1
|
Liu S, Zheng Y, Pan L, Wang W, Li Y, Liu Z, Zhang X. Nanodelivery of nucleic acids for plant genetic engineering. DISCOVER NANO 2025; 20:31. [PMID: 39937428 PMCID: PMC11822150 DOI: 10.1186/s11671-025-04207-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 02/03/2025] [Indexed: 02/13/2025]
Abstract
Genetic engineering in plants serves as a crucial method for enhancing crop quality, yield, and climate resilience through the manipulation of genetic circuits. A novel genetic transformation approach utilizing nanocarriers as a sound plant genetic engineering technique enables the delivery of DNAs or RNAs into the plant cells. Significant advances have recently been made on the nanotechnology-based delivery of nucleic acids in plants. In this review, several nanoparticle-mediated DNA and RNA delivery systems are discussed respectively, involving latest progresses and drawbacks of these approaches used in plant genetic engineering. We also underscores the current challenges that must be addressed in the implementation of nanoparticles-based strategies for plant gene delivery. Furthermore and more importantly, plant-derived exosome-like nanoparticles that facilitate nucleic acids transfer between organisms was initially proposed as a novel and promising nanodelivery platform for the CRISPR/Cas9 genome editing toolkit in plants. We believe that this review will be beneficial for an effective exploration of nucleic acid nanodelivery to aid the plant genetic engineering in modern agriculture.
Collapse
Affiliation(s)
- Shufeng Liu
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Yixian Zheng
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi, 830091, China
| | - Linsi Pan
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Wencai Wang
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Yongquan Li
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Zhaojun Liu
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi, 830091, China.
| | - Xianzhi Zhang
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China.
| |
Collapse
|
2
|
Zhang Y, Shin J, Sun H, Chang HF, Martinez MR, Perkins LA, Yan J, Cao Y, Wang H, Giraldo JP, Matyjaszewski K, Sheen J, Tilton RD, Marelli B, Lowry GV. High Aspect Ratio Polymer Nanocarriers for Gene Delivery and Expression in Plants. NANO LETTERS 2025; 25:681-690. [PMID: 39810730 PMCID: PMC11741140 DOI: 10.1021/acs.nanolett.4c04704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/26/2024] [Accepted: 12/27/2024] [Indexed: 01/16/2025]
Abstract
Plant genetic engineering methods are critical for food security and biofuel production and to enable molecular farming. Here, we elucidated how polymeric high aspect ratio nanocarriers can enable DNA delivery to Nicotiana benthamiana plants and transient expression. We demonstrated that a nanocarrier with 20 nm width, 80 nm length, and a polymer-to-DNA ratio of N/P = 3.0 afforded the most efficient DNA delivery and expression among the parameter space investigated. Additionally, we showed that polymer-DNA complexes with a moderate positive charge of ∼14 mV favored penetration through the cell wall and membranes with the assistance of cell wall degrading enzymes. Together, these results establish a narrow window of aspect ratios and charges of the nanocarrier-DNA complex that enables DNA delivery to plants using polymeric nanocarriers. This fundamental nanocarrier structure-function relationship informs the design of soft-material nanocarriers for nucleic acid delivery in plant cells to facilitate a wide range of plant biotechnology applications.
Collapse
Affiliation(s)
- Yilin Zhang
- Department
of Civil and Environmental Engineering, Center for Environmental Implications
of Nano Technology (CEINT), Department of Chemistry, Department of Chemical Engineering, Department of Biomedical
Engineering, and Department of Biological Sciences, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Jinwoo Shin
- Department
of Molecular Biology and Centre for Computational and Integrative
Biology, Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Hui Sun
- Department
of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Hsin-Fang Chang
- Department
of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Michael R. Martinez
- Department
of Civil and Environmental Engineering, Center for Environmental Implications
of Nano Technology (CEINT), Department of Chemistry, Department of Chemical Engineering, Department of Biomedical
Engineering, and Department of Biological Sciences, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Lydia A. Perkins
- Department
of Civil and Environmental Engineering, Center for Environmental Implications
of Nano Technology (CEINT), Department of Chemistry, Department of Chemical Engineering, Department of Biomedical
Engineering, and Department of Biological Sciences, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Jiajun Yan
- Department
of Civil and Environmental Engineering, Center for Environmental Implications
of Nano Technology (CEINT), Department of Chemistry, Department of Chemical Engineering, Department of Biomedical
Engineering, and Department of Biological Sciences, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Yunteng Cao
- Department
of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Hairong Wang
- Department
of Civil and Environmental Engineering, Center for Environmental Implications
of Nano Technology (CEINT), Department of Chemistry, Department of Chemical Engineering, Department of Biomedical
Engineering, and Department of Biological Sciences, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Juan Pablo Giraldo
- Department
of Botany and Plant Sciences, University
of California, Riverside, California 92521, United States
| | - Krzysztof Matyjaszewski
- Department
of Civil and Environmental Engineering, Center for Environmental Implications
of Nano Technology (CEINT), Department of Chemistry, Department of Chemical Engineering, Department of Biomedical
Engineering, and Department of Biological Sciences, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Jen Sheen
- Department
of Molecular Biology and Centre for Computational and Integrative
Biology, Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Robert D. Tilton
- Department
of Civil and Environmental Engineering, Center for Environmental Implications
of Nano Technology (CEINT), Department of Chemistry, Department of Chemical Engineering, Department of Biomedical
Engineering, and Department of Biological Sciences, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Benedetto Marelli
- Department
of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Gregory V. Lowry
- Department
of Civil and Environmental Engineering, Center for Environmental Implications
of Nano Technology (CEINT), Department of Chemistry, Department of Chemical Engineering, Department of Biomedical
Engineering, and Department of Biological Sciences, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
3
|
Abe N, Odahara M, Morey SR, Numata K. Development of a Versatile Plant-Derived Mitochondrial Targeting Sequence Based on a Reporter Protein Sorting Analysis and Biological Information. ACS Chem Biol 2024; 19:2515-2524. [PMID: 39622491 PMCID: PMC11667665 DOI: 10.1021/acschembio.4c00625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/18/2024] [Accepted: 10/30/2024] [Indexed: 12/21/2024]
Abstract
Methods for the delivery of exogenous substances to specific organelles are important because each organelle functions according to its own role. Specifically, mitochondria play an important role in energy production. Recently, plant mitochondrial transformation via delivery methods to mitochondria has been actively researched. Mitochondrial targeting sequences (MTSs) are essential for transporting bioactive molecules, such as nucleic acids, to mitochondria. However, the selectivity and efficacy of MTSs as carrier molecules in plants are not yet sufficient. In this study, we developed an effective MTS in plants via a quantitative comparison of the targeting functions of several MTSs. The presequence of HSP60 from Nicotiana tabacum, which is highly similar to that of several other model plants, showed high mitochondrial-targeting ability among the MTSs tested. This result suggests the applicability of the HSP60 presequence for MTSs in various plants. We further investigated this HSP60 presequence through stepwise shortening on the basis of secondary structure prediction, aiming to simplify synthesis and increase the solubility of the peptides. As shown by assessment of the mitochondrial targeting ability, the 15 residues from the N-terminus of the HSP60 presequence for the MTS, which is particularly conserved among various model plants, retained a targeting efficacy comparable to that of the full-length HSP60 presequence. This developed sequence from the HSP60 sequence is a promising MTS for transfection into plant mitochondria.
Collapse
Affiliation(s)
- Naoya Abe
- Department
of Material Chemistry, Graduate School of
Engineering, Kyoto University, Katsura, Kyoto, Nishikyo-ku 615-8510, Japan
| | - Masaki Odahara
- Biomacromolecules
Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Saitama, Wako 351-0198, Japan
| | - Shamitha Rao Morey
- Department
of Material Chemistry, Graduate School of
Engineering, Kyoto University, Katsura, Kyoto, Nishikyo-ku 615-8510, Japan
| | - Keiji Numata
- Department
of Material Chemistry, Graduate School of
Engineering, Kyoto University, Katsura, Kyoto, Nishikyo-ku 615-8510, Japan
- Biomacromolecules
Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Saitama, Wako 351-0198, Japan
| |
Collapse
|
4
|
Zhang Y, Huang C, Xiong R. Advanced materials for intracellular delivery of plant cells: Strategies, mechanisms and applications. MATERIALS SCIENCE AND ENGINEERING: R: REPORTS 2024; 160:100821. [DOI: 10.1016/j.mser.2024.100821] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
5
|
Wang Y, Yang JS, Zhao M, Chen JQ, Xie HX, Yu HY, Liu NH, Yi ZJ, Liang HL, Xing L, Jiang HL. Mitochondrial endogenous substance transport-inspired nanomaterials for mitochondria-targeted gene delivery. Adv Drug Deliv Rev 2024; 211:115355. [PMID: 38849004 DOI: 10.1016/j.addr.2024.115355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/16/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Mitochondrial genome (mtDNA) independent of nuclear gene is a set of double-stranded circular DNA that encodes 13 proteins, 2 ribosomal RNAs and 22 mitochondrial transfer RNAs, all of which play vital roles in functions as well as behaviors of mitochondria. Mutations in mtDNA result in various mitochondrial disorders without available cures. However, the manipulation of mtDNA via the mitochondria-targeted gene delivery faces formidable barriers, particularly owing to the mitochondrial double membrane. Given the fact that there are various transport channels on the mitochondrial membrane used to transfer a variety of endogenous substances to maintain the normal functions of mitochondria, mitochondrial endogenous substance transport-inspired nanomaterials have been proposed for mitochondria-targeted gene delivery. In this review, we summarize mitochondria-targeted gene delivery systems based on different mitochondrial endogenous substance transport pathways. These are categorized into mitochondrial steroid hormones import pathways-inspired nanomaterials, protein import pathways-inspired nanomaterials and other mitochondria-targeted gene delivery nanomaterials. We also review the applications and challenges involved in current mitochondrial gene editing systems. This review delves into the approaches of mitochondria-targeted gene delivery, providing details on the design of mitochondria-targeted delivery systems and the limitations regarding the various technologies. Despite the progress in this field is currently slow, the ongoing exploration of mitochondrial endogenous substance transport and mitochondrial biological phenomena may act as a crucial breakthrough in the targeted delivery of gene into mitochondria and even the manipulation of mtDNA.
Collapse
Affiliation(s)
- Yi Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Jing-Song Yang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Min Zhao
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Jia-Qi Chen
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Hai-Xin Xie
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Hao-Yuan Yu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Na-Hui Liu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Zi-Juan Yi
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Hui-Lin Liang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Lei Xing
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Hu-Lin Jiang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; College of Pharmacy, Yanbian University, Yanji 133002, China.
| |
Collapse
|
6
|
Lifshits LA, Breuer Y, Sova M, Gupta S, Kadosh D, Weinberg E, Hayouka Z, Bar DZ, Gal M. Nature-inspired peptide of MtDef4 C-terminus tail enables protein delivery in mammalian cells. Sci Rep 2024; 14:4604. [PMID: 38409451 PMCID: PMC10897151 DOI: 10.1038/s41598-024-55274-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/21/2024] [Indexed: 02/28/2024] Open
Abstract
Cell-penetrating peptides show promise as versatile tools for intracellular delivery of therapeutic agents. Various peptides have originated from natural proteins with antimicrobial activity. We investigated the mammalian cell-penetrating properties of a 16-residue peptide with the sequence GRCRGFRRRCFCTTHC from the C-terminus tail of the Medicago truncatula defensin MtDef4. We evaluated the peptide's ability to penetrate multiple cell types. Our results demonstrate that the peptide efficiently penetrates mammalian cells within minutes and at a micromolar concentration. Moreover, upon N-terminal fusion to the fluorescent protein GFP, the peptide efficiently delivers GFP into the cells. Despite its remarkable cellular permeability, the peptide has only a minor effect on cellular viability, making it a promising candidate for developing a cell-penetrating peptide with potential therapeutic applications.
Collapse
Affiliation(s)
- Lucia Adriana Lifshits
- Department of Oral Biology, Faculty of Medicine, The Goldschleger School of Dental Medicine, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Yoav Breuer
- Department of Oral Biology, Faculty of Medicine, The Goldschleger School of Dental Medicine, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Marina Sova
- Department of Oral Biology, Faculty of Medicine, The Goldschleger School of Dental Medicine, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Sumit Gupta
- BLAVATNIK CENTER for Drug Discovery, Tel-Aviv University, 6997801, Tel Aviv, Israel
| | - Dar Kadosh
- Department of Oral Biology, Faculty of Medicine, The Goldschleger School of Dental Medicine, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Evgeny Weinberg
- Department of Oral Biology, Faculty of Medicine, The Goldschleger School of Dental Medicine, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Zvi Hayouka
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agricultural, Food and Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel
| | - Daniel Z Bar
- Department of Oral Biology, Faculty of Medicine, The Goldschleger School of Dental Medicine, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Maayan Gal
- Department of Oral Biology, Faculty of Medicine, The Goldschleger School of Dental Medicine, Tel Aviv University, 6997801, Tel Aviv, Israel.
| |
Collapse
|
7
|
Mukherjee S, Roy S, Arnao MB. Nanovehicles for melatonin: a new journey for agriculture. TRENDS IN PLANT SCIENCE 2024; 29:232-248. [PMID: 38123438 DOI: 10.1016/j.tplants.2023.11.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/14/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023]
Abstract
The important role of melatonin in plant growth and metabolism together with recent advances in the potential use of nanomaterials have opened up interesting applications in agriculture. Various nanovehicles have been explored as melatonin carriers in animals, and it is now important to explore their application in plants. Recent findings have substantiated the use of silicon and chitosan nanoparticles (NPs) in targeting melatonin to plant tissues. Although melatonin is an amphipathic molecule, nanocarriers can accelerate its uptake and transport to various plant organs, thereby relieving stress and improving plant shelf-life in the post-harvest stages. We review the scope and biosafety concerns of various nanomaterials to devise novel methods for melatonin application in crops and post-harvest products.
Collapse
Affiliation(s)
- Soumya Mukherjee
- Department of Botany, Jangipur College, West Bengal 742213, India
| | - Suchismita Roy
- Department for Cell and Molecular Medicine, University of California, San Diego, CA 92093, USA
| | - Marino B Arnao
- Phytohormones and Plant Development Laboratory, Department of Plant Biology (Plant Physiology), University of Murcia, 30100 Murcia, Spain.
| |
Collapse
|
8
|
Komarova T, Ilina I, Taliansky M, Ershova N. Nanoplatforms for the Delivery of Nucleic Acids into Plant Cells. Int J Mol Sci 2023; 24:16665. [PMID: 38068987 PMCID: PMC10706211 DOI: 10.3390/ijms242316665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Nanocarriers are widely used for efficient delivery of different cargo into mammalian cells; however, delivery into plant cells remains a challenging issue due to physical and mechanical barriers such as the cuticle and cell wall. Here, we discuss recent progress on biodegradable and biosafe nanomaterials that were demonstrated to be applicable to the delivery of nucleic acids into plant cells. This review covers studies the object of which is the plant cell and the cargo for the nanocarrier is either DNA or RNA. The following nanoplatforms that could be potentially used for nucleic acid foliar delivery via spraying are discussed: mesoporous silica nanoparticles, layered double hydroxides (nanoclay), carbon-based materials (carbon dots and single-walled nanotubes), chitosan and, finally, cell-penetrating peptides (CPPs). Hybrid nanomaterials, for example, chitosan- or CPP-functionalized carbon nanotubes, are taken into account. The selected nanocarriers are analyzed according to the following aspects: biosafety, adjustability for the particular cargo and task (e.g., organelle targeting), penetration efficiency and ability to protect nucleic acid from environmental and cellular factors (pH, UV, nucleases, etc.) and to mediate the gradual and timely release of cargo. In addition, we discuss the method of application, experimental system and approaches that are used to assess the efficiency of the tested formulation in the overviewed studies. This review presents recent progress in developing the most promising nanoparticle-based materials that are applicable to both laboratory experiments and field applications.
Collapse
Affiliation(s)
- Tatiana Komarova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (I.I.); (M.T.); (N.E.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia
| | - Irina Ilina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (I.I.); (M.T.); (N.E.)
| | - Michael Taliansky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (I.I.); (M.T.); (N.E.)
| | - Natalia Ershova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (I.I.); (M.T.); (N.E.)
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia
| |
Collapse
|
9
|
Abe N, Fujita S, Miyamoto T, Tsuchiya K, Numata K. Plant Mitochondrial-Targeted Gene Delivery by Peptide/DNA Micelles Quantitatively Surface-Modified with Mitochondrial Targeting and Membrane-Penetrating Peptides. Biomacromolecules 2023; 24:3657-3665. [PMID: 37385607 PMCID: PMC10428155 DOI: 10.1021/acs.biomac.3c00391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/18/2023] [Indexed: 07/01/2023]
Abstract
Plant mitochondria play essential roles in metabolism and respiration. Recently, there has been growing interest in mitochondrial transformation for developing crops with commercially valuable traits, such as resistance to environmental stress and shorter fallow periods. Mitochondrial targeting and cell membrane penetration functions are crucial for improving the gene delivery efficiency of mitochondrial transformation. Here, we developed a peptide-based carrier, referred to as Cytcox/KAibA-Mic, that contains multifunctional peptides for efficient transfection into plant mitochondria. We quantified the mitochondrial targeting and cell membrane-penetrating peptide modification rates to control their functions. The modification rates were easily determined from high-performance liquid chromatography chromatograms. Additionally, the gene carrier size remained constant even when the mitochondrial targeting peptide modification rate was altered. Using this gene carrier, we can quantitatively investigate the relationships between various peptide modifications and transfection efficiency and optimize the gene carrier conditions for mitochondrial transfection.
Collapse
Affiliation(s)
- Naoya Abe
- Department
of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Seiya Fujita
- Department
of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Takaaki Miyamoto
- Biomacromolecules
Research Team, RIKEN Center for Sustainable
Resource Science, 2-1
Hirosawa, Wako, Saitama 3510198, Japan
| | - Kousuke Tsuchiya
- Department
of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Keiji Numata
- Department
of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- Biomacromolecules
Research Team, RIKEN Center for Sustainable
Resource Science, 2-1
Hirosawa, Wako, Saitama 3510198, Japan
| |
Collapse
|
10
|
Kumari R, Suman K, Karmakar S, Mishra V, Lakra SG, Saurav GK, Mahto BK. Regulation and safety measures for nanotechnology-based agri-products. Front Genome Ed 2023; 5:1200987. [PMID: 37415849 PMCID: PMC10320728 DOI: 10.3389/fgeed.2023.1200987] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/09/2023] [Indexed: 07/08/2023] Open
Abstract
There is a wide range of application for nanotechnology in agriculture, including fertilizers, aquaculture, irrigation, water filtration, animal feed, animal vaccines, food processing, and packaging. In recent decades, nanotechnology emerged as a prospective and promising approach for the advancement of Agri-sector such as pest/disease prevention, fertilizers, agrochemicals, biofertilizers, bio-stimulants, post-harvest storage, pheromones-, and nutrient-delivery, and genetic manipulation in plants for crop improvement by using nanomaterial as a carrier system. Exponential increase in global population has enhanced food demand, so to fulfil the demand markets already included nano-based product likewise nano-encapsulated nutrients/agrochemicals, antimicrobial and packaging of food. For the approval of nano-based product, applicants for a marketing approval must show that such novel items can be used safely without endangering the consumer and environment. Several nations throughout the world have been actively looking at whether their regulatory frameworks are suitable for handling nanotechnologies. As a result, many techniques to regulate nano-based products in agriculture, feed, and food have been used. Here, we have contextualized different regulatory measures of several countries for nano-based products in agriculture, from feed to food, including guidance and legislation for safety assessment worldwide.
Collapse
Affiliation(s)
- Ritika Kumari
- University Department of Botany, Ranchi University, Ranchi, Jharkhand, India
| | - Kalpana Suman
- University Department of Botany, Ranchi University, Ranchi, Jharkhand, India
| | - Swagata Karmakar
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi, India
- Department of Environmental Studies, Ram Lal Anand College, University of Delhi, Delhi, India
| | - Vandana Mishra
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi, India
| | | | - Gunjan Kumar Saurav
- Department of Zoology, Rajiv Gandhi University, Doimukh, Arunachal Pradesh, India
- Gut Biology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Binod Kumar Mahto
- University Department of Botany, Ranchi University, Ranchi, Jharkhand, India
| |
Collapse
|
11
|
Law SSY, Miyamoto T, Numata K. Organelle-targeted gene delivery in plants by nanomaterials. Chem Commun (Camb) 2023. [PMID: 37183975 DOI: 10.1039/d3cc00962a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Genetic engineering of plants has revolutionized agriculture and has had a significant impact on our everyday life. It has allowed for the production of crops with longer shelf lives, enhanced yields and resistance to pests and disease. The application of nanomaterials in plant genetic engineering has further augmented these programs with higher delivery efficiencies, biocompatibility and the potential for plant regeneration. In particular, subcellular targeting using nanomaterials has recently become possible with the cutting-edge developments within nanomaterials, but remains challenging despite the promise in organellar engineering for the introduction of useful traits and the elucidation of subcellular interactions. This feature article provides an overview of nanomaterial delivery within plants and highlights the application of recent progress in nanomaterials for subcellular organelle-targeted delivery.
Collapse
Affiliation(s)
- Simon Sau Yin Law
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan.
| | - Takaaki Miyamoto
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan.
| | - Keiji Numata
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan.
- Department of Material Chemistry, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
12
|
Liu BR, Chen CW, Huang YW, Lee HJ. Cell-Penetrating Peptides for Use in Development of Transgenic Plants. Molecules 2023; 28:molecules28083367. [PMID: 37110602 PMCID: PMC10142301 DOI: 10.3390/molecules28083367] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/24/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Genetically modified plants and crops can contribute to remarkable increase in global food supply, with improved yield and resistance to plant diseases or insect pests. The development of biotechnology introducing exogenous nucleic acids in transgenic plants is important for plant health management. Different genetic engineering methods for DNA delivery, such as biolistic methods, Agrobacterium tumefaciens-mediated transformation, and other physicochemical methods have been developed to improve translocation across the plasma membrane and cell wall in plants. Recently, the peptide-based gene delivery system, mediated by cell-penetrating peptides (CPPs), has been regarded as a promising non-viral tool for efficient and stable gene transfection into both animal and plant cells. CPPs are short peptides with diverse sequences and functionalities, capable of agitating plasma membrane and entering cells. Here, we highlight recent research and ideas on diverse types of CPPs, which have been applied in DNA delivery in plants. Various basic, amphipathic, cyclic, and branched CPPs were designed, and modifications of functional groups were performed to enhance DNA interaction and stabilization in transgenesis. CPPs were able to carry cargoes in either a covalent or noncovalent manner and to internalize CPP/cargo complexes into cells by either direct membrane translocation or endocytosis. Importantly, subcellular targets of CPP-mediated nucleic acid delivery were reviewed. CPPs offer transfection strategies and influence transgene expression at subcellular localizations, such as in plastids, mitochondria, and the nucleus. In summary, the technology of CPP-mediated gene delivery provides a potent and useful tool to genetically modified plants and crops of the future.
Collapse
Affiliation(s)
- Betty Revon Liu
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien 970374, Taiwan
| | - Chi-Wei Chen
- Department of Life Science, College of Science and Engineering, National Dong Hwa University, Hualien 974301, Taiwan
| | - Yue-Wern Huang
- Department of Biological Sciences, College of Arts, Sciences, and Education, Missouri University of Science and Technology, Rolla, MO 65409, USA
| | - Han-Jung Lee
- Department of Natural Resources and Environmental Studies, College of Environmental Studies and Oceanography, National Dong Hwa University, Hualien 974301, Taiwan
| |
Collapse
|
13
|
Kimura M, Endo A, Nagira Y, Yoshizumi T. Particle bombardment-assisted peptide-mediated gene transfer for highly efficient transient assay. BMC Res Notes 2023; 16:46. [PMID: 37024962 PMCID: PMC10080836 DOI: 10.1186/s13104-023-06320-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023] Open
Abstract
OBJECTIVE A centrifugation-assisted peptide-mediated gene transfer (CAPT) method was recently developed as an efficient system for gene delivery into plant cells. However, the gene transfer efficiency of CAPT into plant cells was not entirely satisfactory for detecting transient expression of a transgene driven into mitochondria. Here, we report a new gene delivery system using a method called particle bombardment-assisted peptide-mediated gene transfer (PBPT). RESULTS We investigated various parameters of the PBPT method to increase transient gene expression efficiency in Brassica campestris. The optimal conditions for PBPT were a single bombardment with gold particles coated with a DNA‒peptide complex (6 µg of DNA and 2 µg of peptide) at an acceleration pressure of 5 kg/cm2 and a target distance of 12.5 cm. Moreover, bombardment under the optimal conditions successfully transferred the transgene into the cells of other plant species, namely B. juncea and tomato. Thus, we developed a PBPT method for highly efficient delivery of a DNA‒peptide complex into plant mitochondria.
Collapse
Affiliation(s)
- Mitsuhiro Kimura
- Faculty of Agriculture, Takasaki University of Health and Welfare, Takasaki-shi, Gunma, Japan.
- Faculty of Agriculture, Kyushu University, Fukuoka, Japan.
| | - Akira Endo
- Agri-Bio Research Center, Agri-Bio & Supplement Research Laboratories, Kaneka Corporation, Iwata, Shizuoka, Japan
| | - Yozo Nagira
- Agri-Bio Research Center, Agri-Bio & Supplement Research Laboratories, Kaneka Corporation, Iwata, Shizuoka, Japan
| | - Takeshi Yoshizumi
- Faculty of Agriculture, Takasaki University of Health and Welfare, Takasaki-shi, Gunma, Japan.
| |
Collapse
|
14
|
Ayabe H, Toyoda A, Iwamoto A, Tsutsumi N, Arimura SI. Mitochondrial gene defects in Arabidopsis can broadly affect mitochondrial gene expression through copy number. PLANT PHYSIOLOGY 2023; 191:2256-2275. [PMID: 36703221 PMCID: PMC10069900 DOI: 10.1093/plphys/kiad024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 12/10/2022] [Indexed: 06/18/2023]
Abstract
How mitochondria regulate the expression of their genes is poorly understood, partly because methods have not been developed for stably transforming mitochondrial genomes. In recent years, the disruption of mitochondrial genes has been achieved in several plant species using mitochondria-localized TALEN (mitoTALEN). In this study, we attempted to disrupt the NADH dehydrogenase subunit7 (NAD7) gene, a subunit of respiratory chain complex I, in Arabidopsis (Arabidopsis thaliana) using the mitoTALEN method. In some of the transformants, disruption of NAD7 was accompanied by severe growth inhibition and lethality, suggesting that NAD7 has an essential function in Arabidopsis. In addition, the mitochondrial genome copy number and overall expression of genes encoding mitochondrial proteins were generally increased by nad7 knockout. Similar increases were also observed in mutants with decreased NAD7 transcripts and with dysfunctions of other mitochondrial respiratory complexes. In these mutants, the expression of nuclear genes involved in mitochondrial translation or protein transport was induced in sync with mitochondrial genes. Mitochondrial genome copy number was also partly regulated by the nuclear stress-responsive factors NAC domain containing protein 17 and Radical cell death 1. These findings suggest the existence of overall gene-expression control through mitochondrial genome copy number in Arabidopsis and that disruption of single mitochondrial genes can have additional broad consequences in both the nuclear and mitochondrial genomes.
Collapse
Affiliation(s)
| | - Atsushi Toyoda
- Department of Genomics and Evolutionary Biology, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan
| | - Akitoshi Iwamoto
- Faculty of Science, Kanagawa University, 2946 Tsuchiya, Hiratsuka, Kanagawa 259-1293, Japan
| | - Nobuhiro Tsutsumi
- Graduate School of Agriculture and Life Science, The University of Tokyo, 1-1-1 Yayoi Bunkyo-ku, Tokyo 113-8657, Japan
| | | |
Collapse
|
15
|
Takeda T, Shirai K, Kim YW, Higuchi-Takeuchi M, Shimizu M, Kondo T, Ushijima T, Matsushita T, Shinozaki K, Hanada K. A de novo gene originating from the mitochondria controls floral transition in Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2023; 111:189-203. [PMID: 36306001 DOI: 10.1007/s11103-022-01320-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
De novo genes created in the plant mitochondrial genome have frequently been transferred into the nuclear genome via intergenomic gene transfer events. Therefore, plant mitochondria might be a source of de novo genes in the nuclear genome. However, the functions of de novo genes originating from mitochondria and the evolutionary fate remain unclear. Here, we revealed that an Arabidopsis thaliana specific small coding gene derived from the mitochondrial genome regulates floral transition. We previously identified 49 candidate de novo genes that induce abnormal morphological changes on overexpression. We focused on a candidate gene derived from the mitochondrial genome (sORF2146) that encodes 66 amino acids. Comparative genomic analyses indicated that the mitochondrial sORF2146 emerged in the Brassica lineage as a de novo gene. The nuclear sORF2146 emerged following an intergenomic gene transfer event in the A. thaliana after the divergence between Arabidopsis and Capsella. Although the nuclear and mitochondrial sORF2146 sequences are the same in A. thaliana, only the nuclear sORF2146 is transcribed. The nuclear sORF2146 product is localized in mitochondria, which may be associated with the pseudogenization of the mitochondrial sORF2146. To functionally characterize the nuclear sORF2146, we performed a transcriptomic analysis of transgenic plants overexpressing the nuclear sORF2146. Flowering transition-related genes were highly regulated in the transgenic plants. Subsequent phenotypic analyses demonstrated that the overexpression and knockdown of sORF2146 in transgenic plants resulted in delayed and early flowering, respectively. These findings suggest that a lineage-specific de novo gene derived from mitochondria has an important regulatory effect on floral transition.
Collapse
Affiliation(s)
- Tomoyuki Takeda
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka-Shi, Fukuoka, 820-8502, Japan
| | - Kazumasa Shirai
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka-Shi, Fukuoka, 820-8502, Japan
| | - You-Wang Kim
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka-Shi, Fukuoka, 820-8502, Japan
| | | | - Minami Shimizu
- RIKEN Center for Sustainable Resource Science, Yokohama-Shi, Kanagawa, 230-0045, Japan
| | - Takayuki Kondo
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka-Shi, Fukuoka, 820-8502, Japan
| | - Tomokazu Ushijima
- Department of Agricultural Science and Technology, Faculty of Agriculture, Setsunan University, Osaka, Japan
| | - Tomonao Matsushita
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Kazuo Shinozaki
- RIKEN Center for Sustainable Resource Science, Yokohama-Shi, Kanagawa, 230-0045, Japan
| | - Kousuke Hanada
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka-Shi, Fukuoka, 820-8502, Japan.
| |
Collapse
|
16
|
Odahara M, Horii Y, Itami J, Watanabe K, Numata K. Functional peptide-mediated plastid transformation in tobacco, rice, and kenaf. FRONTIERS IN PLANT SCIENCE 2022; 13:989310. [PMID: 36212290 PMCID: PMC9539840 DOI: 10.3389/fpls.2022.989310] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/08/2022] [Indexed: 05/28/2023]
Abstract
In plant engineering, plastid transformation is more advantageous than nuclear transformation because it results in high levels of protein expression from multiple genome copies per cell and is unaffected by gene silencing. The common plastid transformation methods are biolistic bombardment that requires special instruments and PEG-mediated transformation that is only applicable to protoplast cells. Here, we aimed to establish a new plastid transformation method in tobacco, rice, and kenaf using a biocompatible fusion peptide as a carrier to deliver DNA into plastids. We used a fusion peptide, KH-AtOEP34, comprising a polycationic DNA-binding peptide (KH) and a plastid-targeting peptide (AtOEP34) to successfully deliver and integrate construct DNA into plastid DNA (ptDNA) via homologous recombination. We obtained transformants in each species using selection with spectinomycin/streptomycin and the corresponding resistance gene aadA. The constructs remained in ptDNA for several months after introduction even under non-selective condition. The transformants normally flowered and are fertile in most cases. The offspring of the transformants (the T1 generation) retained the integrated construct DNA in their ptDNA, as indicated by PCR and DNA blotting, and expressed GFP in plastids from the integrated construct DNA. In summary, we successfully used the fusion peptide method for integration of foreign DNA in tobacco, rice, and kenaf ptDNA, and the integrated DNA was transmitted to the next generations. Whereas optimization is necessary to obtain homoplasmic plastid transformants that enable stable heterologous expression of genes, the plastid transformation method shown here is a novel nanomaterial-based approach distinct from the conventional methods, and we propose that this easy method could be used to target a wide variety of plants.
Collapse
Affiliation(s)
- Masaki Odahara
- Biomacromolecule Research Team, RIKEN Center for Sustainable Resource Science, Wako, Japan
| | - Yoko Horii
- Biomacromolecule Research Team, RIKEN Center for Sustainable Resource Science, Wako, Japan
| | - Jun Itami
- Biomacromolecule Research Team, RIKEN Center for Sustainable Resource Science, Wako, Japan
| | - Kenta Watanabe
- Biomacromolecule Research Team, RIKEN Center for Sustainable Resource Science, Wako, Japan
| | - Keiji Numata
- Biomacromolecule Research Team, RIKEN Center for Sustainable Resource Science, Wako, Japan
- Department of Material Chemistry, Kyoto University, Kyoto, Japan
| |
Collapse
|
17
|
Miyamoto T, Tsuchiya K, Toyooka K, Goto Y, Tateishi A, Numata K. Relaxation of the Plant Cell Wall Barrier via Zwitterionic Liquid Pretreatment for Micelle-Complex-Mediated DNA Delivery to Specific Plant Organelles. Angew Chem Int Ed Engl 2022; 61:e202204234. [PMID: 35670289 PMCID: PMC9401069 DOI: 10.1002/anie.202204234] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Indexed: 11/12/2022]
Abstract
Targeted delivery of genes to specific plant organelles is a key challenge for fundamental plant science, plant bioengineering, and agronomic applications. Nanoscale carriers have attracted interest as a promising tool for organelle‐targeted DNA delivery in plants. However, nanocarrier‐mediated DNA delivery in plants is severely hampered by the barrier of the plant cell wall, resulting in insufficient delivery efficiency. Herein, we propose a unique strategy that synergistically combines a cell wall‐loosening zwitterionic liquid (ZIL) with a peptide‐displaying micelle complex for organelle‐specific DNA delivery in plants. We demonstrated that ZIL pretreatment can enhance cell wall permeability without cytotoxicity, allowing micelle complexes to translocate across the cell wall and carry DNA cargo into specific plant organelles, such as nuclei and chloroplasts, with significantly augmented efficiency. Our work offers a novel concept to overcome the plant cell wall barrier for nanocarrier‐mediated cargo delivery to specific organelles in living plants.
Collapse
Affiliation(s)
- Takaaki Miyamoto
- Biomacromolecules Research TeamRIKEN Center for Sustainable Resource ScienceSaitama351-0198Japan
| | - Kousuke Tsuchiya
- Department of Material ChemistryGraduate School of EngineeringKyoto University Kyoto-Daigaku-Katsura, Nishikyo-kuKyoto615-8510Japan
| | - Kiminori Toyooka
- Technology Platform DivisionMass Spectrometry and Microscopy UnitRIKEN Center for Sustainable Resource ScienceYokohama230-0045Japan
| | - Yumi Goto
- Technology Platform DivisionMass Spectrometry and Microscopy UnitRIKEN Center for Sustainable Resource ScienceYokohama230-0045Japan
| | - Ayaka Tateishi
- Department of Material ChemistryGraduate School of EngineeringKyoto University Kyoto-Daigaku-Katsura, Nishikyo-kuKyoto615-8510Japan
| | - Keiji Numata
- Biomacromolecules Research TeamRIKEN Center for Sustainable Resource ScienceSaitama351-0198Japan
- Department of Material ChemistryGraduate School of EngineeringKyoto University Kyoto-Daigaku-Katsura, Nishikyo-kuKyoto615-8510Japan
| |
Collapse
|
18
|
Babaei M, Bonakdar S, Nasernejad B. Selective biofunctionalization of 3D cell-imprinted PDMS with collagen immobilization for targeted cell attachment. Sci Rep 2022; 12:12837. [PMID: 35896682 PMCID: PMC9329428 DOI: 10.1038/s41598-022-17252-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 07/22/2022] [Indexed: 12/02/2022] Open
Abstract
Cell-imprinted polydimethylsiloxane substrates, in terms of their ability to mimic the physiological niche, low microfabrication cost, and excellent biocompatibility were widely used in tissue engineering. Cells inside the mature cells' cell-imprinted PDMS pattern have been shown in previous research to be capable of being differentiated into a specific mature cell line. On the other hand, the hydrophobicity of PDMS substrate leads to weak cell adhesion. Moreover, there was no guarantee that the cells would be exactly located in the cavities of the cells' pattern. In many studies, PDMS surface was modified by plasma treatment, chemical modification, and ECM coating. Hence, to increase the efficiency of cell-imprinting method, the concavity region created by the cell-imprinted pattern is conjugated with collagen. A simple and economical method of epoxy silane resin was applied for the selective protein immobilization on the desired regions of the PDMS substrate. This method could be paved to enhance the cell trapping into the cell-imprinted pattern, and it could be helpful for stem cell differentiation studies. The applied method for selective protein attachment, and as a consequence, selective cell integration was assessed on the aligned cell-imprinted PDMS. A microfluidic chip created the aligned cell pattern. After Ar+ plasma and APTES treatment of the PDMS substrate, collagen immobilization was performed. The immobilized collagen was removed by epoxy silane resin stamp from the ridge area where the substrate lacked cell pattern and leaving the collagen only within the patterned areas. Coomassie brilliant blue staining was evaluated for selective collagen immobilization, and the collagen-binding stability was assessed by BCA analysis. MTT assay for the evaluation of cell viability on the modified surface was further analyzed. Subsequently, the crystal violet staining has confirmed the selective cell integration to the collagen-immobilized site on the PDMS substrate. The results proved the successfully selective collagen immobilization on the cell-imprinted PDMS and showed that this method increased the affinity of cells to attach inside the cell pattern cavity.
Collapse
Affiliation(s)
- Mahrokh Babaei
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Shahin Bonakdar
- National Cell Bank Department, Pasteur Institute of Iran, Tehran, Iran
| | - Bahram Nasernejad
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.
| |
Collapse
|
19
|
Miyamoto T, Tsuchiya K, Toyooka K, Goto Y, Tateishi A, Numata K. Relaxation of the Plant Cell Wall Barrier via Zwitterionic Liquid Pretreatment for Micelle‐Complex‐Mediated DNA Delivery to Specific Plant Organelles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Takaaki Miyamoto
- Biomacromolecules Research Team RIKEN Center for Sustainable Resource Science Saitama 351-0198 Japan
| | - Kousuke Tsuchiya
- Department of Material Chemistry Graduate School of Engineering Kyoto University Kyoto-Daigaku-Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Kiminori Toyooka
- Technology Platform Division Mass Spectrometry and Microscopy Unit RIKEN Center for Sustainable Resource Science Yokohama 230-0045 Japan
| | - Yumi Goto
- Technology Platform Division Mass Spectrometry and Microscopy Unit RIKEN Center for Sustainable Resource Science Yokohama 230-0045 Japan
| | - Ayaka Tateishi
- Department of Material Chemistry Graduate School of Engineering Kyoto University Kyoto-Daigaku-Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Keiji Numata
- Biomacromolecules Research Team RIKEN Center for Sustainable Resource Science Saitama 351-0198 Japan
- Department of Material Chemistry Graduate School of Engineering Kyoto University Kyoto-Daigaku-Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| |
Collapse
|
20
|
Thagun C, Horii Y, Mori M, Fujita S, Ohtani M, Tsuchiya K, Kodama Y, Odahara M, Numata K. Non-transgenic Gene Modulation via Spray Delivery of Nucleic Acid/Peptide Complexes into Plant Nuclei and Chloroplasts. ACS NANO 2022; 16:3506-3521. [PMID: 35195009 PMCID: PMC8945396 DOI: 10.1021/acsnano.1c07723] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Genetic engineering of economically important traits in plants is an effective way to improve global welfare. However, introducing foreign DNA molecules into plant genomes to create genetically engineered plants not only requires a lengthy testing period and high developmental costs but also is not well-accepted by the public due to safety concerns about its effects on human and animal health and the environment. Here, we present a high-throughput nucleic acids delivery platform for plants using peptide nanocarriers applied to the leaf surface by spraying. The translocation of sub-micrometer-scale nucleic acid/peptide complexes upon spraying varied depending on the physicochemical characteristics of the peptides and was controlled by a stomata-dependent-uptake mechanism in plant cells. We observed efficient delivery of DNA molecules into plants using cell-penetrating peptide (CPP)-based foliar spraying. Moreover, using foliar spraying, we successfully performed gene silencing by introducing small interfering RNA molecules in plant nuclei via siRNA-CPP complexes and, more importantly, in chloroplasts via our CPP/chloroplast-targeting peptide-mediated delivery system. This technology enables effective nontransgenic engineering of economically important plant traits in agricultural systems.
Collapse
Affiliation(s)
- Chonprakun Thagun
- Department
of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yoko Horii
- Biomacromolecules
Research Team, RIKEN Center for Sustainable
Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Maai Mori
- Biomacromolecules
Research Team, RIKEN Center for Sustainable
Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Seiya Fujita
- Department
of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Misato Ohtani
- Department
of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Kousuke Tsuchiya
- Department
of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- Biomacromolecules
Research Team, RIKEN Center for Sustainable
Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Yutaka Kodama
- Biomacromolecules
Research Team, RIKEN Center for Sustainable
Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
- Center
for Bioscience Research and Education, Utsunomiya
University, Tochigi 321-8505, Japan
| | - Masaki Odahara
- Biomacromolecules
Research Team, RIKEN Center for Sustainable
Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
- (Ma.O.)
| | - Keiji Numata
- Department
of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- Biomacromolecules
Research Team, RIKEN Center for Sustainable
Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
- (K.N.)
| |
Collapse
|
21
|
Xu J, Du W, Zhao Y, Lim K, Lu L, Zhang C, Li L. Mitochondria targeting drugs for neurodegenerative diseases—design, mechanism and application. Acta Pharm Sin B 2022; 12:2778-2789. [PMID: 35755284 PMCID: PMC9214044 DOI: 10.1016/j.apsb.2022.03.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/15/2022] [Accepted: 01/28/2022] [Indexed: 02/07/2023] Open
Abstract
Neurodegenerative diseases (NDDs) such as Alzheimer's disease (AD) and Parkinson's disease (PD) are a heterogeneous group of disorders characterized by progressive degeneration of neurons. NDDs threaten the lives of millions of people worldwide and regretfully remain incurable. It is well accepted that dysfunction of mitochondria underlies the pathogenesis of NDDs. Dysfunction of mitochondria results in energy depletion, oxidative stress, calcium overloading, caspases activation, which dominates the neuronal death of NDDs. Therefore, mitochondria are the preferred target for intervention of NDDs. So far various mitochondria-targeting drugs have been developed and delightfully some of them demonstrate promising outcome, though there are still some obstacles such as targeting specificity, delivery capacity hindering the drugs development. In present review, we will elaborately address 1) the strategy to design mitochondria targeting drugs, 2) the rescue mechanism of respective mitochondria targeting drugs, 3) how to evaluate the therapeutic effect. Hopefully this review will provide comprehensive knowledge for understanding how to develop more effective drugs for the treatment of NDDs.
Collapse
|
22
|
Yoshinaga N, Numata K. Rational Designs at the Forefront of Mitochondria-Targeted Gene Delivery: Recent Progress and Future Perspectives. ACS Biomater Sci Eng 2022; 8:348-359. [PMID: 34979085 DOI: 10.1021/acsbiomaterials.1c01114] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mitochondria play an essential role in cellular metabolism and generate energy in cells. To support these functions, several proteins are encoded in the mitochondrial DNA (mtDNA). The mutation of mtDNA causes mitochondrial dysfunction and ultimately results in a variety of inherited diseases. To date, gene delivery systems targeting mitochondria have been developed to ameliorate mtDNA mutations. However, applications of these strategies in mitochondrial gene therapy are still being explored and optimized. Thus, from this perspective, we herein highlight recent mitochondria-targeting strategies for gene therapy and discuss future directions for effective mitochondria-targeted gene delivery.
Collapse
Affiliation(s)
- Naoto Yoshinaga
- Biomacromolecule Research Team, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan
| | - Keiji Numata
- Biomacromolecule Research Team, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan.,Department of Material Chemistry, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
23
|
Cerrato CP, Langel Ü. An update on cell-penetrating peptides with intracellular organelle targeting. Expert Opin Drug Deliv 2022; 19:133-146. [PMID: 35086398 DOI: 10.1080/17425247.2022.2034784] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Cell-penetrating peptide (CPP) technologies represent an important strategy to address drug delivery to specific intracellular compartments by covalent conjugation to targeting sequences, potentially enabling strategies to combat most diseases. AREAS COVERED This updated review article provides an overview of current intracellular organelle targeting by CPP. The targeting strategies of CPP and CPP/cargo complexes to specific cells or intracellular organelles are summarized, and the review provides an update on the current data for their pharmacological and therapeutical applications. EXPERT OPINION Targeted drug delivery is moving from the level of tissue or specific pathogenic cell to the level of specific organelle that is the target of the drug, an important aspect in drug design and development. Organelle-targeted drug delivery results in improved efficacy, ability to control mode of action, reduction of undesired toxicities and side effects, and possibility to overcome drug resistance mechanisms.
Collapse
Affiliation(s)
| | - Ülo Langel
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.,Laboratory of Molecular Biotechnology, Institute of Technology, University of Tartu, Tartu, Estonia
| |
Collapse
|
24
|
Gimenez-Dejoz J, Numata K. Molecular dynamics study of the internalization of cell-penetrating peptides containing unnatural amino acids across membranes. NANOSCALE ADVANCES 2022; 4:397-407. [PMID: 36132688 PMCID: PMC9419563 DOI: 10.1039/d1na00674f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/10/2021] [Indexed: 06/16/2023]
Abstract
Peptide-based delivery systems that deliver target molecules into cells have been gaining traction. These systems need cell-penetrating peptides (CPPs), which have the remarkable ability to penetrate into biological membranes and help internalize different cargoes into cells through the cell membranes. The molecular internalization mechanism and structure-function relationships of CPPs are not clear, although the incorporation of nonproteinogenic amino acids such as α-aminoisobutyric acid (Aib) has been reported to increase their helicity, biostability and penetration efficiencies. Here, we used molecular dynamics to study two Aib-containing CPPs, poly(LysAibAla)3 (KAibA) and poly(LysAibGly)3 (KAibG), that previously showed high cell internalization efficiency. KAibA and KAibG displayed the lowest internalization energies among the studied CPPs, showing distinct internalization mechanisms depending on the lipid composition of the model membranes. The presence of Aib residues allows these CPPs to adopt amphipathic folding to efficiently penetrate through the membranes. Elucidating how Aib incorporation affects CPP-membrane binding and interactions is beneficial for the design of CPPs for efficient intracellular delivery.
Collapse
Affiliation(s)
- Joan Gimenez-Dejoz
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science Saitama Japan
| | - Keiji Numata
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science Saitama Japan
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University Kyoto Japan
| |
Collapse
|
25
|
Abstract
In this introductory chapter, we first define cell-penetrating peptides (CPPs), give short overview of CPP history and discuss several aspects of CPP classification. Next section is devoted to the mechanism of CPP penetration into the cells, where direct and endocytic internalization of CPP is explained. Kinetics of internalization is discussed more extensively, since this topic is not discussed in other chapters of this book. At the end of this section some features of the thermodynamics of CPP interaction with the membrane is also presented. Finally, we present different cargoes that can be transferred into the cells by CPPs and briefly discuss the effect of cargo on the rate and efficiency of penetration into the cells.
Collapse
Affiliation(s)
- Matjaž Zorko
- Medical Faculty, Institute of Biochemistry and Molecular Genetics, University of Ljubljana, Ljubljana, Slovenia.
| | - Ülo Langel
- Department of Biochemistry and Biophysics, University of Stockholm, Stockholm, Sweden.,Institute of Technology, University of Tartu, Tartu, Estonia
| |
Collapse
|
26
|
Abstract
Cell penetrating peptides (CPPs) are short peptides that are able to translocate themselves and their cargo into cells. The progressive and continuous application of CPPs in various fields of basic and applied research shows that they are efficient delivery vectors for an assortment of biomolecules, including nucleic acids and proteins. This feature makes CPPs an excellent tool for modification of plant genomes through transgenesis and genome editing. In this review, we present the progress during the last three decades in application of CPPs for delivery of DNA, RNA, and proteins into plant cells and tissues. Moreover, we highlight the exploiting of CPPs as advantageous and beneficial tool for plant genome editing via delivery of nuclease proteins, and provide a practical example of genome alternation through CPP-delivered nucleases. Finally, the current exploitation of peptides in organelle-specific DNA delivery and modification of organellar genomes is discussed.
Collapse
|
27
|
Oikawa K, Imai T, Kodama Y, Numata K. Effects of mitochondria-selective fluorescent probes on mitochondrial movement in Arabidopsis mesophyll cells evaluated by using the quantification. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2021; 38:257-262. [PMID: 34393604 PMCID: PMC8329269 DOI: 10.5511/plantbiotechnology.21.0204a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/04/2021] [Indexed: 05/05/2023]
Abstract
Mitochondria-selective fluorescent probes such as MitoTracker are often used for mitochondria imaging in various plants. Although some of the probes are reported to induce mitochondria dysfunction in animal cells, the effect on plant cells remains to be determined. In the present study, we applied quantitative methods to analyze mitochondrial movement, speed frequency, and speed-angle changes, based on trajectory analysis of mitochondria in mesophyll protoplast cells of Arabidopsis thaliana expressing the mitochondria-localized fluorescent protein. Using the quantitative method, we assessed whether MitoTracker Red (FM and CMXRos) induce mitochondria dysfunction in A. thaliana. Although both the fluorescent probes well-stained mitochondria, the CMXRos probe, not the FM probe, gave a severe effect on mitochondrial movement at the low concentration (10 nM), indicating a MitoTracker-induced mitochondria dysfunction in A. thaliana. These results revealed that our quantitative method based on mitochondrial movement can be used to determine the appropriate concentrations of mitochondria-selective fluorescent probes in plants.
Collapse
Affiliation(s)
- Kazusato Oikawa
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Takuto Imai
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Yutaka Kodama
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi 321-8505, Japan
- E-mail: Tel: +81-28-649-5527, Fax: +81-28-649-8651
| | - Keiji Numata
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
- E-mail: Tel: +81-28-649-5527, Fax: +81-28-649-8651
| |
Collapse
|
28
|
Watanabe K, Odahara M, Miyamoto T, Numata K. Fusion Peptide-Based Biomacromolecule Delivery System for Plant Cells. ACS Biomater Sci Eng 2021; 7:2246-2254. [PMID: 33901395 DOI: 10.1021/acsbiomaterials.1c00227] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The introduction of DNA, RNA, and proteins into plant cells has become important in plant science with the recent development of innovative technologies such as genome editing. As a new method for the delivery of such biomacromolecules, fusion peptides, which have multiple functional domains, have been developed. The functional domains include cell-penetrating peptides for crossing cell membranes, polycationic peptides for biomacromolecule binding, and organelle-targeting peptides. The fusion peptide-based macromolecule delivery system enables the efficient introduction of DNA, RNA, and proteins, which are much larger in size than the peptide, into plant cells while retaining the activity of the biomacromolecules. Compared to pre-existing delivery methods, this system has advantages in that it does not require any special equipment and can be performed easily and quickly on a wide variety of plants. Furthermore, as a characteristic feature of the fusion peptide system, the application of organelle-targeting peptides to fusion peptides allows selective delivery of biomacromolecules to chloroplasts or mitochondria. Here, we provide a representative method of the fusion peptide-based biomacromolecule delivery system and an example of the results of biomacromolecule delivery as promising new tools for plant biology and biotechnology.
Collapse
Affiliation(s)
- Kenta Watanabe
- Biomacromolecule Research Team, Center for Sustainable Resource Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Masaki Odahara
- Biomacromolecule Research Team, Center for Sustainable Resource Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Takaaki Miyamoto
- Biomacromolecule Research Team, Center for Sustainable Resource Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Keiji Numata
- Biomacromolecule Research Team, Center for Sustainable Resource Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.,Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
29
|
Terada K, Gimenez-Dejoz J, Kurita T, Oikawa K, Uji H, Tsuchiya K, Numata K. Synthetic Mitochondria-Targeting Peptides Incorporating α-Aminoisobutyric Acid with a Stable Amphiphilic Helix Conformation in Plant Cells. ACS Biomater Sci Eng 2021; 7:1475-1484. [PMID: 33606492 DOI: 10.1021/acsbiomaterials.0c01533] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the genetic modification of plant cells, the mitochondrion is an important target in addition to the nucleus and plastid. However, gene delivery into the mitochondria of plant cells has yet to be established by conventional methods, such as particle bombardment, because of the small size and high mobility of mitochondria. To develop an efficient mitochondria-targeting signal (MTS) that functions in plant cells, we designed the artificial peptide (LURL)3 and its analogues, which periodically feature hydrophobic α-aminoisobutyric acid (Aib, U) and cationic arginine (R), considering the consensus motif recognized by the mitochondrial import receptor Tom20. Circular dichroism measurements and molecular dynamics simulation studies revealed that (LURL)3 had a propensity to form a stable α-helix in 0.1 M phosphate buffer solution containing 1.0 wt % sodium dodecyl sulfate. After internalization into plant cells via particle bombardment, (LURL)3 revealed highly selective accumulation in the mitochondria, whereas its analogue (LARL)3 was predominantly located in the vacuoles in addition to mitochondria. The high selectivity of (LURL)3 can be attributed to the incorporation of Aib, which promotes the hydrophobic interaction between the MTS and Tom20 by increasing the hydrophobicity and helicity of (LURL)3. The present study provided a prospective mitochondrial targeting system using the simple design of artificial peptides.
Collapse
Affiliation(s)
- Kayo Terada
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto Daigaku Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Joan Gimenez-Dejoz
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Taichi Kurita
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto Daigaku Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kazusato Oikawa
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto Daigaku Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Hirotaka Uji
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto Daigaku Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kousuke Tsuchiya
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto Daigaku Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Keiji Numata
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto Daigaku Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.,Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
30
|
Miyamoto T, Tsuchiya K, Numata K. Endosome-escaping micelle complexes dually equipped with cell-penetrating and endosome-disrupting peptides for efficient DNA delivery into intact plants. NANOSCALE 2021; 13:5679-5692. [PMID: 33595040 DOI: 10.1039/d0nr08183c] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The delivery of DNA to plants is crucial for enhancing their ability to produce valuable compounds and adapt to climate change. Peptides can provide a versatile tool for delivering DNA to a specific target organelle in various plant species without the use of specialized equipment. However, peptide-mediated DNA delivery suffers from endosomal entrapment and subsequent vacuolar degradation of the DNA cargo, which leads to poor transfection efficiency. To overcome the lack of a reliable approach for bypassing vacuolar degradation in plants, we herein present an endosome-escaping micelle. The micelle surface is dually modified with cell-penetrating (CPP) and endosome-disrupting peptides (EDP) and the core is composed of plasmid DNA condensed with cationic peptides. Due to the functions of CPP and EDP, the dual peptide-modified micelles efficiently undergo endocytic internalization and escape from endosomes to the cytosol, thereby achieving significantly enhanced transfection of intact plants with negligible cytotoxicity. The present study offers a robust strategy for efficient intracellular DNA delivery to plants without vacuolar degradation, and can facilitate plant bioengineering for diverse biotechnological applications.
Collapse
Affiliation(s)
- Takaaki Miyamoto
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan.
| | | | | |
Collapse
|
31
|
Daliri K, Pfannkuche K, Garipcan B. Effects of physicochemical properties of polyacrylamide (PAA) and (polydimethylsiloxane) PDMS on cardiac cell behavior. SOFT MATTER 2021; 17:1156-1172. [PMID: 33427281 DOI: 10.1039/d0sm01986k] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In vitro cell culture is commonly applied in laboratories around the world. Cultured cells are either of primary origin or established cell lines. Such transformed cell lines are increasingly replaced by pluripotent stem cell derived organotypic cells with more physiological properties. The quality of the culture conditions and matrix environment is of considerable importance in this regard. In fact, mechanical cues of the extracellular matrix have substantial effects on the cellular physiology. This is especially true if contractile cells such as cardiomyocytes are cultured. Therefore, elastic biomaterials have been introduced as scaffolds in 2D and 3D culture models for different cell types, cardiac cells among them. In this review, key aspects of cell-matrix interaction are highlighted with focus on cardiomyocytes and chemical properties as well as strengths and potential pitfalls in using two commonly applied polymers for soft matrix engineering, polyacrylamide (PAA) and polydimethylsiloxane (PDMS) are discussed.
Collapse
Affiliation(s)
- Karim Daliri
- Institute for Neurophysiology, University of Cologne, Medical Faculty, Robert Koch Str. 39, 50931 Cologne, Germany.
| | - Kurt Pfannkuche
- Institute for Neurophysiology, University of Cologne, Medical Faculty, Robert Koch Str. 39, 50931 Cologne, Germany. and Department for Pediatric Cardiology, University Hospital Cologne, Cologne, Germany and Marga-and-Walter-Boll Laboratory for Cardiac Tissue Engineering, University of Cologne, Germany and Center for Molecular Medicine, University of Cologne, Germany
| | - Bora Garipcan
- Institute of Biomedical Engineering, Bogazici University, Cengelkoy, 34684, Istanbul, Turkey.
| |
Collapse
|
32
|
Yilmaz N, Kodama Y, Numata K. Lipid Membrane Interaction of Peptide/DNA Complexes Designed for Gene Delivery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:1882-1893. [PMID: 33440939 DOI: 10.1021/acs.langmuir.0c03320] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Among gene delivery systems, peptide-based gene carriers have received significant attention because of their selectivity, biocompatibility, and biodegradability. Since cellular membranes function as a barrier toward exogenous molecules, cell-penetrating peptides (CPPs), which are usually cationic and/or amphiphilic, can serve as efficient carriers to deliver cargo into the cytosol. Here, we examined the interactions of carrier peptides and their DNA complexes with lipid membranes using a quartz crystal microbalance (QCM) and high-speed atomic force microscopy (HS-AFM). The carrier peptides are a 12-residue partial presequence of yeast cytochrome c oxidase subunit IV (Cytcox) and BP100, which are a mitochondria-targeting signal peptide and a CPP, respectively. QCM data showed that BP100 has a higher binding affinity than Cytcox to both plasma membrane- and mitochondrial membrane-mimicking lipid bilayers. The DNA complexes with either Cytcox or BP100 exhibited the same tendency. Furthermore, HS-AFM data demonstrated that the DNA complexes of either peptide can disrupt the lipid membranes, forming larger pores in the case of Cytcox. Our results suggest that the binding affinity of the peptide/DNA complex to the plasma membrane is more critical than its membrane disruption ability in enhancing the cellular uptake of DNA.
Collapse
Affiliation(s)
- Neval Yilmaz
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Yutaka Kodama
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
- Center for Bioscience Research & Education, Utsunomiya University, Tochigi 321-8505, Japan
| | - Keiji Numata
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
- Laboratory for Biomaterial Chemistry, Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
33
|
Oikawa K, Tateishi A, Odahara M, Kodama Y, Numata K. Imaging of the Entry Pathway of a Cell-Penetrating Peptide-DNA Complex From the Extracellular Space to Chloroplast Nucleoids Across Multiple Membranes in Arabidopsis Leaves. FRONTIERS IN PLANT SCIENCE 2021; 12:759871. [PMID: 34925409 PMCID: PMC8678410 DOI: 10.3389/fpls.2021.759871] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/01/2021] [Indexed: 05/14/2023]
Abstract
Each plant cell has hundreds of copies of the chloroplast genome and chloroplast transgenes do not undergo silencing. Therefore, chloroplast transformation has many powerful potential agricultural and industrial applications. We previously succeeded in integrating exogenous genes into the chloroplast genome using peptide-DNA complexes composed of plasmid DNA and a fusion peptide consisting of a cell-penetrating peptide (CPP) and a chloroplast transit peptide (cpPD complex). However, how cpPD complexes are transported into the chloroplast from outside the cell remains unclear. Here, to characterize the route by which these cpPD complexes move into chloroplasts, we tracked their movement from the extracellular space to the chloroplast stroma using a fluorescent label and confocal laser scanning microscopy (CLSM). Upon infiltration of cpPD complexes into the extracellular space of Arabidopsis thaliana leaves, the complexes reached the chloroplast surface within 6h. The cpPD complexes reached were engulfed by the chloroplast outer envelope membrane and gradually integrated into the chloroplast. We detected several cpPD complexes localized around chloroplast nucleoids and observed the release of DNA from the cpPD. Our results thus define the route taken by the cpPD complexes for gene delivery from the extracellular space to the chloroplast stroma.
Collapse
Affiliation(s)
- Kazusato Oikawa
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Ayaka Tateishi
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Masaki Odahara
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Japan
| | - Yutaka Kodama
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Japan
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Japan
- Yutaka Kodama,
| | - Keiji Numata
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Japan
- *Correspondence: Keiji Numata,
| |
Collapse
|
34
|
Arimura SI, Ayabe H, Sugaya H, Okuno M, Tamura Y, Tsuruta Y, Watari Y, Yanase S, Yamauchi T, Itoh T, Toyoda A, Takanashi H, Tsutsumi N. Targeted gene disruption of ATP synthases 6-1 and 6-2 in the mitochondrial genome of Arabidopsis thaliana by mitoTALENs. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:1459-1471. [PMID: 33098708 DOI: 10.1111/tpj.15041] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/22/2020] [Accepted: 10/13/2020] [Indexed: 05/22/2023]
Abstract
We recently achieved targeted disruptions of cytoplasmic male sterility (CMS)-associated genes in the mitochondrial genomes of rice and rapeseed by using mitochondria-targeted transcription activator-like effector nucleases (mitoTALENs). It was the first report of stable and heritable targeted gene modification of plant mitochondrial genomes. Here, we attempted to use mitoTALENs to disrupt two mitochondrial genes in the model plant Arabidopsis thaliana(Arabidopsis) using three different promoters and two types of TALENs. The targets were the two isoforms of the ATP synthase subunit 6 gene, atp6-1 and atp6-2. Each of these genes was successfully deleted and the mitochondrial genomes were recovered in a homoplasmic state. The nuclear genome also has a copy of atp6-1, and we were able to confirm that it was the mitochondrial gene and not the nuclear pseudogene that was knocked out. Among the three mitoTALEN promoters tried, the RPS5A promoter was the most effective. Conventional mitoTALENs were more effective than single-molecule mito-compactTALENs. Targeted mitochondrial gene deletion was achieved by crossing as well as by floral-dip transformation to introduce the mitoTALEN constructs into the nucleus. The gene disruptions were caused by large (kb-size) deletions. The ends of the remaining sequences were connected to distant loci, mostly by illegitimate homologous recombinations between repeats.
Collapse
Affiliation(s)
- Shin-Ichi Arimura
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Hiroki Ayabe
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Hajime Sugaya
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Miki Okuno
- School of Life Science and Technology, Tokyo Institute of Technology, M6-1, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Yoshiko Tamura
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yu Tsuruta
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yuta Watari
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Shungo Yanase
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Takaki Yamauchi
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Takehiko Itoh
- School of Life Science and Technology, Tokyo Institute of Technology, M6-1, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Atsushi Toyoda
- National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan
| | - Hideki Takanashi
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Nobuhiro Tsutsumi
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
35
|
Thagun C, Motoda Y, Kigawa T, Kodama Y, Numata K. Simultaneous introduction of multiple biomacromolecules into plant cells using a cell-penetrating peptide nanocarrier. NANOSCALE 2020; 12:18844-18856. [PMID: 32896843 DOI: 10.1039/d0nr04718j] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Plant cells contain groups of biomolecules that participate together in a particular biological process. Exogenous codelivery of multiple biomolecules is an essential step for elucidation of the biological significance of these molecules and enables various biotechnological applications in plants. However, the currently existing biomolecule delivery methods face difficulties in delivering multiple components into plant cells, mediating transgene expression, and maintaining the stability of the numerous components and lead to delays in biomolecular function. Cell-penetrating peptides (CPPs) have demonstrated remarkable abilities to introduce diverse biomolecules into various plant species. Here, we employed the engineered CPP KH9-BP100 as a carrier to deliver multiple biomolecules into plant cells and performed a bimolecular fluorescence complementation assay to assess the simultaneous introduction of multiple biomolecules. We demonstrate that multiple biomolecule/CPP cargos can be simultaneously internalized by a particular plant cell, albeit with different efficiencies. We present a cutting-edge technique for codelivery of multiple biomolecules into plant cells that can be used for elucidation of functional correlations and for metabolic engineering.
Collapse
Affiliation(s)
- Chonprakun Thagun
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan.
| | | | | | | | | |
Collapse
|
36
|
Harito C, Lledo RC, Bavykin DV, Moshrefi‐Torbati M, Islam A, Yuliarto B, Walsh FC. Patterning of worm‐like soft polydimethylsiloxane structures using a
TiO
2
nanotubular array. J Appl Polym Sci 2020. [DOI: 10.1002/app.49795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Christian Harito
- Department for Management of Science and Technology DevelopmentTon Duc Thang University Ho Chi Minh City Vietnam
- Faculty of Applied SciencesTon Duc Thang University Ho Chi Minh City Vietnam
| | - Rosa C. Lledo
- Mechatronics Research GroupUniversity of Southampton Southampton UK
- Department for Mechanical EngineeringTechnical University of Denmark Kongens Lyngby Denmark
| | | | | | - Aminul Islam
- Department for Mechanical EngineeringTechnical University of Denmark Kongens Lyngby Denmark
| | - Brian Yuliarto
- Advanced Functional Materials Laboratory, Engineering PhysicsInstitut Teknologi Bandung Bandung Indonesia
- Research Center for Nanosciences and NanotechnologyInstitut Teknologi Bandung Bandung Indonesia
| | - Frank C. Walsh
- Energy Technology GroupUniversity of Southampton Southampton UK
| |
Collapse
|
37
|
Abstract
The mitochondrion performs critical roles in eukaryotic cells including ATP production, cell growth, survival, apoptosis, and differentiation. Many human diseases can be traced to dysfunction within the mitochondria, but selective delivery of therapeutics into the mitochondria has been challenging. This chapter describes the detailed protocols for the synthesis of a new family of mitochondrion-targeting, cell-penetrating molecules (CPMs) and their application for the delivery of small-molecule and peptidyl cargos into the mitochondrial matrix. Live-cell confocal microscopic imaging of HeLa cells treated with a variety of CPM-cargo conjugates revealed that the CPMs efficiently and specifically deliver membrane-impermeable linear and cyclic peptidyl cargos into the mitochondrial matrix, as long as the cargo carries no more than two negative charges.
Collapse
Affiliation(s)
- George Appiah Kubi
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, United States
| | - Dehua Pei
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, United States.
| |
Collapse
|
38
|
Miyamoto T, Tsuchiya K, Numata K. Dual Peptide-Based Gene Delivery System for the Efficient Transfection of Plant Callus Cells. Biomacromolecules 2020; 21:2735-2744. [PMID: 32432860 DOI: 10.1021/acs.biomac.0c00481] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Owing to their diverse functions and tunable physicochemical properties, peptides are promising alternatives to the conventional gene delivery tools that are available for plant systems. However, peptide-mediated gene delivery is limited by low transfection efficiency in plants because of the insufficient cytosolic translocation of DNA cargo. Here, we report a dual peptide-based gene delivery system for the efficient transfection of plant callus cells. This system is based on the combination of an artificial peptide composed of cationic cell-penetrating and hydrophobic endosomal escape domains with a gene carrier peptide composed of amphiphilic cell-penetrating and cationic DNA-binding domains. Cellular internalization and transfection studies revealed that this dual peptide-based system enables more efficient transfection of callus cells than does a carrier peptide alone by enhancing the endocytic uptake and subsequent cytosolic translocation of a carrier peptide/DNA complex. The present strategy will expand the utility of peptide-mediated plant gene delivery for a wide range of applications and basic research.
Collapse
Affiliation(s)
- Takaaki Miyamoto
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Kousuke Tsuchiya
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Keiji Numata
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan.,Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
39
|
Gimenez-Dejoz J, Tsuchiya K, Tateishi A, Motoda Y, Kigawa T, Asano Y, Numata K. Computational study on the polymerization reaction of d-aminopeptidase for the synthesis of d-peptides. RSC Adv 2020; 10:17582-17592. [PMID: 35515590 PMCID: PMC9053604 DOI: 10.1039/d0ra01138j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/28/2020] [Indexed: 02/02/2023] Open
Abstract
Almost all natural proteins are composed exclusively of l-amino acids, and this chirality influences their properties, functions, and selectivity. Proteases can recognize proteins composed of l-amino acids but display lower selectivity for their stereoisomers, d-amino acids. Taking this as an advantage, d-amino acids can be used to develop polypeptides or biobased materials with higher biostability. Chemoenzymatic peptide synthesis is a technique that uses proteases as biocatalysts to synthesize polypeptides, and d-stereospecific proteases can be used to synthesize polypeptides incorporating d-amino acids. However, engineered proteases with modified catalytic activities are required to allow the incorporation of d-amino acids with increased efficiency. To understand the stereospecificity presented by proteases and their involvement in polymerization reactions, we studied d-aminopeptidase. This enzyme displays the ability to efficiently synthesize poly d-alanine-based peptides under mild conditions. To elucidate the mechanisms involved in the unique specificity of d-aminopeptidase, we performed quantum mechanics/molecular mechanics simulations of its polymerization reaction and determined the energy barriers presented by the chiral substrates. The enzyme faces higher activation barriers for the acylation and aminolysis reactions with the l-stereoisomer than with the d-substrate (10.7 and 17.7 kcal mol-1 higher, respectively). The simulation results suggest that changes in the interaction of the substrate with Asn155 influence the stereospecificity of the polymerization reaction.
Collapse
Affiliation(s)
- Joan Gimenez-Dejoz
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science 2-1 Hirosawa Wako-shi Saitama 351-0198 Japan
| | - Kousuke Tsuchiya
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science 2-1 Hirosawa Wako-shi Saitama 351-0198 Japan
| | - Ayaka Tateishi
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science 2-1 Hirosawa Wako-shi Saitama 351-0198 Japan
| | - Yoko Motoda
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science 2-1 Hirosawa Wako-shi Saitama 351-0198 Japan
| | - Takanori Kigawa
- Laboratory for Cellular Structural Biology, RIKEN Center for Biosystems Dynamics Research 1-7-22 Suehiro-cho, Tsurumi Yokohama 230-0045 Japan
| | - Yasuhisa Asano
- Biotechnology Research Center, Department of Biotechnology, Toyama Prefectural University 5180 Kurokawa Imizu Toyama 939-0398 Japan
| | - Keiji Numata
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science 2-1 Hirosawa Wako-shi Saitama 351-0198 Japan
| |
Collapse
|
40
|
Terada K, Gimenez-Dejoz J, Miyagi Y, Oikawa K, Tsuchiya K, Numata K. Artificial Cell-Penetrating Peptide Containing Periodic α-Aminoisobutyric Acid with Long-Term Internalization Efficiency in Human and Plant Cells. ACS Biomater Sci Eng 2020; 6:3287-3298. [DOI: 10.1021/acsbiomaterials.0c00182] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Kayo Terada
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Joan Gimenez-Dejoz
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yu Miyagi
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kazusato Oikawa
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kousuke Tsuchiya
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Keiji Numata
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
41
|
Target-specific gene delivery in plant systems and their expression: Insights into recent developments. J Biosci 2020. [DOI: 10.1007/s12038-020-0008-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
42
|
Nandy D, Maity A, Mitra AK. Target-specific gene delivery in plant systems and their expression: Insights into recent developments. J Biosci 2020; 45:30. [PMID: 32020912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In order to improve crop plants in terms of their yield, drought resistance, pest resistance, nutritional value, etc., modern agriculture has relied upon plant genetic engineering. Since the advent of recombinant DNA technology, several tools have been used for genetic transformations in plants such as Agrobacterium tumefaciens, virus-mediated gene transfer, direct gene transfer systems such as electroporation, particle gun, microinjection and chemical methods. All these traditional methods lack specificity and the transgenes are integrated at random sites in the plant DNA. Recently novel techniques for gene targeting have evolved such as engineered nucleases such as Zinc Finger Nucleases, Transcription Activator like effector nucleases, Clustered regular interspaced short palindromic repeats. Other advances include improvement in tools for delivery of gene editing components which include carrier proteins, and carbon nanotubes. The present review focuses on the latest techniques for target specific gene delivery in plants, their expression and future directions in plant biotechnology.
Collapse
Affiliation(s)
- Debdyuti Nandy
- CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata 700 032, India
| | | | | |
Collapse
|
43
|
Thagun C, Chuah J, Numata K. Targeted Gene Delivery into Various Plastids Mediated by Clustered Cell-Penetrating and Chloroplast-Targeting Peptides. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1902064. [PMID: 31832328 PMCID: PMC6891901 DOI: 10.1002/advs.201902064] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/18/2019] [Indexed: 05/05/2023]
Abstract
The plastid is an organelle that functions as a cell factory to supply food and oxygen to the plant cell and is therefore a potential target for genetic engineering to acquire plants with novel photosynthetic traits or the ability to produce valuable biomolecules. Conventional plastid genome engineering technologies are laborious for the preparation of plant material, require expensive experimental instruments, and are time consuming for obtaining a transplastomic plant line that produces significant levels of the biomolecule of interest. Herein, a transient plastid transformation technique is presented using a peptide-based gene carrier. By formulating peptide/plasmid DNA complexes that combine the functions of both a cell-penetrating peptide and a chloroplast-targeting peptide, DNA molecules are translocated across the plant cell membrane and delivered to the plastid efficiently via vesicle formation and intracellular vesicle trafficking. A simple infiltration method enables the introduction of a complex solution into intact plants, and plastid-localized transgene expression is expeditiously observed in various types of plastids in differentiated cell types of several plants. The gene delivery technology thus provides a useful tool to rapidly engineer plastids in crop species.
Collapse
Affiliation(s)
- Chonprakun Thagun
- Biomacromolecules Research TeamRIKEN Center for Sustainable Resource Science2‐1 Hirosawa, Wako‐shiSaitama351‐0198Japan
| | - Jo‐Ann Chuah
- Biomacromolecules Research TeamRIKEN Center for Sustainable Resource Science2‐1 Hirosawa, Wako‐shiSaitama351‐0198Japan
| | - Keiji Numata
- Biomacromolecules Research TeamRIKEN Center for Sustainable Resource Science2‐1 Hirosawa, Wako‐shiSaitama351‐0198Japan
| |
Collapse
|
44
|
Demirer GS, Zhang H, Goh NS, González-Grandío E, Landry MP. Carbon nanotube-mediated DNA delivery without transgene integration in intact plants. Nat Protoc 2019; 14:2954-2971. [PMID: 31534231 PMCID: PMC10496593 DOI: 10.1038/s41596-019-0208-9] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/06/2019] [Indexed: 11/09/2022]
Abstract
Exogenous biomolecule delivery into plants is difficult because the plant cell wall poses a dominant transport barrier, thereby limiting the efficiency of plant genetic engineering. Traditional DNA delivery methods for plants suffer from host-species limitations, low transformation efficiencies, tissue damage, or unavoidable and uncontrolled DNA integration into the host genome. We have demonstrated efficient plasmid DNA delivery into intact plants of several species with functionalized high-aspect-ratio carbon nanotube (CNT) nanoparticles (NPs), enabling efficient DNA delivery into a variety of non-model plant species (arugula, wheat, and cotton) and resulting in high protein expression levels without transgene integration. Herein, we provide a protocol that can be implemented by plant biologists and adapted to produce functionalized single-walled CNTs (SWNTs) with surface chemistries optimized for delivery of plasmid DNA in a plant species-independent manner. This protocol describes how to prepare, construct, and optimize polyethylenimine (PEI)-functionalized SWNTs and perform plasmid DNA loading. The authors also provide guidance on material characterization, gene expression evaluation, and storage conditions. The entire protocol, from the covalent functionalization of SWNTs to expression quantification, can be completed in 5 d.
Collapse
Affiliation(s)
- Gozde S Demirer
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Huan Zhang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Natalie S Goh
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Eduardo González-Grandío
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Markita P Landry
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA.
- Innovative Genomics Institute (IGI), Berkeley, CA, USA.
- California Institute for Quantitative Biosciences, QB3, University of California, Berkeley, Berkeley, CA, USA.
- Chan-Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
45
|
Asfaw KG, Liu Q, Maisch J, Münch SW, Wehl I, Bräse S, Bogeski I, Schepers U, Nick P. A Peptoid Delivers CoQ-derivative to Plant Mitochondria via Endocytosis. Sci Rep 2019; 9:9839. [PMID: 31285457 PMCID: PMC6614412 DOI: 10.1038/s41598-019-46182-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 06/21/2019] [Indexed: 11/09/2022] Open
Abstract
Controlled delivery of molecules interfering specifically with target activities in a cell of interest can be a powerful tool for experimental manipulation, because it can be administered at a defined time point and does not require genetic transformation, which in some systems is difficult and time consuming. Peptides as versatile tools that can be tailored for binding numerous binding partners, are of special interest. However, their passage through membranes, their intracellular targeting, and their sensitivity to proteases is limiting. The use of peptoids, where cationic amino-acid side chains are linked to nitrogen (rather than to carbon) of the peptide bond, can circumvent these limitations, because they are not cleavable by proteases. In the current work, we provide a proof-of-concept that such Trojan Peptoids, the plant PeptoQ, can be used to target a functional cargo (i.e. a rhodamine-labelled peptoid and a coenzyme Q10 derivative) into mitochondria of tobacco BY-2 cells as experimental model. We show that the uptake is specific for mitochondria, rapid, dose-dependent, and requires clathrin-mediated endocytosis, as well as actin filaments, while microtubules seem to be dispensable. Viability of the treated cells is not affected, and they show better survival under salt stress, a condition that perturbs oxidative homeostasis in mitochondria. In congruence with improved homeostasis, we observe that the salt induced accumulation of superoxide is mitigated and even inverted by pretreatment with PeptoQ. Using double labelling with appropriate fluorescent markers, we show that targeting of this Trojan Peptoid to the mitochondria is not based on a passage through the plasma membrane (as thought hitherto), but on import via endocytotic vesicles and subsequent accumulation in the mitochondrial intermembrane space, from where it can enter the matrix, e.g. when the permeability of the inner membrane is increased under salt stress.
Collapse
Affiliation(s)
- Kinfemichael Geressu Asfaw
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, D-76131, Karlsruhe, Germany.
| | - Qiong Liu
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, D-76131, Karlsruhe, Germany
| | - Jan Maisch
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, D-76131, Karlsruhe, Germany
| | - Stephan W Münch
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131, Karlsruhe, Germany
| | - Ilona Wehl
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131, Karlsruhe, Germany
- Institute of Toxicology and Genetics (ITG), Karlsruhe Institute of Technology (KIT), Hermann von Helmholtz Platz 1 D-76344, Eggenstein-Leopoldshafen, Germany
| | - Stefan Bräse
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131, Karlsruhe, Germany
- Institute of Toxicology and Genetics (ITG), Karlsruhe Institute of Technology (KIT), Hermann von Helmholtz Platz 1 D-76344, Eggenstein-Leopoldshafen, Germany
| | - Ivan Bogeski
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center, Georg-August-University, 37073, Göttingen, Germany
| | - Ute Schepers
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131, Karlsruhe, Germany
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann von Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Peter Nick
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, D-76131, Karlsruhe, Germany
| |
Collapse
|
46
|
Gadamchetty P, Mullapudi PLV, Sanagala R, Markandan M, Polumetla AK. Genetic transformation of Chlorella vulgaris mediated by HIV-TAT peptide. 3 Biotech 2019; 9:139. [PMID: 30944786 DOI: 10.1007/s13205-019-1671-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 03/09/2019] [Indexed: 11/24/2022] Open
Abstract
Scientific interest in microalgal species is growing and, genetic transformation has definitely opened more avenues, in the ongoing research on microphytes. In the present study, we have attempted to transform Chlorella vulgaris by mobilizing double-stranded linear Transfer DNA (T-DNA) comprised of green fluorescent protein (egfp) gene cassette and hygromycin phosphotransferase II (hptII) gene cassette non-covalently bound to TAT peptide, into C. vulgaris cells treated with Triton X-100. The transformed C. vulgaris cells when examined under fluorescent microscope, exhibited green fluorescence in comparison to the untransformed cells. The transformed cells were further screened, and the surviving colonies were sub-cultured, on BG11 medium fortified with Hygromycin. The surviving colonies were confirmed for the presence of integrated T-DNA by Polymerase Chain Reaction with egfp and hptII gene-specific primers. This methodology has potential to substitute the existing tedious transformation methodologies and ease the future studies in microalgae.
Collapse
Affiliation(s)
- Pavan Gadamchetty
- 1National Research Centre on Plant Biotechnology, Lal Bahadur Shastri Building, Pusa Campus, New Delhi, 110012 India
- 2Department of Biotechnology and Genetic Engineering, School of Biotechnology, Bharathidasan University, Tiruchirappalli, 620024 India
| | - Phanindra Lakshmi Venkata Mullapudi
- 1National Research Centre on Plant Biotechnology, Lal Bahadur Shastri Building, Pusa Campus, New Delhi, 110012 India
- Visargha Agri Sciences Private Limited, Bhubaneswar, 751023 India
| | - Raghavendrarao Sanagala
- 1National Research Centre on Plant Biotechnology, Lal Bahadur Shastri Building, Pusa Campus, New Delhi, 110012 India
- Ganga Kaveri Seeds Private Limited, Hyderabad, 500001 India
| | - Manickavasagam Markandan
- 2Department of Biotechnology and Genetic Engineering, School of Biotechnology, Bharathidasan University, Tiruchirappalli, 620024 India
| | - Ananda Kumar Polumetla
- 1National Research Centre on Plant Biotechnology, Lal Bahadur Shastri Building, Pusa Campus, New Delhi, 110012 India
- 5Indian Institute of Rice Research, Hyderabad, 500030 India
| |
Collapse
|
47
|
Miyamoto T, Tsuchiya K, Numata K. Block Copolymer/Plasmid DNA Micelles Postmodified with Functional Peptides via Thiol-Maleimide Conjugation for Efficient Gene Delivery into Plants. Biomacromolecules 2019; 20:653-661. [PMID: 30257560 DOI: 10.1021/acs.biomac.8b01304] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Introducing exogenous genes into plant cells is essential for a wide range of applications in agriculture and plant biotechnology fields. Cationic peptide carriers with cell-penetrating and DNA-binding domains successfully deliver exogenous genes into plants. However, their cell-penetrating activity may be attenuated by undesired electrostatic interactions between the cell-penetrating peptide (CPP) domain and DNA cargo, resulting in limited gene delivery efficiency. Here, we developed the block copolymer maleimide-conjugated tetra(ethylene glycol) and poly(l-lysine) (MAL-TEG-PLL). Through electrostatic interactions with plasmid DNA (pDNA), MAL-TEG-PLL formed a micelle that presented maleimide groups on its surface. The micelle enabled postmodification with cysteine-containing functional peptides, including a CPP (BP100-Cys) and nuclear localization signal (Cys-NLS) via thiol-maleimide conjugation, thereby avoiding undesired interactions. According to a comparison of gene delivery efficiencies among the peptide-postmodified micelles, the amount of BP100-Cys on the micelle surface was key for efficient gene delivery. The BP100-postmodified micelle showed more efficient delivery compared with that of the BP100-premodified micelle. Thus, postmodification of polymeric micelles with functional peptides opens the door to designing highly efficient plant gene delivery systems.
Collapse
Affiliation(s)
- Takaaki Miyamoto
- Biomacromolecules Research Team , RIKEN Center for Sustainable Resource Science , 2-1 Hirosawa , Wako-shi , Saitama 351-0198 , Japan
| | - Kousuke Tsuchiya
- Biomacromolecules Research Team , RIKEN Center for Sustainable Resource Science , 2-1 Hirosawa , Wako-shi , Saitama 351-0198 , Japan
| | - Keiji Numata
- Biomacromolecules Research Team , RIKEN Center for Sustainable Resource Science , 2-1 Hirosawa , Wako-shi , Saitama 351-0198 , Japan
| |
Collapse
|
48
|
Midorikawa K, Kodama Y, Numata K. Vacuum/Compression Infiltration-mediated Permeation Pathway of a Peptide-pDNA Complex as a Non-Viral Carrier for Gene Delivery in Planta. Sci Rep 2019; 9:271. [PMID: 30670735 PMCID: PMC6342927 DOI: 10.1038/s41598-018-36466-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 11/23/2018] [Indexed: 01/04/2023] Open
Abstract
Non-viral gene carriers have been extensively investigated as alternatives to viral vectors for gene delivery systems into animal and plant cells. A non-viral gene carrier containing a cell-penetrating peptide and a cationic sequence was previously developed for use in intact plants and plant cells; however, the permeation pathway of the gene carrier into plant cells is yet to be elucidated, which would facilitate the improvement of the gene delivery efficiency. Here, we identified the vacuum/compression infiltration-mediated permeation pathway of a non-viral gene carrier into plant tissues and cells using a complex of plasmid DNA and a peptide-based gene carrier. This complex was taken up via the hydathodes in Arabidopsis thaliana, and from root hairs in Nicotiana benthamiana. Remarkably, these structurally weak tissues are also routes of bacterial invasion in nature, suggesting that peptide-pDNA complexes invade intact plants through similar pathways as bacterial pathogens.
Collapse
Affiliation(s)
- Keiko Midorikawa
- Biomacromoleules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| | - Yutaka Kodama
- Biomacromoleules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan.
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi, 321-8505, Japan.
| | - Keiji Numata
- Biomacromoleules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan.
| |
Collapse
|
49
|
Kimura M, Yoshizumi T, Numata K. A centrifugation-assisted peptide-mediated gene transfer method for high-throughput analyses. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2019; 36:49-52. [PMID: 31275049 PMCID: PMC6566007 DOI: 10.5511/plantbiotechnology.18.1115a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 11/15/2018] [Indexed: 06/09/2023]
Abstract
A peptide-mediated DNA delivery system for several plant species has been recently developed. This system uses ionic complexes of DNA and fusion peptides containing several domains, such as DNA-binding and cell-penetrating peptides. Although the peptide-DNA complexes are capable of penetrating into plant cells through the cell wall by mechanical pressure using a syringe, sample throughput is limited. Here, we describe a Centrifugation-Assisted Peptide-mediated gene Transfer (CAPT) method for improving sample throughput with reproducible gene transfer efficiency. We optimized the parameters of CAPT for transient gene transfer efficiency by using Nicotiana tabacum cotyledons as a model plant material. The optimal parameters for centrifugation were 10,000×g for 60 s. Furthermore, we successfully transferred the peptide-DNA complex into rice cotyledons using the optimized CAPT method. Thus, the CAPT method is superior to the previous syringe-mediated infiltration method in terms of sample throughput in multiple plant species.
Collapse
Affiliation(s)
- Mitsuhiro Kimura
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Takeshi Yoshizumi
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Keiji Numata
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
50
|
Golestanipour A, Nikkhah M, Aalami A, Hosseinkhani S. Gene Delivery to Tobacco Root Cells with Single-Walled Carbon Nanotubes and Cell-Penetrating Fusogenic Peptides. Mol Biotechnol 2018; 60:863-878. [PMID: 30203379 DOI: 10.1007/s12033-018-0120-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Development of efficient, easy, and safe gene delivery methods is of great interest in the field of plant biotechnology. Considering the limitations of the usual transfection methods (such as transgene size and plant type), several new techniques have been tested for replacement. The success of some biological and synthetic nanostructures such as cell-penetrating peptides and carbon nanotubes in transferring macromolecules (proteins and nucleic acids) into mammalian cells provoked us to assess the ability of an engineered chimeric peptide and also arginine functionalized single-walled carbon nanotube in gene delivery to intact tobacco (Nicotiana tabacum var. Virginia) root cells. It was suggested that the engineered peptide with its special cationic and hydrophobic domains and the arginine functionalized single-walled carbon nanotube due to its nano-cylindrical shape can pass plant cell barriers while plasmid DNA (which codes green fluorescent protein) has been condensed on them. The success of gene delivery to tobacco root cells was confirmed by fluorescence microscopy and western blotting analysis.
Collapse
Affiliation(s)
- Arezoo Golestanipour
- Department of Plant Biotechnology, University of Guilan, University Campus 2, Rasht, Iran
| | - Maryam Nikkhah
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Ali Aalami
- Department of Plant Biotechnology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|