO3(-). The different removal ratios of PFOA during the electrocoagulation process were primarily due to the fact that the hydroxide flocs generated in-situ were different in the presence of diverse cathodes and anions. We firstly demonstrated that Zn0.70Al0.30(OH)2(CO3)0.15·xH2O and ZnO generated in-situ in the electrocoagulation process (except for CO3(2-)/HCO3(-)) using zinc anode and aluminum/stainless steel rod cathode governed the sorption of PFOA. The adsorbent hydroxide flocs in-situ generated in the presence of Cl(-) could effectively remove PFOA from aqueous solution containing CO3(2-)/HCO3(-) anion at the initial hydroxide flocs concentration of 2000mgL(-1). These results provided an effective and alternative method to remove PFOA from aqueous solution containing CO3(2-)/HCO3(-) anion.
Collapse
Affiliation(s)
- Yujuan Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Hui Lin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Fangyuan Jin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Junfeng Niu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China.
| | - Jinbo Zhao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Ying Bi
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Ying Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| |
Collapse
|
43
|
Lyu XJ, Li WW, Lam PKS, Yu HQ. Insights into perfluorooctane sulfonate photodegradation in a catalyst-free aqueous solution. Sci Rep 2015; 5:9353. [PMID: 25879866 PMCID: PMC4399502 DOI: 10.1038/srep09353] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 03/02/2015] [Indexed: 12/17/2022] Open
Abstract
Photodegradation in the absence of externally added chemicals could be an attractive solution for the removal of perfluorooctane sulfonate (PFOS) in aqueous environment, but the low decomposition rate presents a severe challenge and the underlying mechanisms are unclear. In this study, we demonstrated that PFOS could be effectively degraded in a catalyst-free aqueous solution via a reduction route. Under appropriate pH and temperature conditions, a rapid PFOS photodegradation, with a pseudo-first-order decomposition rate constant of 0.91 h(-1), was achieved. In addition, hydrated electrons were considered to be the major photo-generated reductive species responsible for PFOS photodegradation in this system. Its production and reduction ability could be significantly affected by the environmental conditions such as pH, temperature and presence of oxidative species. This study gives insights into the PFOS photodegradation process and may provide useful information for developing catalyst-free photodegradation systems for decomposing PFOS and other persistent water contaminants.
Collapse
Affiliation(s)
- Xian-Jin Lyu
- 1] CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei, China [2] USTC-CityU joint Advanced Research Center, Suzhou, China [3] State Key Laboratory in Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Wen-Wei Li
- 1] CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei, China [2] USTC-CityU joint Advanced Research Center, Suzhou, China
| | - Paul K S Lam
- 1] USTC-CityU joint Advanced Research Center, Suzhou, China [2] State Key Laboratory in Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Han-Qing Yu
- 1] CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei, China [2] USTC-CityU joint Advanced Research Center, Suzhou, China
| |
Collapse
|