1
|
Okajima T, Shigemori S, Namai F, Ogita T, Sato T, Shimosato T. Free Feeding of CpG-Oligodeoxynucleotide Particles Prophylactically Attenuates Allergic Airway Inflammation and Hyperresponsiveness in Mice. Front Immunol 2021; 12:738041. [PMID: 34867960 PMCID: PMC8639529 DOI: 10.3389/fimmu.2021.738041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 11/02/2021] [Indexed: 11/13/2022] Open
Abstract
CpG-oligodeoxynucleotides (CpG-ODNs) constitute an attractive alternative for asthma treatment. However, very little evidence is available from studies on the oral administration of CpG-ODNs in animals. Previously, we developed acid-resistant particles (named ODNcap) as an oral delivery device for ODNs. Here, we showed that free feeding of an ODNcap-containing feed prophylactically attenuates allergic airway inflammation, hyperresponsiveness, and goblet cell hyperplasia in an ovalbumin-induced asthma model. Using transcriptomics-driven approaches, we demonstrated that injury of pulmonary vein cardiomyocytes accompanies allergen inhalation challenge, but is inhibited by ODNcap feeding. We also showed the participation of an airway antimicrobial peptide (Reg3γ) and fecal microbiota in the ODNcap-mediated effects. Collectively, our findings suggest that daily oral ingestion of ODNcap may provide preventive effects on allergic bronchopulmonary insults via regulation of mechanisms involved in the gut-lung connection.
Collapse
Affiliation(s)
- Takuma Okajima
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Nagano, Japan
| | - Suguru Shigemori
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Nagano, Japan
| | - Fu Namai
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Nagano, Japan
| | - Tasuku Ogita
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Nagano, Japan
| | - Takashi Sato
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Nagano, Japan
| | - Takeshi Shimosato
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Nagano, Japan
| |
Collapse
|
2
|
Shigemori S, Namai F, Ogita T, Sato T, Shimosato T. Oral priming with oligodeoxynucleotide particles from Lactobacillus rhamnosus GG attenuates symptoms of dextran sodium sulfate-induced acute colitis in mice. Anim Sci J 2020; 91:e13468. [PMID: 33025687 DOI: 10.1111/asj.13468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/30/2020] [Accepted: 09/10/2020] [Indexed: 12/11/2022]
Abstract
Here, we investigated the effect of prophylactic oral treatment with carbonate apatite-based particles (ID35caps) containing Lactobacillus rhamnosus GG-derived immunostimulatory oligodeoxynucleotides (ID35) when used in mice with acute colitis. Mice were administered orally with control particles (carbonate apatite particles, Caps), ID35, or ID35caps for 2 days, and then were given free access to drinking water containing 3% (w/v) dextran sodium sulfate (DSS) for 5 days (Days 0-5) to induce acute colitis. Body weight change, fecal bleeding, and stool consistency were monitored and scored as a disease activity index (DAI) to assess symptoms of colitis. On Day 10, animals were euthanized and the colon length was measured to evaluate inflammatory tissue injury. Prophylactic oral treatment with ID35caps significantly suppressed DSS-induced elevation of the DAI score and shortening of the colon compared to the respective parameters in DSS-exposed mice treated with Cap or ID35. We conclude that oral priming with ID35caps attenuates symptoms and inflammatory colonic injury in a mouse model of DSS-induced acute colitis. This finding suggests that ID35caps may be a new oral agent for preventing intestinal inflammation.
Collapse
Affiliation(s)
- Suguru Shigemori
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Kamiina, Japan
| | - Fu Namai
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Kamiina, Japan
| | - Tasuku Ogita
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Kamiina, Japan
| | - Takashi Sato
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Kamiina, Japan
| | - Takeshi Shimosato
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Kamiina, Japan
| |
Collapse
|
3
|
Morimoto Y, Mizushima T, Wu X, Okuzaki D, Yokoyama Y, Inoue A, Hata T, Hirose H, Qian Y, Wang J, Miyoshi N, Takahashi H, Haraguchi N, Matsuda C, Doki Y, Mori M, Yamamoto H. miR-4711-5p regulates cancer stemness and cell cycle progression via KLF5, MDM2 and TFDP1 in colon cancer cells. Br J Cancer 2020; 122:1037-1049. [PMID: 32066912 PMCID: PMC7109136 DOI: 10.1038/s41416-020-0758-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/31/2019] [Accepted: 01/30/2020] [Indexed: 11/11/2022] Open
Abstract
Background It is important to establish cancer stem cell (CSC)-targeted therapies to eradicate cancer. As it is a CSC marker, we focused on Kruppel-like factor 5 (KLF5) in this study. Methods We searched for candidate microRNAs (miRNAs) that inhibited KLF5 expression by in silico analyses and screened them in colon cancer cell lines. Results We identified one promising miRNA, miR-4711-5p, that downregulated KLF5 expression by direct binding. This miRNA suppressed cell proliferation, migration and invasion ability, as well as stemness, including decreased stem cell marker expression, reactive oxygen species activity and sphere formation ability. MiR-4711-5p inhibited the growth of DLD-1 xenografts in nude mice with no adverse effects. We found that miR-4711-5p provoked G1 arrest, which could be attributed to direct binding of miR-4711-5p to TFDP1 (a heterodimeric partner of the E2F family). Our findings also suggested that direct binding of miR-4711-5p to MDM2 could upregulate wild-type p53, leading to strong induction of apoptosis. Finally, we found that miR-4711-5p had a potent tumour-suppressive effect compared with a putative anti-oncomiR, miR-34a, in tumour cell cultures derived from five patients with colorectal cancer. Conclusions Our data suggest that miR-4711-5p could be a promising target for CSC therapy.
Collapse
Affiliation(s)
- Yoshihiro Morimoto
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita city, Osaka, 565-0871, Japan
| | - Tsunekazu Mizushima
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita city, Osaka, 565-0871, Japan
| | - Xin Wu
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Yamadaoka 1-7, Suita city, Osaka, 565-0871, Japan
| | - Daisuke Okuzaki
- Genome Information Research Centre, Research Institute for Microbial Diseases, Osaka University, Yamadaoka 3-1, Suita city, Osaka, 565-0871, Japan
| | - Yuhki Yokoyama
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Yamadaoka 1-7, Suita city, Osaka, 565-0871, Japan
| | - Akira Inoue
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita city, Osaka, 565-0871, Japan
| | - Tsuyoshi Hata
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita city, Osaka, 565-0871, Japan
| | - Haruka Hirose
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Yamadaoka 1-7, Suita city, Osaka, 565-0871, Japan
| | - Yamin Qian
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Yamadaoka 1-7, Suita city, Osaka, 565-0871, Japan
| | - Jiaqi Wang
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Yamadaoka 1-7, Suita city, Osaka, 565-0871, Japan
| | - Norikatsu Miyoshi
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita city, Osaka, 565-0871, Japan
| | - Hidekazu Takahashi
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita city, Osaka, 565-0871, Japan
| | - Naotsugu Haraguchi
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita city, Osaka, 565-0871, Japan
| | - Chu Matsuda
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita city, Osaka, 565-0871, Japan
| | - Yuichiro Doki
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita city, Osaka, 565-0871, Japan
| | - Masaki Mori
- Department of Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka city, Fukuoka, 812-8582, Japan
| | - Hirofumi Yamamoto
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita city, Osaka, 565-0871, Japan. .,Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Yamadaoka 1-7, Suita city, Osaka, 565-0871, Japan.
| |
Collapse
|
4
|
Komuro H, Sasano T, Horiuchi N, Yamashita K, Nagai A. The effect of glucose modification of hydroxyapatite nanoparticles on gene delivery. J Biomed Mater Res A 2018; 107:61-66. [PMID: 30394681 DOI: 10.1002/jbm.a.36523] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/05/2018] [Accepted: 07/12/2018] [Indexed: 12/11/2022]
Abstract
Surface modification techniques have been employed for the use of biocompatible and bioresorbable hydroxyapatite (HAp) nanoparticles in cell biology and medicine for the delivery of bioactive molecules. We demonstrated the effects of glucose modification of HAp (GlcHAp) on the transfection efficiency in endothelial cells. After preparing homogeneous HAp nanoparticles with a microemulsion technique, the particles with or without glucose modification and plasmid DNA (pDNA) complexes were transfected into endothelial cells. The transfection efficiency of GlcHAp/pDNA was higher than that of HAp/pDNA. To elucidate the mechanism underlying the improvement in the transfection efficiency following glucose modification, the uptake route into the cells and the inhibition of DNA degradation were investigated. GlcHAp/pDNA enhanced the transfection efficiency after interacting with the glucose transporter 1, as observed by the selective inhibitor assay. In addition, GlcHAp/pDNA was more stable than HAp/pDNA in the DNA degradation assay. Our results suggest that the glucose modification could promote the uptake of HAp nanoparticles by cells and protect the internalized DNA; properties essential for non-viral transfection carriers. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 61-66, 2019.
Collapse
Affiliation(s)
- Hiroaki Komuro
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo, 101-0062, Japan.,Department of Cardiovascular Physiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo, 113-8519, Japan
| | - Tetsuo Sasano
- Department of Cardiovascular Physiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo, 113-8519, Japan
| | - Naohiro Horiuchi
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo, 101-0062, Japan
| | - Kimihiro Yamashita
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo, 101-0062, Japan
| | - Akiko Nagai
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo, 101-0062, Japan.,School of Dentistry, Aichi Gakuin University, 1-100 Kusumoto, Chikusa, Nagoya, 464-8650, Japan
| |
Collapse
|
5
|
Tamai K, Mizushima T, Wu X, Inoue A, Ota M, Yokoyama Y, Miyoshi N, Haraguchi N, Takahashi H, Nishimura J, Hata T, Matsuda C, Doki Y, Mori M, Yamamoto H. Photodynamic Therapy Using Indocyanine Green Loaded on Super Carbonate Apatite as Minimally Invasive Cancer Treatment. Mol Cancer Ther 2018; 17:1613-1622. [PMID: 29654066 DOI: 10.1158/1535-7163.mct-17-0788] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/26/2017] [Accepted: 04/06/2018] [Indexed: 11/16/2022]
Abstract
Minimally invasive treatment is getting more and more important in an aging society. The purpose of this study was to explore the possibility of ICG loaded on super carbonate apatite (sCA) nanoparticles as a novel photodynamic therapy (PDT) against cancers. Using colon cancer cells, ICG uptake and anti-tumor effects were examined between the treatments of ICG and sCA-ICG. Reactive oxygen species (ROS) production and temperature rise were also evaluated to explore the underlying mechanism. Atomic force microscopy revealed that the size of sCA-ICG ranged from 10 to 20 nm. In aqueous solution with 0.5% albumin, the temperature increase after laser irradiation was 27.1°C and 23.1°C in sCA-ICG and ICG, respectively (control DW: 5.7°C). A significant increase in ROS generation was noted in cell cultures treated with sCA-ICG plus irradiation compared with those treated with ICG plus irradiation (P < 0.01). Uptake of ICG in the tumor cells significantly increased in sCA-ICG compared with ICG in vitro and in vivo The fluorescence signals of ICG in the tumor, liver, and kidney faded away in both treatments by 24 hours. Finally, the HT29 tumors treated with sCA-ICG followed by irradiation exhibited drastic tumor growth retardation (P < 0.01), whereas irradiation of tumors after injection of ICG did not inhibit tumor growth. This study shows that sCA is a useful vehicle for ICG-based PDT. Quick withdrawal of ICG from normal organs is unique to sCA-ICG and contrasts with the other nanoparticles remaining in normal organs for a long time. Mol Cancer Ther; 17(7); 1613-22. ©2018 AACR.
Collapse
Affiliation(s)
- Koki Tamai
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita city, Osaka, Japan
| | - Tsunekazu Mizushima
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita city, Osaka, Japan
| | - Xin Wu
- Division of Health Sciences, Department of Molecular Pathology, Graduate School of Medicine, Osaka University, Suita City, Osaka, Japan
| | - Akira Inoue
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita city, Osaka, Japan
| | - Minori Ota
- Division of Health Sciences, Department of Molecular Pathology, Graduate School of Medicine, Osaka University, Suita City, Osaka, Japan
| | - Yuhki Yokoyama
- Division of Health Sciences, Department of Molecular Pathology, Graduate School of Medicine, Osaka University, Suita City, Osaka, Japan
| | - Norikatsu Miyoshi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita city, Osaka, Japan
| | - Naotsugu Haraguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita city, Osaka, Japan
| | - Hidekazu Takahashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita city, Osaka, Japan
| | - Junichi Nishimura
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita city, Osaka, Japan
| | - Taishi Hata
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita city, Osaka, Japan
| | - Chu Matsuda
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita city, Osaka, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita city, Osaka, Japan
| | - Masaki Mori
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita city, Osaka, Japan
| | - Hirofumi Yamamoto
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita city, Osaka, Japan. .,Division of Health Sciences, Department of Molecular Pathology, Graduate School of Medicine, Osaka University, Suita City, Osaka, Japan
| |
Collapse
|
6
|
Uskoković V, Wu VM. Calcium Phosphate as a Key Material for Socially Responsible Tissue Engineering. MATERIALS 2016; 9. [PMID: 27347359 PMCID: PMC4917371 DOI: 10.3390/ma9060434] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Socially responsible technologies are designed while taking into consideration the socioeconomic, geopolitical and environmental limitations of regions in which they will be implemented. In the medical context, this involves making therapeutic platforms more accessible and affordable to patients in poor regions of the world wherein a given disease is endemic. This often necessitates going against the reigning trend of making therapeutic nanoparticles ever more structurally complex and expensive. However, studies aimed at simplifying materials and formulations while maintaining the functionality and therapeutic response of their more complex counterparts seldom provoke a significant interest in the scientific community. In this review we demonstrate that such compositional simplifications are meaningful when it comes to the design of a solution for osteomyelitis, a disease that is in its natural, non-postoperative form particularly prevalent in the underdeveloped parts of the world wherein poverty, poor sanitary conditions, and chronically compromised defense lines of the immune system are the norm. We show that calcium phosphate nanoparticles, which are inexpensive to make, could be chemically designed to possess the same functionality as a hypothetic mixture additionally composed of: (a) a bone growth factor; (b) an antibiotic for prophylactic or anti-infective purposes; (c) a bisphosphonate as an antiresorptive compound; (d) a viral vector to enable the intracellular delivery of therapeutics; (e) a luminescent dye; (f) a radiographic component; (g) an imaging contrast agent; (h) a magnetic domain; and (i) polymers as viscous components enabling the injectability of the material and acting as carriers for the sustained release of a drug. In particular, calcium phosphates could: (a) produce tunable drug release profiles; (b) take the form of viscous and injectable, self-setting pastes; (c) be naturally osteo-inductive and inhibitory for osteoclastogenesis; (d) intracellularly deliver bioactive compounds; (e) accommodate an array of functional ions; (f) be processed into macroporous constructs for tissue engineering; and (g) be naturally antimicrobial. All in all, we see in calcium phosphates the presence of a protean nature whose therapeutic potentials have been barely tapped into.
Collapse
Affiliation(s)
- Vuk Uskoković
- Department of Bioengineering, University of Illinois, Chicago, IL 60607-7052, USA;
- Department of Biomedical and Pharmaceutical Sciences, Chapman University, Irvine, CA 92618-1908, USA
- Correspondence: or ; Tel.: +1-415-412-0233
| | - Victoria M. Wu
- Department of Bioengineering, University of Illinois, Chicago, IL 60607-7052, USA;
| |
Collapse
|
7
|
Klinman DM, Sato T, Shimosato T. Use of nanoparticles to deliver immunomodulatory oligonucleotides. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2015; 8:631-7. [PMID: 26663867 DOI: 10.1002/wnan.1382] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/10/2015] [Accepted: 11/11/2015] [Indexed: 11/09/2022]
Abstract
Synthetic oligonucleotides (ODNs) containing unmethylated 'CpG motifs' stimulate the innate immune system to produce cytokines, chemokines, and polyreactive antibodies. CpG ODNs have shown promise as vaccine adjuvants and for the treatment of infectious diseases and cancer. The immunostimulatory activity of CpG ODNs is inhibited by DNA-containing 'suppressive' motifs. ODNs expressing suppressive motifs (Sup ODNs) reduce ongoing immune reactions and show promise in the treatment of autoimmune and inflammatory diseases. This work reviews recent progress in the use of nanoparticles as carriers of CpG and Sup ODNs to target their delivery to the GI tract and lungs. WIREs Nanomed Nanobiotechnol 2016, 8:631-637. doi: 10.1002/wnan.1382 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Dennis M Klinman
- Cancer and Inflammation Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Takashi Sato
- Department of Internal Medicine and Clinical Immunology, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Takeshi Shimosato
- Interdisciplinary Graduate School of Science and Technology, Shinshu University, Kamiina, Japan
| |
Collapse
|