1
|
Zhang B, Chen L, Xiao S, Dang C, Wang F, Fang Q, Ye X, Stanley DW, Ye G. iSalivaomicDB: A comprehensive saliva omics database for insects. INSECT SCIENCE 2024; 31:1998-2001. [PMID: 38450904 DOI: 10.1111/1744-7917.13349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/26/2024] [Accepted: 02/05/2024] [Indexed: 03/08/2024]
Affiliation(s)
- Bo Zhang
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests & Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Longfei Chen
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests & Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Shan Xiao
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests & Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Cong Dang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Fang Wang
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests & Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Qi Fang
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests & Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Xinhai Ye
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests & Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - David W Stanley
- Biological Control of Insects Research Laboratory USDA/Agricultural Research Service, Columbia MO, USA
| | - Gongyin Ye
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests & Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Liu C, Zhang Q, Shi X, Zhu H, Chai R, Hu G, Desneux N, Luo C, Hu Z. Direct effects of barley yellow dwarf virus on the performance, parasitoid resistance, and feeding behavior of its vector Sitobion avenae (Hemiptera: Aphididae). PEST MANAGEMENT SCIENCE 2024; 80:5112-5119. [PMID: 38860678 DOI: 10.1002/ps.8235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/26/2024] [Accepted: 05/28/2024] [Indexed: 06/12/2024]
Abstract
BACKGROUND The complex interaction between plant viruses and their insect vectors is the basis for the epidemiology of plant viruses. The 'Vector Manipulation Hypothesis' (VMH) was proposed to demonstrate the evolution of strategies in plant viruses to enhance their transmission to new hosts through direct effects on insect vector behavior and/or physiology. However, the aphid vectors used in previous studies were mostly obtained by feeding on virus-infected plants and as a result, it was difficult to eliminate the confounding effects of infected host plants. Furthermore, the mechanisms of the direct effects of plant viruses on insect vectors have rarely been examined comprehensively. RESULTS We fed Sitobion avenae on an artificial diet infused with a purified suspension of Barley yellow dwarf virus (BYDV) PAV strain to obtain viruliferous aphids. We then examined their growth and reproduction performance, resistance to the parasitoid Aphidius gifuensis Ashmead, and feeding behavior. The results indicate that (1) viruliferous aphids had a shorter life span and a lower relative growth rate at the nymphal stage; (2) A. gifuensis had a lower parasitism rate, mummification rate, and emergence rate in viruliferous aphids; (3) Viruliferous aphids spent more time on non-probing and salivation behavior and had a shorter total duration of penetration and ingestion compared with healthy conspecifics. CONCLUSION These results suggest that plant virus infection may directly alter vector fitness and behavior that improves plant virus transmission, but not vector growth. These findings highlight the mechanisms of VMH and the ecological significance of vector manipulation by plant viruses, and have implications for plant virus disease and vector management. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chiping Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Qi Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Xiang Shi
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Huimin Zhu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Ruirui Chai
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Geyang Hu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, China
| | | | - Chen Luo
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Zuqing Hu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
3
|
Naveed H, Islam W, Jafir M, Andoh V, Chen L, Chen K. A Review of Interactions between Plants and Whitefly-Transmitted Begomoviruses. PLANTS (BASEL, SWITZERLAND) 2023; 12:3677. [PMID: 37960034 PMCID: PMC10648457 DOI: 10.3390/plants12213677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023]
Abstract
The transmission of plant viruses from infected to healthy host plants is a process in which insects play a major role, using various transmission strategies. Environmental factors have an impact on the transmission of viruses and the subsequent development of infections or diseases. When viruses are successful, plant virus diseases can reach epidemic proportions. Many plants across different regions are vulnerable to viral infections transmitted by the whitefly vector. Begomoviruses, which are transmitted by whiteflies, represent a significant threat to agriculture worldwide. The review highlights the mechanisms of virus acquisition and transmission by whiteflies and explores the factors influencing these interactions. Understanding the impacts of these changes is crucial for managing the spread of pests and mitigating damage to crops. It underscores the need for continued research to elucidate the mechanisms driving plant-insect-virus interactions and to identify new approaches for sustainable pest management.
Collapse
Affiliation(s)
- Hassan Naveed
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China;
| | - Waqar Islam
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China;
| | - Muhammad Jafir
- Department of Ecology, School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China;
| | - Vivian Andoh
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China;
| | - Liang Chen
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China;
| | - Keping Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China;
| |
Collapse
|
4
|
Hao ZP, Feng ZB, Sheng L, Fei WX, Hou SM. Aphids on Aphid-Susceptible Cultivars Have Easy Access to Turnip Mosaic Virus, and Effective Inoculation on Aphid-Resistant Cultivars of Oilseed Rape ( Brassica napus). PLANTS (BASEL, SWITZERLAND) 2023; 12:1972. [PMID: 37653889 PMCID: PMC10221937 DOI: 10.3390/plants12101972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/30/2023] [Accepted: 05/11/2023] [Indexed: 09/02/2023]
Abstract
Plant viruses improve transmission efficiency by directly and indirectly influencing vector behavior, but the impact of plant cultivars on these modifications is rarely studied. Using electropenetrography (EPG) technology, a comparative study of the effects of turnip mosaic virus (TuMV) infection on quantitative probing behaviors of the cabbage aphid (Brevicoryne brassicae) was conducted on two oilseed rape cultivars ('Deleyou6' and 'Zhongshuang11'). Compared to mock-inoculated plants, cabbage aphids on infected plants increased the frequency of brief probing, cell penetration, and salivation. Additionally, aphids on infected 'Deleyou6' prolonged cell penetration time and decreased ingestion, but not on infected 'Zhongshuang11', suggesting that aphids were more likely to acquire and vector TuMV on the aphid-susceptible cultivar 'Deleyou6' than on resistant cultivars. TuMV also affected aphid probing behavior directly. Viruliferous aphids reduced the pathway duration, secreted more saliva, and ingested less sap than non-viruliferous aphids. In comparison with non-viruliferous aphids, viruliferous aphids started the first probe earlier and increased brief probing and cell penetration frequencies on the aphid-resistant cultivar 'Zhongshuang11'. Based on these observations, viruliferous aphids can be inoculated with TuMV more efficiently on 'Zhongshuang11' than on 'Deleyou6'. Although aphid resistance and TuMV infection may influence aphid probing behavior, oilseed rape resistance to aphids does not impede TuMV transmission effectively.
Collapse
Affiliation(s)
| | | | | | | | - Shu-Min Hou
- Crop Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China; (Z.-P.H.); (Z.-B.F.); (L.S.); (W.-X.F.)
| |
Collapse
|
5
|
Antifeedant Potential of Geranylacetone and Nerylacetone and Their Epoxy-Derivatives against Myzus persicae (Sulz.). MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248871. [PMID: 36558003 PMCID: PMC9784399 DOI: 10.3390/molecules27248871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Geranylacetone and nerylacetone are natural sesquiterpenoids, which play various roles in plant-insect interactions, including the deterrent and repellent effects on herbivores. The structural modifications of natural compounds often change their biological activities. The aim of the study was to evaluate the effect of geranylacetone, nerylacetone and their epoxy-derivatives on the probing and settling behavior of Myzus persicae (Sulz.) (Hemiptera: Aphididae). The no-choice test using the Electrical Penetration Graph (EPG) technique showed that the probes before the first phloem phase were usually shorter than 3 min, which means that they were terminated within the epidermis and/or outer layers of mesophyll. This resulted in a tendency to delay the initiation of the phloem phase in aphids, which reflects a weak preingestive deterrent activity of the studied compounds at the level of non-vascular tissues. Most M. persicae showed bouts of sustained phloem sap ingestion. However, the 24-h free-choice test demonstrated that aphids did not settle on the leaves treated with geranylacetone, nerylacetone, and their epoxy-derivatives. The refusal to settle after the consumption of phloem sap on treated plants indicated that the studied compounds had postingestive deterrent activity. The epoxidation of geranylacetone and nerylacetone did not evoke significant changes in their activity profiles.
Collapse
|
6
|
Zhao K, Liu SS, Wang XW, Yang JG, Pan LL. Manipulation of Whitefly Behavior by Plant Viruses. Microorganisms 2022; 10:microorganisms10122410. [PMID: 36557663 PMCID: PMC9782533 DOI: 10.3390/microorganisms10122410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Whiteflies of the Bemisia tabaci complex transmit hundreds of plant viruses belonging to the genera Begomovirus and Crinivirus, among others. Tripartite interactions of whitefly-virus-plant frequently occur during virus infection and transmission. Specifically, virus transmission-related behavior of whitefly, such as preference and feeding, may be altered by viruses and thus exert significant impacts on the outcome of virus spread and epidemics. Here, we provide an overview on the current understanding of the manipulation of whitefly behavior by plant viruses. Plant viruses can significantly modulate whitefly preference and feeding behavior, either directly or in a plant-mediated manner. In general, non-viruliferous whiteflies tend to prefer virus-infected plants, and viruliferous whiteflies are more likely to prefer uninfected plants. In most cases, virus infection of plants and/or whitefly seems to exhibit positive or no effects on whitefly feeding on plants. The significance and evolution of these patterns are then discussed. Finally, we suggest several future directions of research, such as the exploration of temporal dynamics and the dissection of underlying mechanisms of virus-induced changes in whitefly behavior.
Collapse
Affiliation(s)
- Kai Zhao
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shu-Sheng Liu
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiao-Wei Wang
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jin-Guang Yang
- Key Laboratory of Tobacco Pest Monitoring, Controlling & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
- Correspondence: (J.-G.Y.); (L.-L.P.)
| | - Li-Long Pan
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
- The Rural Development Academy, Zhejiang University, Hangzhou 310058, China
- Correspondence: (J.-G.Y.); (L.-L.P.)
| |
Collapse
|
7
|
He Y, Jiang W, Ding W, Chen W, Zhao D. Effects of PVY-Infected Tobacco Plants on the Adaptation of Myzus persicae (Hemiptera: Aphididae). INSECTS 2022; 13:1120. [PMID: 36555030 PMCID: PMC9785737 DOI: 10.3390/insects13121120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
The indirect interaction between viruses and their insect vectors via the host plants can mediate viral transmission. Thus, elucidating these tripartite interactions is crucial for controlling the occurrence of viral diseases. This study examined the feeding behavior and life table parameters of the green peach aphid, Myzus persicae, using electropenetrography and an age-stage, two-sex life table on PVY-infected and uninfected tobacco plants. Furthermore, the amino acid and soluble sugar contents in tobacco tissue at different stages of PVY infection were determined. The results showed that PVY-infected plants exerted remarkable effects on the feeding activities of M. persicae. Aphids exhibited a reduced non-probing duration and increased phloem sap ingestion on infected plants. Although the nymph development time on the PVY-infected plants was significantly shorter than that of uninfected plants, M. persicae reared on infected plants had reduced fecundity and significantly shortened adult longevity. On day 12, the sugar: amino acid ratio of the PVY-infected plants was significantly higher than that of uninfected plants, whereas the opposite was observed on day 24. Our results demonstrated that PVY could alter the adaptability of M. persicae by modifying the nutritional quality of tobacco plants. In addition, divergent effects on aphids were observed at different infection stages, which are crucial to consider while exploring the interactions between viruses, insect vectors, and host plants. These results provided significant information for comprehending PVY spread and outbreaks.
Collapse
Affiliation(s)
- Yingqin He
- College of Tea Science, Guizhou University, Guiyang 550025, China
| | - Wenbin Jiang
- College of Tea Science, Guizhou University, Guiyang 550025, China
| | - Wei Ding
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Wenlong Chen
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture, Guizhou University, Guiyang 550025, China
| | - Degang Zhao
- Guizhou Plant Conservation Center, Guizhou Academy of Agriculture Science, Guiyang 550006, China
| |
Collapse
|
8
|
Hao ZP, Sheng L, Feng ZB, Fei WX, Hou SM. Turnip Mosaic Virus Infection Differentially Modifies Cabbage Aphid Probing Behavior in Spring and Winter Oilseed Rape ( Brassica napus). INSECTS 2022; 13:791. [PMID: 36135492 PMCID: PMC9505805 DOI: 10.3390/insects13090791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
Direct and indirect effects of plant virus infection on vector behavior have been discovered to improve virus transmission efficiency, but the impact of plant cultivars in virus-vector-plant interactions has received little attention. Electropenetrography (EPG) allows real-time tracking and quantification of stylet penetration behaviors, pathogen transmission, and plant resistance mechanisms. Quantitative probing behaviors on a spring oilseed rape cultivar, 'Xinyou17', and a winter oilseed rape cultivar, 'Zheping4', were investigated using EPG to compare turnip mosaic virus (TuMV) regulation of cabbage aphid probing behavior. Results for indirect effects showed that compared to mock-inoculated plants, cabbage aphids on infected plants increased brief probing frequency, cell penetration frequency, intracellular probing time, and decreased time to first probe and pathway time, potentially promoting viral acquisition. TuMV also directly influences aphid probing behavior. Viruliferous aphids had reduced pathway time, increased cell penetration frequency, increased intracellular probing time, increased salivation frequency, and ingested less sap than non-viruliferous aphids, primed for viral infection. Although oilseed rape cultivars can also influence aphid behavior, the main effect of cultivars was not significant on TuMV-infected plants.
Collapse
|
9
|
Zhang Z, Zhang B, He H, Yan M, Li J, Yan F. Changes in Visual and Olfactory Cues in Virus-Infected Host Plants Alter the Behavior of Bemisia tabaci. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.766570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The cucurbit chlorotic yellows virus (CCYV) has caused serious damage to melon crops in many countries in recent years. This plant virus is exclusively transmitted by the whitefly Bemisia tabaci (Gennadius) in a semi-persistent mode. Previous studies have shown that both persistent and non-persistent viruses can affect the orientation and performance of insect vectors, through changing host phenotype or interacting with insect vectors directly to facilitate the spread of viruses. However, how CCYV affects host-plant selection by B. tabaci has not been reported. In this study, we investigated the visual and olfactory preferences of B. tabaci between healthy and CCYV-infected host plants Cucumis sativus (Cucurbitaceae). Volatile profiles of healthy and CCYV-infected C. sativus plants were analyzed using gas chromatography-mass spectrometry (GC-MS). In the choice assay, whiteflies preferred to settle on CCYV-infected C. sativus seedlings. However, the concentrations of total volatiles and terpenes in C. sativus plants decreased after CCYV infection. Interestingly, in the Y-tube assay and vision preference test, whitefly B. tabaci adults showed significant visual preference to CCYV-infected host but showed olfactory preference to healthy plants. These results indicated that CCYV infection in plants differently affected the visual and olfactory-mediated orientation behaviors of vector whiteflies and implied that visual cues could play a more important role than olfactory cues in whiteflies in locating CCYV-infected host plants.
Collapse
|
10
|
Effect of Sugarcane Cultivars Infected with Sugarcane Yellow Leaf Virus (ScYLV) on Feeding Behavior and Biological Performance of Melanaphis sacchari (Hemiptera: Aphididae). PLANTS 2021; 10:plants10102122. [PMID: 34685930 PMCID: PMC8537889 DOI: 10.3390/plants10102122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 11/26/2022]
Abstract
Sugarcane yellow leaf virus (ScYLV), Polerovirus, Luteoviridae, is one of the main viruses that infect sugarcane worldwide. The virus is transmitted by the aphid Melanaphis sacchari in a persistent, circulative manner. To better understand the interactions between ScYLV, sugarcane genotypes and M. sacchari, we explored the effect of sugarcane cultivars on the feeding behavior and biological performance of the vector. The number of nymphs, adults, winged, total number of aphids and dead aphids was assayed, and an electrical penetration graph (EPG) was used to monitor the stylet activities. Multivariate analysis showed changes in the vector’s behavior and biology on cultivars, identifying specific groups of resistance. In the cultivar 7569, only 5.5% of the insects were able to stay longer on sustained phloem ingestion, while in the other seven cultivars these values varied from 20% to 60%. M. sacchari showed low phloem activities in cultivars 7569 and Bio266. Overall, cultivar 7569 showed the worst biological performance of aphids, with the insects presenting mechanical difficulties for feeding and a shorter duration of the phloem period, and thus being considered the most resistant. We conclude that ScYLV virus infection in different sugarcane cultivars induced specific changes in the host plant, modifying the behavior of its main vector, which may favor or impair virus transmission.
Collapse
|
11
|
Pan L, Miao H, Wang Q, Walling LL, Liu S. Virus-induced phytohormone dynamics and their effects on plant-insect interactions. THE NEW PHYTOLOGIST 2021; 230:1305-1320. [PMID: 33555072 PMCID: PMC8251853 DOI: 10.1111/nph.17261] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 01/19/2021] [Indexed: 05/07/2023]
Abstract
Attacks on plants by both viruses and their vectors is common in nature. Yet the dynamics of the plant-virus-vector tripartite system, in particular the effects of viral infection on plant-insect interactions, have only begun to emerge in the last decade. Viruses can modulate the interactions between insect vectors and plants via the jasmonate, salicylic acid and ethylene phytohormone pathways, resulting in changes in fitness and viral transmission capacity of their insect vectors. Virus infection of plants may also modulate other phytohormones, such as auxin, gibberellins, cytokinins, brassinosteroids and abscisic acid, with yet undefined consequences on plant-insect interactions. Moreover, virus infection in plants may incur changes to other plant traits, such as nutrition and secondary metabolites, that potentially contribute to virus-associated, phytohormone-mediated manipulation of plant-insect interactions. In this article, we review the research progress, discuss issues related to the complexity and variability of the viral modulation of plant interactions with insect vectors, and suggest future directions of research in this field.
Collapse
Affiliation(s)
- Li‐Long Pan
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and InsectsInstitute of Insect SciencesZhejiang UniversityHangzhou310058China
| | - Huiying Miao
- Key Laboratory of Horticultural Plant GrowthDevelopment and Quality ImprovementMinistry of AgricultureDepartment of HorticultureZhejiang UniversityHangzhou310058China
| | - Qiaomei Wang
- Key Laboratory of Horticultural Plant GrowthDevelopment and Quality ImprovementMinistry of AgricultureDepartment of HorticultureZhejiang UniversityHangzhou310058China
| | - Linda L. Walling
- Department of Botany and Plant SciencesCenter for Plant Cell BiologyUniversity of CaliforniaRiverside, CA92521‐0124USA
| | - Shu‐Sheng Liu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and InsectsInstitute of Insect SciencesZhejiang UniversityHangzhou310058China
| |
Collapse
|
12
|
Abstract
Of the approximately 1,200 plant virus species that have been described to date, nearly one-third are single-stranded DNA (ssDNA) viruses, and all are transmitted by insect vectors. However, most studies of vector transmission of plant viruses have focused on RNA viruses. All known plant ssDNA viruses belong to two economically important families, Geminiviridae and Nanoviridae, and in recent years, there have been increased efforts to understand whether they have evolved similar relationships with their respective insect vectors. This review describes the current understanding of ssDNA virus-vector interactions, including how these viruses cross insect vector cellular barriers, the responses of vectors to virus circulation, the possible existence of viral replication within insect vectors, and the three-way virus-vector-plant interactions. Despite recent breakthroughs in our understanding of these viruses, many aspects of plant ssDNA virus transmission remain elusive. More effort is needed to identify insect proteins that mediate the transmission of plant ssDNA viruses and to understand the complex virus-insect-plant three-way interactions in the field during natural infection.
Collapse
Affiliation(s)
- Xiao-Wei Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China;
| | - Stéphane Blanc
- Plant Health Institute of Montpellier, Univ Montpellier, CIRAD, INRAE, IRD, Montpellier SupAgro, Montpellier, France;
| |
Collapse
|
13
|
Tomato Metabolic Changes in Response to Tomato-Potato Psyllid ( Bactericera cockerelli) and Its Vectored Pathogen Candidatus Liberibacter solanacearum. PLANTS 2020; 9:plants9091154. [PMID: 32900000 PMCID: PMC7570104 DOI: 10.3390/plants9091154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/26/2020] [Accepted: 09/03/2020] [Indexed: 11/17/2022]
Abstract
The bacterial pathogen ‘Candidatus Liberibacter solanacearum’ (Lso) is transmitted by the tomato potato psyllid (TPP), Bactericera cockerelli, to solanaceous crops. In the present study, the changes in metabolic profiles of insect-susceptible (cv CastleMart) and resistant (RIL LA3952) tomato plants in response to TPP vectoring Lso or not, were examined after 48 h post infestation. Non-volatile and volatile metabolites were identified and quantified using headspace solid-phase microextraction equipped with a gas chromatograph-mass spectrometry (HS-SPME/GC-MS) and ultra-high pressure liquid chromatography coupled to electrospray quadrupole time-of-flight mass spectrometry (UPLC/ESI-HR-QTOFMS), respectively. Partial least squares-discriminant analysis (PLS-DA) was used to define the major uncorrelated metabolite components assuming the treatments as the correlated predictors. Metabolic changes in various classes of metabolites, including volatiles, hormones, and phenolics, were observed in resistant and susceptible plants in response to the insects carrying the pathogen or not. The results suggest the involvement of differentially regulated and, in some cases, implicates antagonistic metabolites in plant defensive signaling. Upon validation, the identified metabolites could be used as markers to screen and select breeding lines with enhanced resistance to reduce economic losses due to the TPP-Lso vector-pathogen complex in Solanaceous crops.
Collapse
|
14
|
Lu S, Chen M, Li J, Shi Y, Gu Q, Yan F. Changes in Bemisia tabaci feeding behaviors caused directly and indirectly by cucurbit chlorotic yellows virus. Virol J 2019; 16:106. [PMID: 31438971 PMCID: PMC6704720 DOI: 10.1186/s12985-019-1215-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 08/14/2019] [Indexed: 01/19/2023] Open
Abstract
Background Plant viruses can affect vector’s behaviors in order to enhance viral transmission. Cucurbit chlorotic yellows virus (CCYV) (genus Crinivirus) is an emergent RNA plant virus and is transmitted specifically by biotypes B and Q of tobacco whitefly, Bemisia tabaci (Gennadius), in a semipersistent manner. Methods We used the electrical penetration graph (EPG) to investigate the effect of CCYV on the feeding behaviors of B. tabaci biotypes B and Q. Results CCYV could affect, both directly and indirectly, the feeding behaviors of B. tabaci to various degrees, depending on biotypes and sexes of the insect. CCYV showed stronger direct effects on biotype Q than on biotype B in terms of increased non-phloem probing and phloem salivation. CCYV increased non-phloem probing and phloem salivation more on females than on males of biotype Q, and increased phloem salivation more on females than on males of biotype B. CCYV had stronger indirect effects, via virus-infested plants, on biotype B than on biotype Q by enhancing phloem sap ingestion and feeding bouts. CCYV increased non-phloem probing and feeding bouts more on males than on females of biotype B, and decreased phloem sap ingestion more on males than on females on biotype Q indirectly. Conclusions The results clearly indicated that CCYV affects the feeding behaviors of B. tabaci, which may lead to increased ability of the B. tabaci for CCYV transmission.
Collapse
Affiliation(s)
- Shaohua Lu
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, Henan, China.,School of Food Science and Technology, Henan University of Technology, Zhengzhou, 450001, Henan, China
| | - Mingshun Chen
- Department of Entomology, Kansas State University, Manhattan, KS, 66506, USA
| | - Jingjing Li
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Yan Shi
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Qinsheng Gu
- Chinese Academy of Agricultural Science, Zhengzhou Fruit Research Institute, Zhengzhou, 410100, China
| | - Fengming Yan
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, Henan, China.
| |
Collapse
|
15
|
Kliot A, Kontsedalov S, Lebedev G, Czosnek H, Ghanim M. Combined infection with Tomato yellow leaf curl virus and Rickettsia influences fecundity, attraction to infected plants and expression of immunity-related genes in the whitefly Bemisia tabaci. J Gen Virol 2019; 100:721-731. [PMID: 30762513 DOI: 10.1099/jgv.0.001233] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We have recently shown that Rickettsia, a secondary facultative bacterial symbiont that infects the whitefly B. tabaci is implicated in the transmission of Tomato yellow leaf curl virus (TYLCV). Infection with Rickettsia improved the acquisition and transmission of the virus by B. tabaci adults. Here we performed a transcriptomic analysis with Rickettsia-infected and uninfected B. tabaci adults before and after TYLCV acquisition. The results show a dramatic and specific activation of the immune system in the presence of Rickettsia before TYLCV acquisition. However, when TYLCV was acquired, it induced massive activation of gene expression in the Rickettsia uninfected population, whereas in the Rickettsia-infected population the virus induced massive down-regulation of gene expression. Fitness and choice experiments revealed that while Rickettsia-infected whiteflies are always more attracted to TYLCV-infected plants, this attraction is not always beneficiary for their offspring. These studies further confirm the role of Rickettsia in many aspects of B. tabaci interactions with TYLCV, and possibly serves as an important factor in the dissemination of the virus.
Collapse
Affiliation(s)
- Adi Kliot
- 1Department of Entomology, The Volcani Center, Rishon LeZion, Israel.,2Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | | | - Galina Lebedev
- 1Department of Entomology, The Volcani Center, Rishon LeZion, Israel
| | - Henryk Czosnek
- 2Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Murad Ghanim
- 1Department of Entomology, The Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
16
|
Jhan PK, Shim JK, Lee S, Lee KY. Differential responses between a vector species Bemisia tabaci and a nonvector species Trialeurodes vaporariorum following ingestion of tomato yellow leaf curl virus. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2019; 100:e21503. [PMID: 30570176 DOI: 10.1002/arch.21517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In transmitting plant viruses, insect vectors undergo physiological and behavioral alterations. The whitefly Bemisia tabaci is a vector of tomato yellow leaf curl virus (TYLCV), causing severe damages to various horticultural crop plants. To determine whether whitefly alteration is specific to vector species, the responses to TYLCV ingestion were compared between B. tabaci and Trialeurodes vaporariorum, a nonvector for TYLCV. The two species were reared on TYLCV-infected and noninfected tomato, a host of TYLCV, and their longevity and fecundity were determined while rearing in either tomato or eggplant, a nonhost of TYLCV. TYLCV-ingested B. tabaci increased their developmental rates but reduced fecundity when they were reared in either tomato or eggplant compared with those of TYLCV-free ones. In contrast, TYLCV-ingested T. vaporariorum did not show any of the aforementioned changes when reared on both plant species. In addition, TYLCV-ingested B. tabaci increased their levels of three heat shock protein genes ( hsp20, hsp70, and hsp90) against thermal stress, whereas TYLCV-ingested T. vaporariorum did not. The presence of TYLCV virions was identified in two colonies of both species via polymerase chain reaction analysis. TYLCV was detected in the whole body, saliva, and eggs of B. tabaci, while TYLCV was detected only in the whole body but not in the saliva and eggs of T. vaporariorum. The present results strongly indicated that TYLCV specifically manipulate physiological processes of the vector species, B. tabaci.
Collapse
Affiliation(s)
- Pijush Kanti Jhan
- Division of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Republic of Korea
- Department of Entomology, Patuakhali Science and Technology University, Patuakhali, Bangladesh
| | - Jae-Kyoung Shim
- Division of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Republic of Korea
- Institute of Plant Medicine, Kyungpook National University, Daegu, Republic of Korea
- Institute of Agricultural Science and Technology, Kyungpook National University, Daegu, Republic of Korea
| | - Sukchan Lee
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Kyeong-Yeoll Lee
- Division of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Republic of Korea
- Institute of Agricultural Science and Technology, Kyungpook National University, Daegu, Republic of Korea
- Sustainable Agriculture Research Center, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
17
|
Hasegawa DK, Chen W, Zheng Y, Kaur N, Wintermantel WM, Simmons AM, Fei Z, Ling KS. Comparative transcriptome analysis reveals networks of genes activated in the whitefly, Bemisia tabaci when fed on tomato plants infected with Tomato yellow leaf curl virus. Virology 2017; 513:52-64. [PMID: 29035786 DOI: 10.1016/j.virol.2017.10.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/03/2017] [Accepted: 10/07/2017] [Indexed: 02/05/2023]
Abstract
The whitefly Bemisia tabaci can transmit hundreds of viruses to numerous agricultural crops in the world. Five genera of viruses, including Begomovirus and Crinivirus, are transmitted by B. tabaci. There is little knowledge about the genes involved in virus acquisition and transmission by whiteflies. Using a comparative transcriptomics approach, we evaluated the gene expression profiles of whiteflies (B. tabaci MEAM1) after feeding on tomato infected by a begomovirus, Tomato yellow leaf curl virus (TYLCV), in comparison to a recent study, in which whiteflies were fed on tomato infected by the crinivirus, Tomato chlorosis virus (ToCV). The data revealed similar temporal trends in gene expression, but large differences in the number of whitefly genes when fed on TYLCV or ToCV-infected tomato. Transcription factors, cathepsins, receptors, and a hemocyanin gene, which is implicated in mediating antiviral immune responses in other insects and possibly virus transmission, were some of the genes identified.
Collapse
Affiliation(s)
- Daniel K Hasegawa
- USDA-ARS, US Vegetable Laboratory, Charleston, South Carolina, USA; Boyce Thompson Institute, Ithaca, New York, USA.
| | - Wenbo Chen
- Boyce Thompson Institute, Ithaca, New York, USA.
| | - Yi Zheng
- Boyce Thompson Institute, Ithaca, New York, USA.
| | - Navneet Kaur
- USDA-ARS, Crop Improvement and Protection Research, Salinas, California, USA.
| | | | - Alvin M Simmons
- USDA-ARS, US Vegetable Laboratory, Charleston, South Carolina, USA.
| | - Zhangjun Fei
- Boyce Thompson Institute, Ithaca, New York, USA; USDA-ARS, Robert W. Holley Center for Agriculture and Health, Ithaca, New York, USA.
| | - Kai-Shu Ling
- USDA-ARS, US Vegetable Laboratory, Charleston, South Carolina, USA.
| |
Collapse
|
18
|
Shrestha D, McAuslane HJ, Adkins ST, Smith HA, Dufault N, Colee J, Webb SE. Host-Mediated Effects of Semipersistently Transmitted Squash Vein Yellowing Virus on Sweetpotato Whitefly (Hemiptera: Aleyrodidae) Behavior and Fitness. JOURNAL OF ECONOMIC ENTOMOLOGY 2017; 110:1433-1441. [PMID: 28854650 DOI: 10.1093/jee/tox161] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Indexed: 06/07/2023]
Abstract
Plant viruses may indirectly affect insect vector behavior and fitness via a shared host plant. Here, we evaluated the host-mediated effects of Squash vein yellowing virus (SqVYV) on the behavior and fitness of its whitefly vector, Bemisia tabaci (Gennadius) Middle East-Asia Minor 1, formerly biotype B. Alighting, settling, and oviposition behavioral assays were conducted on infected and mock-inoculated squash (Cucurbita pepo L.) and watermelon [Citrullus lanatus (Thunb) Matsum and Nakai] plants. Developmental time of immature stages, adult longevity, and fecundity were measured on infected and mock-inoculated squash plants. For adult longevity and fecundity, whiteflies were reared on infected and mock-inoculated squash plants to determine the effects of nymphal rearing host on the adult stage. More whiteflies alighted and remained settled on infected squash than on mock-inoculated squash 0.25, 1, 8, and 24 h after release. No such initial preference was observed on watermelon plants, but by 8 h after release, more whiteflies were found on mock-inoculated watermelon plants than on infected plants. Whiteflies laid approximately six times more eggs on mock-inoculated watermelon than on infected watermelon; however, no differences were observed on squash. Development from egg to adult emergence was 3 d shorter on infected than mock-inoculated squash plants. Females lived 25% longer and had higher fecundity on infected squash plants than on mock-inoculated plants, regardless of infection status of the rearing host. The host-mediated effects of SqVYV infection on whitefly behavior differ on two cucurbit host plants, suggesting the potential for more rapid spread of the virus within watermelon fields.
Collapse
Affiliation(s)
- Deepak Shrestha
- Department of Entomology and Nematology, University of Florida, 1881 Natural Area Dr., Steinmetz Hall, Gainesville, FL 32611
- UF/IFAS, Gulf Coast Research and Education Center, 14625 County Rd. 672, Wimauma, FL 33598
| | - Heather J McAuslane
- Department of Entomology and Nematology, University of Florida, 1881 Natural Area Dr., Steinmetz Hall, Gainesville, FL 32611
| | - Scott T Adkins
- USDA, Agricultural Research Service, U. S. Horticultural Research Laboratory, 2001 South Rock Rd., Fort Pierce, FL 34945
| | - Hugh A Smith
- UF/IFAS, Gulf Coast Research and Education Center, 14625 County Rd. 672, Wimauma, FL 33598
| | - Nicholas Dufault
- Department of Plant Pathology, University of Florida, 2550 Hull Rd., Fifield Hall, Gainesville, FL 32611
| | - James Colee
- Statistics Consulting Unit, Institute of Food and Agricultural Sciences, University of Florida, McCarty Hall C, PO Box 110339, Gainesville, FL 32611
| | - Susan E Webb
- Department of Entomology and Nematology, University of Florida, 1881 Natural Area Dr., Steinmetz Hall, Gainesville, FL 32611
| |
Collapse
|
19
|
Wang XW, Li P, Liu SS. Whitefly interactions with plants. CURRENT OPINION IN INSECT SCIENCE 2017; 19:70-75. [PMID: 28521945 DOI: 10.1016/j.cois.2017.02.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 01/20/2017] [Accepted: 02/01/2017] [Indexed: 06/07/2023]
Abstract
Whiteflies are important pests of many crops worldwide. They are polyphagous and effectively feed on phloem sap using mouthparts modified into long, flexible stylets. Plants respond to whitefly attack by activating defense genes leading to production of toxic compounds. To reach plant phloem and survive on host plants, whiteflies secret effectors in the saliva to regulate plant responses and activate detoxification system to cope with plant defenses. Additionally, whitefly-transmitted viruses may exert substantial effects on host plants and in turn the performance of whiteflies. Understanding the interactions between whiteflies and host plants will promote the development of novel strategies for controlling whiteflies. Here, we summarize the genetics, molecular genetics and genomics of the whitefly's interactions with plants.
Collapse
Affiliation(s)
- Xiao-Wei Wang
- The Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Ping Li
- The Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shu-Sheng Liu
- The Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
20
|
Lu S, Li J, Wang X, Song D, Bai R, Shi Y, Gu Q, Kuo YW, Falk BW, Yan F. A Semipersistent Plant Virus Differentially Manipulates Feeding Behaviors of Different Sexes and Biotypes of Its Whitefly Vector. Viruses 2017; 9:E4. [PMID: 28098749 PMCID: PMC5294973 DOI: 10.3390/v9010004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 12/19/2016] [Indexed: 02/07/2023] Open
Abstract
It is known that plant viruses can change the performance of their vectors. However, there have been no reports on whether or how a semipersistent plant virus manipulates the feeding behaviors of its whitefly vectors. Cucurbit chlorotic yellows virus (CCYV) (genus Crinivirus, family Closteroviridae) is an emergent plant virus in many Asian countries and is transmitted specifically by B and Q biotypes of tobacco whitefly, Bemisia tabaci (Gennadius), in a semipersistent manner. In the present study, we used electrical penetration graph (EPG) technique to investigate the effect of CCYV on the feeding behaviors of B. tabaci. The results showed that CCYV altered feeding behaviors of both biotypes and sexes of B. tabaci with different degrees. CCYV had stronger effects on feeding behaviors of Q biotype than those of B biotype, by increasing duration of phloem salivation and sap ingestion, and could differentially manipulate feeding behaviors of males and females in both biotype whiteflies, with more phloem ingestion in Q biotype males and more non-phloem probing in B biotype males than their respective females. With regard to feeding behaviors related to virus transmission, these results indicated that, when carrying CCYV, B. tabaci Q biotype plays more roles than B biotype, and males make greater contribution than females.
Collapse
Affiliation(s)
- Shaohua Lu
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China.
| | - Jingjing Li
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China.
| | - Xueli Wang
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China.
| | - Danyang Song
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China.
| | - Rune Bai
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China.
| | - Yan Shi
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China.
| | - Qinsheng Gu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 410100, China.
| | - Yen-Wen Kuo
- Department of Plant Pathology, University of California, Davis, CA 95616-8600, USA.
| | - Bryce W Falk
- Department of Plant Pathology, University of California, Davis, CA 95616-8600, USA.
| | - Fengming Yan
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
21
|
Legarrea S, Barman A, Marchant W, Diffie S, Srinivasan R. Temporal Effects of a Begomovirus Infection and Host Plant Resistance on the Preference and Development of an Insect Vector, Bemisia tabaci, and Implications for Epidemics. PLoS One 2015; 10:e0142114. [PMID: 26529402 PMCID: PMC4631503 DOI: 10.1371/journal.pone.0142114] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 10/16/2015] [Indexed: 11/18/2022] Open
Abstract
Persistent plant viruses, by altering phenotypic and physiological traits of their hosts, could modulate the host preference and fitness of hemipteran vectors. A majority of such modulations increase vector preference for virus-infected plants and improve vector fitness, ultimately favouring virus spread. Nevertheless, it remains unclear how these virus-induced modulations on vectors vary temporally, and whether host resistance to the pathogen influences such effects. This study addressed the two questions using a Begomovirus-whitefly-tomato model pathosystem. Tomato yellow leaf curl virus (TYLCV) -susceptible and TYLCV-resistant tomato genotypes were evaluated by whitefly-mediated transmission assays. Quantitative PCR revealed that virus accumulation decreased after an initial spike in all genotypes. TYLCV accumulation was less in resistant than in susceptible genotypes at 3, 6, and 12 weeks post inoculation (WPI). TYLCV acquisition by whiteflies over time from resistant and susceptible genotypes was also consistent with virus accumulation in the host plant. Furthermore, preference assays indicated that non-viruliferous whiteflies preferred virus-infected plants, whereas viruliferous whiteflies preferred non-infected plants. However, this effect was prominent only with the susceptible genotype at 6 WPI. The development of whiteflies on non-infected susceptible and resistant genotypes was not significantly different. However, developmental time was reduced when a susceptible genotype was infected with TYLCV. Together, these results suggest that vector preference and development could be affected by the timing of infection and by host resistance. These effects could play a crucial role in TYLCV epidemics.
Collapse
Affiliation(s)
- Saioa Legarrea
- Department of Entomology, University of Georgia, Tifton, Georgia, United States of America
| | - Apurba Barman
- Department of Entomology, University of Georgia, Tifton, Georgia, United States of America
| | - Wendy Marchant
- Department of Entomology, University of Georgia, Tifton, Georgia, United States of America
| | - Stan Diffie
- Department of Entomology, University of Georgia, Tifton, Georgia, United States of America
| | | |
Collapse
|
22
|
Guo T, Guo Q, Cui XY, Liu YQ, Hu J, Liu SS. Comparison of transmission of Papaya leaf curl China virus among four cryptic species of the whitefly Bemisia tabaci complex. Sci Rep 2015; 5:15432. [PMID: 26486606 PMCID: PMC4614018 DOI: 10.1038/srep15432] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/22/2015] [Indexed: 11/08/2022] Open
Abstract
Begomoviruses are transmitted by cryptic species of the whitefly Bemisia tabaci complex, often in a species-specific manner. Papaya leaf curl China virus (PaLCuCNV) has been recorded to infect several crops including papaya, tomato and tobacco in China. To help assess the risks of spread of this virus, we compared the acquisition, retention and transmission of PaLCuCNV among four species of whiteflies, Middle East-Asia Minor 1 (MEAM1), Mediterranean (MED), Asia 1 and Asia II 7. All four species of whiteflies are able to acquire, retain and transmit the virus, but with different levels of efficiency. Transmission tests using tomato as the host plant showed that MEAM1 transmitted PaLCuCNV with substantially higher efficiency than did MED, Asia 1 and Asia II 7. Furthermore, accumulation of PaLCuCNV in the whiteflies was positively associated with its efficiency of transmitting the virus. Altogether, these findings indicate that MEAM1 is the most efficient vector for PaLCuCNV in the four species of whiteflies, and suggest that risks of PaLCuCNV pandemics are high in regions where MEAM1 occurs.
Collapse
Affiliation(s)
- Tao Guo
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qi Guo
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xi-Yun Cui
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yin-Quan Liu
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jian Hu
- Yunnan Provincial Key Lab of Agricultural Biotechnology, Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650223, China
| | - Shu-Sheng Liu
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|