1
|
Zhu J, Wang B, Zhang Y, Wei T, Gao T. Living electrochemical biosensing: Engineered electroactive bacteria for biosensor development and the emerging trends. Biosens Bioelectron 2023; 237:115480. [PMID: 37379794 DOI: 10.1016/j.bios.2023.115480] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/30/2023] [Accepted: 06/14/2023] [Indexed: 06/30/2023]
Abstract
Bioelectrical interfaces made of living electroactive bacteria (EAB) provide a unique opportunity to bridge biotic and abiotic systems, enabling the reprogramming of electrochemical biosensing. To develop these biosensors, principles from synthetic biology and electrode materials are being combined to engineer EAB as dynamic and responsive transducers with emerging, programmable functionalities. This review discusses the bioengineering of EAB to design active sensing parts and electrically connective interfaces on electrodes, which can be applied to construct smart electrochemical biosensors. In detail, by revisiting the electron transfer mechanism of electroactive microorganisms, engineering strategies of EAB cells for biotargets recognition, sensing circuit construction, and electrical signal routing, engineered EAB have demonstrated impressive capabilities in designing active sensing elements and developing electrically conductive interfaces on electrodes. Thus, integration of engineered EAB into electrochemical biosensors presents a promising avenue for advancing bioelectronics research. These hybridized systems equipped with engineered EAB can promote the field of electrochemical biosensing, with applications in environmental monitoring, health monitoring, green manufacturing, and other analytical fields. Finally, this review considers the prospects and challenges of the development of EAB-based electrochemical biosensors, identifying potential future applications.
Collapse
Affiliation(s)
- Jin Zhu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China
| | - Baoguo Wang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China
| | - Yixin Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China
| | - Tianxiang Wei
- School of Environment, Nanjing Normal University, Nanjing, 210023, PR China
| | - Tao Gao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China.
| |
Collapse
|
2
|
Jia Y, Liu D, Chen Y, Hu Y. Evidence for the feasibility of transmembrane proton gradient regulating oxytetracycline extracellular biodegradation mediated by biosynthesized palladium nanoparticles. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131544. [PMID: 37196438 DOI: 10.1016/j.jhazmat.2023.131544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/16/2023] [Accepted: 04/29/2023] [Indexed: 05/19/2023]
Abstract
Extracellular biodegradation is a promising technology for removing antibiotics and repressing the spread of resistance genes, but the strategy is limited by the low extracellular electron transfer (EET) efficiency of microorganisms. In this work, biogenic Pd0 nanoparticles (bio-Pd0) were introduced in cells in situ to enhance oxytetracycline (OTC) extracellular degradation and the effects of transmembrane proton gradient (TPG) on EET and energy metabolism mediated by bio-Pd0 were investigated. The results indicated that the intracellular OTC concentration gradually decreased with increase in pH due to the simultaneous decreases of OTC adsorption and TPG-dependent OTC uptake. On the contrary, the efficiency of OTC biodegradation mediated by bio-Pd0@B. megaterium showed a pH-dependent increase. The negligible intracellular OTC degradation, the high dependence of OTC biodegradation on respiration chain and the results on enzyme activity and respiratory chain inhibition experiments showed that NADH-dependent (rather than FADH2-dependent) EET process mediated by substrate-level phosphorylation modulated OTC biodegradation due to high energy storage and proton translocation capacity. Moreover, the results showed that altering TPG is an efficient approach to improve EET efficiency, which can be attributed to the increased NADH generation by the TCA cycle, enhanced transmembrane electron output efficiency (as evidenced by increased intracellular electron transfer system (IETS) activity, the negative shift of onset potential, and enhanced one-electron transfer through bound flavin) and stimulation of substrate-level phosphorylation energy metabolism catalyzed by succinic thiokinase (STH) under low TPG conditions. The results of structural equation model that OTC biodegradation was directly and positively modulated by the net outward proton flux as well as STH activity, and indirectly regulated by TPG through NADH level and IETS activity confirmed the previous findings. This study provides a new perspective for engineering microbial EET and application of bioelectrochemistry processes in bioremediation.
Collapse
Affiliation(s)
- Yating Jia
- School of Environment and Safety Engineering, North University of China, Taiyuan 030051, China; Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Dejin Liu
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yuancai Chen
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
| | - Yongyou Hu
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
3
|
Wu J, Cheng ZH, Min D, Cheng L, He RL, Liu DF, Li WW. CRISPRi System as an Efficient, Simple Platform for Rapid Identification of Genes Involved in Pollutant Transformation by Aeromonas hydrophila. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:3306-3315. [PMID: 32109355 DOI: 10.1021/acs.est.9b07191] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Aeromonas species are indigenous in diverse aquatic environments and play important roles in environmental remediation. However, the pollutant transformation mechanisms of these bacteria remain elusive, and their potential in pollution control is largely unexploited so far. In this work, we report an efficient and simple genome regulation tool to edit Aeromonas hydrophila and identify its biomolecular pathways for pollutant transformation. The genome regulation system, which is based on the type II clustered regularly interspaced short palindromic repeat interference (CRISPRi) system from Streptococcus pyogenes, can serve as a reversible and multiplexible platform for gene knockdown in A. hydrophila. A single-plasmid CRISPRi system harboring both dCas9 and the sgRNA was constructed in A. hydrophila and used to silence diverse genes with varied sizes and expression levels. With this system, up to 467-fold repression of gfp expression was achieved, and the function of the essential gene-ftsZ was identified quickly and accurately. Furthermore, simultaneous transcriptional repression of multiple targeted genes was realized. We discovered that the ars operon played an essential role in arsenic detoxification, and the extracellular electron transfer (EET) pathway was involved in methyl orange reduction, but not in vanadium reduction by A. hydrophila. Our method allows better insights and effective genetic manipulation of the pollutant transformation processes in Aeromonas, which might facilitate more efficient utilization of the Aeromonas species and other microbial species for environmental remediation applications.
Collapse
Affiliation(s)
- Jie Wu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science & Technology of China, Hefei, 230026, P. R. China
| | - Zhou-Hua Cheng
- School of Life Sciences, University of Science & Technology of China, Hefei, 230026, P. R. China
| | - Di Min
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science & Technology of China, Hefei, 230026, P. R. China
| | - Lei Cheng
- School of Life Sciences, University of Science & Technology of China, Hefei, 230026, P. R. China
| | - Ru-Li He
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science & Technology of China, Hefei, 230026, P. R. China
| | - Dong-Feng Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science & Technology of China, Hefei, 230026, P. R. China
| | - Wen-Wei Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science & Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
4
|
Wang J, Bi S, Chen Y, Hu Y. Electron transfer involved in bio-Pd (0) synthesis by Citrobacter freundii at different growth phases. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 190:110124. [PMID: 31884328 DOI: 10.1016/j.ecoenv.2019.110124] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/15/2019] [Accepted: 12/21/2019] [Indexed: 06/10/2023]
Abstract
Gram-negative Citrobacter freundii with high Pd (II) reduction capacity was isolated from electroplating wastewater, and the electron transfer involved in Pd (II) bio-reduction by C. freundii JH was investigated in phosphate buffer saline solution with sodium formate as sole electron donor under anaerobic condition. FTIR spectra indicated that hydroxyl and amine groups on cell wall participated Pd (II) bio-sorption. TEM, XRD, XPS results confirmed that Pd (0) nanoparticles (NPs) could be bio-synthesized intra/extracellularly. Meanwhile, pH turn-over were observed owing to the reduction of cytochrome c (c-Cyt) in bio-reduction process. EPR spectra indicated that free radicals (OH) was generated from high concentration Pd (II), which would cause seriously damage to cell. Despite of the lower tolerance to Pd (II), the cells at logarithmic phase exhibited higher Pd (II) reduction capacity (72.21%) than that at stationary phase (56.21%), which might be related to the relatively stronger proton motive force (PMF) created by the substrate oxidation and the electron transfer, as evidenced by electrochemical experiments (CV, DPV, amperometric I-t curves) and protein denaturalization experiments. Additionally, c-Cyt and riboflavin were confirmed to be important participants in electron transfer. Finally, a putative synthesis mechanism of Pd (0)-NPs was deduced. This study contributed to further understanding the electron transfer in Pd (II) reduction, and provided more information for the bio-synthetic of metal nanoparticles.
Collapse
Affiliation(s)
- Jinghao Wang
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Sijing Bi
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Yuancai Chen
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China.
| | - Yongyou Hu
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| |
Collapse
|
5
|
Niu Z, Jia Y, Chen Y, Hu Y, Chen J, Lv Y. Positive effects of bio-nano Pd (0) toward direct electron transfer in Pseudomona putida and phenol biodegradation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 161:356-363. [PMID: 29890437 DOI: 10.1016/j.ecoenv.2018.06.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/21/2018] [Accepted: 06/03/2018] [Indexed: 06/08/2023]
Abstract
This study constructed a biological-inorganic hybrid system including Pseudomonas putida (P. putida) and bioreduced Pd (0) nanoparticles (NPs), and inspected the influence of bio-nano Pd (0) on the direct electron transfer and phenol biodegradation. Scanning electron microscopy and energy-dispersive X-ray spectroscopy (SEM-EDX) showed that bio-nano Pd (0) (~10 nm) were evenly dispersed on the surface and in the periplasm of P. putida. With the incorporation of bio-nano Pd (0), the redox currents of bacteria in the cyclic voltammetry (CV) became higher and the oxidation current increased as the addition of lactate, while the highest increase rates of two electron transfer system (ETS) rates were 63.97% and 33.79%, respectively. These results indicated that bio-nano Pd (0) could directly promote the electron transfer of P. putida. In phenol biodegradation process, P. putida-Pd (0)- 2 showed the highest k (0.2992 h-1), μm (0.035 h-1) and Ki (714.29 mg/L) and the lowest apparent Ks (76.39 mg/L). The results of kinetic analysis indicated that bio-nano Pd (0) markedly enhanced the biocatalytic efficiency, substrate affinity and the growth of cells compared to native P. putida. The positive effects of bio-nano Pd (0) to the electron transfer of P. putida would promote the biodegradation of phenol.
Collapse
Affiliation(s)
- Zhuyu Niu
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China.
| | - Yating Jia
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China.
| | - Yuancai Chen
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China.
| | - Yongyou Hu
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Junfeng Chen
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; School of Life Sciences, Qufu Normal University, Qufu 273165, PR China
| | - Yuancai Lv
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; College of Environment & Resources, Fuzhou University, Fuzhou 350116, PR China
| |
Collapse
|
6
|
Zou L, Qiao Y, Li CM. Boosting Microbial Electrocatalytic Kinetics for High Power Density: Insights into Synthetic Biology and Advanced Nanoscience. ELECTROCHEM ENERGY R 2018. [DOI: 10.1007/s41918-018-0020-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
7
|
Zheng T, Xu YS, Yong XY, Li B, Yin D, Cheng QW, Yuan HR, Yong YC. Endogenously enhanced biosurfactant production promotes electricity generation from microbial fuel cells. BIORESOURCE TECHNOLOGY 2015; 197:416-421. [PMID: 26356112 DOI: 10.1016/j.biortech.2015.08.136] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 08/12/2015] [Accepted: 08/15/2015] [Indexed: 06/05/2023]
Abstract
Microbial fuel cell (MFC) is considered as a promising green energy source and energy-saving pollutants treatment technology as it integrates pollutant biodegradation with energy extraction. In this work, a facile approach to enhance endogenous biosurfactant production was developed to improve the electron transfer rate and power output of MFC. By overexpression of rhlA, the key gene responsible for rhamnolipids synthesis, over-production of self-synthesized rhamnolipids from Pseudomonas aeruginosa PAO1 was achieved. Strikingly, the increased rhamnolipids production by rhlA overexpression significantly promoted the extracellular electron transfer of P. aeruginosa by enhancing electron shuttle (pyocyanin) production and increasing bacteria attachment on the anode. As a result, the strain with endogenously enhanced rhamnolipids production delivered 2.5 times higher power density output than that of the parent strain. This work substantiated that the enhancement on endogenous biosurfactant production could be a promising approach for improvement on the electricity output of MFC.
Collapse
Affiliation(s)
- Tao Zheng
- College of Biotechnology and Pharmaceutical Engineering, and Bioenergy Research Institute, Nanjing Tech University, Nanjing 210095, Jiangsu Province, China; Guangzhou Institute of Energy Conversion, Key Laboratory of Renewable Energy, Chinese Academy of Science, Guangzhou, Guangdong 510640, China
| | - Yu-Shang Xu
- Biofuels Institute, School of the Environment, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China; College of Biotechnology and Pharmaceutical Engineering, and Bioenergy Research Institute, Nanjing Tech University, Nanjing 210095, Jiangsu Province, China
| | - Xiao-Yu Yong
- College of Biotechnology and Pharmaceutical Engineering, and Bioenergy Research Institute, Nanjing Tech University, Nanjing 210095, Jiangsu Province, China
| | - Bing Li
- Biofuels Institute, School of the Environment, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China
| | - Di Yin
- Biofuels Institute, School of the Environment, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China
| | - Qian-Wen Cheng
- Biofuels Institute, School of the Environment, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China
| | - Hao-Ran Yuan
- Guangzhou Institute of Energy Conversion, Key Laboratory of Renewable Energy, Chinese Academy of Science, Guangzhou, Guangdong 510640, China
| | - Yang-Chun Yong
- Biofuels Institute, School of the Environment, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China.
| |
Collapse
|